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Referee 2 attested overall good quality, but identified several issues that could be fur-
ther addressed:

1. Move the section 3.5 Environmental Space before section 3.3 Random Forest clas-
sification model.

Agreed, the section was moved accordingly.

2. Similar, the results of this analysis can be presented before the model results.

Agreed, the section was moved accordingly.

3. It is not clear which correlation coefficient has been used, and the significance of
these correlations. The reasons for excluding high-correlated predictor variables could
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be analysed further, mainly focused on the RF performance and potential bias in cases
of high-correlated predictors.

The general strategy for predictor variable selection was to initially find all predictors
that are potentially relevant, then reduce redundancy by limiting the set of predictors to
those that are uncorrelated. Such an approach has also been advocated by Millard and
Richardson (2015). Finding important predictors is achieved with the Boruta algorithm,
an “all-relevant” feature selection method (Nilsson et al., 2007), which identifies all pre-
dictors that might be relevant for classification (Kursa and Rudnicki, 2010). Limiting
redundancy is subsequently achieved by a correlation analysis. To do so, it is neces-
sary to define a critical value of the correlation coefficient r. This is arguably subjective,
and the choice of r will influence the number of predictor variables that are selected.
To investigate the influence of r on the OOB error of a Random Forest model (using
default parameter values), several values of r between 0.1 and 1 (step 0.01) were now
trialled. When the OOB error is plotted over r, it is apparent that initially (with small
values of r) the OOB error drops off quickly but stabilises at values of r approximately
0.4 – 0.5. As many predictors potentially lead to overfitting, increase processing time,
and decrease interpretability of the model, it was decided to select a small value of 0.5.
This led to eight predictors being selected.

For clarity, the section on predictor variable selection was updated.

4. Dutkiewicz et al., 2015 and Dutkiewicz et al., 2016, referred to the absence of iron
concentration as potential predictor variable form their model and correlation analysis,
respectively. In this study, the author initially includes iron concentration as a potential
predictor variable. However, in the final model, the iron concentration is not used.

Dutkiewicz et al. (2016) highlighted that iron concentration in surface waters might
be an important predictor, as phytoplankton blooms (e.g. diatoms) are enhanced by
iron fertilisation. However, they also point out that the Southern Ocean where diatom
oozes are abundant, receives very little iron. In fact, productivity is not the only factor
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determining the composition of deep-sea sediments, dissolution during sinking and
dilution with other materials also have to be considered.

Iron concentration was initially included in this study. However, iron concentration was
not included in the final model because it was correlated (above the selected threshold)
with sea-floor minimum temperature. Box plots of iron concentration versus seafloor
lithology did not reveal high discriminatory power of this predictor (see attached fig-
ures). Because of that and because it was intended to keep the variable selection
process as “automated” as possible, it was decided not to intervene and force the in-
clusion of iron concentration as a finally selected predictor.

5. It would be interesting to be discussed the presence of available global CCD models
(and its limitations) that could be used or not as a predictor.

The Carbonate Compensation Depth (CCD) is potentially another important predictor
that was not included in the model. This was due to the absence of relevant datasets in
the utilised databases. A literature search did not yield any publications with associated
datasets that could be used. However, it is assumed that this missing information is
(at least partly) provided by other predictors, such as water depth and bottom water
temperature.

6. The author uses the unscaled mean decrease in accuracy as a variable importance
measure. Although this is the recommended approach (e.g. Strobl et al., 2007; Strobl
et al., 2008), it would be better if the reasons behind this choice are stated inside the
text.

Agreed. The text has been updated accordingly and now reads:

RF also provides a relative estimate of predictor variable importance. The importance()
function of the randomForest package allows to assess variable importance as the
mean decrease in either accuracy or node purity. However, the latter approach might
be biased when predictor variables vary in their scale of measurement or their num-
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ber of categories (Strobl et al., 2007) and was not used here. Variable importance is
therefore measured as the mean decrease in accuracy associated with each variable
when it is assigned random but realistic values and the rest of the variables are left
unchanged. The worse a model performs when a predictor is randomised, the more
important that predictor is in predicting the response variable. The mean decrease
in accuracy was left unscaled as recommended by Strobl and Zeileis (2008), and is
reported as a fraction ranging from 0 to 1.

7. In the manuscript, it is not stated if the RF sub-sampling of predictor variables
is performed with or without replacement. In the provided script seems to be with
replacement (as the default option in the used package). However, studies have shown
that this approach can be biased when predictor variables vary in their scale and/or in
their number of categories (e.g. Strobl et al., 2007). Also, it is not also clear if any
type of feature scaling has been applied in the predictor variables before modelling.
In case that the author would like to continue without feature scaling for the predictor
variables, packages like party seem to provide more unbiased results. In any case, it
would be good to be provided with a more comprehensive explanation, as the model
interpretability is one of the main targets in this work.

Agreed. The predictor variables have now been scaled and the subsampling of predic-
tor variables is performed without replacement. The manuscript was updated accord-
ingly.

8. Studies have shown that the traditional cross-validation can result in overoptimistic
errors when applied in spatial data (e.g. Roberts et al., 2016). Consequently, a spatial
model should also include a spatial cross-validation analysis. Moreover, in cases of
spatially unbalanced class distribution, stratified cross-validation can be applied (e.g.
Lawson et al., 2017). Here, train & test samples were split with stratification, but the
training was conducted only with cross-validation. Recently published spatial versions
of RF could alternatively help to this direction (e.g. Hengl et al, 2018, Georganos et al,
2019). The existing dataset (despite the tremendous effort of Dutkiewicz et al., 2015) is
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spatially imbalanced, with areas have experienced heavier sampling efforts than other,
making even more important the concept of spatial cv or/and spatial RF. The author
addresses this issue by setting a minimum distance among the training points and by
removing duplicates.

Agreed. I have now implemented a spatial leave one out cross validation scheme
to test the accuracy of the model in a more robust way. The spatial autocorrelation
distance is determined with the spatialAutoRange function of the blockCV package.
This value is utilised to determine the buffer size around observations which serve
as a test point. Details can be found in a new section “3.5 Spatial cross-validation”.
However, this meant that model tuning would have become very complex and even
more time-consuming.

As model tuning gave a very limited gain in performance, it was therefore decided to
run the Random Forest with default parameter values.

As a result of this more robust estimation of map accuracy, the accuracy of the model
is now lower (or rather less inflated), but still significantly larger than the no information
rate.

9. Despite the selected class simplification, the two main classes still count for the
77.6% of the training and test sample, resulting in relatively high overall accuracy, but
with limited accuracy in the rare classes. Considering the availability of methods and
algorithms that try to overcome these class imbalances, (e.g. weights, penalty costs,
over/under-sampling. SMOTE, Isolation Forests) it would be interesting to see how
further can be improved the performance compared to the presented (baseline) model.
The overall accuracy as a performance metric is not the best option in such situations (it
is also mentioned from the first Reviewer) However, the no information rate is provided,
showing that there is still gain.

The problem of class imbalances is now addressed by utilising a balanced version of
Random Forest. This is achieved by using the strata and sampsize arguments of the
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randomForest function. Here, we stratify by lithology class. The sampsize is then set to
the same number for every class. This means that the class with the lowest frequency
(Radiolarian ooze) determines the number of observations used to fit individual trees.
However, each sample is still drawn from all available observations and hence this
approach is likely more effective then downsampling the whole dataset prior to model
building.

In addition to the overall accuracy, I have now also included the balanced error rate,
which is more appropriate for datasets with unbalanced class frequencies.

As a result, the final map has a different appearance in some areas of the global ocean.
It now approximates hand-drawn maps of the distribution of deep-sea sediments in
much more detail. For example, equatorial patches of radiolarian ooze in the Indian
Ocean are visible now. A near-equatorial band of radiolarian ooze in the eastern Pacific
is now visible, too.

10. The results show good overall agreement with the above mentioned previous map-
ping efforts. However, the comparison demands parallel examinations of the maps
from the two papers. Given the availability of the results from Dutkiewicz et al., 2015,
it would be interesting to include a direct categorical map comparison between the two
approaches (after the proper modifications due to the different number of lithological
classes) showing clearer the areas with the highest agreement and disagreement.

It was not the intention of this contribution, and might go beyond the scope of a data
description paper, to compare the final map with that of Dutkiewicz et al. (2015). I
would prefer to leave such an analysis to whoever is interested in it. The map products
of both publications are readily available.

11. In Figures 1 & 6a, the use of purple colour for the Mixed Ooze is not ideal, as it has
limited contrast with the background map and its surrounded classes. An essential part
of this study and its results is related to map creation and interpretation. Consequently,
the use of colourblind-friendly palette is recommended, making the manuscript more
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comfortable on a broader audience.

I agree that the choice of the colour scheme should be inclusive, but when consult-
ing colorbrewer2.org, I could not find a colour-blind safe option for qualitative data
with 5 classes. (NB: The classification has been reduced to the five classes used by
Dutkiewicz et al. (2016), as suggested by reviewer 1.) The purple colour has, nev-
ertheless, now been removed, as the respective class is no longer included. I also
removed the hillshade bathymetry to make the map clearer.
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Please also note the supplement to this comment:
https://essd.copernicus.org/preprints/essd-2020-22/essd-2020-22-AC2-
supplement.zip

Interactive comment on Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-22,
2020.
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Fig. 1. Iron concentration (max)

C9

Fig. 2. Iron concentration (mean)
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Fig. 3. Iron concentration (min)
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Fig. 4. Iron concentration (range)
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