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Abstract 

Atmospheric methane (CH4) is a potent greenhouse gas that is strongly influenced by several human activities. China, as one 

of the major agricultural and energy production countries,  contributes considerably to the global anthropogenic CH4 20 

emissions by rice cultivation, ruminant feeding and coal production,. Understanding the characteristics of China’s CH4 

emissions is necessary for interpreting source contributions and for further climate change mitigation. However, the scarcity 

of data from some sources or years and spatially explicit information pose great challenges to completing an analysis of CH4 

emissions. This study provides a comprehensive comparison of China’s anthropogenic CH4 emissions by synthesizing the 

most current and publicly available datasets (13 inventories). The results show that anthropogenic CH4 emissions differ 25 

widely among inventories, with values ranging from 44.4-57.5 Tg CH4 yr
-1

 in 2010. The discrepancy primarily resulted from 

the energy sector (27.3-60.0% of total emissions), followed by the agricultural (26.9-50.8%), and waste treatment (8.1-21.2%) 

sectors. Temporally, emissions among inventories stabilized in the 1990s, but increased significantly thereafter, with annual 

average growth rates (AAGRs) of 2.6-4.0% during 2000-2010, but slower AAGRs of 0.5-2.2% during 2011-2015, and the 

emissions became relatively stable with AAGRs of 0.3-0.8% during 2015-2019 because of the stable emissions from energy 30 

sector (mainly coal production). Spatially, there are large differences in emissions hotspot identification among inventories, 

and incomplete information on emission patterns may mislead or bias mitigation efforts for CH4 emission reductions. The 

availability of detailed activity data for sectors or subsectors and the use of region-specific emission factors play important 

roles in understanding source contributions, and reducing the uncertainty of bottom-up inventories. 

Keywords: Anthropogenic CH4 emissions; bottom-up inventories; uncertainty analysis; source and contribution. 35 

1 Introduction 

Atmospheric methane (CH4) is a potent greenhouse gas with a warming potential that is 28 fold higher than that of CO2 over 

a 100-year time horizon (Myhre et al., 2013). The global average dry air mole fraction of atmospheric CH4 was 1873.7 parts 

per billion by volume (ppb) in February 2020 based on marine surface sites (Liu et al., 2015) . CH4 has a relatively short 

atmospheric lifetime of ~10 years, and reducing CH4 emissions is considered an efficient option to lower radiative forcing in 40 

the short term (Montzka et al., 2011; Shindell et al., 2012). The global CH4 budget is strongly influenced by several human 

activities, including food production (ruminant and rice), waste (sewage and landfills), and fossil fuel production and use 

(coal, oil and gas) (Bruhwiler et al., 2014; Menon et al., 2007). Global anthropogenic CH4 emissions (~357 Tg CH4 yr
-1

) 

contributed approximately 60% of the total emissions, as estimated by atmospheric inversions (Saunois et al., 2020). 

According to the latest report from a global methane project, emissions from agriculture contributed the most (44%) to 45 

global anthropogenic sources, followed by fossil fuel (35%) and waste (12%) (Saunois et al., 2020). Control of 

anthropogenic CH4 emissions has become a promising target in the effort to mitigate climate change at short timescales 
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(Höglund-Isaksson, 2012; Henne et al., 2016; Saunois et al., 2016). Therefore, understanding the levels and trends of 

anthropogenic CH4 emissions and their drivers is extremely crucial for global change research and mitigation.  

The estimation of anthropogenic CH4 emissions is extremely challenging, due to the complexity of the processes included 50 

and difficult to quantify separately (Saunois et al., 2020). Considerable uncertainties are caused by source-specific 

information combined with activity data and emission factors (Henne et al., 2016; Zhang et al., 2018). Using coal mining as 

an example, the time dynamic information of geolocation, emission factors and production of coal mines are rather 

insufficient for CH4 emission quantification (Sheng et al., 2019).The current estimates of global anthropogenic emissions 

ranged from 334 to 375 Tg CH4 yr
-1

 by top-down approaches and from 348 to 392 Tg CH4 yr
-1

 by bottom-up approaches 55 

during 2008-2017 (Saunois et al., 2020). Top-down (atmospheric inversions) approaches provide a good picture of global 

and continental CH4 emissions (Alexe et al., 2014). However, for small-scale regions, inversions largely depend on prior 

emission inventories and are still limited by their coarse spatial resolutions (Alexe et al., 2014; Henne et al., 2016). To 

improve the spatial resolution and representation of top-down inversions, more efforts have been made at regional scales 

(Thompson et al., 2015; Wecht et al., 2014), but it is still difficult to mechanistically model CH4 emissions from a particular 60 

type of emissions source (Cui et al., 2015; Kirschke et al., 2013). Bottom-up emissions estimates are based on 

source-specific information on activity data and emission factors. The analyses of source-specific emissions help us 

understand the relationship between emissions and the underlying socioeconomic and sociodemographic driving processes 

(Miller and Michalak, 2017; Zhou and Gurney, 2011). Bottom-up inventories are essential in terms of providing baseline 

information on emission characteristics, and reliable emission estimates can further help with optimizing mitigation 65 

strategies (Cheng et al., 2014; Sheng et al., 2019). However, the accuracy of bottom-up inventories largely depends on the 

reliability of activity data and emission factors. Global inventories are generally based on country-level activity data and 

emission factors, which hardly fully characterize the regional discrepancies caused by the large variability of socioeconomic 

characteristics (Bergamaschi et al., 2010; Peng et al., 2016; Zhu et al., 2017). 

As a country with widespread rice and coal production areas and a growing human population with billions of people, China 70 

is a large emitter of CH4 (Ito et al., 2019; Janssens-Maenhout et al., 2019). The main anthropogenic sources of CH4 in China 

in 2014, as reported by the National Communication on Climate Change (NCCC) of the People’s Republic of China, were 

energy (45% of anthropogenic emissions), agriculture (40%), and waste (12%) . However, anthropogenic CH4 emissions 

differ widely among inventories with differences as high as 17 Tg CH4 found for 2010 (Ito et al., 2019), of which paddy and 

coal mining emissions contributed a large part of the differences (Cheewaphongphan et al., 2019). Due to the scarcity of data 75 

from some sources or years and spatially explicit information, a quantitative analysis of China’s CH4 emissions remains a 

great challenge. Several studies have quantified the emissions from rice paddies in China by using process-based modeling 

approaches (Huang et al., 1998; Li et al., 2002; Tian et al., 2011; Zhang et al., 2011). However, there are considerable 
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differences in the modeling estimates. In CH4MOD model, the estimated CH4 emissions from rice paddies varied from 3.8 to 

9.8 Tg, of which 56.6% resulted from model fallacy, and the remaining 43.4% was attributed to errors and the scarcity of 80 

input data (Zhang et al., 2017). As the largest coal producer worldwide, China’s coal mine CH4 emissions are still poorly 

quantified, and estimates vary significantly from 14 to 28 Tg CH4 yr
-1 

(Sheng et al., 2019). In addition, emissions from waste 

treatment are mainly focused on the total emissions of city-level or provincial wastewater in China (Du et al., 2018; Zhao et 

al., 2019). Emissions from Chinese landfills are estimated by Cai et al. (2018) and Du et al. (2017), but there remain gaps in 

spatial or temporal coverage. Altogether, there have been few studies on the comprehensive evaluation of China’s 85 

anthropogenic CH4 emissions, although one or several representative emission sources have been studied at the provincial 

level or in certain regions (Chen et al., 2011; Huang et al., 2019; Liu et al., 2016; Ren et al., 2011; Yue et al., 2012; Zhang 

and Chen, 2014). Therefore, comprehensive analysis by gathering existing inventories is particularly important to improve 

the understanding of China’s contribution to the global CH4 budget and to provide guidance on mitigation policies.  

Based on a comprehensive literature review of previous studies, we have included the most current and publicly available 90 

datasets (13 global and regional inventories) to characterize anthropogenic CH4 emissions in China. We presented a detailed 

evaluation of the major emission sectors, including agricultural activities (rice cultivation and livestock), energy activities 

(fossil fuel production and use), and waste management (wastewater and landfill), in the existing inventories (Table 1). The 

specific objectives of this study were to (1) adequately understand the characteristics and dynamics of anthropogenic CH4 

emissions in China and identify their sectoral and regional contributions and (2) understand sources of discrepancies among 95 

inventories and provide helpful suggestions for further improvements in estimations and policy-making related to the control 

of CH4 emissions. 

2 Data and Methods 

Here, we collected 13 global and regional bottom-up inventories for anthropogenic CH4 emissions over mainland China 

(listed in Table 1), including 5 gridded datasets and 8 statistical datasets. Specifically, the 5 gridded inventories were 100 

collected from Peking University (PKU-CH4-China-v1) (Peng et al., 2016), Community Emission Data System (CEDS 

v2017-5-18) developed for use by the climate modeling community in the Coupled Model Intercomparison Project Phase 6 

(CMIP6) (Hoesly et al., 2018), Emissions Database for Global Atmospheric Research (EDGAR v5.0) developed by the 

European Commission’s Joint Research Centre (JRC) and the Netherlands Environmental Assessment Agency (PBL) 

(Crippa et al., 2019), Greenhouse Gas and Air Pollution Interactions and Synergies (GAINS/ECLIPSE v5a CLE baseline) 105 

developed by the International Institute for Applied Systems Analysis (IIASA) (Höglund-Isaksson, 2012), and Regional 

Emission Inventory in ASia (REAS 2.1) (Kurokawa et al., 2013; Ohara et al., 2007). The latest version of CEDSv2021-02-05 

(only tabular data) was also included to understand the emissions trend in recent years through personal communications. 
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PKU is a global annual bottom-up inventory of anthropogenic CH4 emissions from 1980 to 2010 that compiles regional 

sector-specific emission factors with provincial emissions from the eight major source sectors in China (Peng et al., 2016). 110 

CEDS implements a mosaic approach to produce monthly country emissions from 16 sectors and 53 subsectors based on 

existing emission inventories, emission factors, and activity data (e.g., EDGAR v4.2, GAINS) during the period of 

1970-2014 (Hoesly et al., 2018). EDGAR v5.0 provides annual country emissions through 24 sectors specified by the 

Intergovernmental Panel on Climate Change (IPCC) from 1970 to 2015. The GAINS model identifies forty source sectors 

for CH4 and estimates region-specific emissions for the period of 1990-2010 at five-year intervals, with projections to 2030 115 

(Höglund-Isaksson, 2012). REAS provides a monthly Asian inventory of anthropogenic emission sources from 14 sectors for 

CH4 from 2000 to 2008 (Kurokawa et al., 2013). The 8 statistical tabular data sets used in this study were from research 

institutes and published literature, including the Environmental Protection Agency (EPA) of the United States; Food and 

Agriculture Organization (FAO); NCCC of the People’s Republic of China; Global Methane Budget (GMB) released by the 

Global Carbon Project (Saunois et al., 2020), and GMB has a bit overlap with the other datasets used here, but to keep the 120 

completeness of this important work, we kept all the inventories to produce the GMB estimates; published literature data 

from Yue et al. (2012), Huang et al. (2019), Zhang and Chen (2014), Zhang et al. (2016), Zhang et al. (2018), and China 

High Resolution Emission Database (CHRED) (Cai et al., 2018). To analyze the spatiotemporal patterns and discrepancies 

among inventories, specific anthropogenic sectors were aggregated into 3 categories (i.e., agriculture, energy, and waste) 

(Table S2). 125 

Generally, bottom-up inventories are based on national or subnational level activity data and emission factors. The four 

gridded emissions (i.e., CEDS, EDGARv5.0, GAINS, and REAS) are generally based on country-specific socioeconomic 

statistics and with country-level or Intergovernmental Panel on Climate Change (IPCC) default emission factors (Crippa et 

al., 2019; Höglund-Isaksson, 2012; Kurokawa et al., 2013; Ohara et al., 2007), which are widely used as priori emissions for 

atmospheric research. The PKU inventories for China considered regional discrepancies by applying province-level (Fig. S1) 130 

activity data from the National Bureau of Statistics of China (NBS) and region-specific emission factors when data 

availability allowed, especially for provinces with large differences in economic development (Peng et al., 2016). To 

quantify the spatial consistency among inventories, the kappa coefficient is used to analyze the degree of agreement between 

two estimates. Here, PKU was used as a reference to check the consistency with the remaining inventories. A kappa of value 

equal to 1 indicates perfect agreement, whereas a value of 0 indicates no agreement beyond chance (Landis and Koch, 1977). 135 

Spatially, high emissions areas are critical for targeting CH4 emission reductions, and the top 2% high-emitting grids (> 33 g 

CH4 m
-2 

yr
-1

) from PKU are considered as emissions hotspots to assess the capability of emissions hotspot identification 

among inventories. Further details of the tabular datasets used in this study are listed in Table S1. Detailed information on 

sector and subsector categories for inventories is provided in Table S2. To improve the understanding of the recent trends in 
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China’s CH4 emissions, we estimated emissions from 2015-2019 using IPCC Tier 1 method based on national activity data 140 

from NBS (NBS, 2021) and localized optimized emission factors from NCCC (Table S5-S7). 

 

Table 1 Key features of gridded emissions inventories 

Name 

(version) 

PKU 

(PKU-CH4-China-v1) 

CEDS (CEDS 

v2017-05-18) 

EDGAR 

(EDGARv5.0) 
GAINS (ECLIPSE V5a) REAS (REAS 2.1) 

Year 1980-2010 1970-2014 1970-2015 1990-2050 at 5-year intervals 2000-2008 

Domain Global Global Global Global 
East, Southeast, South, 

and Central Asia 

Spatial 

resolution 
0.1 0.5 0.1 0.5 0.25 

Temporal 

resolution 
Annual Monthly Annual Annual Monthly 

Sources of activity data 

Agriculture 

Provincial agriculture 

statistics (National 

Bureau of Statistics of 

China, NBS) 

EDGAR v4.2 FAO FAO FAO 

Energy 
Provincial energy 

statistics (NBS) 

IEA; EDGAR v4.2; 

ECLIPSE v5a 
IEA IEA 

IEA, Provincial energy 

statistics (NBS) 

Waste 

Provincial 

environmental 

statistics (NBS) 

FAO; EDGAR v4.2 UNFCCC UNFCCC,FAO NA 

Data access 
http://inventory.pku.ed

u.cn/home.html 

http://www.globalchange

.umd.edu/ceds/ceds-cmi

p6-data/ 

https://edgar.jrc.ec.eur

opa.eu/overview.php?

v=50_GHG 

https://iiasa.ac.at/web/home/r

esearch/researchPrograms/air

/ECLIPSEv5a.html 

http://www.nies.go.jp/R

EAS/index.html#data%

20sets 

Reference Peng et al. (2016) Hoesly et al. (2018) Crippa et al.(2019) Höglund-Isaksson (2012) Kurokawa et al. (2013) 

 

*The complete list of data sources can be found in the References.  145 

3 Results and discussions 

3.1 Temporal variations of anthropogenic CH4 emissions 

The anthropogenic CH4 emissions from China differ widely among inventories, and emission estimates are in the ranges of 

28.5-46.3 and 44.4-57.6Tg CH4 yr
-1

 for 1990 and 2010, respectively, but are still broadly within the minimum-maximum 

range of the GMB for 2000-2009 and 2003-2012 (Fig. 1). The existing inventories show rather consistent temporal trends. 150 

CH4 emissions stabilized in the 1990s but increased significantly thereafter, with AAGRs of 2.6% (EDGAR) – 4.0% 

https://edgar.jrc.ec.europa.eu/overview.php?v=50_GHG
https://edgar.jrc.ec.europa.eu/overview.php?v=50_GHG
https://edgar.jrc.ec.europa.eu/overview.php?v=50_GHG
http://www.nies.go.jp/REAS/index.html#data%20sets
http://www.nies.go.jp/REAS/index.html#data%20sets
http://www.nies.go.jp/REAS/index.html#data%20sets
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(CEDSv2021-02-05) during 2000-2010, and slower AAGRs of 0.5% (EDGAR) - 2.2% (FAO) during 2011-2015. The 

estimated emissions in this study using national-level activity data from the NBS and localized emission factors from NCCC 

increased slowly from 50.7 Tg CH4 yr
-1

 to 52.3 Tg CH4 yr
-1

 (AAGRs = 0.8%) during 2015-2019. This estimate showed a 

slightly increasing trend of 0.5 Tg CH4 yr
-2

 for the period of 2015-2019, which is rather consistent with the values of 0.3±0.1 155 

Tg CH4 yr
-2

) from the top-down approach by (Sheng et al., 2020) and 0.3 Tg CH4 yr
-2

 from CEDSv2021-02-05. The coal 

sector appears to be a major driver of the trend in China’s CH4 emissions, and a clear increasing trend (1.0±0.3 Tg CH4 yr
-2

) 

was found during 2012-2015 (Miller et al., 2019). The emissions from coal production showed a slight increasing trend (0.3 

Tg CH4 yr
-2

), with AAGRs of 1.0% during 2015-2019 in this study. A small growth in coal mine emissions was also found in 

the study of Sheng et al., (2020) and CEDSv2021-02-05. Specifically, during 2000-2010, emissions from the existing 160 

inventories increased from 37.2±5.8 Tg CH4 yr
-1

 to 49.6±4.5 Tg CH4 yr
-1

. The growth of CH4 emissions is attributed mostly 

to an increase in emissions from the energy sector, with AAGRs of 5.8% - 9.0% (Fig. S2). A considerable discrepancy was 

found between REAS and the other inventories in terms of the magnitude and variation, with a difference as high as 35.8 Tg 

CH4 in 2008. Furthermore, emissions from the energy sector in REAS were ~2 times greater than those from other 

inventories (22-24 Tg CH4 yr
-1

). The trend in REAS was mostly triggered by a fast increase in energy sector emissions, with 165 

AAGRs greater than 10% during 2000-2008. This result was probably because the coal consumption trend was adjusted to a 

higher value in the China Statistical Yearbook (CSY), according to the GOME satellite, with a higher trend (increased 50% 

from 1996-2002) than the provincial statistical trend (25%) and IEA trend (15%) (Akimoto et al., 2006; Ohara et al., 2007). 

The CH4 emissions estimated from EDGAR v5.0 were 13.2% higher than those from NCCC, in the respective corresponding 

periods. These results are due to the higher estimates of agriculture and energy emissions obtained by using higher emission 170 

factors in rice cultivation and coal mining in EDGAR (Cheewaphongphan et al., 2019; Peng et al., 2016). For coal mining, 

the emission factor used in EDGAR is 10.0 m
3
 t

-1
, while NCCC is a lower 8.89 m

3
 t

-1
, and for rice cultivation, EDGAR is 

0.1-1.4 g m
-2

 d
-1

, while NCCC is 0.005-0.21 g m
-2

 d
-1

 (Table S4). Emissions derived from PKU were 12.2% lower than those 

from NCCC, which resulted from the lower emission factors in livestock and coal mining (NDRC, 2014; Peng et al., 2016). 

Therefore, the provincial emission factors in Table S6 for coal mining emissions are useful in the improvement of 175 

national-data-based inventories. 

Specifically, agricultural activities were the main contributors to national CH4 emissions before 2000 (46.1-60.0% of the 

total emissions, Fig. S2), as reported by the FAO. Emissions from agriculture were rather stable and showed slight decreases 

during 2000-2010, with AAGRs of -0.7~-0.5% among the inventories. This result is caused by the decreasing trend of 

emissions from rice production and livestock, with AAGRs of -0.03~-0.8% and -0.5~-0.7%, respectively. However, EDGAR 180 

v5.0 and CEDSv2021-02-05 presented an increasing trend in agriculture (AAGR = 0.2% and 1.5%) in the same period, 

which resulted from the combined effect of emissions growth in rice production (AAGR=0.9%), a reduction in livestock 
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(AAGR=-0.6%) in EDGAR v5.0, and a dominating increasing trend in livestock in CEDSv2021-02-05 (AAGR=2.3%) (Fig. 

S3). Over the study period, energy source emissions showed a substantial increase, ranging from 11.0±3.0 Tg CH4 yr
-1

 in 

1990 to 24.0±2.4 Tg CH4 yr
-1

 in 2010. After 2000, emissions from energy increased significantly and became the leading 185 

source (AAGR: 5.9-9.0%, 2000-2010). This increase was mainly driven by the rapid growth of coal production in China, 

with an AAGR up to 9.0% in the 2000s, while it was only 2.6% in the 1990s according to the official data released by the 

National Bureau of Statistics of China (CSY, 2019). However, China has consolidated its coal industry to concentrate 

production by transforming small mines into larger and more efficient coal mines (abandoning approximately 4000 mines) 

since 2010 (Sheng et al., 2019; Sheng et al., 2020). As a result, the emissions from coal mines have stabilized or decreased 190 

since 2012, with coal production in 2016 returning to levels similar to those in 2010 (~2.4×10
3
 million tons) (CSY, 2019; 

Sheng et al., 2020). Additionally, discrepancies exist in the magnitude of waste sector emissions, although the value 

continued to increase steadily during 2000-2010 (AAGR: 2.1-3.4%).   

 

 195 

 

Fig. 1 The temporal variation in China’s total (a) and sector-specific (c-d) CH4 emissions since 1990. Gray and yellow lines 
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indicate the mean of the bottom-up and top-down estimates of CH4 emissions from GMB, respectively. Shaded areas 

represent the min-max value of emissions from GMB. The emissions from 2015 to 2019 in this study (black triangles) refer 

to estimates using national activity data from the NBS and localized emission factors from NCCC. Note that the empty 200 

triangle indicates projected values using the trend over the last 5 years. 

3.2 Spatial patterns of anthropogenic CH4 emissions 

Available gridded emissions remain limited; thus, the spatial pattern analysis of CH4 emissions was performed on the PKU, 

CEDSv2017-05-18, EDGAR v5.0, GAINS, and REAS inventories (Fig. 2, Table 1). In 2010, China’s CH4 emissions were 

dominated by emissions from the energy sector (41-67% of total emissions), followed by emissions from agricultural 205 

activities (21-42%), and waste treatment (10-18%) (Fig. S2). To interpret the discrepancy in emissions among different 

inventories, frequency distribution and kappa analysis were conducted at the grid cell level (Fig. 3). The higher kappa 

coefficient of 0.51 indicates that EDGAR has a relatively better agreement with PKU than those from CEDS and GAINS 

(0.43 and 0.40). REAS had a weak correlation with PKU, with a kappa coefficient of 0.30. Remarkable regional disparities 

were observed among inventories. The spatial patterns had a close relationship with regional urbanization and economic 210 

activities, because of the associated increased energy production and livestock and waste sector emissions. High-emissions 

areas (e.g., emitting grids > 40 g CH4 m
-2

 yr
-1

) were generally located in densely populated areas (such as Beijing and 

Shanghai), energy production regions (such as Shanxi), and rice cultivation areas in south-central China as well as 

livestock-dominated regions in the North China Plain and Northeast China.The western regions showed low emissions (e.g., 

emitting grids < 1 g CH4 m
-2 

yr
-1

). Intense emissions from large cities are attributable to industrial activities, transportation, 215 

and solid waste in landfills (Ito et al., 2019). The expansive areas of rice paddy and double-cropping systems in southern and 

central China are recognized as being large contributions to the corresponding high emissions (Chen et al., 2013; Zhang et al., 

2011). Due to massive emissions from coal mining, provinces such as Shanxi, Ningxia, Henan, Guizhou, Chongqing, and 

Sichuan were emissions hotspots, emitting grids higher than 40 g CH4 m
-2

 yr
-1

. To further characterize the spatial distribution 

of emissions hotspots, the top 2% high-emitting grids (> 33 g CH4 m
-2 

yr
-1

) based on PKU were analyzed to identify the 220 

consistency and differences among inventories (Fig. 2I-V). Regional emissions hotspots were presented in PKU and EDGAR 

(Fig. 2I, III), suggesting the capability of identifying high-emission areas in the North China Plain and southern agricultural 

areas. However, such patterns showed a large spatial heterogeneity among inventories. There was a lack of emissions 

hotspots in southern China in GAINS (Fig. 2IV). Specifically, PKU and EDGAR both showed a large number (>1000, Fig. 

2I, III) of high-emitting grids (emissions > 33 g CH4 m
-2 

yr
-1

), accounting for 27% and 41% of total emissions. However, the 225 

numbers of high-emitting grids from CEDS and GAINS were only 89 and 48 (Fig. 2II, IV), accounting for 50% and 16% of 

total emissions, respectively. In addition, the number of high-emitting grids (32% of total emissions) from REAS was less 
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than half that from PKU and EDGAR (Fig. 2V). This indicated that CEDS and GAINS can not properly interpret hotspots. 

Emission hotspots in REAS were strongly biased towards Shanxi Province. The incomplete information on emission patterns 

may mislead or bias mitigation efforts for CH4 emission reductions.  230 

There were substantial discrepancies in the magnitude and distribution of sector-specific emissions among the inventories. 

For example, the amount of CH4 emissions from agriculture in EDGAR v5.0 was 24.2-45.7% higher than those from PKU, 

CEDS, REAS, and GAINS. The spatial pattern of agricultural emissions in EDGAR was similar to the corresponding 

distribution in PKU because the distribution of rice and livestock both used the gridded data from Monfreda et al. (2008) and 

(Robinson et al., 2007), and further the emission factors of rice cultivation used in EDGAR were updated with those in PKU 235 

(Janssens-Maenhout et al., 2019). Grids with high estimations (10-40 g CH4 m
-2

) were mainly located in the Yangtze River 

valley (Fig. 2i) and the eastern part of the Beijing-Tianjin-Hebei region accounted for nearly half of the agricultural 

emissions (with values that were 22.7-39.3% higher than the others, Fig. 2v). The higher CH4 emissions estimated from 

EDGAR v5.0 in Beijing is due to the higher number of livestock from FAO statistics (5.5 million cattle) (Gilbert et al., 2018), 

which was considerably higher than the number provided by NBS (0.3 million cattle) in 2010 (CSY, 2019). Additionally, 240 

GAINS and REAS tended to allocate more emissions from energy to the North China Plain (such as Shanxi and Shandong 

provinces, Fig. 2n and 2s). More than 75% of the energy emissions from EDGAR v5.0 were allocated in high-emitting grids 

(>60 g CH4 m
-2

 yr
-1

, Fig. 2w), which covered less than 0.8% of the total number of grids. This result implied that EDGAR 

may provide lower estimates in other areas. EDGAR v4.2 originally uses 328 coal mines with locations for China from 

World Coal Association as point emissions to disaggregate the amount of national emissions (Janssens-Maenhout et al., 2013) 245 

and is then updated using data from Liu et al. (2015). However, emissions from coal mining estimated by EDGAR v5.0 still 

have notable bias towards Shanxi Province (Fig. 5f). Emissions from the energy sector in CEDS have a similar pattern as 

EDGAR, with 72% energy emissions from high-emitting grids (>60 g CH4 m
-2

 yr
-1

, Fig. 2f,w). The data source of CEDS is 

mainly from EDGAR v4.2 (Hoesly et al., 2018). PKU had a distinct spatial pattern for energy emissions (Fig. 2b), which was 

attributable to the fact that emissions from coal exploitation were located using the geolocation (latitude and longitude) of 250 

4264 coal mines from Liu et al. (2015) and the regional emission factors (Peng et al., 2016). Emissions from waste treatment 

were mostly located in more developed areas, such as the North China Plain, Yangtze River Delta and Pearl River Delta. 

Zhang and Chen (2014) also found that emissions from waste treatment were related to the size of the economies of the 

regions and their urban population scales to a certain extent. The emissions from waste treatment estimated by EDGAR v5.0 

and CEDS were 20.7-152.5% higher than the values from other inventories. Moreover, EDGAR v5.0 tended to have higher 255 

emissions from waste treatment in urban areas, whose emission hotspots (> 33 g CH4 m
-2

 yr
-1

) were highly consistent with 

the distribution of provincial capitals (Fig. 2k,III). Higher emissions of waste treatment in EDGAR were from wastewater, 

which probably adopted a higher CH4 correction factor for wastewater treatment plants or a higher chemical oxygen demand 
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(Peng et al., 2016). 

 260 

 

Fig. 2 The spatial distribution of sectoral and total anthropogenic CH4 emissions from PKU (a-d), CEDSv2017-05-18 (e-h), 

EDGAR v5.0 (i-l), GAINS (m-p) in 2010 and REAS (q-t) in 2008, and emissions frequency (u-x). The top 2% high-emitting 

grids (emissions > 33 g CH4 m
-2

 yr
-1

) were based on PKU. 
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 265 

Fig. 3 Frequency counts of emitting grids for PKU, CEDSv2017-05-18, EDGARv5.0, and GAINS in 2010, and REAS in 

2008. Kappa coefficients were calculated based on the quartile of PKU. 

 

 

 270 

3.3 Changes in the spatial pattern of anthropogenic CH4 emissions from 2000 to 2010 

From 2000 to 2010, anthropogenic CH4 emissions increased considerably in China, and this increase was mainly driven by 

increased emissions from energy exploitation (especially in coal mining) in the northern and central regions, followed by 

waste treatment in the southern and eastern regions and agriculture in the northeastern region (Fig. 4). Growth was 

profoundly affected by urbanization and economic development. The decrease in CH4 emissions from PKU in southern and 275 

southeastern China was attributed to a decline in rice cultivation and livestock feeding (Peng et al., 2016), and similar results 

were also observed in REAS (Fig. 4a,q). Since the 1980s and perhaps earlier, most Chinese farmers have adopted the 

practice of draining paddy fields in the middle of the rice-growing season, which halts most of the methane released from the 

fields (Qiu, 2009). Additionally, emissions from livestock in southeastern China have decreased due to the reduction in the 

buffalo population (Yu et al., 2018). These changes in livestock and rice cultivation contributed to mitigating in CH4 280 

emissions. In EDGAR v5.0, a decreasing trend was found for energy emissions in the central regions and in the North China 

Plain (Fig. 3j), while a similar trend was not found in the other inventories during 2000-2010. These results were attributed 

to the reduced emissions in the subsector of energy for buildings (RCO, Fig. S4). In addition, Shanxi Province had a larger 

contribution to the changes in energy emissions in EDGAR v5.0 (40%) than to those in other inventories (18-23%), which 
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may have omitted emissions in other regions.   285 

 

 

Fig. 4 Changes in sectoral and total anthropogenic CH4 emissions from PKU (a-d), CEDSv2017-05-18 (e-h), EDGAR v5.0 

(i-l), GAINS (m-p) from 2000 to 2010, and REAS (q-t) from 2000 to 2008. 

3.4 Further comparison with other inventories at the subsector level 290 

To further evaluate the quality of existing inventories, independent and more detailed subsector datasets were collected to 

improve our understanding of the uncertainty in total amounts and spatial patterns among different inventories. Based on the 

data availability, three subsectors of major emissions sources are displayed, i.e., rice cultivation, livestock, and coal mining 

(Fig. 5). These three subsectors accounted for 70-85% of the total emissions in China in 2010. The data used for comparison 

were collected from Zhang et al. (2017) (for rice cultivation), Lin et al. (2011) (for livestock), and Sheng et al. (2019) (for 295 

coal mining). Zhang et al. (2017) compiled the NCCC inventory of rice by using a semiempirical model (CH4MOD). The 

CH4MOD model is a semiempirical model simulating CH4 production and emissions at daily steps. Inputs into the 

CH4MOD include daily air temperature, percentage of sand in the paddy soil, rice grain yield, type and amount of organic 

matter applied, and water management used for rice irrigation (Zhang et al., 2011). Lin et al. (2011) estimated emissions 

from livestock based on county-level statistical data and region-specific emission factors. Sheng et al. (2019) estimated 300 
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emissions from coal mining based on more than 10000 operating coal mines reported by the Chinese State Administration of 

Coal Mine Safety (SACMS).  

For the rice cultivation subsector, the amount from PKU was 7.3 Tg CH4 yr
-1

, which is comparable to the value of 8.2 Tg 

CH4 yr
-1

 reported for 2010 by Zhang et al. (2017) (Fig. 5j). However, EDGAR v5.0 tended to provide higher estimates, with 

a value of 13.9 Tg CH4 yr
-1

 (Fig. 5d). This difference could be seen from the larger contribution of high-emitting grids ( > 10 305 

g CH4 m
-2

 yr
-1

, Fig. 4m) in EDGAR v5.0 (6.7 Tg CH4 yr
-1

 or 48.7% of total emissions), while the values in the other 

inventories ranged from 17~34% (1.2~2.8 Tg CH4 yr
-1

). The higher estimates from EDGAR v5.0 were primarily located in 

the Yangtze River (e.g., Hunan and Jiangxi). According to the study of Cheewaphongphan et al. (2019), EDGAR uses a 

higher proportion of continuous floods, leading to a higher emission factor than that produced in intermittent flood 

conditions. In contrast, REAS tended to provide a lower estimate (6.7 Tg), especially in the Yangtze River and Northeast 310 

China (Fig. 5g). This discrepancy is partly because emissions from rice cultivation in REAS2.1 are from 2008, while others 

are from 2010. Moreover, emissions in 2008 from REAS2.1 are extrapolated from REAS1.1 in 2000 (Kurokawa et al., 2013), 

which may not have captured the emission changes caused by the increases in rice cultivation area. As reported by the NBS, 

the areas of rice cultivation have increased by 5900 km
2
 in Anhui, Hunan, Jiangsu and Jiangxi provinces, and 12,514 km

2
 in 

Northeast China (i.e., Heilongjiang, Jilin, and Liaoning provinces) from 2000 to 2008 (CSY, 2019). Overall, PKU and Zhang 315 

et al. (2017) were closer to the NCCC estimates with provincial activity data and emission factors, and Zhang et al., (2017) 

used the detailed regional water management data and provincial organic matter application rates, which is also used in 

NCCC as part of the national inventory reported to the UNFCCC (NCCC, 2018). 

For the livestock subsector, including enteric fermentation and manure management (Chang et al., 2019), the amount of 

emissions ranged from 9.2 (REAS) to 11.4 (PKU) Tg CH4 yr
-1

. The bottom-up inventory based on detailed county-level 320 

activity data estimated the 2010 emissions to be 12.4 Tg CH4 yr
-1

 (Lin et al., 2011). A consistent spatial pattern from 

livestock sources was found among inventories. However, REAS had lower  emissions in the North China Plain (such as in 

Shandong and Henan), Tibetan Plateau and Northeast China, which missed large numbers of high-emitting grids compared 

to other inventories (Fig. 5h). In addition, higher emissions in the northeastern part of Beijing were reported by EDGAR v5.0, 

with grids emitting more than 20 g CH4 m
-2

 yr
-1

 (Fig. 5e). These results were caused by the high estimated number of 325 

livestock induced by using machine learning methods in the spatial proxy approach (Gilbert et al., 2018). 

For the coal mining subsector, the amounts from PKU and EDGAR v5.0 were 17.3 and 19.0 Tg CH4 yr
-1

 in 2010, 

respectively, which were comparable to the values of 16.7 Tg CH4 yr
-1

 in 2011 from Sheng et al. (2019) and 16.0 Tg CH4 yr
-1

 

in 2010 from Zhu et al. (2017). However, emissions from REAS showed a large difference from those in the other 

inventories, with values up to 38.4 Tg CH4 yr
-1

 in 2008. Spatially, more than 92% of emissions from coal mining in EDGAR 330 

v5.0 were located in high-emitting grids (>60 g CH4 m
-2

, Fig. 5d), which covered less than 0.5% of the total grid number. 



15 

 

This result may be due to the limited number of coal mines (~ 4000) used in EDGAR (Crippa et al., 2019; Sheng et al., 

2019). The allocation of national total emissions to limited mine locations leads to incorrect spatial patterns and artificial 

emission hot spots (Sheng et al., 2019). These spatial errors would cause bias in the analysis of trends and source attribution 

in inversions, and mislead mitigation strategies in coal exploitation (Sheng et al., 2019). Additionally, emissions from coal 335 

mining in PKU show a relatively consistent pattern with that in Sheng et al., (2019); however, PKU tended to have similar 

proportions among emitting grids (Fig. 5o). This result is because the locations of coal mines used in PKU have a coarser 

spatial resolution than 0.1˚.   

 

 340 

Fig. 5 The spatial distribution of subsectoral CH4 emissions among inventories in 2010. Emissions from coal mining in 

EDGAR v5.0 were aggregated to a spatial resolution of 0.2˚. 

3.5 Estimates and uncertainties of total and sectoral emissions 

Considering the comparability of different inventories (i.e., with the same year (2010), and completeness of all same 

subsectors), emissions were collected for five datasets (i.e., PKU, EDGAR v5.0, CEDSv2021-02-05, NCCC, and Zhang et al. 345 

(2016)). In 2010, the total emissions in China were estimated to be 49.6±4.5 Tg CH4 yr
-1

 (mean ± standard deviation (SD), 

hereafter the same) among inventories (Fig. 6a). The mean emissions from agricultural activities were 18.5±3.1 Tg CH4 yr
-1

, 

of which livestock contributed 11.0 Tg CH4 yr
-1

 and rice cultivation contributed 7.8 Tg CH4 yr
-1

 (Table S3). Among all the 



16 

 

agricultural activities, rice cultivation showed a relatively large range from 5.3 Tg CH4 yr
-1

 in CEDSv2021-02-05 to 13.9 Tg 

CH4 yr
-1

 in EDGAR v5.0 (Fig. 6b). The CH4 emissions from rice paddies are among the most uncertain estimates in 350 

rice-growing countries (Huang et al., 2006). High spatial heterogeneity and inadequate data on rice cultivation introduce 

large uncertainties to inventories (Yan et al., 2009; Yan et al., 2003; Zhang et al., 2014). Furthermore, the uncertainty of 

emission factors related to rice practices is high in China (Peng et al., 2016). In addition, energy activities play an important 

role in national emissions, with a mean value equal to 24.0 Tg CH4 yr
-1

 and an SD of 2.4 Tg CH4 yr
-1

. Coal mining is the 

largest emission source, accounting for 77% (18.2 Tg CH4 yr
-1

) of the total energy emissions (Fig. 6a and Table S3). 355 

Estimated emissions from coal mining ranged from 16.0 Tg CH4 yr
-1

 in Zhu et al., (2017) to 22.9 Tg CH4 yr
-1

 in NCCC, 

while estimates from PKU, EDGAR v5.0, and Zhang et al. (2016) showed only a small difference (17.3-19.3 Tg CH4 yr
-1

) 

(Fig. 6b). EDGAR revised emission factors for coal mining with local data from PKU and weighted the emissions by coal 

mine activity per province (Janssens-Maenhout et al., 2019). Emissions from waste treatment were 7.4±2.7 Tg CH4 yr
-1

, 

which contributed a relatively small share of the national total emissions (14%). However, a notable discrepancy exists in 360 

emissions from waste treatment, which can be classified into two groups (Fig. 6b). Estimates from PKU, NCCC, GAINS, 

and Zhang et al. (2016) were 4.3-6.2 Tg CH4 yr
-1

, respectively, while estimates in the others were 8.6-10.4 Tg CH4 yr
-1

 in 

2010 (Fig. 6b and Table S3). These differences were mainly induced by the different estimates for wastewater (Table S3). 

The uncertainty associated with CH4 emissions from wastewater mainly results from the methane correction factor, and the 

amount of chemical oxygen demand (Peng et al., 2016; Zhao et al., 2019). The high uncertainty in waste emission estimates 365 

is generally due to many small point sources and large site-specific variations in emission factors related to different climatic 

factors and management practices (Höglund-Isaksson, 2012). The detailed regional activity data and localized emission 

factors used in PKU, NCCC and Zhang et al., (2016) should be taken into account for the variation in local conditions (Table 

S6-S7). 

 370 
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Fig. 6 The mean (bar plot in (a)) and standard deviation (error bar in (a)) of sector and subsector CH4 emissions, and total 

anthropogenic CH4 emissions by subsector (b) among different inventories in 2010. 

4 Conclusions 

As one of the major rice cultivators and coal producers, China is a large emitter of CH4. Quantifying China’s contribution to 375 

the global CH4 budget is important and can provide helpful support for policy-making related to mitigating CH4 emissions. 

We collected and analyzed the currently available datasets to present the amount, uncertainty and spatiotemporal patterns of 

China’s anthropogenic CH4 emissions. Our works shed light on the sources of differences and uncertainties among 

inventories,Temporally, emissions stabilized in the 1990s but increased significantly thereafter, with AAGRs of 2.6-4.0% 

during 2000-2010, and slower AAGRs of 0.5-2.2% during 2011-2015. The growth of CH4 emissions is profoundly affected 380 

by changes in emissions from the energy sector, with AAGRs of 5.8% - 9.0%. Since 2015, a relatively stable trend was 

estimated by CEDSv20201-02-05 and our results, with AAGRs of 0.3% and 0.8%, respectively. Spatially, the regional 

patterns of CH4 emissions were largely associated with economic development and urbanization. Emission hotspots in PKU 

and EDGAR were mostly located in the North China Plain and south China, which are densely populated areas, energy 

production regions, and agriculture-dominant regions. Such patterns were not presented in GAINS and REAS, with a lack of 385 

emissions hotspots in southern China and biased allocation of the majority of emissions towards Shanxi Province. The 

incomplete information on emission patterns may mislead or bias mitigation efforts for CH4 emission reductions. During 

2000-2010, anthropogenic CH4 emissions from China differed widely among inventories, of which the energy sector 

contributed the most to the total emissions, followed by agricultural activities, and waste treatment. Large discrepancies are 

mainly resulted from region-specific activity data and emission factors for coal mining, emission factors for rice cultivation, 390 

and emission factors for wastewater. We suggest that data developers should make the detailed activity data for sectors and 

subsectors publicly available; furthermore, they should use the local optimized emission factors instead of the default 

emission factors to reduce the level of uncertainty.  
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