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Abstract. The Tibetan Plateau observatory of plateau scale soil moisture and soil temperature (Tibet-Obs) 16 

was established ten years ago, which has been widely used to calibrate/validate satellite- and model-based 17 

soil moisture (SM) products for their applications to the Tibetan Plateau (TP). This paper reports on the status 18 

of the Tibet-Obs and presents a 10-year (2009-2019) surface SM dataset produced based on in situ 19 

measurements taken at a depth of 5 cm collected from the Tibet-Obs that consists of three regional-scale SM 20 

monitoring networks, i.e. the Maqu, Naqu, and Ngari (including Ali and Shiquanhe) networks. This surface 21 

SM dataset includes the original 15-min in situ measurements collected by multiple SM monitoring sites of 22 

the three networks, and the spatially upscaled SM records produced for the Maqu and Shiquanhe networks. 23 

Comparisons between four spatial upscaling methods, i.e. arithmetic averaging, Voronoi diagram, time 24 

stability, and apparent thermal inertia, show that the arithmetic average of the monitoring sites with long-25 

term (i.e. ≥ six years) continuous measurements are found to be most suitable to produce the upscaled SM 26 

records. Trend analysis of the 10-year upscaled SM records indicates that the Shiquanhe network in the 27 

western part of the TP is getting wet while there is no significant trend found for the Maqu network in the 28 

east. To further demonstrate the uniqueness of the upscaled SM records in validating existing SM products 29 

for long term period (~10 years), the reliability of three reanalysis datasets are evaluated for the Maqu and 30 

Shiquanhe networks. It is found that current model-based SM products still show deficiencies in representing 31 

the measured SM dynamics in the Tibetan grassland (i.e. Maqu) and desert ecosystems (i.e. Shiquanhe). The 32 

dataset would also be valuable for calibrating/validating long-term satellite-based SM products, evaluation 33 

of SM upscaling methods, development of data fusion methods, and quantifying the coupling of SM and 34 

precipitation at 10-year scale. The dataset is available in the 4TU.ResearchData repository at 35 

https://doi.org/10.4121/uuid:21220b23-ff36-4ca9-a08f-ccd53782e834 (Zhang et al., 2020). 36 
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1 Introduction 37 

The Tibetan Plateau observatory (Tibet-Obs) of plateau scale soil moisture and soil temperature (SMST)  was 38 

setup in 2006 and became fully operational in 2010 with as objective of the calibration/validation of satellite- 39 

and model-based soil moisture (SM) products at regional scale (Su et al., 2011). The Tibet-Obs mainly 40 

consists of three regional-scale SMST monitoring networks, i.e. Maqu, Naqu, and Ngari, which cover 41 

different climate and land surface conditions across the Tibetan Plateau (TP) and each includes multiple in 42 

situ SMST monitoring sites. The SM data collected from the Tibet-Obs have been widely used in past decade 43 

to calibrate/validate satellite- and model-based SM products (e.g. Su et al., 2013; Zheng et al., 2015a; 44 

Colliander et al., 2017), and to evaluate and develop SM upscaling methods (e.g. Qin et al., 2013; 2015), to 45 

assess algorithms for the retrieval of SM for microwave remote sensing observations (e.g. van der Velde et 46 

al., 2014a; 2014b; Zheng et al., 2018a; 2018b; 2019) and fusion methods to merge in situ SM and satellite- 47 

or model-based products (e.g. Yang et al., 2020; Zeng et al., 2016).  48 

Key information and outcomes of the main scientific applications using the Tibet-Obs SM data are 49 

summarized in Table 1. As shown in Table 1, the state-of-the-art satellite- and model-based products are 50 

useful but still show various types of deficiencies specific to the hydro-meteorological conditions on the TP, 51 

and further evaluation and improvement of these products remain imperative. In general, previous studies 52 

mainly focused on the evaluation of SM products using the Tibet-Obs data for short term period (i.e. less 53 

than five years), while up to now the Tibet-Obs has collected in situ measurements for more than 10 years. 54 

Development of a close to 10-year Tibet-Obs in situ SM dataset would further enhance the 55 

calibration/validation of long-term satellite- and model-based products, and is valuable for better 56 

understanding the hydro-meteorological response to climate change. However, SM is highly variable in both 57 

space and time, and data gaps in the availability of measurements taken from individual monitoring sites 58 

hinder scientific studies covering longer time periods, e.g. more than five years. Therefore, it is still 59 

challenging to obtain accurate long-term regional-scale SM due to the sparse nature of monitoring networks 60 

and highly variable soil conditions. 61 

Spatial upscaling is usually necessary to obtain the regional-scale SM of an in situ network from multiple 62 

monitoring sites to match the footprint of satellite- or grid cell of model-based products. A frequently used 63 

approach for upscaling point-scale SM measurements to a spatial domain is the arithmetic average, mostly 64 

because of its simplicity (Su et al. 2011; 2013). Many other studies also adopted weighted averaging methods, 65 

whereby the weights are assigned to account for spatial heterogeneity in the area covered by in situ 66 

monitoring sites within the network. For instance, Colliander et al. (2017) employed Voronoi diagrams to 67 

determine the weights of individual monitoring sites within core regional-scale networks used for the 68 

worldwide validation of the Soil Moisture Active/Passive (SMAP) SM products. Dente et al. (2012a) 69 

established weights based on the topography and soil texture for the sites of the Tibet-Obs’ Maqu network. 70 

Qin et al. (2013, 2015) derived the weights by minimizing a cost function between in situ SM of individual 71 

monitoring sites and a representative SM of the network that is estimated using the apparent-thermal-inertia-72 

based (ATI) method (Gao et al., 2017). Alternative methods, such as time stability and ridge regression, have 73 
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been adopted in other investigations (i.e. Zhao et al., 2013, Kang et al., 2017). While a large number of studies 74 

have assessed the performance of different upscaling methods in other areas such as the Tonzi Ranch network 75 

in California and the Heihe watershed (Moghaddam et al., 2014, Wang et al., 2014), only a few investigations 76 

have been done for the TP (Gao et al., 2017, Qin et al., 2015). Since the number of monitoring sites changes 77 

over time due to damage of SM sensors in the Tibet-Obs, it is essential to evaluate and select an appropriate 78 

upscaling method for a limited number of monitoring sites (i.e. ≤ four sites).  79 

This paper reports on the status of the Tibet-Obs and presents a long-term in situ SM and spatially upscaled 80 

SM dataset for the period between 2009 and 2019. The 10-year SM dataset of Tibet-Obs includes the original 81 

15-min in situ measurements taken at a depth of 5 cm collected from the three regional-scale networks (i.e. 82 

Maqu, Naqu, and Ngari as shown in Fig. 1), and the continuous regional-scale SM produced using an 83 

appropriately selected spatial upscaling method. To achieve this, four methods are studied namely the 84 

arithmetic average (AA), Voronoi diagram (VD), time stability (TS), and apparent thermal inertia (ATI) 85 

methods. The seasonal dynamic and trend of the regional-scale SM time series are analysed and the 10-year 86 

SM dataset is used to validate three model-based SM products, e.g. ERA5-land (Muñoz-Sabater et al., 2018), 87 

MERRA2 (Modern-Era Retrospective Analysis for Research and Applications, version 2) (GMAO, 2015), 88 

and GLDAS Noah (Global Land Data Assimilation System with Noah Land Surface Model) (Rodell et al., 89 

2004). 90 

This paper is organized as follows. Section 2 describes the status of the Tibet-Obs and the in situ SM 91 

measurements, as well as the precipitation data and the three model-based SM products. Section 3 introduces 92 

the four SM spatial upscaling methods, Mann Kendall trend test and Sen’s slope estimate, and performance 93 

metrics. Section 4 presents the inter-comparison of the four SM spatial upscaling methods, the production 94 

and analysis of regional-scale SM dataset for a 10-year period, and its application to validate the three model-95 

based SM products. Section 5 provides the discussion and suggestions for maintaining Tibet-Obs. Section 6 96 

documents the information on data availability and the conclusions are drawn in Section 7. 97 

2 Data 98 

2.1 Status of the Tibet-Obs 99 

The Tibet-Obs consists of the Maqu, Naqu, and Ngari (including Shiquanhe and Ali) regional-scale SMST 100 

monitoring networks (Fig. 1) that cover the cold humid climate, cold semiarid climate, and cold arid climate, 101 

respectively. Each network includes a number of monitoring sites that measure the SMST at different soil 102 

depths. Brief descriptions of each network and corresponding surface SM measurements taken at a depth of 103 

5 cm are given in following subsections. The readers are referred to the existing literature (Su et al., 2011; 104 

Dente et al. 2012a; Zhao et al., 2018) for additional information on the networks.  105 
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2.1.1 Maqu network 106 

The Maqu network is located in the north-eastern edge of the TP (33°30’-34°15’N, 101°38’-102°45’E) at the 107 

first major bend of the Yellow River. The landscape is dominated by the short grass at elevations varying 108 

from 3400 to 3800 m. The climate type is characterized as cold-humid with cold dry winters and rainy 109 

summers. The mean annual air temperature is about 1.2 ℃, with -10 ℃ for the coldest month (January) and 110 

11.7 ℃ for the warmest month (July) (Zheng et al., 2015a). The annual precipitation is about 600 mm that 111 

falls mainly in the warm season (May-October).  112 

The Maqu network covers an area of approximately 40 km by 80 km and consists originally of 20 SMST 113 

monitoring sites installed in 2008 (Dente et al. 2012a). During the period between 2014 and 2016, eight new 114 

sites were installed due to the damage of several old monitoring sites by local people or animals. The basic 115 

information of each monitoring site is summarized in Table A1 (Su et al., 2011), and the typical 116 

characteristics of topography and land cover within the network are shown in Fig. 2 as well.  117 

The Decagon 5TM ECH2O probes are used to measure the SMST at nominal depths of 5, 10, 20, 40, and 80 118 

cm (Fig. 3). The 5TM probe is a capacitance sensor measuring the dielectric permittivity of soil, and the Topp 119 

equation (Topp et al., 1980) is used to convert the dielectric permittivity to the volumetric SM. The accuracy 120 

of the 5TM volumetric SM was improved via a soil-specific calibration performed under laboratory 121 

conditions for each soil type found in the Maqu area (Dente et al. 2012a), leading to a decrease in the root 122 

mean square error (RMSE) from 0.06 to 0.02 m3 m-3 (Dente et al. 2012a). Table 2 provides the specific 123 

periods of data missing during each year and the total data lengths of surface SM for each monitoring site. 124 

Among these sites, the CST05, NST01, and NST03 have collected more than nine years of SM 125 

measurements, while the data records for the NST21, NST22, and NST31 are less than one year. In May 126 

2019, there were still 12 sites that provided SM data. 127 

2.1.2 Ngari network 128 

The Ngari network is located in the western part of the TP at the headwater of the Indus River. It consists of 129 

two SMST networks established around the cities of Ali and Shiquanhe, respectively. The landscape is 130 

dominated by a desert ecosystem at elevations varying from 4200 to 4700 m. The climate is characterized as 131 

cold-arid with a mean annual air temperature of 7.0 ℃. The annual precipitation is less than 100 mm that 132 

falls mainly in the monsoon season (July-August) (van der Velde et al., 2014b).  133 

The Shiquanhe network consisted originally of 16 SMST monitoring sites installed in 2010 (Su et al. 2011), 134 

and five new sites were installed in 2016. The basic information of each monitoring site is summarized in 135 

Table A3 (Su et al., 2011), and the typical characteristics of topography and land cover within the network 136 

are also shown in Fig. 4. The Decagon 5TM ECH2O probes were installed at depths of 5, 10, 20, 40, and 137 

60/80 cm to measure the SMST (Fig. 3). Table 3 provides the specific periods of data missing during each 138 

year and the total data lengths of surface SM for each site. Among these sites, the SQ02, SQ03, SQ06, and 139 

SQ14 have collected more than eight years of SM measurements, while the data records for the SQ13, SQ15, 140 

and SQ18 are less than two years. In August 2019, there were still 12 sites that provided SM data. The Ali 141 
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network comprises of four SM monitoring sites (Table A3), which will not be used for further analysis in 142 

this study due to limited number of monitoring sites and the availability of data records (Table 3). 143 

2.1.3 Naqu network 144 

The Naqu network is located in the Naqu river basin with an average elevation of 4500 m. The climate is 145 

characterized as cold semi-arid with cold dry winters and rainy summers. Over three-quarters of the total 146 

annual precipitation sum (400 mm) falls between June and August (Su et al., 2011). The landscape is 147 

dominated by short grass. 148 

The network consists originally of five SMST monitoring sites installed in 2006 (Su et al. 2011), and six new 149 

sites were installed between 2010 and 2016. The basic information of each monitoring site is summarized in 150 

Table A5, and the typical topography and land cover within the network are shown in Fig. 5 as well. The 151 

Decagon 5TM ECH2O probes were installed at depths of 5/2.5, 10/7.5, 15, 30, and 60 cm to measure the 152 

SMST, and an on-site soil-specific calibration is reported in van der Velde (2010) and yielded a RMSE of 153 

0.029 m3 m-3. Table 4 provides the specific periods of data missing during each year and the total data lengths 154 

of surface SM for each site. Among these sites, only two sites (Naqu and MS sites in Table A5) have collected 155 

SM measurements for more than six years, while the data records for the others are less than four years. 156 

Similar to the Ali network, the Naqu network will also not be used for the further analysis in this study due 157 

to limited number of monitoring sites and the availability of data records. 158 

2.2 Precipitation data  159 

Precipitation data is available from the dataset of daily climate data from Chinese surface meteorological 160 

stations. This dataset is maintained by the China Meteorological Administration (CMA) and based on the 161 

measurements from 756 basic and reference surface meteorological observation and automatic weather 162 

stations (AWS) in China from 1951 to present. The online dataset mainly includes seven meteorological 163 

variables such as air pressure, air temperature, relative humidity, wind speed, evaporation, sunshine duration, 164 

and precipitation. The precipitation data from two weather stations (see Fig. 1), i.e. Maqu (34°00’N, 165 

102°05’E) and Shiquanhe (32°30’N, 80°05’E) are used in this study. The available daily precipitation is the 166 

cumulative value for the period between 20h of previous day and 20h of current day at Beijing time, which 167 

is available from https://data.cma.cn/data/detail/dataCode/SURF_CLI_CHN_MUL_DAY.html (last access 168 

11 March 2021). The daily precipitation is summed up for each month to obtain the monthly cumulative 169 

value in this study, which can be found at https://doi.org/10.4121/uuid:21220b23-ff36-4ca9-a08f-170 

ccd53782e834 (last access 16 April 2021). The monthly precipitation data for the period between 2009 and 171 

2019 is mainly used in this study for the trend analysis (see Section 4.2). 172 

https://data.cma.cn/data/detail/dataCode/SURF_CLI_CHN_MUL_DAY.html
https://doi.org/10.4121/uuid:21220b23-ff36-4ca9-a08f-ccd53782e834
https://doi.org/10.4121/uuid:21220b23-ff36-4ca9-a08f-ccd53782e834
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2.3 Model-based soil moisture products 173 

2.3.1 ERA5-land soil moisture product 174 

ERA5-land is a reanalysis dataset produced by running land component of the ECMWF (European Centre 175 

for Medium-Range Weather Forecasts) ERA5 climate model (Albergel et al., 2018). ERA5-land provides 176 

SM data currently available from 1981 to present for every hour with a spatial resolution of 0.1°, and the data 177 

is available from https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab (last access 11 178 

March 2021). More information about the ERA5-land product readers are referred to Muñoz-Sabater et al., 179 

(2018). The data of volumetric total soil water content for the top soil layer (0-7 cm) is used in this study. 180 

2.3.2 MERRA2 soil moisture product 181 

MERRA2 is an atmospheric reanalysis dataset produced by NASA using the Goddard Earth Observing 182 

System Model version 5 (GEOS-5) and atmospheric data assimilation system (ADAS), version 5.12.4. 183 

MERRA2 provides SM data currently available from 1980 to present at hourly time interval and spatial 184 

resolution of 0.5° (latitude) by 0.625° (longitude). The data is available from 185 

https://disc.gsfc.nasa.gov/datasets/M2T1NXLND_5.12.4/summary (last access 11 March 2021). For more 186 

information about the MERRA2 product readers are referred to GMAO (2015). The liquid volumetric soil 187 

water content of the surface layer (0-5 cm) is used in this study. 188 

2.3.3 GLDAS Noah soil moisture product 189 

GLDAS-2.1 Noah is a combination of model-based and satellite observed meteorological data, such as 190 

Global Precipitation Climatology Project (GPCP) version 1.3, forced onto the Noah Model 3.6 in Land 191 

Information System (LIS) version 7 to simulate water and energy exchanges between land and atmosphere. 192 

GLDAS-2.1 Noah provides SM data currently available from 2000 to present at a 3-hourly time interval with 193 

a spatial resolution of 0.25°. The data is available from https://disc.gsfc.nasa.gov/datasets/GLDAS 194 

_NOAH025_3H_2.1/summary (last access 11 March 2021). More details on the GLDAS Noah product can 195 

be found in Rodell et al. (2004). The liquid soil water content of the top soil layer (0-10 cm) is used in this 196 

study.  197 

3 Methods  198 

3.1 Spatial upscaling of soil moisture measurements 199 

The principle of spatial upscaling a set of point measurements to an area is based on assigning weights to 200 

individual sites, often using additional information, in such way that the selected collection is representative 201 

for the selected domain. The method can in its simplest form be represented by a linear equation 202 

mathematically as follows: 203 

�̅�𝒕
𝒖𝒑𝒔

= 𝜽𝒕
𝒐𝒃𝒔𝜷                                                                                                                                               (1a)            204 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab
https://disc.gsfc.nasa.gov/datasets/M2T1NXLND_5.12.4/summary
https://disc.gsfc.nasa.gov/datasets/GLDAS%20_NOAH025_3H_2.1/summary
https://disc.gsfc.nasa.gov/datasets/GLDAS%20_NOAH025_3H_2.1/summary
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𝜽𝒕
𝒐𝒃𝒔 = [𝜽𝒕,𝟏

𝒐𝒃𝒔, 𝜽𝒕,𝟐
𝒐𝒃𝒔, … , 𝜽𝒕,𝑵

𝒐𝒃𝒔]𝑻                                                                                                                      (1b)      205 

where �̅�𝒕
𝒖𝒑𝒔

[m3 m-3] represents the upscaled SM, 𝜽𝒕
𝒐𝒃𝒔[m3 m-3] represents the vector of SM measurements, 𝑁 206 

represents the total number of SM monitoring sites, 𝑡 represents the time (e.g. the tth day), and 𝛽 [-] represents 207 

the vector with weights. 208 

In this study, only the surface SM measurements taken from the Maqu and Shiquanhe networks are upscaled 209 

to obtain the regional-scale SM for 10-year (2009-2019) periods due to the availability of much longer 210 

records in comparison to the Naqu and Ali networks (see Section 2.1). Four upscaling methods are 211 

investigated and inter-compared with each other to find the most suitable method for the application to the 212 

Tibet-Obs. Brief descriptions of the selected upscaling methods are given in Appendix B. The arithmetic 213 

average (hereafter “AA”) assigns an equal weight coefficient to each SM monitoring site (see Appendix B.1), 214 

and the Voronoi diagram (hereafter “VD”) determines the weight based on the geographic distribution of all 215 

the SM monitoring sites (see Appendix B.2). The time stability method (hereafter “TS”) regards the most 216 

stable site as representative site for the network (see Appendix B.3), and the apparent thermal inertia (ATI) 217 

method is based on the close relationship between apparent thermal inertia (𝜏) and SM (see Appendix B.4). 218 

3.2 Trend analysis 219 

The Mann-Kendall test and Sen’s slope estimate (Gilbert, 1987; Mann, 1945; Smith et al., 2012) are adopted 220 

to analyze the trend of the 10-year time series for the upscaled SM, model-based SM products (i.e. ERA5-221 

land, GLDAS Noah, and MERRA2), and precipitation. Specifically, the trend analysis is based on the 222 

monthly data, and all the missing data is regarded as an equal value smaller than other valid data. The test 223 

consists of calculating the seasonal statistics S and its variance VAR(S) separately for each month during the 224 

10-year period, and the seasonal statistics are then summed to obtain the Z metric.  225 

For month 𝑖 (e.g. January), the statistics 𝑆𝑖 can be computed as: 226 

𝑆𝑖 = ∑ ∑ 𝑠𝑔𝑛(𝑋𝑖,𝑙 − 𝑋𝑖,𝑘)
10
𝑙=𝑘+1          9

𝑘=1                                                                                                         (2a)                               227 

𝑠𝑔𝑛(𝑋𝑖,𝑙 − 𝑋𝑖,𝑘) =  {

    1          𝑋𝑖,𝑙 > 𝑋𝑖,𝑘 

   0          𝑋𝑖,𝑙 = 𝑋𝑖,𝑘
−1          𝑋𝑖,𝑙 < 𝑋𝑖,𝑘

 228 

where k and l represent the different year and l > k, Xi,l and Xi,k represent the monthly value of the variable 229 

for the month 𝑖 of the year k and l, respectively. 230 

The 𝑉𝐴𝑅(𝑆𝑖)  is computed as: 231 

𝑉𝐴𝑅(𝑆𝑖) =  
1

18
 [𝑁𝑖(𝑁𝑖 − 1)(2𝑁𝑖 + 5) − ∑ 𝑡𝑖,𝑝(𝑡𝑖,𝑝 − 1)(2𝑡𝑖,𝑝 + 5)

𝑔𝑖
𝑝=1 ]                                                                   (2b) 232 

where 𝑁𝑖 is the length of the record for the month 𝑖 (e.g. the 10 year data record in this study with 𝑁𝑖=10),  233 

𝑔𝑖 is the number of equal-value data in month 𝑖, 𝑡𝑖,𝑝 is the number of equal-value data in the 𝑝th group for 234 

month 𝑖. 235 

After obtaining the 𝑆𝑖 and 𝑉𝐴𝑅(𝑆𝑖), the statistic 𝑆′ and 𝑉𝐴𝑅(𝑆′) for the selected season (e.g. warm season 236 

is from May up to October and cold season is from November to April) can be summed as: 237 

𝑆′ = ∑ 𝑆𝑖     
𝑀
𝑖=1                                                                                                                                                                   (2c) 238 
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𝑉𝐴𝑅(𝑆′) =  ∑ 𝑉𝐴𝑅(𝑆𝑖)    
𝑀
𝑖=1                                                                                                                                                 (2d) 239 

where M represents the number of months in the selected season, e.g. M is 12 for the full year, and M is 6 240 

for the warm and cold seasons. 241 

Subsequently, the Z metric can be computed as: 242 

𝑍 = 

{
 
 

 
 

𝑆′−1

√𝑉𝑎𝑟(𝑆′)
                𝑖𝑓 𝑆′ > 0 

   0                         𝑖𝑓   𝑆′ = 0
𝑆′+1

√𝑉𝑎𝑟(𝑆′)
               𝑖𝑓  𝑆′ < 0 

                                                                                                                   (2e) 243 

If the statistics 𝑍 is positive (negative) and its absolute value is greater than 𝑍1−𝛼/2 (here 𝛼 = 0.05,  𝑍1−𝛼/2 = 244 

1.96), the trend of the time series is regarded as upward (downward) at the significance level of 𝛼. Otherwise, 245 

we accept the hypothesis that no significant trend is found. 246 

If the trend shows upward or downward, we will further estimate the slope (change per unit time) with Sen’s 247 

method (Sen, 1968). The slopes of each month can be calculated as: 248 

𝑄𝑖 = 
𝑋𝑖,𝑙− 𝑋𝑖,𝑘 

𝑙−𝑘
                                                                                                                                                                    (2f) 249 

Then rank all the individual slopes (𝑄𝑖) for all months and find the median, which is considered as the 250 

seasonal Kendall slope estimate. 251 

3.3 Comparison metrics  252 

The metrics used to evaluate the accuracy of the upscaled SM are the bias [m3 m-3], RMSE [m3 m-3], and 253 

unbiased RMSE (ubRMSE [m3 m-3]), which can be formulated as: 254 

 255 

Bias =  
∑ (𝜃𝑡

𝑡𝑟𝑢− �̅�𝒕
𝒖𝒑𝒔

)𝑀
𝑡=1

M
                                                                                                                                  (3a)                      256 

RMSE = √
∑ (𝜃𝑡

𝑡𝑟𝑢− �̅�𝒕
𝒖𝒑𝒔

)2𝑀
𝑡=1

𝑀
                                                                                                                           (3b)                                                                                 257 

ubRMSE =  √𝑅𝑀𝑆𝐸2 − 𝐵𝐼𝐴𝑆2                                                                                                                    (3c)                       258 

where 𝜃𝑡
𝑡𝑟𝑢 represents the SM that is considered as the ground truth, and �̅�𝒕

𝒖𝒑𝒔
represents the upscaled SM. 259 

The closer the metric is to zero, the more accurate the estimation is. 260 

The metric used to assess the correlation between two time series is the Nash-Sutcliffe efficiency coefficient 261 

(NSE [-]), expressed by: 262 

NSE = 1 − 
∑ (𝜃𝑡

𝑡𝑟𝑢− �̅�𝒕
𝒖𝒑𝒔

)2𝑛
𝑡=1

∑ (𝜃𝑡
𝑡𝑟𝑢− 𝜃𝑡

𝑡𝑟𝑢̅̅ ̅̅ ̅̅ ̅)2𝑛
𝑡=1

                                                                                                                           (4)                       263 

The value of the NSE ranges from -∞ to 1, and the closer the metric is to 1, the better the match of the 264 

estimated SM with the reference (𝜃𝑡
𝑡𝑟𝑢).  265 

The metrics used to define the most representative SM time series (i.e. the best upsclaed SM) is the 266 

comprehensive evaluation criterion (CEC [-]) obtained by combining the mean relative difference (MRD [-267 

]) and standard deviation of the relative difference (σ(𝑅𝐷) [-]) (Jacobs et al., 2004). Detailed description of 268 

above mentioned three metrics are given in Appendix B.3. It should be noted that the 𝜃𝑡,𝑖
𝑜𝑏𝑠 and 𝜃𝑡

𝑜𝑏𝑠̅̅ ̅̅ ̅̅  in Eqs. 269 
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(B4) and (B5) represent the upscaled SM using four different methods and their average when using the CEC 270 

to determine the best upscaled SM. The most representative time series is identified by the lowest CEC value. 271 

3.4 Preprocessing of model-based soil moisture products  272 

The performance of the ERA5-land, MERRA2, and GLDAS Noah SM products are assessed using the 273 

upscaled SM data of the Maqu and Shiquanhe networks for a 10-year period. The corresponding regional-274 

scale SM for each product has been obtained by averaging the data from all the grid cells falling in the 275 

respective network areas. The numbers of grid cells covering the Maqu and Shiquanhe networks are 77 and 276 

20 for the ERA5-land product, 12 and 4 for the GLDAS Noah product, and only one for the MERRA2 277 

product. For the ERA5-land and MERRA2 products the data available at hourly and 3-hourly time steps are 278 

averaged to daily value and the units of GLDAS Noah SM is converted from kg m−2 to m3 m−3. Further it 279 

should be noted that the uppermost soil layer of the ERA5-land (0-7 cm), MERRA2 (0-5 cm), and GLDAS 280 

Noah (0–10 cm) SM products are assumed to match the in situ observations at depth of 5 cm considering the 281 

4 cm influence zone found under laboratory conditions for the 5TM sensor by Benninga et al. (2018). 282 

4 Results 283 

4.1 Inter-comparison of soil moisture upscaling methods 284 

In this section, four upscaling methods (see Section 3.1) are inter-compared first with the input of the 285 

maximum number of available SM monitoring sites for a single year in the Maqu and Shiquanhe networks 286 

to find the most suitable upscaled SM that can best represent the areal conditions (i.e. ground truth, SMtruth). 287 

Later on, the performance of the four upscaling methods is further investigated with the input of reducing 288 

number of SM monitoring sites to find the most suitable method for producing long-term (~10 year) upscaled 289 

SM for the Maqu and Shiquanhe networks.  290 

Fig. 6 shows the time series of daily average SM for the Maqu and Shiquanhe networks produced by the four 291 

upscaling methods based on the maximum number of available SM monitoring sites (hereafter “SMAA-max”, 292 

“SMVD-max”, “SMTS-max”, and “SMATI-max”). Two different periods are selected for the two networks due to the 293 

fact that the number of available monitoring sites reaches the maximum in different periods for the two 294 

networks, e.g. 17 sites for Maqu between November 2009 and October 2010 and 12 sites for Shiquanhe 295 

between August 2018 and July 2019, respectively (see Tables A2 and A4 in the Appendix A). For the Maqu 296 

network, the SMAA-max, SMVD-max, and SMTS-max are comparable to each other, while the SMATI-max deviates 297 

substantially during the winter (between December and February) and summer periods (between June and 298 

August). On the other hand, the SMATI-max for the Shiquanhe network is comparable to SMAA-max and SMVD-299 

max, while SMTS-max’s behavior is clearly different from the others. It seems that the ATI method performs 300 

better in the Shiquanhe network due to the existence of a stronger relationship between τ and θ in the desert 301 

ecosystem.  302 
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Table B1 lists the values of MRD (see Eq. (B4) in Appendix B), 𝜎(𝑅𝐷) (Eq. (B3)), and CEC (Eq. (B6)) 303 

calculated for the upscaled SM produced by the four upscaling methods. The CEC is used here to determine 304 

the most suitable upscaled SM that can best represent the areal conditions for the two networks. It can be 305 

found that the SMAA-max yields consistently the lowest CEC values for both networks, indicating that the 306 

SMAA-max can be used to represent actual areal conditions, which will thus be regarded as the ground truth for 307 

following analysis (i.e. SMtruth). The arithmetic average of the dense in situ measurements was also used as 308 

the ground truth in other studies (Qin et al., 2013; Su et al., 2013) and found to yield reliable results by van 309 

der Velde et al. (2021). 310 

As shown in Tables A2 and A4 (see Appendix A), the number of available SM monitoring sites decreased as 311 

time progressed. There are only three (i.e. CST05, NST01, and NST03) and four (i.e. SQ02, SQ03, SQ06, 312 

and SQ14) monitoring sites that provided more than nine years of in situ SM measurement data for the Maqu 313 

and Shiquanhe networks, respectively (see Tables 2 and 3). This indicates that the minimum number of 314 

available monitoring sites can be used to produce the long-term (~10 year) consistent upscaled SM are three 315 

and four for the Maqu and Shiquanhe networks, respectively. Fig. 7 shows the daily average SM time series 316 

produced by the four upscaling methods based on the minimum available monitoring sites (hereafter “AA-317 

min”, “TS-min”, “VD-min”, and “ATI-min”). The SMtruth obtained by the AA-max is also shown for 318 

comparison purposes. For the Maqu network, the upscaled SM produced by the AA-min, VD-min, and TS-319 

min generally capture well the SMtruth variations, while the upscaled SM of the ATI-min shows dramatic 320 

deviations. Similarly, the upscaled SM produced by the AA-min and VD-min are consistent with the SMtruth 321 

for the Shiquanhe network with slight overestimations, while significant deviations are noted for the upscaled 322 

SM of the TS-min and ATI-min. Table B2 lists the error statistics (e.g. Bias, RMSE, ubRMSE, and NSE) 323 

computed between the upscaled SM produced by these four upscaling methods with the input of the minimum 324 

available sites and the SMtruth. The upscaled SM produced by the AA-min shows better performance for both 325 

networks as indicated by the lower RMSE and higher NSE values in comparison to the other three upscaling 326 

methods. 327 

Apart from the maximum and minimum number of available SM monitoring sites mentioned above, there 328 

are about 14, 10, 8, and 6 available monitoring sites during different time spans for the Maqu network, and 329 

for the Shiquanhe network are about 11, 10, 6, and 5 available monitoring sites (see Tables A2 and A4 in the 330 

Appendix A). Fig. B2 shows the radar diagram of error statistics (i.e. RMSE and NSE) computed between 331 

the SMtruth and the upscaled SM produced by the four upscaling methods for different numbers of available 332 

monitoring sites. For the Maqu network, the performances of the AA and VD methods are better than the TS 333 

and ATI methods as indicated by smaller RMSEs and higher NSEs for all the estimations. A similar 334 

conclusion can be drawn for the Shiquanhe network, while the performance of the ATI method is largely 335 

improved when the number of available monitoring sites is not less than 10. It is interesting to note that the 336 

upscaled SM produced by the AA-min is comparable to those obtained with more sites (e.g. 10 sites) as 337 

indicated by comparable RMSE and NSE values for both networks. It indicates that the AA-min is suitable 338 

to produce long-term (~10 years) upscaled SM for both networks, which yield RMSEs of 0.022 and 0.011 339 
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m3 m-3 for the Maqu and Shiquanhe networks in comparison to the SMtruth produced by the AA-max based 340 

on the maximum available monitoring sites.  341 

4.2 Long-term analysis of upscaled soil moisture measurements 342 

In this section, the AA-min is first adopted to produce the consecutive upscaled SM time series (hereafter 343 

“SMAA-min”) for approximately an 10-year period for the Maqu and Shiquanhe networks, respectively. In 344 

addition, the other time series of upscaled SM are produced by the AA method with input of all available SM 345 

monitoring sites regardless of the continuity (hereafter “SMAA-valid”), which is widely used to validate the 346 

various SM products (Dente et al. 2012a; Chen et al. 2013; Zheng et al. 2018b) for short periods (e.g. ≤ 2 347 

years). This method may, however, leads to inconsistent SM time series for a long-term period due to the fact 348 

that the number of available sites is different in distinct periods (see Tables A2 and A4 in the Appendix A). 349 

Trend analyses (see Section 3.2) are applied to both SMAA-min and SMAA-valid to investigate the impact of 350 

changes of available SM monitoring sites on the long-term (i.e. 10-year) trend. 351 

Fig. 8a shows the time series of SMAA-min and SMAA-valid along with the daily precipitation data for the Maqu 352 

network during the period between May 2009 and May 2019. Both two time series of the SM show similar 353 

seasonality with low values in winter due to frozen soils and high values in summer due to rainfall (see 354 

subplot of Fig. 8a). Deviations can be found between the SMAA-min and SMAA-valid especially for the period 355 

between 2014 and 2019, whereby the SMAA-valid tends to produce smaller SM values in the warm season. Fig. 356 

9a shows further the Mann Kendall trend test and Sen’s slope estimate for the SMAA-min, SMAA-valid, and 357 

precipitation of the Maqu network area for the full year, warm seasons, and cold seasons in a 10-year period. 358 

As described in Section 3.2, the time series would present a monotonous trend if the absolute value of 359 

statistics Z is greater than a critical value, i.e. Z0.05 = 1.96 in this study. The results show that there is not 360 

significant trend found for both precipitation and SMAA-min time series, while the SMAA-valid shows a drying 361 

trend with a Sen’s slope of -0.008 for warm seasons. The drying trend of the SMAA-valid is caused by the 362 

change of available SM monitoring sites (see Table A2). Specifically, several monitoring sites (e.g. NST11- 363 

NST15) located in the wetter area were damaged since 2013, and four new monitoring sites (i.e. NST21- 364 

NST25) were installed in the drier area in 2015 (see Table 2), which affects the trend of the SMAA-valid. 365 

Fig. 8b shows the time series of the SMAA-min and SMAA-valid along with the daily precipitation data for the 366 

Shiquanhe network during the period between August 2010 and August 2019. Both time series of the SM 367 

display a similar seasonality as found for the Maqu network (see subplot of Fig. 8b). However, obvious 368 

deviations can be noticed for the inter-annual variations, and the SMAA-valid tends to produce lager values 369 

before 2014 but smaller values since then. The Mann Kendall trend test and Sen’s slope estimate for the 370 

SMAA-min, SMAA-valid, and precipitation time series of the Shiquanhe network area are shown in Fig. 9b. The 371 

SMAA-min demonstrates a wetting trend with a Sen’s slope of 0.003, while an opposite drying trend is found 372 

for the SMAA-valid due to a change in number of available SM monitoring sites (see Table A4) similar to the 373 

results from the Maqu network. Specifically, several monitoring sites (e.g. SQ11 and SQ12) located in the 374 
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wetter area were damaged around 2014, and five new monitoring sites (i.e. SQ17-21) were installed in the 375 

drier area in 2016 (see Table 3).  376 

In summary, the SMAA-valid is likely affected by the change of available SM monitoring sites over time that 377 

leads to inconsistent trend with the SMAA-min. This indicates that the SMAA-min is superior to the SMAA-valid for 378 

the production of the long-term consistent upscaled SM time series.  379 

4.3 Application of the long-term upscaled soil moisture to validate the model-based products 380 

In this section, the long-term upscaled SM time series (i.e. SMAA-min) produced for the two networks are 381 

applied to validate the reliability of three model-based SM products, i.e. ERA5-land, MERRA2, and GLDAS 382 

Noah, to demonstrate the uniqueness of this dataset for validating existing reanalysis datasets for a long term 383 

period (~10 years). Since the ERA5-land product provides only total volumetric soil water content, the period 384 

when the soil is subject to freezing and thawing (i.e. November-April) is excluded for this evaluation. 385 

Fig. 10a shows the time series of SMAA-min and daily average SM data derived from the three products for the 386 

Maqu network during the period between May 2009 and May 2019. The error statistics, i.e. bias and RMSE, 387 

computed between the three products and the SMAA-min for both warm (May-October) and cold seasons 388 

(November-April) are given in Table 5. Although the three products generally capture the seasonal variations 389 

of the SMAA-min, the magnitude of the temporal SM variability is underestimated. Both GLDAS Noah and 390 

MERRA2 products underestimate the SM measurements during the warm season leading to biases of about 391 

-0.112 and -0.113 m3 m-3, respectively. This may be due to the fact that the LSMs adopted for producing 392 

these products do not consider the impact of vertical soil heterogeneity caused by organic matter contents 393 

that is widely present in the soil Tibetan surface (Chen et al., 2013; Zheng et al., 2015a). In addition, the 394 

MERRA2 product overestimates the SM measurements during the cold season with bias of about 0.006 m3 395 

m-3. The ERA5-land product is able to capture the magnitude of SMAA-min dynamics in the warm season but 396 

has a larger volatility and yields a RMSE of about 0.067 m3 m-3. The trend analysis for the three model-based 397 

SM products are shown in Fig. 9a as well. All three products do not show significant trend in warm seasons 398 

as the SMAA-min, while the GLDAS Noah and MERRA2 products show a wetting trend in cold seasons that  399 

is in disagreement with the SMAA-min trend. 400 

Fig. 10b shows the time series of SMAA-min and daily SM data derived from the three products for the 401 

Shiquanhe network area during the period between August 2010 and August 2019, and the corresponding 402 

error statistics are given in Table 5 as well. Although the three products generally capture the seasonal 403 

variations of the SMAA-min, both GLDAS Noah and MERRA2 products overestimate the SMAA-min during the 404 

entire study period leading to positive biases, and also positive bias (about 0.002 m3 m-3( is found in the 405 

ERA5-land product for the warm season. The trend analyses for the three SM products are also shown in Fig. 406 

9b. Both the ERA5-land and MERRA2 products are able to reproduce the wetting trend found for the SMAA-407 

min, while the GLDAS Noah product is not able to capture the trend.  408 
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In summary, the currently model-based SM products do not provide a reliable representation of the trend and 409 

the dynamics of measured SM on the long-term (~10 years) in the grassland and desert ecosystems that 410 

dominate the Tibetan landscape. 411 

5 Discussion  412 

As shown in previous sections, the number of available SM monitoring sites in the Tibet-Obs generally 413 

changes with time. For instance, several monitoring sites of the Maqu network located in the wetter area were 414 

damaged since 2013, and four new monitoring sites were installed in the drier area in 2015 that affects the 415 

trend of SM time series (i.e. SMAA-valid shown in Section 4.2). On the other hand, the 10-year upscaled SM 416 

data (i.e. SMAA-min) produced in this study utilizing three and four monitoring sites with long-term continuous 417 

measurements would yield RMSEs of about 0.022 and 0.011 m3 m-3 for the Maqu and Shiquanhe networks, 418 

respectively (see Section 4.1). Therefore, to provide a higher-quality continuous SM time series for the future, 419 

it is necessary to find an appropriate strategy to maintain the monitoring sites of Tibet-Obs. This section 420 

discusses the possible strategies with the Maqu and Shiquanhe networks as examples.  421 

At first, a sensitivity analysis is conducted to quantify the impact of the number of monitoring sites on the 422 

regional SM estimate. The SM time series described in Section 4.1 (i.e. 11/2009-10/2010 for the Maqu 423 

network and 8/2018-7/2019 for the Shiquanhe network) is used to test the sensitivity, and there are in total 424 

17 and 12 available monitoring sites for the Maqu and Shiquanhe networks, respectively. Taking the Maqu 425 

network as an example, we randomly pick different numbers of sites from 1 to 16 of the 17 sites to make up 426 

different combinations, and then compute the RMSEs of the averaged SM obtained with these combinations 427 

(Famiglietti et al., 2008; Zhao et al., 2013). These RMSEs are further grouped into nine levels ranging from 428 

0.004 to 0.02 m3 m-3, and the percentage of the combinations falling into each level is summarized in Table 429 

6. In general, the percentage increases with increasing number of monitoring sites at any RMSE levels. It can 430 

be noted that more than 50% of combinations are able to comply with the RMSE requirement of 0.004 m3 431 

m-3 if the number of available monitoring sites are 16 and 11 in the Maqu and Shiquanhe networks, 432 

respectively. If the number of available monitoring sites are more than 13 and 6 in the Maqu and Shiquanhe 433 

networks, there are about 60% of combinations with 13 sites (6 sites ) are able to comply with the RMSE 434 

requirement of 0.01 m3 m-3. For an RMSE of 0.02 m3 m-3, more than 50% of combinations complies with 435 

this requirement if the number of available monitoring sites is more than 7 and 3 for the two networks, 436 

respectively. In summary, the number of monitoring sites required to maintain current networks depends on 437 

the defined RMSE requirement.  438 

As shown in Section 4.1, the usage of a minimum number of sites (i.e. three for Maqu and four for Shiquanhe) 439 

with about 10-year continuous measurements yields RMSEs of 0.022 and 0.011 m3 m-3 for the Maqu and 440 

Shiquanhe networks, respectively. Since there are still 12 monitoring sites providing SM measurements for 441 

both networks until 2019 (see Tables 2 and 3), it is possible to decrease the RMSEs when the selected 442 

permanent monitoring sites are appropriately determined. For the Shiquanhe network, the optimal strategy is 443 

to keep the current 12 monitoring sites, which is exactly the combination used in Section 4.1. For the Maqu 444 
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network, it can be found that there is about 3.52% of combinations with 12 sites could yield the minimum 445 

RMSE of 0.006 m3 m-3 (see Table 6). In order to find the optimal combination with 12 sites for the Maqu 446 

network, all the possible combinations (i.e. the number of 6188) are ranked by RMSE values from the 447 

smallest to largest, and Table 7 lists the examples of ranking 1-5th and 95-100th. It can be noted that the 100th 448 

combination contains the largest number of currently available monitoring sites (i.e. 7 sites including CST03, 449 

CST05, NST01, NST03, NST05, NST06, and NST10) with a RMSE of less than 0.006 m3 m-3. Therefore, 450 

the 100th combination of 12 monitoring sites (as shown in Table 7) is suggested for the Maqu network.  451 

In summary, it is suggested to maintain the current 12 monitoring sites for the Shiquanhe network, while for 452 

the Maqu network it is suggested to restore five old monitoring sites, i.e. CST02, NST11, NST13, NST14, 453 

and NST15. 454 

6 Data availability  455 

The 10-year (2009-2019) surface SM dataset is freely available from the 4TU.ResearchData repository at 456 

https://doi.org/10.4121/uuid:21220b23-ff36-4ca9-a08f-ccd53782e834 (Zhang et al., 2020). The original in 457 

situ SM data, the upscaled SM data, and the supplementary data are stored in .xlsx files. A user guide 458 

document is given to introduce the content of the dataset, the status of the Tibet-Obs, and the online dataset 459 

utilized in the study.  460 

7 Conclusions 461 

In this paper, we report on the status of the Tibet-Obs and present the long-term in situ SM and spatially 462 

upscaled SM dataset for the period 2009-2019. In general, the number of available SM monitoring sites 463 

decreased over time due to damage of sensors. Until 2019, there are only three and four sites that provide an 464 

approximately 10-year consistent SM time series for the Maqu and Shiquanhe networks, respectively. 465 

Comparisons between four upscaling methods, i.e. arithmetic averaging (AA), Voronoi diagram (VD), time 466 

stability (TS), and apparent thermal inertia (ATI), show that the AA method with input of the maximum 467 

number of available SM monitoring sites (AA-max) can be used to represent the actual areal SM conditions 468 

(SMtruth). The arithmetic average of the three and four monitoring sites with long-term continuous 469 

measurements (AA-min) are found to be most suitable to produce the upscaled SM dataset for the period 470 

2009-2019, which yields RMSEs of 0.022 and 0.011 m3 m-3 for the Maqu and Shiquanhe networks in 471 

comparison to the SMtruth. 472 

Trend analysis of the approximately 10-year upscaled SM time series produced by the AA-min (SMAA-min) 473 

shows that the Shiquanhe network in the western part of the TP is getting wet while no significant trend is 474 

found for the Maqu network in the east. The usage of all the available monitoring sites each year leads to 475 

inconsistent time series of SM that cannot capture the trend of SMAA-min reliably. Comparisons between the 476 

SMAA-min and the model-based SM products from the ERA5-land, GLDAS Noah, and MERRA2 further 477 

demonstrate that current model-based SM products still show deficiencies in representing the trend and the 478 

https://doi.org/10.4121/uuid:21220b23-ff36-4ca9-a08f-ccd53782e834
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dynamics of the SM measured on the TP. Moreover, strategies for maintaining the Tibet-Obs are provided, 479 

and it is suggested to maintain currently 12 operational sites for the Shiquanhe network, while for the Maqu 480 

network it is suggested to restore five old sites.  481 

The 10-year (2009-2019) surface SM dataset presented in this paper includes the 15-min in situ measurements 482 

taken at a depth of 5 cm collected from three regional-scale networks (i.e. Maqu, Naqu, and Ngari including 483 

Ali and Shiquanhe) of the Tibet-Obs, and the spatially upscaled SM datasets produced by the AA-min for 484 

the Maqu and Shiquanhe networks. This dataset is valuable for calibrating/validating long-term satellite- and 485 

model-based SM products, evaluation of SM upscaling methods, development of data fusion methods, and 486 

quantifying the coupling of SM with precipitation at 10-year scale. 487 
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 667 

Fig. 1. Locations of the Tibet-Obs including Maqu, Naqu, and Ngari (including Ali and Shiquanhe) soil moisture 668 
monitoring networks. The weather stations of Maqu and Shiquanhe operated by the China Meteorological 669 
Administration (CMA) are also shown. (Base map is from Esri, Copyright: © Esri) 670 
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 671 

Fig. 2. (a) Overview of the Maqu monitoring network, and typical characteristics of topography and land cover 672 
within the network: (b) river valley, (c) hill valley, (d) hill slope, (e) valley, (f) wetland and (g) grass. The colored 673 
triangles in (a) represent different data lengths of surface SM measurements for each site, and the colored boxes 674 
represent the coverage of selected model-based products. The site name in the bracket in (b)-(g) indicates the site 675 
location for which the photograph is selected. (Base map copyright: ©2018 Garmin) 676 

 677 

Fig. 3. Examples of typical installation of sensors in monitoring sites of (a) Maqu and (b) Ngari networks. 678 
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 679 

Fig. 4. Overview of the Ngari monitoring network including (a) Shiquanhe and (b) Ali networks, and typical 680 
characteristics of topography and land cover within the network: (c) flat, (d) slope, (e) desert, and (f) sparse grass. 681 
The colored triangles in (a) and (b) represent different data lengths of surface SM measurements for each site, 682 
and the colored boxes represent the coverage of selected model-based products. The site name in the bracket in 683 
(c)-(f) indicates the site location for which the photograph is selected. (Base map copyright: ©2018 Garmin) 684 

 685 

Fig. 5. (a) Overview of the Naqu monitoring network, and typical characteristics of topography and land cover 686 
within the network: (b) plain and (c) grassland. The colored triangles in (a) represent different data lengths of 687 
surface SM measurements for each site. The site name in the bracket in (b) and (c) indicates the site location for 688 
which the photograph is selected. (Base map copyright: ©2018 Garmin) 689 

 690 
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 691 

Fig. 6. Comparisons of daily average SM for the (a) Maqu and (b) Shiquanhe networks produced by four upscaling 692 
methods with input of the maximum number of available SM monitoring sites. 693 

 694 

Fig. 7. Comparisons of daily average SM for the (a) Maqu and (b) Shiquanhe networks produced by four upscaling 695 
methods with input of the minimum number of available SM monitoring sites. 696 

 697 

Fig. 8. Time series of SMAA-min,  SMAA-valid, and precipitation for the (a) Maqu and (b) Shiquanhe networks for a 698 
10-year period, the subplot highlights a 2-year period. 699 
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 700 

Fig. 9. Mann Kendall trend test and Sen’s slope estimate for precipitation, SMAA-min, SMAA-valid, and model-based 701 
SM derived from the ERA5-land, GLDAS Noah, and MERRA2 for a 10-year period for the (a) Maqu and (b) 702 
Shiquanhe networks. 703 

 704 

Fig. 10. A 10-year time series of model-based SM derived from the ERA5-land, MERRA2, and GLDAS Noah 705 
products and the upscaled SM (SMAA-min) for the (a) Maqu and (b) Shiquanhe networks.  706 
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Table 1. Summary of the main Tibet-Obs applications and corresponding findings. 707 

Literature In situ data Satellite- and/or model-based products Key findings 

Dente et al. 
(2012a) 

Maqu network, 
period between 

2008 and 2009 

LPRM AMSR-E SM product, ASCAT SM 
product 

i)  The weighted average of SM depended on 
the percentage spatial coverage strata can be 

regarded as the ground reference. 

ii) The AMSR-E and ASCAT products are 
able to provide reasonable area SM during 

monsoon seasons. 

 
Dente et al. 

(2012b) 

Maqu network, 

period of 2010 

Soil Moisture and Ocean Salinity (SMOS) 

Level 2 SM product 

The SMOS product exhibits a systematic dry 

bias (0.13 m3 m-3) at the Maqu network. 

 
Zeng et al. 

(2015) 

Maqu network, 

period between 
2008 and 2010 

 

 

SMOS Level 3 SM product (version 2.45), 

Advanced Microwave Scanning Radiometer 
for Earth Observation System SM products 

(AMSR-E) SM products developed by 

National Aeronautics and Space 
Administration (NASA version 6), Land 

Parameter Retrieval Model (LPRM version 

2), and Japan Aerospace Exploration 
Agency (JAXA version 700), AMSR2 

Level 3 SM product (version 1.11), 

Advanced Scatterometer SM product 
(ASCAT version TU-Wien-WARP 5.5), 

ERA-Interim SM product (version 2.0), and 

Essential Climate Variable SM product 
(ECV version 02.0) 

 

i)  The ECV and ERA products give the best 

performance, and all products are able to 
capture the SM dynamic except for the NASA 

product. 

ii) The JAXA AMSR-E/AMSR2 products 
underestimate SM, while the ASCAT product 

overestimates it. 

iii) The SMOS product exhibits big noise and 
bias, and the LPRM AMSR-E product shows a 

significantly larger seasonal amplitude. 

 

Zheng et al. 
(2015a) 

Maqu network, 
period between 

2009 and 2010 

 

Noah LSM (land surface model) 
simulations 

The modified hydraulic parameterization is 
able to resolve the SM underestimation in the 

upper soil layer under wet conditions, and it 

also leads to better capture for SM profile 
dynamics combined with the modified root 

distribution. 

 
Bi & Ma 

(2015) 

Maqu network, 

period between 

2008 and 2011 

GLDAS SM products produced by Noah, 

Mosaic CLM and Variable Infiltration 

Capacity (VIC) models 

The SM simulated by the four LSMs can give 

reasonable SM dynamics but still show 

negative biases probably resulted from the 
high soil organic carbon content. 

 

Li et al. 
(2018) 

Maqu network, 
period between 

2015 and 2016 

Soil Moisture Active Passive (SMAP) 
Level 3 standard (36km) and enhanced 

(9km) passive SM products (version 3), 

Community Land Model (CLM4.5) 
simulations 

i)  The standard and enhanced SMAP products 
have similar performance for SM spatial 

distributions. 

ii) The SM of enhanced SMAP product 
exhibits good agreement with the CLM4.5 SM 

simulation. 

 
Zhao et al. 

(2017) 

Maqu network, 

period between 

2008 and 2010 

Downscaled SM from five typical triangle-

based empirical SM relationship models 

The model treating the surface SM as a 

second-order polynomial with LST, vegetation 

indices, and surface albedo outperforms other 
models. 

 

Ju et al. 
(2019) 

Maqu network, 
period of 2012 

VIC LSM simulations The IEPFM (immune evolution particle filter 
with Markov chain Monte Carlo simulation) is 

able to mitigate particle impoverishment and 

provide better assimilation results. 

 

Zheng et al. 

(2018b) 

Ngari network, 

period between 
2015 and 2016 

SMAP Level 2 radiometer SM product Modifying surface roughness and employing 

soil temperature and texture information can 
improve the SMAP SM retrievals for the 

desert ecosystem of the TP. 

 
Zhang et al. 

(2018) 

Maqu and Ngari 

networks, period 
between 2010 

and 2013 

ERA-Interim SM product, MERRA SM 

product, GLDAS_Noah SM product 
(version2.0 and version2.1) 

All these products exhibit overestimation at 

the Ngari network while underestimation at the 
Maqu network except for the ERA-Interim 

product. 
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Zheng et al. 

(2018a) 

Maqu and Ngari 

networks, period 

between 2015 

and 2016 

SMAP Level 1C radiometer brightness 

temperature products (version 3) 

i) The SMAP algorithm underestimates the 

significance of surface roughness while 

overestimates the impact of vegetation.  

ii) The modified brightness temperature 
simulation can result in better SM retrievals.  

 

Wei et al. 
(2019) 

Maqu and Ngari 
networks, period 

between 2015 

and 2016 

SMAP Level 3 SM passive product The downscaled SM still can keep accuracy 
compared to the SM of original SMAP 

product. 

Liu et al. 

(2019) 

Maqu and Ngari 

networks, period 

between 2012 
and 2016 

 

SMAP Level 3 SM products (version 4.00),  

SMOS-IC SM products (version 105), 

Fengyun-3B Microwave Radiation 
Image SM product (FY3B MWRI), JAXA 

AMSR2 Level 3 SM product, LPRM 

AMSR2 Level 3 SM product (version 3.00) 

i) The JAXA AMSR2 product underestimates 

area SM while the LPRM AMSR2 product 

overestimates it. 
ii) The SMOS-IC product exhibits some noise 

of SM temporal variation. 

iii) The SMAP product has the highest 
accuracy among the five products while FY3B 

shows relatively lower accuracy. 

 
Yang et al. 

(2020) 

Maqu and Ngari 

network, period 

between 2008 
and 2011 

AMSR-E brightness temperature product The assimilated SM products exhibit higher 

accuracy than the AMSR-E product and LSM 

simulations for wet areas, whereas their 
accuracy is similar for dry areas.  

 

 
Su et al. 

(2013) 

Maqu and Naqu 

networks, period 

between 2008 
and 2009. 

AMSR-E SM product, ASCAT Level 2 SM 

product, ECMWF SM analyses i.e. 

optimum interpolation and extended 
Kalman filter products 

 

i) The Naqu area SM is overestimated by the 

ECMWF products in monsoon seasons, while 

the Maqu area SM produced by the ECMWF 
is comparable to previous studies.  

ii) The SM estimate cannot be considerably 

improved by assimilating ASCAT data due to 
the CDF matching approach and the data 

quality. 

 
Zeng et al. 

(2016) 

Maqu, Naqu and 

Ngari networks, 

period between 
2010 and 2011 

LPRM AMSR-E SM product, ERA-Interim 

SM product 

The blended SM is able to capture temporal 

variations across different climatic zones over 

the TP.  

Cheng et al. 

(2019) 

Maqu, Naqu and 

Ngari networks, 
period of 2010 

European Space Agency Climate Change 

Initiative Soil Moisture SM product (ESA 
CCISM version 4.4), ERA5 SM product 

i) The seasonal variation and spatial 

distribution of SM can be captured by all four 
products i.e., ESA CCI_active, ESA 

CCI_passive, ESA CCI_combined, and ERA5. 

ii) The ESA CCI_active and ESA 
CCI_combined products exhibit narrower 

magnitude than the ESA CCI passive and 

ERA5 products. 
iii) The SM uptrend across the TP can be 

found from the ERA5 product. 

708 
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Table 2. Data records of all the SMST monitoring sites performed for the Maqu network. Blank cells represent 

that there are no measurements performed. Cells with hyphen represent that data is available. The number in 710 
cells represents the month(s) when the data is missing during a year.  

 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 
Data length 

(months) 

CST01  —   — 10~12 
1~6 

10~12 
              36 

CST02  —   — 5~12 1~10 6  7~12           46 

CST03  —   —   —  —  6~12 1~10 7~12     1~9 5~12 68 

CST04 1~5   — 12 
1~3 

11~12 

1~2 

6 
8~10 7~12   1~6 7~12   73 

CST05   —  —   —   —  6   —   — 5~7  —  1~2 6~12 119 

NST01 1~5  —   —  —  6  —   —  5~7  —    — 6~12 116 

NST02 1~3   —  —  
7~8 

10~12 
              40 

NST03  —   —  5~10  —  6  —    — 5~7   —   — 6~12 115 

NST04  —   —  10~12                 33 

NST05 3~5  —   —   — 6~12 1~7  —  5~7 7~12 1~7 6~12 92 

NST06   — 
1~3 

12 
1~3  —  6   —  —  6~7 8~12 1~7 6~12 104 

NST07   —  —  3  —  6, 12 1 12 
1~2 

7,12 

1~2 

12 

1~3 

9~12 
  101 

NST08   — 
2, 4 

9~12 
1~5  —  6~10 1~10   — 6~7  —   —  6~12 95 

NST09 1, 12 
1~4 

12 
1~3  —  

1~2 

 6 
7~10 12 

1~3 

7, 12 

1~2 

 7 
 —  6~12 99 

NST10  —  11~12 
1~5 

7~12 
1~6 6~12         1~7 6~12 44 

NST11   —   —  —  7~8 6 7~12           63 

NST12 10~12 1~9  —   —  6~12 1~10 7~12         49 

NST13  —   —   —   —  6  —  7~12         77 

NST14 6~9   —   —  —  6 10~12           64 

NST15   — 10~12 1~5 6~12               33 

NST21           1~7 7~12         11 

NST22           1~7 7~12         11 

NST24           1~7 2~12 1~7   —   — 6~12 40 

NST25           1~7   — 2~12 1~8   — 6~12 39 

NST31                 1~8 7~12   10 

NST32                   1~5 6~12 12 

 

  



 

27 

 

Table 3. Same as the Table 2 but for the Ngari network. 

  2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 Data length (months) 

Shiquanhe network 

SQ01 1~7  —    —  —  9~12 1~9        52 

SQ02 1~7   —  —   —  5~9  —    —   —  —  9~12 104 

SQ03 1~7   —   —  —  8~9   —  —    —  —  9~12 107 

SQ04 1~7  — 9~12               25 

SQ05 1~7   —   —  —  5~12          45 

SQ06 1~7  —  9~12 1 2~9   —   —   —  —  9~12 96 

SQ07 1~7   —  —  9~12 1~8   — 7~8 7~8  —  9~12 93 

SQ08 1~7 8~12   1~8 8~9  —    —  —   —  9~12 82 

SQ09 1~7   — 9~12 1~8 9~12           37 

SQ10   1~8  —   —  7~12  1~9 7~12 1~8   — 9~12 67 

SQ11 1~7  —   —  9~12         1~8 9~12 49 

SQ12 1~7  — 9~12               25 

SQ13 1~7 8~12                 12 

SQ14 1~7  —   —    — 
6 

8~9 
  —  —    —  —  9~12 106 

SQ16 1~7 7~8   —  —  3~8 9~12         53 

SQ17             1~8   —  —  9~12 36 

SQ18             1~8 1 9~12   23 

SQ19             1~8  —   —  9~12 36 

SQ20             1~8   —  —  9~12 36 

SQ21             1~8   —  —  9~12 36 

Ali network 

Ail 1~7  — 9~12 1~8       1~8 8~12   40 

Ali01 1~7 8~12 1~8  —  8   —   —  —  8~12   82 

Ali02 
1~7 

11~12 
1~8  —   —  8  —   —   —  8~12   85 

Ali03 1~7  —   — 3~12 1~8  —    —   — 8~12   78 
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Table 4. Same as the Table 2 but for the Naqu network. 

 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 Data length (months) 

Naqu  1~7   —   — 8~9 6~8 6~9   — 9~12 1~8 9~12 88 
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East   1~8  —  9~12             24 

West 1~7 1~8   — 1~9 7~12  1~7 8~12       42 

North   
1~8 

11~12 

1~3 

9  
9~12     1~8 9~12 1~8  9~12 42 

South   1~8 9~12               12 

Kema       1~9  3~9  —  8~12       26 

MS 1~7   — 10~12 1~9 
8~9 

11~12 
1~5  —  9~12 1~8  9~12 76 

NQ01                 1~8  9~12 12 

NQ02                 1~8  9~12 12 

NQ03             1~8 9~12 1~8 9~12  24 

NQ04                 1~8  9~12 12 

 

Table 5. Error statistics computed between the SMAA-min  and the three model-based SM products for the Maqu 

and Shiquanhe networks. 

 Bias (m3 m-3) RMSE (m3 m-3) Bias (m3 m-3) RMSE (m3 m-3) 

 Warm season Cold season 

 Maqu 

ERA5-land 0.050 0.067 - - 

GLDAS Noah -0.112 0.125 -0.049 0.088 

MERRA2 -0.113 0.124 0.006 0.097 

 Shiquanhe 

ERA5-land 0.002 0.079 - - 

GLDAS Noah 0.010 0.116 0.052 0.058 

MERRA2 0.054 0.069 0.049 0.053 
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Table 6. Percentages of the site combinations that fall into an accuracy requirement in terms of RMSE.  

RMSE 0.004 0.006 0.008 0.010 0.012 0.014 0.016 0.018 0.020 

Maqu network 

n=1 (%)                    

n=2 (%)                0.74 3.68 

n=3 (%)            0.44 1.32 3.97 7.79 

n=4 (%)          0.21 1.05 3.74 9.16 16.93 

n=5 (%)        0.03 0.58 3.10 9.31 18.23 28.18 

n=6 (%)        0.09 1.87 8.27 19.18 31.22 42.36 

n=7 (%)        0.69 6.21 18.11 31.91 43.98 54.32 

n=8 (%)      0.08 3.29 14.97 30.32 43.97 55.36 64.79 

n=9 (%)      0.84 9.58 26.27 42.42 55.47 65.94 74.16 

n=10 (%)    0.01 3.91 19.74 38.94 54.41 66.13 75.21 82.23 
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n=11 (%)    0.53 11.10 32.92 51.7 65.66 75.9 83.32 88.87 

n=12 (%)    3.52 23.95 47.3 64.03 75.87 84.45 90.14 94.30 

n=13 (%)  0.29 13.82 39.87 61.81 75.67 85.38 91.55 95.38 97.77 

n=14 (%)  3.68 32.35 57.79 74.85 86.47 92.79 96.91 98.82 99.41 

n=15 (%)  21.32 56.62 75.00 88.97 95.59 98.53 99.26 100.00 100.00 

n=16 (%)  52.94 82.35 94.12 94.12 100.00 100.00 100.00 100.00 100.00 

Shiquanhe network 

n=1 (%)             8.33 16.67 25.00 

n=2 (%)   1.52 1.52 4.55 13.64 30.30 37.88 42.42 48.48 

n=3 (%)   6.82 21.36 25.45 33.18 42.73 53.18 59.55 65.00 

n=4 (%) 1.62 11.31 29.7 41.41 51.11 57.37 63.23 70.51 77.58 

n=5 (%) 3.66 23.11 36.87 49.12 60.23 68.18 76.14 82.32 88.26 

n=6 (%) 11.36 30.95 44.37 59.85 70.24 79.11 85.28 90.15 93.29 

n=7 (%) 20.20 39.77 56.06 68.31 77.90 86.87 93.43 96.84 98.48 

n=8 (%) 29.29 50.51 62.63 77.58 89.09 96.57 97.98 98.99 99.60 

n=9 (%) 33.64 59.55 82.73 91.36 96.36 98.18 99.55 99.55 100.00 

n=10 (%) 48.48 78.79 92.42 96.97 96.97 100.00 100.00 100.00 100.00 

n=11 (%) 83.33 91.67 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

 

Table 7. The combinations of monitoring sites ranked by RMSE values of average SM at the Maqu network. 

Rank Site1 Site2 Site3 Site4 Site5 Site6 Site7 Site8 Site9 Site10 Site11 Site12 RMSE 

1 CST01 CST02 NST02 NST03 NST04 NST05 NST06 NST07 NST10 NST13 NST14 NST15 0.00402 

2 CST01 CST02 CST04 NST01 NST02 NST03 NST04 NST05 NST06 NST07 NST13 NST15 0.00417 

3 CST02 NST01 NST02 NST03 NST04 NST05 NST06 NST07 NST10 NST13 NST14 NST15 0.00450 

4 CST01 CST02 NST01 NST02 NST03 NST04 NST05 NST06 NST07 NST13 NST14 NST15 0.00450 

5 CST01 CST02 CST03 NST02 NST03 NST04 NST05 NST06 NST07 NST10 NST14 NST15 0.00451 

96 CST01 CST02 CST03 CST04 CST05 NST03 NST06 NST10 NST11 NST13 NST14 NST15 0.00555 

97 CST01 CST02 CST03 NST01 NST02 NST04 NST05 NST06 NST11 NST13 NST14 NST15 0.00555 

98 CST01 CST02 CST03 CST04 CST05 NST01 NST02 NST05 NST06 NST10 NST11 NST15 0.00556 

99 CST03 NST02 NST03 NST04 NST05 NST06 NST07 NST10 NST11 NST13 NST14 NST15 0.00557 

100 CST02 CST03 CST05 NST01 NST03 NST05 NST06 NST10 NST11 NST13 NST14 NST15 0.00557 
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Appendix A. Basic information of the Tibet-Obs 

Table A1. Site information of the Maqu network (site name, elevation, topography (TPG), land cover (LC), soil 

texture at 5-15 cm depth (STX), soil bulk density at 5cm depth (BD), soil organic matter content at 5-15cm depth 

(OMC), Not Available (NA), BD and OMC values are measured in the laboratory). 

 730 

Table A2. Soil moisture with temporal persistence for the Maqu network. Light gray shaded cells represent that 

no data is missing, dark gray shaded cells indicates data is missing with little influence. 

Site name Elevation (m) TPG LC STX BD (kg m-3) OMC (g/kg) 

CST01 3431 River valley Grass NA NA NA 

CST02 3449 River valley Grass NA NA NA 

CST03 3507 Hill valley Grass NA NA NA 

CST04 3504 Hill valley Grass NA NA NA 

CST05 3542 Hill valley Grass NA NA NA 

NST01 3431 River valley Grass Silt loam 0.96 18 

NST02 3434 River valley Grass Silt loam 0.81 18 

NST03 3513 Hill slope Grass Silt loam 0.63 49 

NST04 3448 River valley Wetland Silt loam 0.26 229 

NST05 3476 Hill slope Grass Silt loam 0.75 22 

NST06 3428 River valley Grass Silt loam 0.81 23 

NST07 3430 River valley Grass Silt loam 0.58 23 

NST08 3473 Valley Grass Silt loam 1.06 34 

NST09 3434 River valley Grass Sandy loam 0.91 17 

NST10 3512 Hill slope Grass Loam-silt loam 1.05 24 

NST11 3442 River valley Wetland Organic soil  0.24 136 

NST12 3441 River valley Grass Silt loam 1.02 39 

NST13 3519 Valley Grass Silt loam 0.67 29 

NST14 3432 River valley Grass Silt loam 0.68 30 

NST15 3752 Hill slope Grass Silt loam 0.78 56 

NST21 3428 River valley Grass Silt loam NA NA 

NST22 3440 River valley Grass Silt loam NA NA 

NST24 3446 River valley Grass Silt loam  NA NA 

NST25 3600 Hill slope  Grass Silt loam NA NA 

NST31 3490 NA NA NA NA NA 

NST32 3490 Hill valley Grass NA NA NA 
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Time 
2009.11~ 

2010.11 

2010.11.~

2011.11 

2011.11~ 

2012.11 

2012.11~ 

2013.11 

2013.11~ 

2014.11 

2014.11~ 

2015.11 

2015.11~ 

2016.11 

2016.11~ 

2017.11 

2017.11~

2018.11 

CST05                  - 

NST01                   

NST03                   

NST06   
 

              

NST07                   

NST13                   

NST01                   

NST14               

CST03                   

NST05                   

CST01                   

CST04                   

NST02                   

NST04                   

CST02                   

NST10                   

NST15                   

 

Table A3. Same as the Table A1 but for the Ngari network (BD and OMC data are not available). 

Site name Elevation (m) TPG LC STX 

Shiquanhe network  

SQ01 4306 Flat Desert Loamy sand 

SQ02 4304 Gentle slope Desert Sand 

SQ03 4278 Gentle slope Desert (with sparse bushes) Sand 

SQ04 4269 Edge of a wetland Sparse grass Loamy sand 

SQ05 4261 Edge of a marsh Sparse grass Sand 

SQ06 4257 Flat Sparse grass Loamy Sand 

SQ07 4280 Flat Desert (with sparse bushes) Sand 

SQ08 4306 Flat Desert  Sand 

SQ09 4275 Flat Desert/river bed Sand   

SQ10 4275 Flat Grassland 
Fine sand with some 

thick roots 

SQ11 4274 Flat Grassland with bushes Loamy sand  

SQ12 4264 Flat Edge of riverbed Sandy loam  

SQ13 4292 Flat Valley bottom Sand  
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Table A4. Same as Table A2 but for the Shiquanhe network.  

Time 
2010.8~ 

2011.8 

2011.8~ 

2012.8 

2012.8~ 

2013.8 

2013.8~ 

2014.8 

2014.8~ 

2015.8 

2015.8~ 

2016.8 

2016.8~ 

2017.8 

2017.8~ 

2018.8 

2018.8~ 

2019.8 

SQ02                  

SQ03                   

SQ06                  

SQ14                   

SQ08                   

SQ07                   

SQ17                   

SQ19                   

SQ20                   

SQ21                   

SQ10                   

SQ11                   

 

Table A5. Same as the Table A1 but for the Naqu network (BD and OMC data are not available). 

SQ14 4368 Slope Desert Sandy loam 

SQ16 4288 Flat Desert/river bed Loam 

SQ17 4563 NA NA NA 

SQ18 4634 NA NA NA 

SQ19 4647 NA NA NA 

SQ20 4695 NA NA NA 

SQ21 4606 NA NA NA 

Ali network 

Ali 4288 Flat Grass Loamy sand  

Ali01 4262 Flat Sparse grass Sand  

Ali02 4266 Flat Sparse grass Sand  

Ali03 4261 Edge of a wetland Grass  Sand 

Site name Elevation (m) TPG LC STX 

Naqu 4509 Plain Grassland Loamy sand 

East 4527 Flat hill top Grassland Loamy sand 

West 4506 Plain Grassland Loamy sand 

North 4507 Slope on riverbank Grassland Loamy sand  

South 4510 Slope of wetland Wetland Loamy sand 
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Appendix B. Spatial upscaling methods 

B.1 Arithmetic averaging  740 

The arithmetic averaging method assigns an equal weight coefficient to each SM monitoring site of the 

network, which can be formulated as: 

�̅�𝒕
𝒖𝒑𝒔

=
𝟏

𝑵
∑ 𝜽𝒕,𝒊

𝒐𝒃𝒔𝑵
𝒊=𝟏                                                                                                                                          (B1)                               

where 𝑖 represents the ith SM monitoring site. 

B.2 Voronoi diagram  745 

The Voronoi diagram method divides the network area into several parts according to the distances between 

each SM monitoring site. This approach determines the weight of each site (𝑤𝑖  [-]) based on the geographic 

distribution of all the SM monitoring sites within the network area, which can be formulated as:  

�̅�𝒕
𝒖𝒑𝒔

= 
∑ 𝑤𝑖𝜃𝑡,𝑖

𝑜𝑏𝑠𝑁
𝑖=1

∑ 𝑤𝑖
𝑁
𝑖=1

                                                                                                                                           (B2)                                 

B.3 Time stability  750 

The time stability method is based on the assumption that the spatial SM pattern over time tends to be 

consistent (Vachaud et al., 1985), and the most stable site can be regarded as the representative site of the 

network. For each SM monitoring site 𝑖  within the time window (M days in total), the mean relative 

difference 𝑀𝑅𝐷𝑖  [-] and standard deviation of the relative difference σ(𝑅𝐷𝑖) [-] are estimated as: 

 σ(𝑅𝐷𝑖) =  √
1

𝑀−1
∑ (𝑅𝐷𝑡,𝑖 −𝑀𝑅𝐷𝑖)

2𝑀
𝑡=1                                                                                                        (B3)                                 755 

𝑀𝑅𝐷𝑖 = 
1

𝑀
∑

𝜃𝑡,𝑖
𝑜𝑏𝑠−𝜃𝑡

𝑜𝑏𝑠̅̅ ̅̅ ̅̅ ̅

𝜃𝑡
𝑜𝑏𝑠̅̅ ̅̅ ̅̅ ̅

𝑀
𝑡=1                                                                                                                             (B4)                                        

𝑅𝐷𝑡,𝑖 = 
𝜃𝑡,𝑖
𝑜𝑏𝑠−𝜃𝑡

𝑜𝑏𝑠̅̅ ̅̅ ̅̅ ̅

𝜃𝑡
𝑜𝑏𝑠̅̅ ̅̅ ̅̅ ̅                                                                                                                                           (B5)                                                                               

where 𝜃𝑡,𝑖
𝑜𝑏𝑠  [m3 m-3] represents the SM measured on the tth day at the ith monitoring site, 𝜃𝑡

𝑜𝑏𝑠̅̅ ̅̅ ̅̅  [m3 m-3] 

represents the mean SM measured at all available monitoring sites on the tth day. 𝑀𝑅𝐷𝑖  quantifies the bias of 

each SM monitoring site to identify a particular location is wetter or drier than regional mean, and σ(𝑅𝐷𝑖) 760 

Kema 4465 River valley Grass Silt loam 

MS 4583 NA NA NA 

NQ01 4517 NA NA NA 

NQ02 4552 NA NA NA 

NQ03 4638 NA NA NA 

NQ04 4632 NA NA NA 
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characterizes the precision of the SM measurement. Jacobs et al., (2004) combined above two statistical 

metrics as a comprehensive evaluation criterion (𝐶𝐸𝐶𝑖 [-]): 

 𝐶𝐸𝐶𝑖 = √(𝑀𝑅𝐷𝑖)
2 + σ(𝑅𝐷𝑖)

2                                                                                                                   (B6)                                  

The most stable site is identified by the lowest 𝐶𝐸𝐶𝑖 value. 

B.4 Apparent thermal inertia 765 

The apparent thermal inertia (ATI) method is based on the close relationship between apparent thermal inertia 

(𝜏  [K-1]) and SM (𝜃 [m3 m-3]) (Van doninck et al., 2011; Veroustraete et al., 2012). If the true areal SM (�̅�𝑡
𝑡𝑟𝑢 

[m3 m-3]) is available, then the weight vector 𝛽 can be derived by the ordinary least-squares (OLS) method 

that minimizes the cost function  𝐽 as:  

𝐽 = ∑ (𝜃𝑡
𝑡𝑟𝑢  − 𝛽𝑇𝜃𝑡

𝑜𝑏𝑠)2𝑀
𝑡=1                                                                                                                           (B7)                               770 

However, the 𝜃𝑡
𝑡𝑟𝑢 [m3 m-3] is usually not available in practice, and the representative SM (�̅�𝑡

𝑟𝑒𝑝
 [m3 m-3]) is 

thus introduced that contains random noise but with no bias. Since the OLS method may results in overfitting 

with usage of the �̅�𝑡
𝑟𝑒𝑝

, a regularization term is introduced and Eq. (B7) can be re-formulated as (Tarantola, 

2005): 

𝐽 = ∑ (�̅�𝑡
𝑟𝑒𝑝

− 𝛽𝑇𝜃𝑡
𝑜𝑏𝑠)𝜎−2(�̅�𝑡

𝑟𝑒𝑝
− 𝛽𝑇𝜃𝑡

𝑜𝑏𝑠)𝑀
𝑡=1 + 𝑅𝛽𝑇𝛽                                                                             (B8)                               775 

where σ [m3 m-3] represents the standard deviation of �̅�𝑡
𝑟𝑒𝑝

, R [-] is the regularization parameter.  

The core issue of the ATI approach is to obtain the �̅�𝑡
𝑟𝑒𝑝

 and minimize the cost function of Eq. (B8) to obtain 

β and R. The �̅�𝑡
𝑟𝑒𝑝

can be retrieved from the apparent thermal inertia 𝜏 via empirical regression g(𝜏), and 𝜏 

has strong connection with the surface status, e.g. land surface temperature and albedo, which is defined as: 

τ = C
1−𝑎

𝐴
                                                                                                                                                         (B9)                              780 

where 𝐶 [-] represents the solar correction factor, 𝑎 [-] represents the surface albedo, and 𝐴 [K] represents 

the amplitude of the diurnal temperature cycle. The albedo and land surface temperature data obtained from 

the MODIS MCD43A3 and MYD11A1/MOD11A1 Version 6 products are used to derive the ATI according 

to Eq. (B9) in this study. 

The solar correlation factor 𝐶 in Eq. (B9) is computed as: 785 

C = sinφsinδ(1 − 𝑡𝑎𝑛2φ𝑡𝑎𝑛2δ)1 2⁄ + 𝑐𝑜𝑠𝜑𝑐𝑜𝑠𝛿arccos (−𝑡𝑎𝑛𝜑𝑡𝑎𝑛𝛿)                                                 (B10) 

with 

δ = 0.00691 − 0.399912 cos(γ) + 0.070257 sin(γ) − 0.006758 cos(2γ) + 0.000907 sin(2γ) −

0.002697cos(3γ) + 0.00148sin (3γ)                                                                                                        (B11) 

and 790 

γ =
2𝜋(𝑛𝑑−1)

365.25
                                                                                                                                                 (B12) 

where φ represents the latitude [rad], δ represents the solar declination [rad], and 𝑛𝑑 represents the Julian 

day number.  
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The amplitude of the diurnal LST A is estimated as LSTmax - LSTmin for a single day. Finally, we use the 

regression analysis between in situ SM measurements (𝜃) at each monitoring site and corresponding ATI (τ) 795 

to obtain the g(∙) form. 

There are 17 and 12 monitoring sites participate in the regression analysis for the Maqu and Shiquanhe 

networks during the periods of 11/2009-10/2010 and 8/2018-7/2019, respectively. The ATI cannot be 

obtained for each monitoring site in every day since the satellite-based LST data are contaminated by clouds. 

In order to make full use of the data, we make the ATI-SM pair for the 1st monitoring site on the 1st day as 800 

No. 1, the pair for the 17th (or 12th) monitoring site in the Maqu (or Shiquanhe) network on the 1st day as the 

No. 17 (or No. 12), the pair for the 1st monitoring site at the 2nd day as the No. 18 (No. 13), and so on. Later 

on, we select a certain number of ATI-SM pairs (e.g. 40, 50, 60, 70, 80, 90, and 100) as a group to compute 

the averaged ATI and SM and construct the most reliable (i.e. with the maximum R2) regression relationship 

between them. If the ATI or SM data at one day is missing, this pair is ignored. As shown in Fig. B1, the 805 

empirical relationship is generated from 80 pairs ATI and SM averaged for the Maqu and Shiquanhe 

networks.  

When the empirical relationship g(∙) is determined, the regional-average SM can be derived from grid-

averaged ATI by the function g(∙), which it is regarded as �̅�𝑡
𝑟𝑒𝑝

 in Eq. (B8). Finally, the optimal 𝛽 (�̂�) is 

obtained by minimizing the cost function (i.e. Eq. (B8)), and the upscaled SM can be estimated as: 810 

�̅�𝒕
𝒖𝒑𝒔

= �̂�𝜽𝒕
𝒐𝒃𝒔                                                                                                                                                   (B13)              

The detailed description of the ATI method is referred to Qin et al. (2013). 

 

Fig. B1 Empirical relationship between 80 pair of ATI and SM averaged for the (a) Maqu and (b) Shiquanhe 

networks. 815 
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Fig. B2. Radar diagram of error statistics (i.e. RMSE and NSE) computed between the SMtruth produced by the 

AA-max and the upscaled SM produced by the four upscaling methods with input of different number of available 

monitoring sites for the (a) Maqu and (b) Shiquanhe networks. 820 

Table B1. Evaluation metrics computed for the upscaled SM produced with four methods with input of the 

maximum available monitoring sites. 

Methods 
Maqu Shiquanhe 

MRD σ(RD) CEC MRD σ(RD) CEC 

AA-max 0.009 0.054 0.055 0.012 0.046 0.047 

TS-max 0.022 0.089 0.092 0.011 0.114 0.114 

VD-max -0.026 0.064 0.069 -0.042 0.033 0.053 

ATI-max -0.005 0.145 0.145 0.016 0.068 0.070 

 

Table B2. Error statistics computed between the SM obtained by the four upscaling methods with input of the 

minimum available monitoring sites, and the SMtruth produced by the AA-max for the Maqu and Shiquanhe 825 
networks. 

 Bias (m3 m-3) RMSE(m3 m-3) ubRMSE (m3 m-3) NSE 

Maqu 

AA-min 0.005 0.022 0.021 0.954 

TS-min 0.025 0.050 0.044 0.747 

VD-min -0.007 0.022 0.020 0.954 

ATI-min -0.052 0.099 0.084 0.030 

 Shiquanhe 
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AA-min 0.010 0.011 0.005 0.816 

TS-min -0.001 0.013 0.013 0.768 

VD-min 0.019 0.020 0.006 0.400 

ATI-min -0.001 0.021 0.021 0.393 

 


