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Abstract. Although the deep-sea floor accounts for more than 70 % of the Earth’s surface, there has been little progress in 5 

relation to deriving maps of seafloor sediment distribution based on transparent, repeatable, and automated methods such as 

machine learning. A new digital map of the spatial distribution of seafloor lithologies in the deep sea below 500 m water depth 

is presented to address this shortcoming. The lithology map is accompanied by estimates of the probability of the most probable 

class, which may be interpreted as a spatially-explicit measure of confidence in the predictions, and probabilities for the 

occurrence of five lithology classes (Calcareous sediment, Clay, Diatom ooze, Lithogenous sediment, and Radiolarian ooze). 10 

These map products were derived by the application of the Random Forest machine learning algorithm to a homogenised 

dataset of seafloor lithology samples and global environmental predictor variables that were selected based on the current 

understanding of the controls on the spatial distribution of deep-sea sediments. It is expected that the map products are useful 

for various purposes including, but not limited to, teaching, management, spatial planning, design of marine protected areas 

and as input for global spatial predictions of marine species distributions and seafloor sediment properties. The map products 15 

are available at https://doi.pangaea.de/10.1594/PANGAEA.911692 (Diesing, 2020). 

1 Introduction 

The deep-sea floor accounts for >90 % of seafloor area (Harris et al., 2014) and >70 % of the Earth’s surface. It acts as a 

receptor of the particle flux from the surface layers of the global ocean, is a place of biogeochemical cycling (Snelgrove et al., 

2018), records environmental and climate conditions through time and provides habitat for benthic organisms (Danovaro et 20 

al., 2014). Being able to map the spatial patterns of deep-sea sediments is therefore a major prerequisite for many studies 

addressing aspects of marine biogeochemistry, deep-sea ecology, and palaeo-environmental reconstructions. 

Until recently, maps of global deep-sea sediments were essentially variants of a hand-drawn map presented by Berger (1974) 

and typically depicted five to six sediment types, namely calcareous ooze, siliceous ooze (sometimes split into diatom ooze 

and radiolarian ooze), deep-sea (abyssal) clay, terrigenous sediment and glacial sediment. Since then, Dutkiewicz et al. (2015) 25 

collated and homogenised approximately 14,500 samples from original cruise reports and interpolated them using a support 

vector machine algorithm (Cortes and Vapnik, 1995). Their map displayed the spatial distribution of 13 lithologies across the 

world ocean and exhibited some marked differences from earlier maps. 

https://doi.pangaea.de/10.1594/PANGAEA.911692
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The controls on the distribution of deep-sea sediments have long been discussed (e.g. Seibold and Berger, 1996): Biogenous 

oozes (>30 % microscopic skeletal material by weight) dominate on the deep-sea floor and their composition is controlled by 30 

productivity in overlying surface ocean waters, dissolution during sinking and sedimentation and dilution with other materials. 

The ocean is undersaturated with silica. Preservation of siliceous shells is therefore a function of shell thickness, sinking time 

(water depth) and water temperature, as siliceous shells dissolve slower in colder water. The dissolution of calcareous shells 

is increased with increasing pressure (water depth) and CO2 content of the water (decreasing temperature). The water depth at 

which the rate of supply with calcium carbonate to the sea floor equals the rate of dissolution (calcite compensation depth; 35 

CCD) varies across ocean basins. Deep-sea clays dominate in the deepest parts of ocean basins below the CCD. Deposition of 

terrigenous material is thought to be a function of proximity to land (distance to shore). 

Dutkiewicz et al. (2016) investigated the bathymetric and oceanographic controls on the distribution of deep-sea sediments 

with a quantitative machine-learning approach. The influence of temperature, salinity, dissolved oxygen, productivity, nitrate, 

phosphate, silicate at the sea surface and bathymetry on lithogenous sediment, clay, calcareous sediment, radiolarian ooze and 40 

diatom ooze was quantified. They found that bathymetry, sea surface temperature and sea surface salinity had the largest 

control on the distribution of deep-sea sediments. Calcareous and siliceous oozes were not linked to high surface productivity 

according to their analysis. Diatom and radiolarian oozes were associated with low sea surface salinities and discrete sea 

surface temperature ranges. 

The aim of this study is to derive a map of deep-sea sediments of the global ocean by utilising environmental predictor variables 45 

for the development and application of a machine-learning spatial prediction model. Besides a categorical map giving the 

spatial representation of seafloor types in the deep sea, probability surfaces for individual sediment classes and a map 

displaying the probability of the most probable class in the final prediction will also be provided. 

2 Data 

2.1 Predictor variables 50 

The initial choice of the predictor variables was informed by the current understanding of the controls on the distribution of 

deep-sea sediments and the availability of data with full coverage of the deep sea at a reasonable resolution. We chose predictor 

variables mentioned above, but also included sea-surface iron concentration, which was not available to Dutkiewicz et al. 

(2016), but is an important nutrient for phytoplankton (Table 1). The predictor variable raster layers from Bio-ORACLE (Assis 

et al., 2018; Tyberghein et al., 2012) and MARSPEC (Sbrocco and Barber, 2013) were utilised. Whenever available, statistics 55 

of the variable other than mean were downloaded. These included the minimum, maximum and the range (maximum – 

minimum). 
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2.2 Response variable 

The response variable is seafloor lithology, a qualitative multinomial variable. The seafloor sediment sample data 

(seafloor_data.npz) from Dutkiewicz et al. (2015) were downloaded from ftp://ftp.earthbyte.org/papers/ 60 

Dutkiewicz_etal_seafloor_lithology/iPython_notebook_and_input_data/. The original dataset consisted of 13 seafloor 

lithology classes, while Dutkiewicz et al. (2016) simplified these to five major classes. The latter scheme was chosen here 

(Table 2), as the five major classes agree well with lithologies typically depicted in hand-drawn maps. For a detailed description 

of the original lithology classes refer to GSA Data Repository 2015271 

(https://www.geosociety.org/datarepository/2015/2015271.pdf). 65 

3 Methods 

The general workflow for building a predictive spatial model was outlined by Guisan and Zimmermann (2000). This involves 

five main steps: (1) Development of a conceptual model, (2) statistical formulation of the predictive model, (3) calibration 

(training) of the model, (4) model predictions and (5) evaluation of the model results (accuracy assessment). The conceptual 

model was already presented in the introduction. The remaining steps are described in the following sections. The analysis 70 

was performed in R 3.6.1 (R Core Team, 2018) and RStudio 1.2.1335 and is documented as an Executable Research 

Compendium (ERC), which can be accessed at https://o2r.uni-

muenster.de/#/erc/GWME2voTDb5oeaQFuTWMCEMveKS1MiXm. 

3.1 Data pre-processing 

The raster layers (predictor variables) were stacked, limited to water depths below 500 m, projected to Wagner IV global equal-75 

area projection with a pixel resolution of 10 km by 10 km and scaled.  

The sample data (response variable) were pre-processed in the following way: Only samples of the five major lithologies 

(Table 2) deeper than 500 m were used and duplicates were removed from the original sample dataset. The number of records 

was therefore reduced from 14,400 to 10,438. The data were projected to Wagner IV. Locations of the sample locations and 

their respective lithology class are shown in Fig. 1. Predictor variable values were extracted for every sample location. The 80 

class frequencies are shown in Table 2. 

3.2 Predictor variable selection 

Variable selection reduces the number of predictor variables to a subset that is relevant to the problem. The aims of variable 

selection are three-fold: (1) to improve the prediction performance, (2) to enable faster predictions and (3) to increase the 

interpretability of the model (Guyon and Elisseeff, 2003). It is generally advisable to reduce high-dimension datasets to 85 

uncorrelated important variables (Millard and Richardson, 2015). Here, a two-step approach was utilised to achieve this goal. 

ftp://ftp.earthbyte.org/papers/ Dutkiewicz_etal_seafloor_lithology/iPython_notebook_and_input_data/
ftp://ftp.earthbyte.org/papers/ Dutkiewicz_etal_seafloor_lithology/iPython_notebook_and_input_data/
https://www.geosociety.org/datarepository/2015/2015271.pdf
https://o2r.uni-muenster.de/#/erc/GWME2voTDb5oeaQFuTWMCEMveKS1MiXm
https://o2r.uni-muenster.de/#/erc/GWME2voTDb5oeaQFuTWMCEMveKS1MiXm
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The first step identifies those variables that are relevant to the problem. The second step minimises redundancy in the remaining 

predictor variables. 

Initially, the Boruta variable selection wrapper algorithm (Kursa and Rudnicki, 2010) was employed to identify all potentially 

important predictor variables. Wrapper algorithms identify relevant features by performing multiple runs of predictive models, 90 

testing the performance of different subsets (Guyon and Elisseeff, 2003). The Boruta algorithm creates so-called shadow 

variables by copying and randomising predictor variables. Variable importance scores for predictor and shadow variables are 

subsequently computed with the Random Forest algorithm (see below). The maximum importance score among the shadow 

variables (MZSA) is determined and for every predictor variable, a two-sided test of equality is performed with the MZSA. 

Predictor variables that have a variable importance score significantly higher than the MZSA are deemed important, while 95 

those with a variable importance score significantly lower than the MZSA are deemed unimportant. Tentative variables have 

a variable importance score that is not significantly different from the MZSA. Increasing the maximum number of iterations 

(maxRuns) might resolve tentative variables (Kursa and Rudnicki, 2010). Only important variables were retained for further 

analysis.  

The Boruta algorithm is an “all-relevant” feature selection method (Nilsson et al., 2007), which identifies all predictors that 100 

might be relevant for classification (Kursa and Rudnicki, 2010). It does not address the question of redundancy in the predictor 

variable data, which would be required for “minimal optimal” feature selection (Nilsson et al., 2007) usually preferred for 

model building. To limit redundancy, a second step seeks to identify predictor variables that are correlated with other predictors 

of higher importance. To achieve this, the Boruta importance score was used to rank the remaining predictor variables. 

Beginning with the most important variable, correlated variables with lower importance were subsequently removed. Values 105 

of the correlation coefficient r were trialled between 0.1 and 1 with a step size of 0.01 to find an appropriate r value that strikes 

a balance between prediction performance and model interpretability.   

3.3 Environmental space 

It is generally preferable to apply a suitable sampling design for model calibration and evaluation. This would ensure that the 

environmental variable space is sampled in a representative way. Various methods have been proposed to optimise sampling 110 

effort, including stratified random, generalised random tessellation stratified (Stevens Jr and Olsen, 2003) and conditioned 

Latin hypercube sampling (Minasny and McBratney, 2006) among others. However, such approaches are not feasible here due 

to time and financial constraints. Instead, we utilised available (legacy) sampling data. It might nevertheless be prudent to 

assess to what extent the selected samples cover the environmental space of the predictor variables. This was achieved by 

creating a random subsample (n = 10,000) of the selected environmental predictor variables and displaying the density 115 

distribution of the random subsample together with the density distribution of environmental variables based on the 

observations. This allows for a qualitative check to what degree the environmental space is sampled in a representative way. 
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3.4 Random Forest classification model 

The Random Forest (RF) prediction algorithm (Breiman, 2001) was chosen for the analysis due to its high predictive 

performance in a number of domains (Che Hasan et al., 2012; Cutler et al., 2007; Diesing et al., 2017; Diesing and Thorsnes, 120 

2018; Huang et al., 2014; Prasad et al., 2006). The RF is an ensemble technique based on classification trees (Breiman, 1984). 

Randomness is introduced in two ways: by constructing each tree from a bootstrapped sample of the training data, and by 

using a random subset of the predictor variables at each split in the tree growing process. As a result, every tree in the forest is 

unique. By aggregating the predictions over a large number of uncorrelated trees, prediction variance is reduced and accuracy 

improved (James et al., 2013, p. 316). The ‘votes’ for a specific class can be interpreted as a measure of probability for that 125 

class occurring in a specific location. The final prediction is determined by the class with the highest probability (vote count) 

to occur in a specific location. The randomForest package (Liaw and Wiener, 2002) was used to perform the analysis. 

RF generally performs well with default settings, i.e. without the tuning of parameters. Initial tuning of the number of trees in 

the forest (ntree) and the number of variables to consider at any given split (mtry) showed a very limited impact on model 

performance, while at the same time the tuning process was very time-consuming. It was therefore decided to use the default 130 

parameter values. 

The response variable is highly imbalanced (Table 2). This was accounted for by utilising a balanced version of RF (Chen et 

al., 2004). This is achieved by specifying the strata and sampsize arguments of the randomForest() function. The strata are the 

lithology classes and the sample size is determined by 𝑐 ∙ 𝑛𝑚𝑖𝑛, where c is the number of lithology classes (seven) and nmin 

is the number of samples in the least frequent class. Hence, downsampling is applied when growing individual trees. However, 135 

each sample is drawn from all available observations as many trees are grown, making this scheme likely more effective than 

downsampling the dataset prior to model building. RF also provides a relative estimate of predictor variable importance. The 

importance() function of the randomForest package allows to assess variable importance as the mean decrease in either 

accuracy or node purity. However, the latter approach might be biased when predictor variables vary in their scale of 

measurement or their number of categories (Strobl et al., 2007) and was not used here. Variable importance is therefore 140 

measured as the mean decrease in accuracy associated with each variable when it is assigned random but realistic values and 

the rest of the variables are left unchanged. The worse a model performs when a predictor is randomised, the more important 

that predictor is in predicting the response variable. The mean decrease in accuracy was left unscaled as recommended by 

Strobl and Zeileis (2008), and is reported as a fraction ranging from 0 to 1. Per default, individual trees of the forest are built 

using sampling with replacement (replace=TRUE). However, it has been shown that this choice might lead to bias in predictor 145 

variable importance measures (Strobl et al., 2007). It was therefore opted to use sampling without replacement. 

3.5 Spatial cross-validation 

Detailed guidelines for optimising sampling design for accuracy assessment have been developed (Olofsson et al., 2014; 

Stehman and Foody, 2019). However, this would require collecting new samples after modelling, which was not feasible given 
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the geographic scope. Cross-validation schemes are frequently used to deal with such situations. It can be assumed that the 150 

response variable is spatially structured to some extent and cross-validation therefore requires accounting for the spatial 

structure (Roberts et al., 2017). Here, a spatial leave-one-out cross-validation (S-LOO CV) scheme was applied. In a 

conventional LOO CV, a single observation is removed from the dataset and all other observations (n – 1) are used to train the 

model. The class of the withheld observation is then predicted using the n – 1 model. This is repeated for every observation in 

the dataset, producing observed and predicted classes at every location. In a S-LOO CV scheme, a buffer is placed around the 155 

withheld observation and training data from within this buffer are omitted from both model training and testing so that there 

are no training data proximal to the test. The S-LOO CV scheme used here was adapted from Misiuk et al. (2019). The buffer 

size was estimated with the spatialAutoRange() function of the blockCV package (Valavi et al., 2018). 

3.6 Accuracy assessment 

The accuracy of the model was assessed based on a confusion matrix that was derived by the S-LOO CV. Overall accuracy  160 

and the balanced error rate (BER) were used to evaluate the global accuracy of the model, while error of omission and error 

of commission were selected as class-specific metrics of accuracy. The overall accuracy gives the percentage of cases correctly 

allocated and is calculated by dividing the total number of correct allocations by the total number of samples (Congalton, 

1991). The BER is the average of the error rate for each class (Luts et al., 2010). The error of omission is the number of 

incorrectly classified samples of one class divided by the total number of reference samples of that class. The error of 165 

commission is the number of incorrectly classified samples of one class divided by the total number of samples that were 

classified as that class (Story and Congalton, 1986). The overall accuracy, its 95% confidence intervals and a one-sided test to 

evaluate whether the overall accuracy was significantly higher than the no information rate (NIR) were calculated by applying 

the confusionMatrix() function of the caret package (Kuhn, 2008). The confidence interval is estimated using a binomial test. 

The NIR is taken to be the proportion of the most frequent class. Errors of omission and commission are not provided by the 170 

function but can be calculated from the confusion matrix. The BER was calculated with the BER() function of the package 

measures (Probst, 2018). 

4 Results 

4.1 Variable selection 

The Boruta algorithm was run with maxRuns = 500 iterations and a p-value of 0.05, leaving no variables unresolved (i.e. 175 

tentative). All 38 predictor variables initially included in the model were deemed important according to the Boruta analysis 

(Fig. 2). Based on a plot of the RF out of bag (OOB) error estimates over the correlation coefficient r, a value of 0.5 was 

selected (Fig. 3) This selection ensured high model performance while at the same time minimising the number of predictor 

variables. Subsequent correlation analysis reduced the number of retained predictor variables to eight. These were bathymetry 

(MS_bathy_5m), distance to shore (MS_biogeo5_dist_shore_5m), sea-surface temperature range (BO2_temprange_ss), sea-180 
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surface maximum primary productivity (BO2_ppmax_ss), sea-floor minimum temperature (BO2_tempmin_bdmean), sea-

surface maximum salinity (BO2_salinitymax_ss), sea-surface salinity range (BO2_salinityrange_ss) and sea-surface minimum 

silicate (BO2_silicatemin_ss). The strongest correlation between remaining predictor variables (Fig. 4) was found between 

bathymetry and sea-floor minimum temperature (r = 0.38), sea-surface maximum salinity and sea-surface minimum silicate (r 

= -0.36) and bathymetry and distance to shore (r = -0.33). Maps of the selected predictor variables are shown in Fig. A1. 185 

4.2 Environmental space 

The environmental space (Fig. 5) is generally sampled adequately, although there is a tendency for an over-representation of 

shallower water depths and areas closer to land. Sea-surface temperature range, sea-surface maximum primary productivity, 

sea-floor minimum temperature, and sea-surface maximum salinity are all slightly biased towards higher values. Sea-surface 

salinity range and sea-surface minimum silicate are the environmental variables that are most closely represented by the 190 

samples. 

4.3 Model accuracy 

The confusion matrix based on the S-LOO CV is shown in Table 3. The overall accuracy of the model is 59.4 %, with 95 % 

confidence limits of 58.4 % and 60.3 %. This is significantly higher (p < 2.2e-16) than the NIR (50.3 %). The BER is 0.56. 

The two dominant classes, Calcareous sediment, and Clay have the lowest error of commission with 18.0 % and 32.7 %, 195 

respectively. Calcareous sediment is most frequently mis-classified as Clay and vice versa. All other classes have high errors 

of commission (>70 %). Errors of omission are slightly higher than those of commission for the frequently occurring 

lithologies Calcareous sediment, and Clay, while lower for the rare classes Diatom ooze, Lithogenous sediment, and 

Radiolarian ooze. 

4.4 Spatial distribution of deep-sea sediments 200 

Probability surfaces of individual sediment classes with verbal descriptions of likelihood (Mastrandrea et al., 2011) based on 

the estimated probabilities are displayed in Fig. 6. For any given pixel in the map, the final lithology class is that one with the 

highest probability. The probability of the most probable class might be interpreted as a spatially explicit measure of map 

confidence. The resulting maps of the spatial distribution of deep-sea sediments and their associated confidence are shown in 

Fig. 7. Calcareous sediment and Clay dominate throughout the Pacific, Atlantic and Indian Oceans, whereby Clay occupies 205 

the deep basins and Calcareous sediment is found in shallower parts of the ocean basins. In the Southern Ocean, seafloor 

sediments are arranged in a banded pattern around Antarctica, with Lithogenous sediment forming an inner ring closest to land 

(Fig. A2). An outer ring of siliceous oozes (Diatom ooze, and Radiolarian ooze) dominates in the Southern Ocean. The width 

of this “opal belt” (Lisitzin, 1971) varies and in places, most notably south of South America, it is discontinuous. Overall, map 

confidence varies between 0.21 and 1. It is generally lower in the vicinity of class boundaries and higher in the geographic 210 

centre of a class. 
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The sea-floor lithology map bears a notable resemblance with previously published hand-drawn maps (e.g. Berger, 1974). The 

general patterns are very similar, e.g. the distribution of Calcareous sediment, Clay, and Diatom ooze in the major ocean basins. 

Patterns of Radiolarian ooze in the Indian Ocean resemble those in Thurman (1997: Fig. 5-22). In the Pacific Ocean, 

Radiolarian ooze is mapped widespread in the vicinity of the equator, although not in the form of a narrow band as frequently 215 

depicted in hand-drawn maps (Berger, 1974; Thurman, 1997). 

Based on the predicted distribution of lithology classes, Calcareous sediments cover approximately 121 million km2 of seabed 

below 500 m water depth, equivalent to 36.8 % of the total area (Table 4). Clays are the second most frequent lithology 

occupying 102 million km2 (31.0 %). Diatom ooze, Lithogenous sediment, and Radiolarian ooze account for 8.5 %, 9.5 % and 

14.2 % of deep-sea floor, respectively. 220 

4.5 Predictor variable importance 

The three most important predictor variables were sea-surface maximum salinity, bathymetry, and sea-floor maximum 

temperature with mean decreases in accuracy above 5 % (Fig. 8). These findings are similar to results from Dutkiewicz et al. 

(2016), who determined sea-surface salinity, sea-surface temperature and bathymetry as the most important controls on the 

distribution of deep-sea sediments. Sea-surface minimum silicate was of medium importance (4.3 % decrease in accuracy), 225 

while sea-surface temperature range, sea-surface maximum primary productivity, distance to shore and sea-surface salinity 

range were of lower importance (<3 % decrease in accuracy). 

5 Limitations of the approach 

This study utilised legacy sampling data to make predictions of the spatial distribution of seafloor lithologies in the deep-sea. 

This is the only viable approach as it is unrealistic to finance and execute a survey programme that samples the global ocean 230 

with adequate density within a reasonable timeframe. However, this approach also has some drawbacks:  

The presented spatial predictions were based on forming relationships between lithology classes and environmental predictor 

variables. For such a task, it would be desirable to cover the range of values of each of the predictor variables used in the model 

(Minasny and McBratney, 2006). Although it was not possible to design a sampling survey, it became nevertheless obvious 

that the environmental space is reasonably well covered, presumably because of the relatively large number of observations, 235 

which was achievable as there was virtually no cost associated with “collecting” the samples. However, it might not always 

be the case that a large sample dataset leads to adequate coverage of the environmental space. In such a case, it might be 

desirable to draw a suitable sub-sample that approximates the distribution of the environmental variables. 

Data originating from many cruises over long time periods are most likely heterogeneous, which might lead to increased 

uncertainty in the predictions. Sources of uncertainty might relate to sampling gear type, vintage and timing of sampling, 240 

representativeness of subsampling, analytical pre-treatment, inconsistency of classification standards and more (van Heteren 

and Van Lancker, 2015). However, Dutkiewicz et al. (2015) made efforts to homogenise the data. From a total number of more 
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than 200,000 samples, they selected 14,400 based on strict quality-control criteria. Only surface and near-surface samples that 

were collected using coring, drilling, or grabbing methods were included. Furthermore, only samples whose descriptions could 

be verified using original cruise reports, cruise proceedings and core logs were retained. Their classification scheme is 245 

deliberately generalised in order to successfully depict the main types of sediments found in the global ocean and to overcome 

shortcomings of inconsistent, poorly defined and obsolete classification schemes and terminologies (Dutkiewicz et al., 2015). 

Additional uncertainty might be introduced through imprecise positioning of the samples, which might lead to incorrect 

relations between the response variable and the predictor variables. No metadata exist on the positioning accuracy or even the 

method of determining the position, which might give some clues on the error associated with the recorded positions. However, 250 

the chances that this shortcoming leads to significant problems when making associations between target and predictor 

variables are relatively low, as the chosen model resolution of 10 km is relatively coarse when compared with positioning 

accuracy. 

The initial choice of predictor variables was informed by the current understanding of the controls on deep-sea sedimentation 

(Dutkiewicz et al., 2016; Seibold and Berger, 1996). Consequently, all selected predictor variables were deemed important 255 

(Fig. 2). The three most important predictor variables (Fig. 8) are also in good agreement with Dutkiewicz et al. (2016). 

However, the large errors of omission and especially commission for the rare lithologies Diatom ooze, Lithogenous sediment, 

and Radiolarian ooze might indicate that the environmental controls are less well represented for these sediment types. 

Lithogenous sediment comprises a wide range of grain-sizes (silt, sand, gravel and coarser) and proximity to land might be an 

insufficient predictor. In fact, distance to shore had the second lowest variable importance (Fig. 8). 260 

Sedimentation rates in the deep-sea typically range on the order of 1 – 100 mm per 1000 yrs (Seibold, 1975). The sample 

depths in the dataset used here might have ranged from core top to a few dm. The lithologic signal might therefore be integrated 

over timescales of approximately 100 yrs to a few 100,000 yrs. The model hindcasts to derive the oceanographic predictors 

typically cover approximately 25 yrs, while bathymetry and distance to coast might be nearly constant since global sea-level 

rise ceased approximately 6,700 yrs ago (Lambeck et al., 2014). Hence, there likely exists a mismatch between the time 265 

intervals, although oceanographic variables might not have changed dramatically over much longer timescales than a few 

decades. 

6 Potential usage 

Despite the good agreement with previously published maps and a reasonable overall map accuracy of 60 %, there is large 

variation in the class-specific error as well as the spatial distribution of map confidence. It is therefore recommended to always 270 

consult the information on map confidence along with the map of seafloor lithologies. 

The probability surfaces of the seven lithologies might be used as input for spatial prediction and modelling, e.g. marine species 

distribution modelling on a global scale, which typically lacks information on seafloor sediments, although substrate type is 
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assumed to be an important environmental predictor. Additionally, the presented data layers might be useful for the spatial 

prediction of sediment properties (e.g. carbonate and organic carbon content). 275 

The categorical map might serve as a resource for education and teaching, provide context for research pertaining to the global 

seafloor, support marine planning, management and decision-making and underpin the design of marine protected areas 

globally. Additionally, the provided lithology map might be useful for survey planning, especially in conjunction with 

confidence information to target areas where a certain lithology is most likely to occur. Conversely, areas of low confidence 

could be targeted to further improve the accuracy of and confidence in the global map of deep-sea sediments. 280 

7 Data availability 

The presented model results (probability surfaces of the seven lithologies, lithology map and associated confidence map) are 

archived at https://doi.pangaea.de/10.1594/PANGAEA.911692 (Diesing, 2020). 

8 Conclusions 

Based on a homogenised dataset of seafloor lithology samples (Dutkiewicz et al., 2015) and global environmental predictor 285 

variables from Bio-ORACLE (Assis et al., 2018; Tyberghein et al., 2012) and MARSPEC (Sbrocco and Barber, 2013) it was 

possible to spatially predict the distribution of deep-sea sediments globally. The general understanding about the controls on 

deep-sea sedimentation helped building a spatial model that gives a good representation of the main lithologies Calcareous 

sediment, Clay, Diatom ooze, Lithogenous sediment, and Radiolarian ooze. Further improvements should be directed towards 

the controls on the distribution of rarer lithologies (Diatom ooze, Lithogenous sediment, and Radiolarian ooze). 290 
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Table 1: Environmental predictor variables tested in this study 405 

Environmental variable Statistics Unit Source 

Bathymetry mean m Sbrocco and Barber (2013) 

Distance to shore mean km Sbrocco and Barber (2013) 

Sea-surface temperature mean, min, max, range C Assis et al. (2018) 

Sea-surface salinity mean, min, max, range PSS Assis et al. (2018) 

Sea-surface dissolved oxygen mean, min, max, range mol m-3 Assis et al. (2018) 

Sea-surface primary productivity mean, min, max, range g m-3 day-1 Assis et al. (2018) 

Sea-surface iron concentration mean, min, max, range µmol m-3 Assis et al. (2018) 

Sea-surface nitrate concentration mean, min, max, range mol m-3 Assis et al. (2018) 

Sea-surface phosphate 

concentration 

mean, min, max, range mol m-3 Assis et al. (2018) 

Sea-surface silicate concentration mean, min, max, range mol m-3 Assis et al. (2018) 

Sea-floor temperature mean, min, max, range C Assis et al. (2018) 
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Table 2: Seafloor lithology classes used in this study, their abbreviations, their relationships to classes in Dutkiewicz et al. (2015) and 

the number and percentage of samples. Not included are Ash and volcanic sand/gravel, Mixed calcareous-siliceous ooze, Siliceous 

mud, Sponge spicules and Shells and coral fragments of the original classification. 410 

Lithology class Abbreviation Relation to Dutkiewicz et al. (2015) No. of observation 

Calcareous 

sediment 

Calc.Sed Calcareous ooze 

Fine-grained calcareous sediment 

5251 (50.3 %) 

Clay Clay Clay 3714 (35.6 %) 

Diatom ooze Dia.Ooze Diatom ooze 623 (6.0 %) 

Lithogenous 

sediment 

Lith.Sed Gravel and coarser 

Sand 

Silt 

751 (7.2 %) 

Radiolarian ooze Rad.Ooze Radiolarian ooze 99 (0.9 %) 
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Table 3: Confusion matrix. Observed (reference) classes are in columns, predicted classes in rows. 

 

 Calc.Sed Clay Dia.Ooze Lith.Sed Rad.Ooze Row 

total 

Error of 

commission 

Calc.Sed 3735 660 10 139 10 4554 0.180 

Clay 760 2001 44 151 17 2973 0.327 

Dia.Ooze 234 215 299 294 37 1079 0.723 

Lith.Sed 277 456 111 128 3 975 0.869 

Rad.Ooze 245 382 159 39 32 857 0.963 

Column 

total 

5251 3714 623 751 99   

Error of 

omission 

0.289 0.461 0.520 0.830 0.677   

 415 
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Table 4: Breakdown of areal coverage by lithology types in the global ocean below 500 m water depth. 

Lithology Number of pixels Area (106 km2) Area (%) 

Calcareous sediment 1,211,063 121.106 36.80 

Clay 1,019,160 101.916 30.97 

Diatom ooze 279,955 27.996 8.51 

Lithogenous sediment 312,668 31.267 9.50 

Radiolarian ooze 467,775 46.778 14.22 

Sum 3,290,621 329.062 100 
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 420 

Figure 1: Locations of samples used in this study based on data from Dutkiewicz et al. (2015). Land masses are derived from ESRI 

(2010). Hillshade topography is derived from GEBCO (2015).  
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Figure 2: Results of the Boruta variable selection process. All environmental predictor variables had an importance significantly 

higher than the shadow variables (shadowMin, ShadowMean and shadowMax).425 
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Figure 3: Influence of r-value on the out of bag error of a random forest model with default parameters. The size of the circles 

indicates the number of selected predictor variables (Npreds). 
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Figure 4: Correlation plot showing the correlation coefficients of the selected predictor variables.  430 
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Figure 5: A visual check to what extent the samples cover the environmental space. Blue: Samples; Red: Environmental data. 
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 435 

Figure 6: Probability surfaces of the five predicted lithologies. The verbal likelihood scale is based on Mastrandrea et al. (2011). 

Land masses are derived from ESRI (2010).   



25 

 

 

 

Figure 7: a) Predicted lithology classes and b) associated confidence in the predictions. Land masses are derived from ESRI (2010).  440 
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Figure 8: Random Forest variable importance.  
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Figure A1: Plots of the selected scaled predictor variables.   
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 445 

Figure A2: Predicted lithology classes in the Southern Ocean. Land masses are derived from ESRI (2010). 


