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Abstract. Total column ozone (TCO) data from multiple satellite-based instruments have been combined to create a single

near-global daily time series of ozone fields at 1.25◦ longitude by 1◦ latitude spanning the period 31 October 1978 to 31

December 2016. Comparisons against TCO measurements from the ground-based Dobson and Brewer spectrophotometer

networks are used to remove offsets and drifts between the ground-based measurements and a subset of the satellite-based

measurements. The corrected subset is then used as a basis for homogenising the remaining data sets. The construction of5

this database improves on earlier versions of the database maintained first by the National Institute of Water and Atmospheric

Research (NIWA) and now by Bodeker Scientific (BS), referred to as the NIWA-BS TCO database. The intention is that the

NIWA-BS TCO database serves as a climate data record for TCO and, to this end, the requirements for constructing climate

data records, as detailed by GCOS (the Global Climate Observing System) have been followed as closely as possible.

This new version includes a wider range of satellite-based instruments, uses updated sources of satellite data, extends the10

period covered, uses improved statistical methods to model the difference fields when homogenising the data sets, and, per-

haps most importantly, robustly tracks uncertainties from the source data sets through to the final climate data record which

is now accompanied by associated uncertainty fields. Furthermore, a gap-free TCO database (referred to as the BS-filled

TCO database) has been created and is documented in this paper. The utility of the NIWA-BS TCO database is demon-

strated through an analysis of ozone trends from November 1978 to December 2016. Both databases are freely available15

for non-commercial purposes: the doi for the NIWA-BS TCO database is 10.5281/zenodo.1346424 (Bodeker et al., 2018)

and is available from https://zenodo.org/record/1346424. The doi for the BS-filled TCO database is 10.5281/zenodo.3908787

(Bodeker et al., 2020) and is available from https://zenodo.org/record/3908787. In addition, both data sets are available from

http://www.bodekerscientific.com/data/total-column-ozone.

1 Introduction20

Total column ozone (TCO) has been identified as one of 50 essential climate variables (ECVs) by GCOS (Global Climate

Observing System; GCOS-138 (2010); Bojinski et al. (2014)). Climate data records of ECVs serve a variety of purposes, e.g.

climate data records of TCO are required to (1) assess the impacts of changes in ozone on radiative forcing of the climate
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system, (2) assess the effectiveness of the Montreal Protocol for the protection of the ozone layer, and (3) determine the

contribution of ozone changes to observed long-term trends in surface UV radiation. This paper presents an update of a database

which has been used in many previous studies (e.g. Bodeker et al., 2001a, b, 2005; Müller et al., 2008). The database was first

developed by NIWA (the New Zealand National Institute of Water and Atmospheric Research) and, in the last decade, has been

maintained and updated by Bodeker Scientific (BS). The non-filled database is hereafter referred to as the NIWA-BS TCO5

database and the filled database is referred to as BS-filled TCO database. The version 3.4 (V3.4) database reported on here

extends from 31 October 1978 to 31 December 2016. In constructing this database, the guidelines for generating climate data

records of ECVs detailed in GCOS-143 (2010) have been adhered to.

Improvements over earlier version of the database implemented in V3.4 include:

– New and updated sources of satellite-based TCO measurements are used, viz. data from NPP-OMPS (National Polar-10

orbiting Partnership-Ozone Mapping and Profiler Suite), GOME-2 (Global Ozone Monitoring Experiment-2) and SCIA-

MACHY (Scanning Imaging Absorption Spectrometer for Atmospheric CHartographY) are now included in the com-

bined data set. Various updates to previously used data sets are detailed in Section 2.

– Improved statistical methods are used to model the difference fields between data sets; zonal means of the difference

fields are modelled using Legendre expansions which comprise the meridional component of a spherical harmonic ex-15

pansion which is best suited for statistically describing a field on a sphere (see Section 3 for more information).

– Measurement uncertainties on the source data sets, and the corrections applied to those data sets, have been collated

and are propagated through to the combined ozone data set so that, for the first time, this data set is now provided with

uncertainty estimates for each datum.

– Furthermore, the gap-free BS-filled TCO database has been generated (see Section 9) using a machine-learning (ML)20

algorithm that is trained to capture the broad-scale morphology of the TCO field which extends to regions where mea-

surements are missing. The ML algorithm is based on regression of available data against NCEP (National Centers for

Environmental Prediction) CFSR (Climate Forecast System Reanalysis) reanalysis tropopause height fields and against

potential vorticity (PV) fields on the 550 K surface.

2 Source data25

The various satellite-based TCO data sets used to create the version 3.4 NIWA-BS TCO database are summarized in Table

1. Where source data were provided at 1◦× 1◦ resolution, bilinear interpolation was used to resample the data to 1.25◦× 1◦

resolution. The time periods covered by the satellite data sets are shown graphically in Fig. 1. In addition to the information

presented in Table 1:
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Figure 1. A graphical representation of the different satellite-based data sets used in this study and their periods of coverage. Satellites

marked with a dashed line indicate newly added source data for this version of the database.

– The four TOMS (Total Ozone Mapping Spectrometer) data sets (Adeos, Earth Probe, Meteor-3 and Nimbus-7) all use

the TOMS retrieval algorithm with Adeos using the version 7 algorithm and the remaining three using the version 8

algorithm.

– An algorithm similar to that used in the version 8 TOMS retrieval is used to conduct the version 8.6 retrievals of the

SBUV (Solar Backscatter UltraViolet instrument) data (McPeters et al., 2013). Sparse gridded files were generated from5

the SBUV TCO measurements made at discrete locations as input to the process that creates the combined database.

– The high resolution and low resolution OMI (Ozone Monitoring Instrument) data sets both use a TOMS-like (version 8)

retrieval algorithm.

– The GOME, GOME2 and SCIAMACHY data sets all use the GODFIT retrieval algorithm (Lerot et al., 2010).

– As stated in Section 1.1 of the OMPS Algorithm Theoretical Basis Document (ATBD), the algorithm used for retrieving10

the OMPS TCO is adapted from the heritage TOMS version 7 retrieval.
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Data set Version Period Resolution (long x lat)

TOMS/OMI

Adeos 7 1996-1997 1.25◦ × 1◦

Source: https://data.ceda.ac.uk/badc/toms/data/adeos

Earth Probe 8 1996-2005 1.25◦ × 1◦

Source: https://data.ceda.ac.uk/badc/toms/data/earthprobe/

Meteor 3 8 1991-1994 1.25◦ × 1◦

Source: https://data.ceda.ac.uk/badc/toms/data/meteor3

Nimbus 7 8 1978-1993 1.25◦ × 1◦

Source: https://data.ceda.ac.uk/badc/toms/data/nimbus7

Aura OMI, low resolution 8 2004-2012 1◦ × 1◦

Source: https://disc.gsfc.nasa.gov/datasets/OMTO3e_003/summary

Aura OMI, high resolution 8 from 2004 0.25 ◦ × 0.25◦

Source: https://disc.gsfc.nasa.gov/datasets/OMTO3e_003/summary

SBUV/SBUV2

Nimbus 7 8.6 1978-1990 overpass data

Source: https://acdisc.gesdisc.eosdis.nasa.gov/data/Nimbus7_SBUV_Level2/SBUVN7O3.008/

NOAA 9 8.6 1985-1998 overpass data

Source: https://acd-ext.gsfc.nasa.gov/anonftp/toms/sbuv/

NOAA 11 8.6 1988-2001 overpass data

Source: https://acd-ext.gsfc.nasa.gov/anonftp/toms/sbuv/

NOAA 16 8.6 2000-2003 overpass data

Source: https://acd-ext.gsfc.nasa.gov/anonftp/toms/sbuv/

NOAA 14 8.6 1995-2006 overpass data

Source: https://acd-ext.gsfc.nasa.gov/anonftp/toms/sbuv/

NOAA 17 8.6 2002-2013 overpass data

Source: https://acd-ext.gsfc.nasa.gov/anonftp/toms/sbuv/

NOAA 18 8.6 2005-2012 overpass data

Source: https://acd-ext.gsfc.nasa.gov/anonftp/toms/sbuv/

NOAA 19 8.6 2009-2013 overpass data

Source: https://acd-ext.gsfc.nasa.gov/anonftp/toms/sbuv/

ESA

GOME 1.01 1996-2011 1◦ × 1◦

Source: https://earth.esa.int/eogateway/instruments/gome

GOME2 1.00 2007-2012 1◦ × 1◦

Source: https://www.eumetsat.int/gome-2

SCIAMACHY 1.00 2002-2012 1◦ × 1◦

Source : https://www.sciamachy.org/products/index.php?species=O3

OTHER

NPP OMPS 1.0 from 2012 1◦ × 1◦

Source: https://disc.gsfc.nasa.gov/datasets/OMPS_NPP_NMTO3_L3_DAILY_2/summary?keywords=omps
Table 1. The source data sets used to create version 3.4 of the NIWA-BS TCO database.
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3 Determining corrections to TOMS and OMI data

First, the corrections required to the TOMS and OMI data sets are determined by comparing the satellite-based measurements

with TCO measurements made by the global Dobson spectrophotometer and Brewer spectrometer networks. A map showing

the locations of the Dobson and Brewer sites is available at https://woudc.org/data/stations/index.php?lang=en. We assumed in

all cases that the Dobson and Brewer spectrophotometer data submitted to the WOUDC were the highest quality data available,5

that all possible corrections to improve the quality of the data had been made prior to submission, and that the measurements

from these two networks were unbiased with respect to each other. Assumed uncertainties on the measurements from these two

networks are presented below.

While TOMS and OMI data are provided in gridded data files, the original overpass data, unlike the gridded data set where

several measurements from different times through the day might be averaged within a grid cell, provide location-specific mea-10

surements that are more suitable for comparison with the ground-based measurement networks, i.e. the overpass measurements

are specific to a latitude, longitude and date/time. To this end, overpass data from the four TOMS instruments and from the OMI

instrument were obtained from the GSFC (Goddard Space Flight Center) FTP server (ftp://toms.gsfc.nasa.gov). Dobson and

Brewer measurements were obtained from the WOUDC (World Ozone and Ultraviolet Radiation Data Centre). Three-hourly

means of the overpass data and direct-sun Dobson and Brewer TCO measurements were calculated for all sites for which Dob-15

son and Brewer data were available. Exclusion of some of the Dobson and Brewer data, as discussed in Bodeker et al. (2001b),

was required. Differences between 3-hourly means of ground-based and TOMS or OMI measurements were calculated. The

uncertainties on the differences were calculated as the root sum of the squares of the uncertainties on the ground-based and

satellite-based measurements (see Section 5).

The differences between the two data sets (satellite-based and ground-based) can be described as an offset and a drift i.e.20

∆(t) = α+β t (1)

where t is the time in decimal years and α and β are fit coefficients, denoting the offset and drift respectively, to be determined

through a regression model fit to the differences. Because the offset and drift between the two data sets is likely to depend on

season and location, the α and β coefficients are expanded in a Fourier series to account for the seasonality (see e.g. Bodeker

et al., 1998) and then further expanded in spherical harmonics to account for the latitudinal and longitudinal structure in the25

difference field. Based on theoretical expectations and past experience (Bodeker et al., 2001b) we assume that the differences

do not depend on longitude. Under this assumption, the spherical harmonic expansions reduce to Legendre polynomials. The

α coefficient then takes the form:

α=

NL,α−1∑
l=0

Ll(θ)

αl0 +

NF,α∑
f=1

αlf,sin sin(2πft) +αlf,cos cos(2πft)

 (2)

where Ll denotes the lth Legendre polynomial and θ is the co-latitude (90◦ - latitude). A similar expansion is made for β.30

The choice of NL,α, NF,α, NL,β , and NF,β is somewhat arbitrary; the values need to be set sufficiently high to capture the

seasonal and latitudinal structure in α and β but not so high as to over-fit the data and thereby introduce unrealistic structure
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Figure 2. The results obtained by fitting Eq. 1 to the differences between Dobson/Brewer ground-based TCO measurements and Nimbus-7

TOMS overpass TCO measurements (ground-based minus satellite). Regions shaded in black denote the polar night where neither ground-

based or space-based measurements are possible. The thick black line denotes the zero contour. Differences are shown in Dobson Units (DU;

1 DU = 2.69×1016 molecules/cm2).

into the statistically modelled difference field. Visual inspection of a wide variety of different choices of NL,α, NF,α, NL,β ,

and NF,β led to choice of (4,4,3,0) for the statistical model of the TOMS and OMI difference fields against the Dobson

and Brewer networks where the Dobson and Brewer network is sparse, and (8,4,3,0) for differences from all other satellite-

based data sources which are compared against the more dense, corrected, TOMS/OMI data set (see below). The choice of

NF,β = 0 is equivalent to there being no seasonal dependence in the drift. The resultant statistically modelled difference field is5

a compromise between high accuracy and low complexity or, equivalently, a compromise between simulating only meaningful

structure in the difference field and avoiding over-fitting.

To avoid anomalous behaviour in the fit, which typically occurs at high latitudes and in regions where there are no satellite/ground-

based difference pairs (e.g. during the polar night), the region between 80◦ and the pole is populated with difference values of

zero for one month either side of the winter solstice. An example of one such fit is shown in Fig. 2. The morphology of this10

Dobson/Brewer - Nimbus-7 TOMS difference field is similar to that shown in Fig. 2 of Bodeker et al. (2001b) but with smaller
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differences resulting from the use of Legendre expansions in latitude, which better accommodate hemispheric asymmetries,

rather than a truncated polynomial expansion used in the earlier study. Similar ∆(t,θ) difference fields (not shown) were sta-

tistically modelled for Adeos TOMS, Earth Probe TOMS, Meteor-3 TOMS, and Aura-OMI. Corrected TCO measurements for

each of these data sets were calculated as follows:

TCOcorr(t,θ,φ) = TCOuncorr(t,θ,φ) + ∆(t,θ) (3)5

where φ is the longitude.

4 Determining corrections to all other data sets

The TOMS and OMI grids, corrected for their offsets and drifts against the ground-based Dobson and Brewer measurements,

now form the basis to correct the other data sets listed in Table 1. Differences between 1◦ zonal means from the combined

corrected TOMS/OMI data and from the remaining data sets are calculated individually for each data set. The differences10

are then used as input to the regression model described in Eq. 1. There could be a danger here that in the case of biased

longitudinal sampling by one satellite compared to another, that the zonal means would be biased but without these differences

arising from any intrinsic biases between the satellite-based measurements. Only the SBUV measurements were sparse and

corrections for this potential sampling bias were derived as discussed below.

If more than one TOMS/OMI meridional transect of zonal means is available for a given day, then all available difference15

values are passed to the regression model. As discussed in Bodeker et al. (2005), on 22 June 2003 a tape recorder failure on the

ERS-2 satellite resulted in only a small portion of the Northern Hemisphere being sampled by the GOME instrument thereafter.

To account for possible discontinuities in the difference field introduced by this anomaly, an additional basis function was

included in the regression model for the TOMS/OMI-GOME differences, set to zero prior to 22 June 2003 and to 1 thereafter.

The resultant fit to the differences between zonal means of TOMS/OMI and GOME is shown in Fig. 3.20

The effects of the 22 June 2003 anomaly are clear in Fig. 3 with higher and more variable differences after 22 June 2003

than before. Statistically modelled difference fields, similar to that shown in Fig. 3, were generated for all non-TOMS/OMI

data sets and extended, as required, to span the temporal coverage of each of those data sets to permit correction of the full data

set. Because the combined TOMS/OMI record spans nearly the whole period (Nov 1978 to Dec 2016), extension into periods

where TOMS/OMI data are not available is uncommon.25

In addition to deriving the corrections for each data set listed in Table 1, the uncertainties on each of these corrections

were also calculated since they contribute to the uncertainties of the respective data set as discussed in Section 5. The overall

uncertainties on each of the source data sets are used to create an uncertainty weighted mean of all source data sets to produce

the final TCO databases (see Section 6).
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Figure 3. The results obtained by fitting Eq. 1 to the differences between corrected TOMS/OMI TCO zonal means and GOME TCO zonal

means. An additional basis function is included to account for the 22 June 2003 anomaly. Regions shaded in black denote the polar night

where space-based measurements in the UV/visible part of the spectrum are not possible. The thick black line denotes the zero contour.

5 Uncertainties on the source data sets

One attribute of this version of the NIWA-BS TCO database that differentiates it from previous versions is the provision of

uncertainty estimates on each TCO value in the database. This development has been driven, in large part, by the requirements

for a climate data record as stipulated in GCOS-143 (2010). Table 2 gives an overview of the literature on which we have based

the uncertainty estimates of our source data sets. For the NPP-OMPS instrument, the uncertainty on each TCO measurement5

comprises both a static component (in DU), and a component that scales with the TCO i.e. is a percentage of the TCO. The

relevant values (1.12 DU for the static component and 0.64 % for the component that scales with TCO) were derived from a

linear fit to the data listed in Table 7.3-7 of Godin (2014).

The random uncertainties on the raw values listed in Table 2 are propagated through the analysis to result in an uncertainty

estimate on the final product. When regression modelling the difference field between the ground-based Dobson/Brewer mea-10

surements and the TOMS/OMI overpass TCO measurements, the uncertainties passed to the regression model (Eq. 1) are:
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Data set Random error TCO Source

Dobson 1 %
Basher and Bojkov (1995): Survey of WMO-sponsored

Dobson Spectrophotometer intercomparisons

Brewer 1 % Fiolotev et al. (2005): The Brewer reference triad

Adeos 2 % Krueger et al. (1998): ADEOS TOMS Data Products User’s Guide

Earth Probe 2 % McPeters et al. (1998): Earth Probe TOMS Data Products User’s Guide

Meteor-3 3 % Herman et al. (1996): Meteor-3 TOMS Data Products User’s Guide

Nimbus-7 2 % McPeters et al. (1996): Nimbus-7 TOMS Data Products User’s Guide

OMI 2 % Bhartia (2002): OMI Algorithm Theoretical Basis Document Volume II, 2002

all ESA
<1.7 % (SZA <80◦)

<2.6 % (SZA >80◦)
GODFIT Algorithm Theoretical Basis Document (ATBD), 2013

NPP OMPS 1.12 DU, 0.64 % Godin (2014): OMPS NADIR TCO Algorithm Theoretical Basis Document

all SBUV 5.0 DU P.K. Bhartia: Personal communication, 2014
Table 2. Typical uncertainties on the source data sets as reported in the references provided and as used in the construction of the TCO

databases. Note that the uncertainty on any particular measurement may differ from the typical values quoted in this table.

σdiff =
√
σ2

DB +σ2
TOMS/OMIovp (4)

where σDB is the measurement uncertainty on the Dobson/Brewer measurements (1 %) and σTOMS/OMIovp is the measurement

uncertainty on the TOMS/OMI overpass measurements.

The uncertainty on the modelled difference field is calculated using a Monte Carlo approach whereby the uncertainties on5

each difference pair are used to generate new estimates of the differences which then constitute a new data set of differences to

which the statistical model is fitted. The process is repeated 100 times. The mean and standard deviation of the 100 resultant

model fits provides the final difference field and its uncertainty (σ∆). The uncertainties on the corrected TOMS/OMI values,

calculated using Eq. 3, are then given by:

σCorr(θ,φ,t) =
√
σuncorr(θ,φ,t)2 +σ∆(θ, t)2 (5)10

A similar procedure is used to propagate uncertainties in the corrections of the other satellite data sets against the corrected

TOMS/OMI data sets. Recall that these corrections are based on comparisons of zonal means. To estimate the uncertainties

on the zonal means, rather than taking the weighted mean of the single measurements, the unweighted arithmetic mean is

calculated so that every measurement has the same weight. The zonal mean ZM , and its uncertainty σZM , are then given by:

ZM =
1

N

N∑
i

xi σZM =
1

N

√√√√ N∑
i

σ2
i (6)15
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where N is the number of measurements in the zone, xi are the measurements, and σi are the uncertainties on the measure-

ments. The uncertainty on the zonal mean also needs to account for the effects of any undersampling. If the zonal profile

of TCO is highly structured, perhaps as a result of planetary-scale waves, then, if a particular space-based instrument does

not fully capture that structure, the uncertainty on the zonal mean will be higher than it would have been the case otherwise.

This is primarily a concern for the sparse sampling by the SBUV instruments used to create the combined database. For the5

SBUV data sets, in addition to the zonal mean uncertainty calculated using Eq. 6, the potential uncertainty resulting from the

sparse sampling was also accounted for. To estimate this additional uncertainty in the zonal means calculated using SBUV

measurements an algorithm was developed to compare the zonal mean of a well-sampled zonal TCO profile with the zonal

mean calculated using the same zonal profile but sampled at the SBUV measurement locations. The high spatial resolution

(0.25◦) OMI data set was used for this purpose. To estimate the potential zonal mean uncertainty for each day of the year10

resulting from the SBUV under-sampling, grids of high spatial resolution data from OMI were considered for the 10 years

2004 to 2013 and for 10 days before and after the day of interest totaling 21 days. This gives a sample data set of 210 data

grids. For each SBUV data set available on that calendar day, and for each latitude, two zonal means are calculated, viz (1) the

true zonal mean (ZMtrue) calculated from the 1440 values comprising the zonal TCO profile at 0.25◦ resolution, and (2) the

sub-sampled zonal mean (ZMsub) calculated using only those OMI data at the locations of the SBUV measurements. For each15

latitude, 210 (from the 21 day window of 10 years of OMI data used) difference pairs of ZMtrue−ZMsub can be calculated.

If the SBUV sampling of the zonal mean was unbiased, all 210 values would be 0.0. The mean and standard deviation of

these 210 values are then calculated and the standard deviation is used as an estimate of the SBUV sub-sampling uncertainty

(σsubsample) which is specific to a particular SBUV instrument and depends on the year and latitude. An example of one such

sub-sampling uncertainty field for the NOAA 19 SBUV instrument is shown in Fig. 4.20

The sub-sampling uncertainty maximizes during periods when the zonal profile shows more complex structure i.e. typically

in winter and spring when mid-latitude planetary wave activity maximizes. The sub-sampling uncertainty on the zonal means

is added to the zonal mean uncertainty calculated using Eq. 6 as:

σZMSBUV =
√
σ2

ZM +σ2
subsample (7)

6 Creating the combined data set25

To construct a single TCO field for each day, a weighted mean of all available corrected measurements in each grid cell is

calculated. A grid of 1.25◦ longitude by 1.0◦ latitude was selected for the final product. The weights applied to the individual

available TCO measurements are derived from the measurement uncertainties on each available measurement, viz:

TCOi,j =

∑
kwi,j,kTCOi,j,k∑

kwi,j,k
σ2
TCOi,j

=

∑
kw

2
i,j,kσ

2
i,j,k

(
∑
kwi,j,k)2

(8)

where i and j are indices over latitude and longitude, k is an index over the measurements from different satellites in that cell,30

and the weights (wi,j,k) are calculated as 1/σ2 where σ is the measurement uncertainty incorporating any additional uncertainty
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Figure 4. The additional uncertainty introduced to the SBUV zonal means as a result of under-sampling the zonal TCO profile. Regions

shaded in white denote the polar night where space-based measurements in the UV/visible part of the spectrum are not possible.

introduced by corrections made to the original data. Unlike previous versions of this TCO database, the daily combined TCO

fields are accompanied by fields of uncertainties and fields detailing the number of values that were averaged to produce the

single combined value. An example of these three fields for one selected day is given in Fig. 5.

As expected, Fig. 5 shows that the uncertainty on TCO values decreases with an increasing number of source data sets. The

regions of elevated uncertainty, sloping from north-west to south-east across the equator, arise from having only the OMI TCO5

values available to build the mean. Cyan regions in panel (c) show where additional Earth Probe TOMS data contribute (with

a resultant reduction in the uncertainty) and regions in green where SCIAMACHY additionally contributes data, reducing the

uncertainties in the resultant mean to less than 3 DU.

7 Validating the combined data set

This new NIWA-BS TCO database has been validated through comparisons with the WOUDC database and four additional10

independent TCO databases listed in Table 3. To account for different spatial resolutions, the NIWA-BS database was re-

gridded to match the spatial resolution of each validation database. The differences reported in this section were calculated by
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Figure 5. Example fields for 21 March 2005. (a) the TCO field, (b) the uncertainties on each value plotted in (a) and, (c) the number of values

averaged to create the means plotted in panel (a). Regions shaded in white denote the polar night where space-based measurements in the

UV/visible part of the spectrum are not possible.
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Data set Instruments Record length Reference

SBUV V8.6 NASA

BUV Nimbus-4,

SBUV Nimbus-7,

SBUV/2 NOAA 9 to 19

5/1970 to 12/2017
McPeters et al. (2013);

Frith et al. (2014)

Source: https://acd-ext.gsfc.nasa.gov/Data_services/merged/

SBUV V8.6 NOAA
SBUV Nimbus-7,

SBUV/2 NOAA 9 to 19
11/1978 to 12/2015

Wild et al. (2012);

McPeters et al. (2013)

Source: https://acd-ext.gsfc.nasa.gov/Data_services/merged/instruments.html

GSG Bremen

GOME,

SCIAMACHY,

GOME2

7/1995 to 12/2016 Weber et al. (2013)

Source: https://www.iup.uni-bremen.de/gome/wfdoas/

ESA CCI

GOME,

SCIAMACHY,

GOME2

3/1996 to 6/2011 Lerot et al. (2014)

Source: https://climate.esa.int/en/projects/ozone/
Table 3. Sources and details of the independent data sets used to validate the NIWA-BS total column ozone database.

subtracting the validation values from the NIWA-BS values such that positive differences represent elevated ozone values in

the NIWA-BS database compared to the validation databases. Fig. 6 shows the globally averaged area-weighted differences

between the NIWA-BS database and the validation databases over the full time period.

The NIWA-BS database displays a small negative bias (-0.2±2.7 DU) against the global mean monthly means calculated

from the Dobson and Brewer measurements obtained from the WOUDC. A slightly larger negative bias (-1.2±1.2 DU) is seen5

in comparison with the SBUV V8.6 NASA time series. The bias against the SBUV V8.6 data set produced by NOAA slightly

more negative but not statistically significantly different from zero (-1.3±1.5 DU). The comparison against the GSG Bremen

database suggests that the NIWA-BS time series exhibits a small anomalous downward trend starting around 2002 which is

also reflected in the WOUDC comparison and in the ESA CCI comparison.

Seasonal mean differences between the NIWA-BS database and the five validation databases, as a function of latitude, are10

shown in Fig. 7. In general, the differences between the NIWA-BS TCO database and the validation databases are smaller than

the uncertainties in the NIWA-BS database. This is not the case, however, in the high northern latitudes in winter where the

NIWA-BS database shows statistically significantly smaller ozone values compared to the validation data sets. This results from

larger differences in satellite measurements and ground-based measurements being inferred close to the region of permanent

polar darkness where both satellite and ground-based measurements are scarce, i.e. there were only 548 Dobson/Brewer -15

satellite difference pairs in the winter (DJF) Arctic (poleward of 60◦ N) on which to base the correction. A more in-depth

comparison of the NIWA-BS database and the WOUDC database is presented in Fig. 8 where monthly mean zonal means (in

13

https://acd-ext.gsfc.nasa.gov/Data_services/merged/
https://acd-ext.gsfc.nasa.gov/Data_services/merged/instruments.html
https://www.iup.uni-bremen.de/gome/wfdoas/
https://climate.esa.int/en/projects/ozone/


Figure 6. Area-weighted global mean monthly mean differences in TCO between the NIWA-BS database and the validation databases

detailed in Table 3. The topmost panel shows the differences between the NIWA-BS database and the ground-based TCO database obtained

from the WOUDC. The remaining four panels show differences against databases derived from space-based measurements. The statistics in

the top right corner of each panel show the mean difference and standard deviation.
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Figure 7. TCO differences (NIWA-BS TCO minus validation database) as a function of latitude plotted as seasonal means over the entire

period of data available. The 1σ uncertainty range in the NIWA-BS TCO is shown in black and the standard deviation on the differences

between NIWA-BS TCO and each validation database is shown by the shading.

5◦ latitude zones) are differenced (NIWA-BS minus WOUDC). Over their full period of overlap, the mean difference between

the data sets is -0.26 DU, with 95 % of the differences falling between -11.38 DU and 13.21 DU. Differences between the data

sets are larger at higher latitudes. A consistent feature of the NIWA-BS TCO database across most years is an overestimation

in TCO equatorward of the Antarctic and an underestimation of TCO close to the South Pole with respect to WOUDC.

Differences between monthly mean 5◦ zonal means from the NIWA-BS database and the NASA SBUV merged ozone5

database Version 8.6 are shown in Fig. 9. The mean difference in TCO across the full overlap period is -1.21 DU, with 95

% of the differences in the range -5.96 DU to 2.95 DU. The differences are smaller in magnitude than those shown in Fig.

8 and show smaller year-to-year variability, perhaps as a result of the more dense spatio-temporal sampling by the SBUV

instruments compared to the ground-based instruments. Features common across most years are an underestimation of TCO

in the northern sub-tropics during the first half of each year and underestimations just equatorward of the polar night in the

Southern Hemisphere.

As the NOAA SBUV database is available at daily resolution like the NIWA-BS TCO database, daily differences between

zonal means from these two databases are calculated and shown in Fig. 10. Over their full overlap period, the average difference
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Figure 8. Monthly mean differences between NIWA-BS TCO and the WOUDC database for twelve selected years.

is -1.44 DU, with 95 % of the differences between -8.66 DU and 5.35 DU. Similar to the NASA SBUV comparisons, there5

appears to be a small underestimation in TCO over the northern sub-tropics in the first half of many years.

Differences between monthly mean 5◦ zonal mean TCO from the NIWA-BS database and the GSG Bremen TCO dataset

which combined GOME, SCIAMACHY and GOME2 are shown in Fig. 11. There appears to be a consistent underestimation

of TCO in the NIWA-BS database equatorward of the polar night from January to March in most years with respect to GSG

Bremen. The mean difference between the databases is -3.14 DU, with 95 % of the differences lying between -9.79 DU and10

2.81 DU.

Validation data from the ESA Climate Change Initiative (CCI) Level 3 TCO data set are available as monthly mean maps

and differences between these monthly mean maps and NIWA-BS TCO are shown in Fig. 12. While there is significant spatial

structure in some of the monthly difference fields, there is little structure that is consistent across multiple years. The mean

difference is -2.36 DU, with 95 % of the differences lying between -10.63 DU and 6.34 DU.15
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Figure 9. Differences between monthly mean zonal means calculated from the NIWA-BS TCO database and the NASA SBUV V8.6 database

(NIWA-BS minus SBUV) for twelve selected years.

8 Calculation of monthly mean and annual mean fields

Monthly mean TCO fields at 1.25◦ longitude and 1◦ latitude resolution (the same resolution as the daily fields) have been

calculated, together with their uncertainties. The algorithm was used to calculate the mean and its uncertainty from N mea-

surements (xi, i=1,...,N ). The uncertainty on the mean is calculated in such a way that it depends on both the uncertainties on

the measurements (σi) and on the variance in the measurements. First, a revised uncertainty for each datum is calculated to5

reflect the true confidence we have on each measurement as an estimator of the mean:

σ2
i,new = σ2

i + (xi−xi,exp)2 (9)

where xi,exp is the ‘expectation’ value which is taken to be the unweighted mean of the available measurements. The mean is

then calculated as:

x̄=

∑N
i=1wi,new ×xi∑N
i=1wi,new

(10)10
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Figure 10. Daily differences between 5◦ zonal means calculated from the NIWA-BS TCO database and the NOAA SBUV V8.6 database for

the same years as in Fig. 9.

where wi,new = 1/σ2
i,new and the uncertainty is calculated as:

σx̄ =

√√√√ ∑N
i=1σ

2
i,new ×wi

(NF − 1)×
∑N
i=1wi

(11)

where wi = 1/σ2
i and NF is the degrees of freedom. In this case NF was taken to be N − 1 to account, in part, for auto-

correlation in the daily time series used to calculate the monthly and annual means. The monthly mean and annual mean TCO

fields are provided as a component of the version 3.4 database.5
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Figure 11. Differences between monthly mean 5◦ zonal mean TCO calculated from the NIWA-BS and GSG Bremen databases for twelve

selected years (NIWA-BS minus GSG).

9 Creating the BS-filled Total Column Ozone database

For some applications, there is a need for gap-free TCO fields, e.g., TCO fields for validating chemistry-climate models which

generate TCO fields over the entire globe for each day of the year. To create a filled TCO database for a target day, the following

steps are performed, each of which is detailed in sub-sections below.

1. A conservatively partially filled field is created (hereafter referred to as Field 1).5

2. A machine-learning (ML) method is used to create a best estimate of the completely filled TCO field for the target day

(hereafter referred to as Field 2).

3. The original unfilled TCO field, Field 1, and Field 2 are then ’blended’ (using an algorithm described below) to generate

the final filled field.

The result is a TCO field that replicates the original data where they are available and, where no data are available, transitions10

preferentially into the conservatively filled field (Field 1). Where the conservatively filled field has missing data, we transition

into the ML-filled field (Field 2). Each ‘transition’ is achieved by way of the blending process described below.
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Figure 12. Differences between monthly mean TCO fields calculated from the NIWA-BS database and those available from the ESA CCI

database, for twelve selected months/years.

9.1 The conservatively filled field - Field 1

First a spatial nearest neighbour interpolation is used to fill as many missing values as possible. This is done by searching for

cells with null TCO values that are neighboured, either to the north and south, or to the east and west, by non-null values. If

such a non-null pair is found, that pair of TCO values, together with their uncertainties, is used to estimate the interstitial value

which is taken as the mean of the two neighbouring values. Preference is given to zonal nearest neighbors. The uncertainty on5

the interpolated values is calculated by adding in quadrature the uncertainties on the neighbouring values.

After doing the spatial nearest neighbour interpolation, cases are sought where, for a cell containing a null value on day

N, there are non-null values in the same cell on day N-1 and day N+1. Temporal nearest neighbour interpolation between the

previous and following day is done in the same way as described for the spatial nearest neighbour interpolation.

Following the spatial-temporal nearest neighbour interpolation, a more extensive longitudinal interpolation finds two non-10

null values at the same latitude that are separated by two or more null values with the constraint that the non-null values cannot

be separated by more than 30◦ in longitude. Linear interpolation between the two non-null values, including an estimate of

the uncertainties, is used to determine the interstitial values and their uncertainties. The spatial-temporal nearest neighbor
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interpolation, and the longitudinal interpolation, are repeated until no additional values are inserted into the grid. The result

is a conservatively interpolated TCO field, still containing missing values, together with its original uncertainty field and

traceable uncertainties on the newly interpolated values. A plot of the original TCO field, the conservatively filled field, and

the uncertainties on the conservatively filled field for day 3 of 1980 are shown in Fig. 13. The structure in the uncertainty field

results from the propagation of uncertainties when calculating the conservatively filled field - larger uncertainties result when5

interpolated values are spatially far from available measurements.

9.2 The machine learning estimated field - Field 2

To create a completely filled TCO field for each day, a regression model, including an offset basis function, a tropopause height

basis function, and a potential vorticity at 550 K basis function, is trained on a ‘window’ of data around the target date. The

trained regression model is used to generate a filled TCO field on the target date.10

The regression model is of the form:

TCOi,j = α(θ,φ) +β(θ,φ)×THi,j + γ(θ,φ)×PV 550i,j +Ri,j (12)

where i, j subscripts denote indices over latitude (θ) and longitude (φ), TH and PV 550 are 6-hourly tropopause height fields

and 500 K potential vorticity fields, respectively, obtained from NCEP CFSR (National Centers for Environmental Prediction)

CFSR (Climate Forecast System Reanalysis) reanalyses prior to 31 December 2010, and from NCEPCFSv2 reanalyses there-15

after (Saha et al., 2010). α, β and γ are fit coefficients and Ri,j are the residuals that remain due to variance that cannot be

explained by the regression model.

As denoted in Eq. 12, the three fit coefficients depend on latitude and longitude. That dependence is captured by expanding

the fit coefficients in spherical harmonics in a similar way as was done in Eq. 2, i.e.:

α(θ,φ) =

N∑
l=0

l′∑
m=−l′

αml Y
m
l (θ,φ) (13)20

where:

– θ is the co-latitude,

– φ is the longitude,

– N is a regression model parameter,

– l′ ≤ l where the exact limit for l′ is also a regression model parameter,25

– αml are the fit coefficients, and

– Y ml (θ,φ) is the spherical harmonic function of degree l and order m.
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Figure 13. (a) The original unfilled TCO field on 3 January 1980, (b) the conservatively filled TCO field on the same day, and (c) the

uncertainties on the conservatively filled field. White regions show where data are missing.
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The Y ml can be expressed as:

Y ml =


Y 0
l if m=0
√

2N(l,m)P
m
l (cosθ)cos(m×φ) if m>0

√
2N(l,m)P

−m
l (cosθ)sin(m×φ) if m<0

(14)

For the purposes of fitting Eq. 14 to the TCO fields, the normalisation constants (
√

2N(l,m)) can be ignored as they are taken up

into the fit coefficients. When fitting Eq. 12, the initial N value for α is set as 10 and for β and γ as 2. The maximum allowed

N value for α is 10 and for β and γ is 5. The initial l′ value for α was set at 5 (with a maximum allowed value of 5) and for5

β and γ as 2 (with maximum allowed values of 5). These initial values and limits on the spherical harmonics expansions were

selected based on careful consideration of the scales of spatial structures in TCO fields, and on how the dependence of TCO

on TH and PV 550K varies spatially. The training of the algorithm happens ‘around’ the target date as fields on neighbouring

dates and years are used to establish the dependence of TCO on TH and PV 550K. A search ellipse, initially extending 3 days

either side of the target date, and 1 year either side of the target date, is defined to select TCO fields for the training where10

the ellipse is iteratively expanded until there are 20 TCO fields available for the training. The extension to neighbouring years

is done because, in some cases, there are missing TCO fields in the current year such that a reliable fit of Eq. 12 cannot be

performed. Within this search ellipse, the dependence of TCO on TH and PV 550K at a similar time of the year is expected

to hold.

From these 20 TCO fields, to avoid excessive computational expense, only up to 20,000 data points are passed to the15

regression model by sampling every lth value from all data available for training such that the total number of values passed

is less than or equal to 20,000. The latitude and longitude of each ozone value is also passed to the regression model so that

the associated TH and PV 550K values can be extracted. The times associated with the TCO fields are assumed to be local

noon times (since most of the satellites making the underlying measurements were sun-synchronous satellites with an equator-

crossing time close to solar noon). Therefore, the actual UTC time varies across the TCO field. The TH and PV 550K values20

are linearly interpolated to those exact UTC times.

Various ‘versions’ of the regression model are tested i.e. different basis functions are excluded/included; the offset (α) basis

function is always included. In addition to switching different basis functions on/off, different values for N and l′ are tested

(perturbing these by ±1 around their start value) but ensuring that the maximum allowed zonal and meridional expansions

are not exceeded (see above). This results in many different possible constructs of the regression model. If any model, when25

evaluated over every latitude and longitude, results in a TCO value more than 10 % above the maximum measured TCO value

passed to the regression model, or below 10 % less than the minimum value passed to the regression model, it is discarded

to eliminate statistical models that significantly over-fit the TCO field. In addition to having a model with an excess of fit

coefficients, over-fitting can also occur when anomalous values in the TH or PV 550 fields result in excessively high or low

TCO values being generated. This is why models that exclude/include these two basis functions are also tested. For all models30

that pass this initial test, a Bayesian Information Criterion (BIC; Liddle et al., 2007) score is calculated as:

BIC =M × ln(R2/M) +NC × ln(M) (15)
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whereM is the number of data passed to the regression model,R2 is a modified sum of the squares of the residuals, andNC is

the total number of coefficients in the fit. R2 is modified to provide a strong disincentive for models generating values outside

the range of measurements, i.e. where model values are below the minimum or above the maximum measurement passed to the

regression model, the residual is inflated exponentially to impose an additional cost on the model for generating values outside

of the range of the data.5

Typically, for each daily TCO field, several hundred fits of the regression model are performed to find the optimal model

construct (minimum BIC). This optimal model is then used to generate the statistically modelled TCO field. The database of

different regression models is also used to calculate the structural uncertainties that result from different possible choices of

spherical harmonic expansions. The uncertainties that result from uncertainties on the regression model fit coefficients are also

calculated. These two sources of uncertainty are then added in quadrature. The structural uncertainty statistics are calculated10

using only those regression modelled fields (out of the several hundred) that have the same sequence of basis functions switched

on and off compared to the best fit. Examples of the unfilled TCO fields, the ML-modelled TCO fields and the uncertainty on

the modelled TCO fields for days 304 and 305 of 1978 are shown in Fig. 14.

9.3 An algorithm for blending a primary and secondary TCO field

This section describes an algorithm to ‘blend’ some primary TCO field (hereafter Field A) with some secondary field (hereafter15

Field B) to create a single blended field (hereafter Field C) where the Field A values are preserved while smoothly transitioning

to the Field B values. This algorithm is used below to combine the original TCO field and Field 1, and/or to combine Field 1

and Field2, and/or to combine the original TCO field and Field2; see Section 9.4.

If there is a null value in a cell in Field A and a non-null value in the same cell in Field B then a proxy value for Field A is

found and combined with the value from Field B as follows:20

C =W ×Aproxy + (1−W )×Bvalue (16)

where C is the blended value, W is a weight calculated as detailed below, Aproxy is a proxy value for the missing value in

Field A determined as detailed below, and Bvalue is the non-null value from Field B. To derive an Aproxy value, a box of

size 41× 41 cells is centred on the missing value and divided into six sectors each subtending an angle of 60◦. Each sector is

scanned for non-null values in Field A, and a weighted mean of those 6 values is calculated these weights:25

Wi = cos

(
D×π
2× 106

)
(17)

where D is the distance to the nearest non-null value in that sector measured in metres. The weight is set to zero when D is

greater than 1000 km. Aproxy is then set to the weighted mean of the non-null values across all 6 sectors.

In calculating the blended value using Eq. 16, the weight (W ) is calculated using the distance to the nearest non-null value

across all 6 search sectors in Eq. 17. If noAproxy value can be found, thenW in Eq. 16 is set to zero. Standard error propagation30

rules are used to determine an uncertainty on the blended value. This process results in using values from Field A where they

are available which then blend into values from Field B when they are not available.
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Figure 14. (a, d) The original unfilled TCO fields on 31 October 1978 and 1 November 1978, respectively; (b, e) the machine learning

modelled fields; (c, f) the uncertainties associated with the machine learning modelled fields. On 31 October the optimal fit was obtained

by expanding the offset basis function in spherical harmonics of degree 10 and order 5, expanding the tropopause height basis function

in spherical harmonics of degree 4 and order 3, and the PV at 550 K basis function in spherical harmonics of degree 5 and order 3. For

1 November these expansions were (10,5) for the offset basis function (4,3) for the TH basis function and (5,4) for the PV 550K basis

function.
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9.4 Blending the original unfilled TCO field, Field 1, and Field 2 to construct the final filled field

For each day, the original TCO field, the conservatively filled field (Field 1) and the ML-modelled field (Field 2) are merged in

such a way that the original values are preserved where they are available. Where they are not available, the filled values relax

to the conservatively filled field where they are available. Where conservatively filled values are also not available, the filled

values relax to the ML-modelled field.5

The ML-modelled fields, because they are modelled on PV 550K and TH (which themselves can contain anomalous val-

ues), can occasionally display physically unrealistic spatial or temporal structures so, for any given day, to obtain a smoother

ML-filled field, a (1,4,6,4,1) weighting of the five daily ML-filled fields, centered on the day of interest, is calculated.

For the final blended data product, several possibilities exist for any given day, i.e.:

– None of the three fields are available: In this case no final filled field is generated.10

– Only the ML-modelled field is available: In this case the ML-modelled field (possibly spatially smoothed), and its

associated uncertainties, become the final filled field for the target day.

– Only the conservatively filled field and the ML-modelled fields are available: In this case the conservatively filled field

(Field 1) and the ML-modelled field (Field 2) are blended to create the final filled field.

– All three fields are available: In this case the conservatively filled field and the ML-modelled field are blended to create15

an intermediate field. The original TCO field and the intermediate field are then blended to create the final filled TCO

field and its uncertainty.

An example of the original field for TCO on 31 October 1978, the conservatively filled field, final field obtained from the

blending process, and the uncertainty on the final filled field are shown in Fig. 15 (the ML-modelled field for that day can be

seen in Fig. 14).20
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Figure 15. (a) The original unfilled TCO field on 31 October 1978, (b) the conservatively filled field, (c) the final filled field, and (d) the

uncertainties on the final filled field.
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10 Trend analysis

To prove the utility of the NIWA-BS TCO database, trends over the whole period have been diagnosed using the following

regression model, described in detail in Bodeker et al. (2013):

Ozone(m,θ,φ) =A(m,θ,φ)+ Max Fourier = 4

B(m,θ,φ)×m/12+ Max Fourier = 35

C(m,θ,φ)×mm=0 if year<2000/12+ Max Fourier = 3

D(m,θ,φ)×QBO(m)+ Max Fourier = 2

E(m,θ,φ)×QBOorthog(m)+ Max Fourier = 2

F (m,θ,φ)×ENSO(m)+ Max Fourier = 1

G(m,θ,φ)×Solar(m)+ Max Fourier = 010

H(m,θ,φ)×Pinatubo(m+ ∆m)+ Max Fourier = 1

I(m,θ,φ)×El Chichón(m+ ∆m)+ Max Fourier = 1

R(m,θ,φ)) (18)

where Ozone(m,θ,φ) is the regression modelled TCO in month m (m = 1 to NY ×12 where NY is the total number of years

of data) and at latitude θ and longitude φ. The monthly mean TCO values were calculated as detailed in Eq. 10 and Eq. 11.15

Equation 18 is fitted independently to the monthly mean time series at each latitude and longitude. A to I are the regression

model coefficients calculated using a standard least squares regression (Press et al., 1989).

The first term in the regression model (A coefficient) represents a constant offset and, when expanded in a Fourier series,

represents the mean annual cycle. In addition to the offset coefficient, each fit coefficient can depend on season, e.g., TCO trends

vary with season. Therefore each coefficient is expanded in Fourier pairs as explained in Section 2.2 of Bodeker et al. (2015).20

The actual number of Fourier pairs for each regression coefficient is determined by finding the optimal set of expansions

across all fit coefficients that minimizes a BIC as described above. The maximum number of Fourier pairs permitted for

each regression model coefficient is listed in Eq. 18. The B coefficients diagnose the trend over the full period while the C

coefficients diagnose the change in trend from 2000 onward. 1999/2000 was prescribed as the trend transition year as this is

approximately when stratospheric chlorine and bromine loading peaked (Newman et al., 2007). We also wanted to ensure that25

the first trend period included data from the late 1990s as there was a greater likelihood of missing data from 1994 to 1998

and we wanted to avoid end-effect-biasing in the calculation of the trends. That said, the conclusions drawn below regarding

changes in trend were found to be largely insensitive to the selection of the transition year within 2 years of the selected

transition year. The QBO basis function was specified as the monthly mean 50 hPa Singapore zonal wind. The phase of the

QBO varies with latitude and, to permit fitting of the phase, a second QBO basis function, mathematically orthogonalized to30

the first, was included in the regression model as was done in Bodeker et al. (2013).
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The El Niño Southern Oscillation (ENSO), solar cycle, Mt. Pinatubo and El Chichón basis functions were the same as those

used in Bodeker et al. (2001b). Note that the effects of the Pinatubo and El Chichón volcanic eruptions on TCO was delayed and

so temporal offsets in those basis functions, denoted by the ∆m, were permitted for up to two years where the ∆m values for

each basis function were optimised as part of the same BIC optimisation used to determine the optimal Fourier expansions for

each regression model fit coefficient. A one term auto-correlation model was used to account for the effects of auto-correlation5

in the residuals (R(m,θ,φ)) when calculating the uncertainties on the fit coefficients.

The B coefficients, evaluated at day 90, 180, 270 and 360 through the year (noting that because these are Fourier expansions

they can be evaluated at non-integral month values) are shown in Fig. 16. The spatial and seasonal pattern of ozone trends

prior to 2000 is similar to numerous previous studies that have shown similar trend results. The C coefficients, evaluated on

the same days as the B coefficients, are shown in Fig. 17. Note that Fig. 17 shows the change in trend compared to the trend10

shown in Fig. 16 i.e. areas midway between blue (more negative trends than before 2000) and red (more positive trends than

before 2000) indicate no change in trend before and after 2000. Actual trends since 2000 obtained by adding the trends shown

in Fig. 17 to the trends shown in Fig. 16 are shown in Fig. 18. Trends are generally seldom statistically significantly different

from zero at the 2σ level. Regions of the southern middle and low latitudes continue to show declining TCO while selected

regions over Antarctica show positive TCO trends.15

While, since 2000, TCO trends have largely shown a positive change compared to pre-2000 trends (particularly over Antarc-

tica as the ozone hole recovers due to effects of declining stratospheric concentrations of ozone depleting substances), around

the middle of the year a large negative change in trend in excess of -1 DU/year is seen in the Southern Hemisphere sub-tropics.

The largest of these negative anomalies occurs at 19.5◦S, 164.375◦W and therefore Fig. 19 shows the July mean TCO, re-

gression model fit for July, and the contribution of the offset and trend basis function evaluated at this location. The strong20

negative change in trend suggested by the regression model is clearly apparent in the observations. This decline in Southern

Hemisphere sub-tropical TCO seen here is consistent with other reports of continued declines in tropical ozone after 2000 (Ball

et al., 2018). Further research is required into the mechanisms that are driving such decreases in tropical TCO in spite of the

effectiveness of the Montreal Protocol and its Amendments and Adjustments in reducing the stratospheric burden of halogens.

11 Conclusions25

This paper presents the construction of a new version (V3.4) of the NIWA-BS TCO database and the developement of the

gap-free BS-filled TCO database. To the extent possible, we have followed the recommendations of GCOS-143 (2010) in

establishing a fundamental climate data record for TCO, in particular paying specific attention to tracing all sources of uncer-

tainty through to the final data product. Making the uncertainties available per datum presents a major advancement from the

last version of the NIWA-BS TCO database. Comparisons of the NIWA-BS TCO database against the WOUDC database and30

four independent multi-satellite databases show generally small differences that are within the uncertainties of the NIWA-BS

TCO database. The BS-filled TCO database provides gap-free TCO fields for each day that have been created from a machine-

learned algorithm that uses tropopause height and/or potential vorticity at 550 K fields as estimators of the spatial and temporal
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Figure 16. TCO trends for the period 1979 to 2000 evaluated at (a) day 90, (b) day 180, (c) day 270, and (d) day 360. The white areas at

high latitudes in (b) and (d) result from there being insufficient data to establish meaningful trends during the polar night periods. The solid

black line shows zero trend. Double hatched regions show where trends are not statistically different from zero at the 1σ confidence level,

while single hatched regions show where the trend is not statistically different from zero at the 2σ confidence level.
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Figure 17. The change in TCO trends after 2000 evaluated at (a) day 90, (b) day 180, (c) day 270, and (d) day 360. The solid black line

shows zero trend. The same hatching regimen as used in Fig. 16 is used here.

variability in the TCO fields. Finally, an analysis of trends in unfilled monthly mean TCO fields showed that while many re-

gions of the globe that had been experiencing negative trends in TCO prior to 2000 are now seeing positive TCO trends, there

are regions in the tropics (with a bias towards the Southern Hemisphere) where trends since 2000 have become more negative

and over limited regions of the tropics, this decline is statistically significant. The cause of this ongoing negative trend has not

been diagnosed here and requires further investigation.5

12 Data availability

The NIWA-BS TCO database (doi:10.5281/zenodo.1346424, Bodeker et al. (2018)) and the BS-Filled TCO database

(doi:10.5281/zenodo.3908787, Bodeker et al. (2020)) are available from http://www.bodekerscientific.com/data/total-column-
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Figure 18. Inferred trends in TCO 2000 evaluated at (a) day 90, (b) day 180, (c) day 270, and (d) day 360, obtained by adding the B and C

regression model fit coefficients. The solid black line shows zero trend. The same hatching regimen as used in Fig. 16 is used here.

ozone and from the zenodo archive. Both databases are freely available for non-commercial purposes and are provided as

netCDF files.
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Figure 19. The July mean total column ozone at 19.5◦ S, 164.375◦ W (blue dots) together with the regression model values (red dots) and

their 1σ uncertainties, and the contribution to the regression model from the offset and two trend basis functions.
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