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Abstract. This paper presents hydrometeorological, glaciological and geospatial data from the Peyto Glacier Research
Basin (PGRB) in the Canadian Rockies. Peyto Glacier has been of interest to glaciological and hydrological
researchers since the 1960s, when it was chosen as one of five glacier basins in Canada for the study of mass and
water balance during the International Hydrological Decade (IHD, 1965-1974). Intensive studies of the glacier and
observations of the glacier mass balance continued after the IHD, when the initial seasonal meteorological stations
were discontinued, then restarted as continuous stations in the late 1980s. The corresponding hydrometric observations
were discontinued in 1977 and restarted in 2013. Data sets presented in this paper include: high resolution, co-
registered DEMs derived from original air photos and LiDAR surveys; hourly off-glacier meteorological data recorded
from 1987 to present; precipitation data from nearby Bow Summit; and long-term hydrological and glaciological
model forcing datasets derived from bias-corrected reanalysis products. These data are crucial for studying climate
change and variability in the basin, and to understanding the hydrological responses of the basin to both glacier and
climate change. The comprehensive data set for the PGRB is a valuable and exceptionally long-standing testament to
the impacts of climate change on the cryosphere in the high mountain environment. The dataset is publicly available

from Federated Research Data Repository at https://doi.org/10.20383/101.0259 (Pradhananga et al., 2020).
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1 Introduction

Peyto Glacier (Figure 1) is in Banff National Park, Alberta, Canada. It forms part of the Wapta Icefield in the Waputik
Range. The Wapta Icefield is one of the southernmost icefield complexes of the Canadian Rocky Mountains and is a
high mountain headwater for the Columbia and Saskatchewan-Nelson river systems in western Canada. Peyto Glacier
contributes runoff to the Mistaya River Basin, a headwater of the North Saskatchewan River, which eventually reaches
Hudson Bay via the Nelson River. Glaciers and snowpacks in these headwater systems are important sources of water
that support industry, agriculture, hydropower generation, drinking water and the environment. The meltwater from
this glacier and others in the region is a crucial component of streamflow during dry late summer periods (Comeau et
al., 2009; Demuth et al., 2008; Hopkinson and Young, 1998).

The first geophysical record of Peyto Glacier goes back to a photograph taken by Walter D. Wilcox in 1896, followed
by subsequent photographs and a map from the Alberta-British Columbia Interprovincial Boundary Commission
Survey (Tennant and Menounos, 2013). Significant research on the glacier began in 1965 when it was selected as one
of the research sites for the International Hydrological Decade (IHD). The scope and observational resources have
varied since then, with more recent advances and restoration of observations (Munro, 2013). Mass balance
observations continued after the IHD, but discharge observations ended in 1977. The stream gauge site was washed
away by a flood in July 1983. Discharge measurements resumed in 2013, recorded by the Centre for Hydrology at the
University of Saskatchewan (USask) at a new gauging site located 1.5 km upstream from the previous location. A
year-round automatic weather station, operating since 1987 (Munro, 2013), was upgraded in 2013 as part of the

Canadian Rockies Hydrological Observatory observation system and is now operated by USask.

Collecting continuous, high-quality data from remote and difficult-to-access alpine glacier basins can be a challenge.
Lafreniére and Sharp (2003) and Rasouli et al. (2018), for example, noted the impact of power source failures on
automatic weather station (AWS) records, such as to cause significant data gaps. High snow accumulations during
winter can bury an AWS installed on the glacier surface, and riming can compromise instrument performance; in turn,
high summer melt can cause stations to tilt, or fall over. Climate data availability and accuracy in the Peyto Glacier
Research Basin (PGRB) suffer from many such irregularities. Therefore, affected data must be infilled or corrected

before they can be used for medium and long-term studies.

The World Glacier Monitoring Service (WGMS) has listed Peyto Glacier as a ‘reference glacier’ for mass balance, in
consideration of its mass balance data record of over 50 years. Peyto Glacier is also one of the observing sites operated
by the Geological Survey of Canada's Glacier-Climate Observing Program (Demuth and Ednie, 2016). Therefore, the
PGRB can be considered an outdoor laboratory for conducting hydrological research, as proposed by Seyfried (2003);
however, a single document that describes the relevant hydro-meteorological datasets is needed. This paper details the
meteorological forcing data that were created for driving hydrological models of Peyto Glacier, along with related
hydrological and geospatial datasets used for model evaluation, mainly for three time periods: 1965-1974, 1987-2012

and 2013-2018. These datasets include historical archived data from the IHD period and recent data from both on-ice
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and off-ice stations. Glaciological mass balance measurements, using ablation stakes and snow pits, have been carried
out continuously since the beginning of the IHD period, and a comprehensive account of the first 14 years of mass
balance results appeared in Young (1981). Mass balance data reported from Peyto Glacier have been used by many
researchers (Bitz and Battisti, 1999; Demuth et al., 2008; Demuth and Keller, 2006; Letréguilly, 1988; Letréguilly and
Reynaud, 1989; Marshall et al., 2011; Matulla et al., 2009; Menounos et al., 2019; @strem, 1973; Schiefer et al., 2007;
Shea and Marshall, 2007; Watson et al., 2006; Watson and Luckman, 2004; Zemp et al., 2015) as reference data for

the region, but the collection of data that could be used for modeling purposes has never been assembled in a single
description until now.
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Figure 1: Peyto Glacier Research Basin (PBRB). (a) locations of PGRB and the hydro-meteorological stations,
blue areas are glacier within PGRB (b) past and present glacier extents.
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2 Peyto Glacier Research Basin (PGRB)

The PGRB is in the Canadian Rockies, on the eastern side of the Continental Divide, at latitude 51.67° N and longitude
116.55° W. This heavily glacierized basin is 23.6 km? in area, ranging in elevation from 1907 to 3152 m. It is located
in a predominantly sedimentary geological region, with surrounding mountains formed from hard, resistant dolomite
(Young and Stanley, 1976). The basin has been well monitored over a 55-year observational period (Shea et al., 2009).
During the 1960s, the area of the glacier was 13.4 km?, but it has been continuously losing mass and area since at least
the 1920s (Tennant et al., 2012), shrinking to an area of 9.87 km? as of 2018 (Figure 1). Repeat ground-based
photography (Figure 2) from 1902 and 2002 show the glacier retreat that has occurred over the 20" century. A new
proglacial lake has since formed at the tongue of the glacier that increases in size every year and has been informally
named ‘Lake Munro’ by USask to honor D. Scott Munro’s research contribution to the glacier basin. Peyto Creek
flows out of Lake Munro, draining the PGRB into Peyto Lake, thus supplying water to the Mistaya River.

Figure 2: Peyto Glacier in (a) 1902 (V653/NA-1127, Vaux Family, Whyte Museum of the Canadian Rockies,
Whyte.org), and (b) 2002 (courtesy Henry Vaux Jr.).
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2.1 Hydrometeorological sites

Meteorological observations were taken over the summer months (June — September) during the UNESCO
International Hydrological Decade (IHD) at the Peyto Creek Base Station adjacent to the glacier terminus, herein
referred to as Peyto Main (Figure 1). After becoming dormant in 1974, the station was re-established at the same
location in September 1987. Table 2 and Table 3 detail the meteorological variables and instruments used to record
them during the IHD and the post-IHD period. Three meteorological stations were also established on the glacier
surface for post-IHD micrometeorological studies by D. Scott Munro in different elevation zones: Lower, Middle and
Upper ice stations. These were originally positioned to represent different glacier net mass balance zones — ablation
zone, equilibrium line zone, and accumulation zone. Since 2012, USask, has continued these stations with new
instruments, but they have been relocated to accommodate changing glacier geometry and rising elevation of the
equilibrium line. These data, however, are not continuous because only the Lower Ice station was maintained after
2013 due to rapid ice melt causing tower collapse and subsequent station burial at the higher elevation sites. Peyto

Outlet is a hydrometric station that measures glacier meltwater runoff at the outlet of Lake Munro.

The AWS sites in the PGRB are now a part of the Canadian Rockies Hydrological Observatory (https://research-
USask
hydrometeorological and hydrometric stations in the Canadian Rockies. They are also part of the cryospheric surface
observation network (CryoNet) of the World Meteorological Organisation Global Cryosphere Watch (WMO-GCW)

groups.usask.ca/hydrology/science/research-facilities/crho.php#Overview), a network of 35

- http://globalcryospherewatch.org/cryonet. Peyto Main and Peyto Lower Ice are listed as Reference CryoNet stations,
whereas the others are Contributing CryoNet Stations of the GCW. Figure 1 and Table 1 contain the locational
information, data collection periods and data elements recorded at the stations, with selected stations shown in Figure
3. The stations are still collecting observations and our datasets will be periodically updated from what can be

described in this paper.

Table 1: CryoNet station data.

Station Name Station Geographical Coordinates | Variables Data
Type! Elevation above sea level Period

Peyto Main? Reference 51.68549 N; 116.54495 W Ta, RH, Ws, Wd, Ts, July 2013 -

2240 m Qsi, Qso, Qli, Qlo, Ppt, current?
P, Sd

Peyto Main Old? Reference 51.68541 N; 116.54467 W Ta, RH, Ws, Wd, Ts, Sept 1987-
2240m Qsi, Qli, Ppt, P July 201835

Peyto Main IHDP Reference 51.68549 N; 116.54467 W Ta, RH, Ws, Qsi, Ppt, 1965-1974%
2240 m Sunshine hours

Peyto Lower lce”¢ Reference 51.67669 N; 116.53399 W Ta, RH, Ws, Ts, Qsi, Aug 1995-
2173-2183 m Qso, Sd current®

Peyto Middle Ice”® | Contributing | 51.66293 N; 116.55754 W Ta, RH, Ws, Ts, Sd Sept. 2000-
2454-2461 m Sept 20133

Peyto Upper Ice”d Contributing | 51.64930 N; 116.53651 W Ta, RH, Ws, Ts, Sd July 2000-
2709 m Sept 20132

Bow Hutd Primary 51.63517 N; 116.49031 W Ta, RH, Ws, Wd, Sd Oct 2012-
2421 m current?



https://research-groups.usask.ca/hydrology/science/research-facilities/crho.php#Overview
https://research-groups.usask.ca/hydrology/science/research-facilities/crho.php#Overview
http://globalcryospherewatch.org/cryonet
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Peyto Outlet® Primary 51.68111 N; 116.54472 W Ta, Runoff June 2013-
2150 m current 2
Ta = air temperature, RH = relative humidity, Ws = wind speed, Wd = wind direction, Ts = soil/snow/firn/ice
temperature, Qsi, Qso = incoming and outgoing shortwave radiation, Qli, Qlo incoming and outgoing longwave
radiation, Ppt = precipitation, P = air pressure, Sd = snow depth (SR50)

IStation type according to CryoNet

2recorded at fifteen-minute intervals

Srecorded hourly until September 2008, at thirty-minute intervals then after

“daily data for the summer months

°Qli is available, beginning September 1998

Shourly until September 2008, then at 30-minute intervals to 2015, 15-minute intervals since 2015. Qsi and Qso
measurements from 2007 to 2008; Qsi measurements available again since 2015

"snowpack glacier accumulation and ablation data are also available; Ice stations have several data gaps, mainly in
middle and upper ice station records

®Ta, RH, Ws, Qsi, and Qli are included in the data repository

®Ta, RH, Ws, Qsi, and ppt are included in the data repository

“Ta, RH, Ws, and Qsi are included in the data repository

9Ta, RH, and Ws are included in the data repository

®Runoff is included in the data repository

Figure 3: Photographs of selected CryoNet stations in the PGRB. (a) Peyto Lower Ice (2009), (b) Peyto Lower
Ice (Oct 2016), (c) Peyto Middle Ice (April 2006), (d) Peyto Middle Ice (Sept 2015), and (e) Bow Hut
(Oct 2016). Photographs by Dhiraj Pradhananga (b & e), D. Scott Munro (a & c), and Angus Duncan

(d).

3 Data

Young and Stanley (1976) documented the glaciological and hydrometeorological data collected within the glacier

basin during the IHD. Past studies over the glacier are also well documented in ‘Peyto Glacier: One Century of
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Science’ (Demuth et al., 2006), which provides details on the mass balance data until 1995, along with the hypsometry
of the glacier.

3.1 Meteorological data — historical and present

Young and Stanley (1976) describe meteorological and mass balance data for the period 1965-1974. Air temperature,
relative humidity, global radiation, hours of bright sunshine, cloud cover, wind speed, and precipitation were recorded
during the summer months at a meteorological station located in the base camp (Figure 4a) and documented as 'Peyto
Creek Base Station' observations. The data collection details and instruments used are described in publications of the
Inland Waters Directorate of Environment Canada (Goodison, 1972; Young and Stanley, 1976).

Automatic weather stations were first installed at on- and off-glacier sites for micrometeorological studies and retained
for long-term data collection. The data from Peyto Main Old (Figure 4b) are hourly prior to September 2008, and half-
hourly thereafter to 2018. The Peyto Main station (Lat: 51.51° N, Long: 123.44° W, Elevation: 2237 m) was installed
near Peyto Main Old in 2013, with new instruments and settings (Table 4). Peyto Main data was recorded at 15-minute
intervals from 2013 to 2020. Some data (2002-2007) for Peyto Main Old were published (Munro, 2011b) in support
of the IP3 Network initiative: Improving Processes & Parameterization for Prediction in Cold Regions Hydrology
(IP3, 2010). The details of the IP3 Network and AWS data from the Peyto Main Old site (Table 2) are available at
http://www.usask.ca/ip3/data.php.

Table 2: Details of hourly PGRB meteorological data referred to in Goodison (1972) and Munro (2011b).

Variables Instruments
Peyto Main Old Peyto Main IHD (June — August)

Air temperature and relative Campbell Model 207/Vaisala HMP35, | Lambrecht 252 Thermo-Hygrograph,
humidity YSI? thermistor CMS? max. and min. thermometers
Ground/snow temperatures YSI thermistor N/A
Wind speed and direction RM Young anemometer & vane MK 11 totalizing anemometer
Precipitation Recording gauge®, CMS tipping bucket | Pluvius /CMS 3” rain gauge
Sunshine hours Campbell-Stokes sunshine recorder
Incoming longwave radiation | Epply PIR pyrgeometer
Incoming shortwave radiation | Kipp & Zonen CMP 6/11 pyranometer | Belfort 5-3850 pyranograph

LY S| stands for Yellow Springs Instruments.

2CMS stands for Canadian Meteorological Service (now MSC, the Meteorological Service of Canada)

3Geonor T-200B weighing gauge with Alter shield after April 2002. Before April 2002 an adapted Fischer-Porter
weighing gauge with Alter shield.

USask established the Peyto Main station, equipped with new instruments (Table 3) and a new setting as a reference
station for the PGRB in July 2013 within 20 m from Peyto Main Old (Figure 4c). It measures incoming and outgoing
shortwave and longwave radiations, air temperature, humidity, wind speed, precipitation, and snow depth. Figure 5

presents daily averages of these variables for the period from July 2013 to September 2019.


http://www.usask.ca/ip3/data.php

Table 3: Meteorological measurements and instruments installed at the Peyto Main AWS.

Measurements Units Instruments Placements

Air temperature, Ta °C Rotronic HC2-S3 Temperature and 4.37 m ab q
Relative humidity, RH % Humidity Probe -5/ M above groun

i -1
w:zg Z?feecdt,ic:/xsw 5 g‘e;rees RM Young 05103AP -10 5.23 m above ground
Snow temperature, Ts °C Omega Type E Thermocouple 0.2 & 1.5 m above ground
Net radiation components: W m-2 Kipp & Zonen CNR4 Net 3.79 m above around
Qsi, Qso, Qli, Qlo Radiometer ' g
Precipitation, Ppt mm TB4 tipping bucket rain gauge 3.15 m above ground
Barometric pressure, P hPa Vaisala CS106 3 m above ground
Snow depth, Sd m SR50A Sonic Ranger 2.95 m above ground
Volumetric water content %
Electroconductivity ds m? Campbell Scientific CS650 0.01-0.11 m below ground
Soil temperature °C
Soil heat flux W m HFPO1 0.02 m below ground




Figure 4: The base camp stations — (a) Peyto Main IHD, July 1970; (b) Peyto Main OId (July 2009); (c) Peyto
Main (Sept 2015) (Peyto Main Old in left background). Photographs by D. Scott Munro (a and b)
and May Guan (c).
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Figure 5: Peyto Main AWS plots of 24-h mean air temperature (Ta), relative humidity (RH), wind speed (WSs),

incoming shortwave radiation (Qsi) and incoming longwave radiation (Qli) — August 2013 to
September 2019. Yellow and dark orange in the bottom panel respectively are incoming shortwave
and longwave radiation.

be viewed on the website https://research-groups.usask.ca/hydrology/data.php.

The nearest AWS outside the basin boundary is operated by USask at the Alpine Club of Canada’s Bow Hut (Figure
1), established in October 2012 and continuously monitored since then. Air temperature, humidity, wind speed and
snow depth data are available from the station. The Peyto Main AWS and that at Bow Hut were connected to telemetry

in 2015, thus enabling them to be monitored remotely. Near real-time data by telemetry, extending back one week can

Meteorological data from the Peyto Ice stations (Upper, Middle, and Lower) are not continuous because of difficulties

in operating the stations on rapidly ablating glacier ice, but periods of synchronous observational data are available.

10
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The three stations were operational at the same time for brief periods between 2007 and 2013 (Table 1). Peyto Lower
Ice has been maintained for a longer period than Middle and Upper Ice, collecting both incoming and outgoing
shortwave radiation data until August 2010. Peyto Lower Ice, Peyto Main Old and Peyto Main are currently
operational. Peyto Lower Ice was updated with new instruments in October 2015. Station data availability details are
listed in Table 1.

3.2 Precipitation

Precipitation at the Peyto Main Old station was measured by a Geonor T-200B, a weighing precipitation gauge with
an Alter wind shield, beginning in April 2002, with a CMS tipping bucket (TBRG) rain gauge operating nearby (Figure
4b and Table 2). However, there is reason to doubt the reliability of these records because comparisons with the new
TBRG at the Peyto Main station, 20 metres west of the old station (Figure 4c), show that both the Geonor and the old
TBRG recorded significantly less precipitation between June and September (Figure 6), the Geonor catch being
approximately 70 % of the new TB catch, that of the old TB much smaller. Also, despite good comparisons with June
to September Bow Summit precipitation for 2014 to 2016, just 5.5 km distant (Figure 1), the Geonor persistently
underestimates annual precipitation during the six years following 2010 (Figure 7), even though it is 160 m above

Bow Summit.

500

Bow Summit )
Geonor
400 H
£ -—NEL'-ITB r
E ——Old TB r
c 300 -
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™
e
o 200
O
0 _
o
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Figure 6: Cumulative rainfall comparisons at the Peyto Main station and Bow Summit over the summer
months.

11



10

15

20

25

1000

| =—Bow Summit

200 | ——Geonor

800 ~
E 700 -
E ]
= 600 -
9 1
= 500 -
= 1
'S 400 -
[¥] i
2 300
o J

200 ~

100

0 T T T 1 T T T 1 T T T 1 T T T T T T T 1 T T T
2011 2012 2013 2014 2015 2016

Figure 7: Annual cumulative precipitation at Bow Summit and Peyto Main, 2011 to September 2016, with
highlighting of main summer rainfall months.

Problems with the old TB date from 2007, when a rapid decline in gauge response was noted (Munro, 2020), but the
Geonor gauge response invited further investigation. Therefore, its records were first segregated according to rainfall
and snowfall by applying the precipitation phase determination algorithm developed by Harder and Pomeroy (2013).
Snowfall was bias-corrected for wind-induced undercatch (Smith, 2007) and rainfall was corrected with a catch
efficiency of 0.95 (Pan et al. 2016). Bow Summit data were accepted as recorded because the surrounding tall trees
provide sheltering, but do not unload intercepted snow to the single Alter-shielded weighing precipitation gauge in

the clearing centre at the site (Figure 8), thus making it ideal for precipitation measurements.

Daily precipitation sequences were averaged over seven years, 2010-2016 incl., and seasonally accumulated to
compare Peyto Main Geonor and Bow Summit measurements (Figure 9). Observed precipitation accumulations are
similar during the summer months between May and October, with mostly liquid precipitation occurring from June to
September. Large differences, however, are found for the adjacent winter snowfall months of January-May and
October-December, cumulative winter precipitation recorded at Peyto being significantly less than that at Bow
Summit. Therefore, the Peyto precipitation gauge may have been undercatching a large portion of the solid
precipitation. It is also possible that the gauge undercatch correction procedure, originally developed to offset wind
induced undercatch of Canadian Prairie snowfall (Smith, 2007), may require modification for use in a high mountain
environment with complex terrain wind flow. While the summer precipitation comparisons with the new TB are much
closer (Figure 6), the Peyto Main Station is 160 m higher and 5.5 km closer to the continental divide and so would be

expected to receive somewhat greater precipitation than at Bow Summit.

12



With reservations noted above, the precipitation data recorded at Bow Summit (51.70 N, 116.47 W, Elevation 2080
m, Climate ID: 3050PPF) is considered the most suitable to represent precipitation over the PGRB. Bow Summit data
can be downloaded from the Alberta Climate Information Service (ACIS, http://agriculture.alberta.ca/acis/). Quality-
controlled hourly temperature and precipitation data are available continuously from 1 November 2008 to the present;
5 continuous daily data are available from 23 March 2006 to the present. The hourly temperature and precipitation data

from 1 January 2009 to 31 December 2019 are plotted in Figure 10, earlier data are not sufficiently continuous to be
included.

10 Figure 8: Bow Summit station, 15 October 2015. Photograph by Dhiraj Pradhananga.

13
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Figure 9: Seasonal Bow Summit and Peyto Main cumulative precipitation from seven year averages of daily
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3.3 Data cleaning and gap infilling

Meteorological data recording frequency was changed from hourly to half-hourly in September 2008, and to 15-minute
intervals in 2013 with the new USask stations (Table 1). However, quarter and half-hourly data were aggregated to
hourly intervals for archiving, thus corresponding to the AWS recording interval used prior to September 2008. Raw
data were thoroughly checked for errors and erroneous data removed. Missing data were filled in by either linear
interpolation or linear regression to data from stations within the basin. Linear interpolation was chosen when a data
gap was less than or equal to 4 hours, and a regression method was applied when the gap is longer than 4 hours. These
data cleaning processes were followed in sequence by applying various R functions, along with the CRHMr package
(Shook, 2016a) for which guidance and installation details are available at the GitHub
https://github.com/CentreForHydrology/CRHMr. The data processing steps for quality assurance and control are

shown in Figure 11.

Despite two data gaps 6-8 months long and five more that span periods of 15-45 days, the Peyto Main Old record is
over 91% complete between 1987 and 2012. Gap fill-ins and corrections to key elements, such as air temperature and
solar radiation were done using expert judgement by D. Scott Munro, with flags inserted to aid judgement on data
suitability (Munro, 2020). Recent data from Peyto Main Old (4 October 2010 to 31 July 2018) and Peyto Main (17
July 2013 to 1 October 2019) are almost continuous, except for two short gaps in 2013 for Peyto Main Old (13 hours
total) and five brief gaps in 2013, 2015, and 2016 for Peyto Main (5.5 hours total) — each a gap of less than four hours.
The wind speed data from Peyto Main Old are in error from 17 July 2017 to 8 March 2018. Also, the temperature and
humidity probes at Peyto Main were not functioning properly for longer periods during 2016-2018. The temperature
probe at Peyto Main recorded 10° C less than that of Peyto Main Old from 22 November 2016 to 8 March 2018 due
to a coding error in the datalogger program; the humidity probe was not functioning well from 20 September 2016 to
20 March 2017. These differences were detected by plotting the data and comparing them with data from Peyto Main
Old.

15
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/ Raw data /

)

Read
the raw data files
[CRHMr::readCampbell]

}

Check for duplicate data
[CRHMTr::findDupes] b

Remove duplicates
[CRHMTr::deDupe]

Plot each data column for initial < |
quality control.
[CRHMTr::plotObs]

v

Remove inconsistencies

Check for spikes and outliers
[CRHMr::minObs and maxObs]

v

Remove spikes and outliers

Check the missing data
[CRHMr::findGaps]

iy

Is the gap
more than
4 hours?

No

Fill in the missing data by nearby
stations with monthly regression
equations
[CRHMr::regress and impute]

!

Aggregate cleaned sub-hourly
data to hourly 53
[CRHMr::aggDataframe]

)

/ Cleaned hourly data /

Figure 11: Meteorological data cleaning process with corresponding R functions of the CRHMr package stated
within brackets

Fill in the missing data by
interpolation
[CRHMr::interpolate]
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Table 4 shows the regression results and Figure 12 shows the systematic bias in Peyto Main air temperature data
before and after a 10 °C correction. The erroneous humidity data were corrected from the Peyto Main Old station data
using monthly regressions (Table 5). In addition, Peyto Main station data for all the variables were extended back to

2010 using monthly regressions with data from the Peyto Main Old station.

Table 4: Regression results for Peyto Main and Peyto Main Old hourly data.

Variables From To Slope | Intercept | R?
Air temperature 2013-07-17 | 2018-07-31 | 1.00 -0.23 1.00
Vapour pressure 2013-07-17 | 2018-07-31 | 1.09 -0.02 0.99
Wind speed 2013-07-17 | 2018-07-31 | 1.12 0.38 0.94
Incoming shortwave 2013-07-17 | 2018-07-31 | 0.96 3.39 0.97
Incoming longwave 2013-07-17 | 2018-07-31 | 1.01 -9.52 0.96
Table 5: Monthly regression results for Peyto Main and Peyto Main Old hourly data.
Month | Air temperature | Vapour | Wind | Incoming | Incoming
pressure | speed | shortwave | longwave
Slope | Intercept | Slope Slope | Slope Slope | Intercept
Jan 1.00 -0.26 0.99 1.19 091 | 1.00 -6.12
Feb 0.99 -0.24 1.00 1.18 0.94 | 1.00 -6.92
Mar 0.99 -0.29 1.01 1.17 095 | 1.01 -8.97
Apr 1.00 -0.24 1.03 1.17 0.97 | 0.99 -6.48
May 1.00 -0.32 1.06 1.15 098 | 1.04 -20.52
Jun 1.01 -0.28 1.07 1.18 098 | 1.04 -19.02
Jul 1.00 -0.14 1.08 1.17 0.96 | 1.04 -19.69
Aug 1.00 -0.24 1.07 1.21 0.95 1.03 -16.51
Sep 1.01 -0.34 1.05 1.22 0.96 | 1.04 -17.11
Oct 1.01 -0.23 1.04 1.22 0.95| 1.05 -18.75
Nov 1.00 -0.24 0.98 1.20 094 | 1.05 -18.17
Dec 1.00 -0.22 099 | 1.20 091 | 1.01 -9.58
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Figure 12: Air temperature recorded at the Peyto Main and Main Old stations: (a) before bias correction to
Peyto Main, (b) after bias correction. Overlapping values appear in purple.

3.4 Reanalysis forcing data

Bias-corrected reanalysis data are also included as model forcing data for running glacio-hydrological models over
long periods. Four gridded reanalysis products were bias corrected, using in-situ observations at the PGRB:
1. CFSR, the Climate Forecast System Reanalysis product (Saha et al., 2010).
2. ERA-Interim, the European Centre for Medium-Range Weather Forecasts Interim reanalysis product (Dee et
al., 2011);
NARR, the North American Regional Reanalysis product (Mesinger et al., 2006); and
4. WFDEI, the Water and Global Change (WATCH) Forcing Data ERA-Interim reanalysis product (Weedon
etal., 2011).
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These products are available at different spatial and temporal resolutions for different time periods. CFSR, ERA-
Interim, and WFDEI are global datasets, whereas NARR covers only North America. ERA-Interim is available from
January 1979 to 2018, with original resolution of 0.7° at the Equator (Dee et al., 2011). WFDEI (Weedon et al., 2011)
is available at a spatial resolution of 0.5° x 0.5° from 1979 to 2016. NARR (Mesinger et al., 2006) is available at 3-
hourly temporal and 32 km spatial resolutions from January 1979 to January 2017. CFSR, developed by the National
Center for Environmental Prediction and the National Center for Atmospheric Research (NCEP-NCAR), is available
hourly, at a horizontal resolution of 0.5° x 0.5° from 1979 to 2009 (Saha et al., 2010). A comparison of three reanalysis
products showed ERA-Interim to be better than NARR and WFDEI for air temperature, vapour pressure, shortwave

irradiance, longwave irradiance and precipitation, while WFDEI was best for wind speed (Pradhananga, 2020).

All gridded reanalysis data were first extracted for the Peyto Main station coordinates. ERA-Interim, WFDEI, and
NARR data were interpolated to hourly time periods. The R-package, Reanalysis (Shook, 2016b) was used for
extracting and interpolating ERA-Interim, WFDEI, and NARR datasets. Air temperature, vapour pressure, wind
speed, precipitation, incoming longwave and incoming shortwave radiation data were interpolated linearly from 3 or
6 hour to hourly time intervals. Total precipitation (3 or 6 hours) was distributed evenly to hourly time intervals.
MATLAB (MATrix LABoratory) codes (Krogh et al., 2015) were used to extract CFSR values, which were already
at hourly time intervals.

The hourly data were bias-corrected to the in-situ observations at the Peyto Main station for air temperature, vapour
pressure, wind speed, incoming shortwave and longwave radiation and those at Bow Summit for precipitation. Peyto
Main precipitation data were not considered because they were unreliable as detailed in the section 3.2. Precipitation
data from Bow Summit were considered instead. A quantile mapping technique was used for bias correction with
parameters calibrated for each month from corresponding data periods using the gmap package in R (Gudmundsson,
2016). Bias-corrected ERA-Interim data from January 1979 to August 2019 are presented in Figure 13.
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3.5 Hydrological data — historical and present

Historical observed daily outflows from the glacier at Peyto Creek are available for 1967 to 1977, from the Water
Survey of Canada (WSC, https://wateroffice.ec.gc.ca/search/real_time_e.html). They are also available at 15-minute
intervals from 1970 to 1977 by accessing the Peyto Glacier runoff archive housed at the University of Waterloo
(Munro, 2011a). The gauge station (ID 05DA008) was established in 1966 for the IHD program and maintained by
the WSC. It consisted of a float-activated continuous stage recorder (Table 6) mounted on a standpipe ~500 m from

the glacier tongue at that time (Figure 14).

Historical discharge measurements at Peyto Creek are problematic due to unstable cross-sections, occasional flash
floods and lack of direct discharge measurements during high flows. Goodison (1972) reported that the discharge
records from 1967 are not reliable, and the stage gauge was washed out during a flood in August 1967. As reported
by Ommanney (1987), heavy precipitation and a resulting landslide in July, 1983 triggered two floods. The
instantaneous discharge during the first flood was estimated to be in the range of 200 to 300 m® s (Johnson and
Power, 1985), and an estimated 6000 m? of debris, approximately 3 m thick, was deposited in the valley near the
gauging site. A similar event in September 2010 deposited a thick debris cover over the original gauge area, thus

changing the trail into the glacier.

A new hydrometric station to resume flow measurements for Peyto Creek was installed at the outflow of Lake Munro
on the bedrock near the glacier snout in 2013 by USask (Figure 14b). Itis 1.5 km upstream from the old gauging site
and so redefines the gauged basin to a smaller area (Figure 1). The new station is equipped with a Campbell Scientific
Sonic Ranger (SR50A) to monitor the water stage. This gauge record is temperature corrected using air temperature
measured below the SR50A.

In the summer of 2018, an automated salt dilution system (AutoSalt by Fathom Scientific) and a stage level logger
were installed approximately 100 m downstream of the SR50A. Between 14 May 2018, and 10 September 2018, 43
streamflow discharge measurements were performed with automated and manual salt dilutions. One manual
streamflow measurement was conducted with an FT2 handheld Acoustic Doppler Velocimeter (ADV) on 1 August
2018. These measurements were used to develop a rating curve and calculate discharge for the 2018 season (Figure
15, Sentlinger et al., 2019). The salt dilution measurements error analysis provides an error estimate of 24.5% for the
measured discharge. The rating curve shows an inflection point at stage h=65 due to the shape of the bedrock notch.
Sudden drops in the stage were observed during the early season discharge, likely due to temporary ice jamming as

the stream channel was still partly snow covered.
Using the strong correlation between the SR50A water level and the level logger for the 2018 period (r = 0.998, RMSE

= 0.08 m), the SR50A water level is used to extend water level for the 2013-2018 melt seasons using the linear

regression f(x) = 0.6518x+0.2576 and then calculate streamflow based on the rating curve in Figure 15a. The daily
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mean basin runoff (streamflow discharge per unit area of the basin) averaged over the historical 11-year period (1967-
1977) and the present 5-year period (2013-2018) are presented in Figure 16.

Table 6: Hydrometric station information.

Hydrometric | Geographical | Drainage | Elevation | Stage recording instrument and Discharge
station coordinates area above sea | rating curve method data period

level of record
Old gauge: 51.69361 N 23.6 km? 1951 m Stevens A-35 water-level recorder; | 1967-1977
Peyto Creek at | 116.53556 W rating curve data from current (June — Sept)
Peyto Glacier meter for low flows, salt dilution or
(05DA008) Rhodamine dye injection for high

flows (Goodison, 1972)

New gauge: 51.68111 N 18.3 km? 2150 m Campbell Scientific SR50 ranger; 2013-2018
Lake Munro 116.54472 W rating curve data from salt dilution | (June — Sept)
outlet method

Figure 14: Gauge sites: (a) old IHD hydrometric gauge on Peyto Creek, August 1970 and (b) new hydrometric station at
the Lake Munro outlet. Photographs by D. Scott Munro (a) and Angus Duncan (b).
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Figure 16: Runoff data: (a) Daily basin streamflow, expressed as a depth of runoff per day, averaged over the
historical 1967-77 and recent 2013-18 periods; (b) Cumulative annual depth of runoff averaged over
the same periods.

3.6 Glaciological data

Glaciological mass balance measurements, using ablation stakes and snow pits, have been taken semi-annually by
Canadian government agencies since 1965, when the IHD program began, the scheme for Peyto Glacier was first
described by @strem (1966). Mass balance data for 11 elevation bands, 100 m in width, are reported in several
publications (Demuth et al., 2009; Demuth and Keller, 2006; Dyurgerov, 2002; Ommanney, 1987; Young, 1981;
Young and Stanley, 1976). Recent mass balance data are reported by the national glaciological programme of the
Geological Survey of Canada to and are available from the WGMS (http://www.wgms.ch). The WGMS (2020) has
also compiled datasets from 1966 to 2018 that are plotted in Figure 17 (1991-1992 mass balance year missing).
Specific winter and summer mass balance data for 11 elevation bands covering an elevation range from 2100 to 2703

m are also available for the period 2003-2018 that are not included in this study. The winter, summer, and annual point
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balances have been calculated for the middle of each elevation band, from 2150 to 2650 m above sea level, using a

local polynomial regression technique.

The dataset does not include frontal variation, equilibrium line altitude (ELA), accumulation area ratio (AAR), glacier
mass balance (winter, summer, annual) and repeat photographs, which were published by WGMS (2020) and available
at https://wgms.ch/. Radio detection and ranging (radar) measurements of ice thickness for Peyto Glacier in the 1980s
were reported by Holdsworth et al. (2006). Ground-penetrating radar surveys of ice thickness across the glacier tongue
in 2008-2010 were reported by Kehrl et al. (2014) in their study of volume loss from the lower Peyto Glacier area
between 1966 and 2010. The data set does not include these published ice thickness data.
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Figure 17: Net annual mass balance data for Peyto Glacier. Data source: WGMS (2020).

It should be noted that in several instances the datasets feature variations in temporal subsets of the data. An example
is the WGMS record which, for a portion of the record, utilizes data from the Dyurgerov (2002) synthesis rather than
Environment Canada National Hydrology Research Institute observations compiled by Ommanney (1987). Moreover,
all datasets present a mix of reference-surface mass balance data, with hypsometry held constant, and conventional

mass balance data, where hypsometric changes are reflected in mass balance accounting (Cogley et al., 2011).
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3.7 Geospatial data

3.7.1 Digital elevation models (DEMs)

Repeat DEMs can be used to quantify surface height changes through time, which are then converted to mass change.
Photogrammetric techniques have been to construct a high-quality DEM from 1966, and airborne Light Detection and
Ranging (LiDAR) surveys were used to collect DEMs for 2006 (Demuth and Hopkinson, 2013) and 2017 (Pelto et
al., 2019; Table 8). The 2006 DEM was obtained from the Geological Survey of Canada and the Canadian Consortium
for LIDAR Environmental Applications Research. DEMs from 1966 and 2006 were co-registered to the 2017 DEM
based on the algorithm proposed by (Nuth and K&&b, 2011) using an automated, open-source tool developed by
Amaury Dehecq (https://github.com/GeoUtils). DEM sources, preparation, and co-registration are described below

and presented in Table 8.

3.7.1.1  Generation of photogrammetric DEMs

Digital copies of diapositives from the year 1966, photogrammetrically scanned at a resolution of 14 um, were
obtained from the Canadian National Air Photo Library. The photographs were taken near the end of the ablation
season (Table 7). However, there was extensive fresh snow cover in the images that resulted in poor contrast in the

accumulation region of the glacier.

The DEM was generated using the Agisoft Metashape Professional (AMP) Edition, Version 1.5. All photos were
assigned to the same camera group based on the focal length, pixel size and fiducial coordinates available from the
camera calibration report. Then the photos were aligned by AMP and a sparse point cloud model was produced in
which camera positions and orientations are indicated. To optimize the camera positions and orientation data, some
reference points (GCPs) were identified from the stable terrain surrounding the glacier, over a range of elevations.
The GCP file was imported to AMP, and corresponding locations were marked on each of the photos. Finally, based
on the estimated camera positions, AMP calculated depth information and a dense point cloud was generated. A DEM

and an ortho image were produced from the dense point cloud.
Most of the accumulation zone of the glacier is missing from the dense point cloud because fresh snow cover resulted

in poor contrast in this region. The interpolation feature available in AMP was not enabled whilst generating the

DEMs, as it does not generate very accurate elevations. The spatial resolution of the DEM was chosen to be 10 m.

Table 7: Aerial photographs used.

Year | Date Data Source | ID No. of Scale Accumulation Area No. of
Photos Contrast GCPs
1966 | 20 Aug | Federal AP Al18434 |5 1:40000 | Poor 18
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3.7.1.2  Generation of LIDAR DEM

Light Detection and Ranging (LiDAR) uses a laser pulse to calculate the distance of the target from the sensor. An
airborne laser survey was conducted using a Riegl Q-780 full waveform scanner and Applanix POS AV Global
Navigation Satellite System (GNSS) Inertial Measurement Unit (IMU). The laser survey trajectory data was processed
using PosPac Mobile Mapping Suite (Applanix) resulting in horizontal and vertical positional accuracy typically better
than £15 cm. RiPROCESS was used to post-process the point clouds and export to a LAS (LiDAR data exchange file)
format, a binary file to store LIDAR data. LASTools, available from https://rapidlasso.com/lastools/, was used to
process the point cloud and generate the DEM (Pelto et al., 2019).

3.7.1.3  DEM co-registration

It is important to align the multi-temporal DEMs relative to one another so that the same point on the ground is
represented at the same location in each DEM, thus enabling glacier elevation change to be measured as accurately as
possible (e.g., Figure 18). The 2017 LiDAR DEM was taken as the master DEM and all other DEMs (Table 8) were
co-registered with respect to this DEM following the Nuth and K&ab (2011) method. The 1966 ortho image was used
to mask out all the unstable areas such as glaciers, fresh snow, or water bodies. All the pixels outside this mask were
classified as stable terrain, which was primarily bedrock and so excluded trees, lakes/water bodies, glaciers, and snow
cover and thus used for co-registration. The co-registration script available in the github repository at
https://github.com/GeoUtils was used to perform the task. The statistics of the elevation difference for stable terrain

after the co-registration are listed in Table 9.
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Figure 18: Elevation change over Peyto Glacier, 1966-2017, inside the IHD glacier boundary.

Table 8: DEMs used for co-registration.

Year | Resolution | Source and method

1966 10 m | This DEM was prepared from digital copies of diapositives, photogrammetrically scanned
at 14 pum resolution, obtained from the Canadian National Air Photo Library. A 10 m
resolution DEM was generated using AMP Edition, Version 1.5.

2006 10 m | This DEM was prepared from LiDAR surveys taken in August 2006 (Demuth and
Hopkinson, 2013). The DEM did not cover the whole area of the PGRB, so the northeast
corner of the basin was mosaiced with a 2014 DEM data to fill in the missing part.

2017 1 m | This DEM was prepared from LiDAR surveys taken on 17™ September 2017 and is
available in the archive of the University of Northern British Columbia (UNBC).

Table 9: Stable terrain statistics after co-registration.

Co-registered DEM | Master DEM | Median Normalized Median Absolute Deviation
(year) (year) (m) (m)
1966 -0.25 8.91
2006 2017 -0.07 1.00

3.7.2 Landcover data

Landcover data of PGRB were compiled from remotely sensed imageries and a topographic map. Landcover of 1966
was prepared from the georeferenced scanned topographic map of Peyto Glacier, produced from the aerial photographs

from August 1966 (Sedgwick and Henoch, 1975) and landcover from 1984 to 2018 were prepared from Landsat
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imageries. Google Earth Engine (GEE), ESRI ArcMap, and R were used at various stages of the data preparation.
GEE was also used for the initial spatial and temporal analysis of annual landcover mapping from Landsat images and
ArcMap and R were used in refinement and the database preparation. Landcover maps from the satellite images were
prepared by classification in accordance with albedo, the normalized-difference snow index (NDSI), and the
normalized-difference water index (NDWI). As datasets extracted from different sources have different projection
systems, they were re-projected to WGS 84 / UTM zone 11N (EPSG:32611).

3.7.2.1  Basin delineation and landcover classification

The PGRB drainage basin was delineated from the 1966 DEM. GEE was used for the landcover classification of
Landsat images of each year, from the 1980s to the present. Landcover information was extracted from Landsat 5 and
Landsat 8 top-of-atmosphere (TOA) reflectance images. Landsat 5 images were used for the years 1984 to 2011,
Landsat 8 images from 2013 to 2018. The Landsat satellite images are freely available and accessible through GEE at
30 m spatial resolution and 16-day temporal resolution. Two criteria governed image acquisition: (a) an image date
between 15" July and 15™ September; (b) minimal or no cloud cover inside the PGRB boundary. Landsat images used
to create landcover classification of the PGRB appear in Table 10. Landsat 5 images were from the Thematic Mapper
(TM) sensor, Landsat 8 images from the Operational Land Imager (OLI). Images for the years 1992, 1995, 1999 and

2012 are missing due to failure to meet the criteria. .

The use of TOA values was followed as a standard operating procedure in this work, with appropriate narrow to
broadband conversion (Hall et al., 2002; Hall and Riggs, 2007; Liang, 2000; Smith, 2010) as the fact that atmospheric
backscatter will inflate surface reflectance values, ice albedo values measured on Peyto as well as those obtained from
atmosphere corrected satellite images of Peyto range from 0.17 to 0.3 (Cutler, 2006), so backscatter inflation of albedo

is unlikely to reach 0.4.

Four landcover classes were identified: (1) firn/snow (accumulation area), (2) ice (ablation area), (3) bare (non-
glacierized area) and (4) water body. Snow and non-snow covered areas of bare landcover were differentiated by the
NDSI (Hall et al., 2002) and NDWI (Gao, 1996; McFeeters, 1996). Snow and firn areas within firn/snow landcover
were classified by their albedo (Liang, 2000; Smith, 2010) as snow possesses higher albedo than the ice counterpart.
The NDSI, NDWI and albedo for the images were obtained from the calculation on the GEE platform. The threshold
of NDSI for snow cover was kept at > 0.4 (Hall et al., 2002; Hall and Riggs, 2007). NDWI tends to possess dynamic
threshold value (Ji et al., 2009). In our case keeping the threshold to 0.4 showed best classification for a waterbody as
a lower value tends to misclassify ice pixels as waterbodies. Similarly, albedo with the threshold of > 0.4 was
considered to classify firn and that of less than 0.4 to classify ice within already classified NDSI based glacier area.

Accordingly, landcover classification proceeded as follows:

1. Bare: all snow-free non-glacierized areas identified by the NDSI lower than 0.4

2. Firn/Snow: glacierized areas with albedo greater than 0.4 and NDWI lower than 0.4
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3. Ice: glacierized areas with albedo lower than 0.4 and NDWI lower than 0.4
4.  Waterbody: Areas with NDWI greater than 0.4

After GEE export to Google Drive the images were downloaded from the drive and converted to a shape file using
the Raster to Polygon tool in ArcMap. The noise in the landcover classification were cleaned with elimination function
on ArcMap, visual inspection and correction of few misclassified areas were done manually and finally the files were
clipped by the boundary of the PGRB.
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Table 10: Landsat images for generating landcover maps of the PGRB

Landsat Year Month/Date Landsat Scene Identifier
Landsat 5 1984 August 15 | LT50430241984228PAC00
1985 August 02 | LT50430241985214PAC02
1986 August 28 | LT50440241986240XXX01
1987 August 08 | LT50430241987220XXX02
1988 September 02 | LT50440241988246XXX01
1989 August 13 | LT50430241989225XXX02
1990 August 07 | LT50440241990219PAC00
1991 September 04 | LT50430241991247XXX02
1993 August 15 |  LT50440241993227PAC03
1994 August 11 | LT50430241994223PAC02
1996 August 23 | LT50440241996236PACO00
1997 August 03 | LT50430241997215PACO03
1998 August 29 | LT50440241998241PACO03
2000 August 18 | LT50440242000231XXX01
2001 August 14 | LT50430242001226L.GS02
2002 August 24 | LT50440242002236LGS01
2003 August 20 | LT50430242003232PAC02
2004 August 13 | LT50440242004226EDCO00
2005 August 09 | LT50430242005221PACO01
2006 August 28 | LT50430242006240PACO01
2007 August 15 |  LT50430242007227PAC01
2008 August 17 | LT50430242008230PACO02
2009 August 27 | LT50440242009239PAC01
2010 August 14 | LT50440242010226PACO01
2011 August 26 | LT50430242011238PACO01
Landsat 8 2013 August 22 | LC80440242013234LGNO0O
2014 August 18 | LC80430242014230LGNO00
2015 August 12 | LC80440242015224L GNOO
2016 August 30 | LC80440242016243LGNO00
2017 September 11 | LC80430242017254LGNOO
2018 August 20 | LC80440242018232LGNO00

4 Data availability

All datasets described and presented in this paper can be openly accessed from the Federated Research Data Repository
at https://doi.org/10.20383/101.0259 (Pradhananga et al., 2020). All meteorological and hydrological data are reported
in mountain standard time (MST) that is 7 h behind Greenwich mean time (GMT — 7). Meteorological, both in-situ
and bias-corrected reanalysis products, are time series in tab-delimited, .obs text files. They are readable directly by
CRHMr functions and any Cold Region Hydrological Model, CRHM project (https://research-
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groups.usask.ca/hydrology/modelling/crhm.php). Glacier mass balance and streamflow datasets are in .csv files.
Geospatial data, co-registered DEM and landcover shapefiles are provided in WGS 84 / UTM zone 11N
(EPSG:32611).

5 Summary

This paper describes the hydrometeorological, glaciological and geospatial data collected at the Peyto Glacier
Research Basin over the past five decades from its foundation by the Government of Canada as part of its contribution
to the UNESCO International Hydrological Decade. The research basin now forms part of the University of
Saskatchewan Centre for Hydrology’s Canadian Rockies Hydrological Observatory and so has been extensively re-
instrumented and subject to intensive scientific study in the last decade. The meteorological data are from six AWS
sites, three on the glacier and three near the glacier. These stations are listed as CryoNet stations of the WMO GCW
and now contribute as part of the 60 water observatories in Canada to the Global Water Futures programme. Near
real-time data from Peyto Main and Bow Hut are publicly accessible through telemetry at

https://research-groups.usask.ca/hydrology/data.php#CanadianRockiesHydrologicalObservatory.

Several examples of data cleaning approaches are presented. The Peyto Main station was operational during the
summer months of the IHD and re-established as an AWS in 1987. New instruments and dataloggers were added in
2012-2013 by the Centre for Hydrology. The meteorological data include hourly air temperature, humidity, wind
speed, incoming shortwave and longwave radiation, and precipitation. These data are available for a period longer
than two decades from the Peyto Main station, and for longer than one decade from the on-ice stations. Bias-corrected
ERA-Interim (European Centre for Medium-Range Weather Forecasts Interim reanalysis), WFDEI (Water and Global
Change Forcing Data ERA-Interim), NARR (North American Regional Reanalysis), and CFSR (Climate Forecast

System Reanalysis) data are also included for running hydrological models over longer periods.

Glaciological mass balance data are collected semi-annually by the Natural Resources Canada’s Geological Survey
of Canada, and partners and published by the WGMS and updated annually. Details of these data have been described
in several publications. Specific mass balance data at different elevation zones, available from 2007 to 2019, are
included in this paper. On-ice station data include glacier surface elevation change due to ablation and accumulation,
as measured by sonic rangers at three ice stations. The three ice stations, each in a different elevation zone, have been
operational for various time periods, the first starting in 1995, with long gaps in the records becoming less frequent
over time, especially after 2007. Geospatial data include information on basin boundary, drainage area, landcover
(including snow, firn and ice on the glacier), and locations of hydrometric sites. Both historical and contemporary
discharge data are included. The flow data and hourly surface elevation change data in different elevation zones can
be useful for model validation. The long-term mass balance data are a valuable research asset for model development,
analysis of climate change, and study of climate impacts on glacier mass balance and hydrology. This comprehensive,

exceptionally long database is a testament to the dogged perseverance of scientists working for various entities with
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support from various research funding schemes who kept their eyes on the science and so have produced a rare half-

century detailed documentation of the impacts of climate change on the cryosphere in a high mountain environment.
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and to Dr. Gordon Young, who has not only done all of that but continues to encourage scientific examination of the

glacier and of the dynamic interface of the cryosphere and the hydrosphere.
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