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Abstract. The Tibetan Plateau observatory of plateau scale soil moisture and soil temperature (Tibet-Obs)
was established ten years ago, which has been widely used to calibrate/validate satellite- and model-based
soil moisture (SM) products for their applications to the Tibetan Plateau (TP). This paper reports on the status
of the Tibet-Obs and presents a 10-year (2009-2019) surface SM dataset produced based on in situ
measurements taken at a depth of 5 cm collected from the Tibet-Obs that consists of three regional-scale SM
monitoring networks, i.e. the Maqu, Naqu, and Ngari (including Ali and Shiquanhe) networks. This surface
SM dataset includes the original 15-min in situ measurements collected by multiple SM monitoring sites of
the three networks, and the spatially upscaled SM records produced for the Maqu and Shiquanhe networks.
Comparisons between four spatial upscaling methods, i.e. arithmetic averaging, Voronoi diagram, time
stability, and apparent thermal inertia, show that the arithmetic average of the monitoring sites with long-
term (i.e. > six Yyears) continuous measurements are found to be most suitable to produce the upscaled SM
records. Trend analysis of the 10-year upscaled SM records indicates that the Shiquanhe network in the
western part of the TP is getting wet while there is no significant trend found for the Maqu network in the
east. To further demonstrate the uniqueness of the upscaled SM records in validating existing SM products
for long term period (~10 years), the reliability of three reanalysis datasets are evaluated for the Maqu and
Shiquanhe networks. It is found that current model-based SM products still show deficiencies in representing
the measured SM dynamics in the Tibetan grassland (i.e. Maqu) and desert ecosystems (i.e. Shiquanhe). The
dataset would also be valuable for calibrating/validating long-term satellite-based SM products, evaluation
of SM upscaling methods, development of data fusion methods, and quantifying the coupling of SM and
precipitation at 10-year scale. The dataset is available in the 4TU.ResearchData repository at
https://doi.org/10.4121/uuid:21220b23-ff36-4ca9-a08f-ccd53782e834 (Zhang et al., 2020).
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1 Introduction

The Tibetan Plateau observatory (Tibet-Obs) of plateau scale soil moisture and soil temperature (SMST) was
setup in 2006 and became fully operational in 2010 with as objective of the calibration/validation of satellite-
and model-based soil moisture (SM) products at regional scale (Su et al., 2011). The Tibet-Obs mainly
consists of three regional-scale SMST monitoring networks, i.e. Maqu, Naqu, and Ngari, which cover
different climate and land surface conditions across the Tibetan Plateau (TP) and each includes multiple in
situ SMST monitoring sites. The SM data collected from the Tibet-Obs have been widely used in past decade
to calibrate/validate satellite- and model-based SM products (e.g. Su et al., 2013; Zheng et al., 2015g;
Colliander et al., 2017), and to evaluate and develop SM upscaling methods (e.g. Qin et al., 2013; 2015), to
assess algorithms for the retrieval of SM for microwave remote sensing observations (e.g. van der Velde et
al., 2014a; 2014b; Zheng et al., 2018a; 2018b; 2019) and fusion methods to merge in situ SM and satellite-
or model-based products (e.g. Yang et al., 2020; Zeng et al., 2016).

Key information and outcomes of the main scientific applications using the Tibet-Obs SM data are
summarized in Table 1. As shown in Table 1, the state-of-the-art satellite- and model-based products are
useful but still show various types of deficiencies specific to the hydro-meteorological conditions on the TP,
and further evaluation and improvement of these products remain imperative. In general, previous studies
mainly focused on the evaluation of SM products using the Tibet-Obs data for short term period (i.e. less
than five years), while up to now the Tibet-Obs has collected in situ measurements for more than 10 years.
Development of a close to 10-year Tibet-Obs in situ SM dataset would further enhance the
calibration/validation of long-term satellite- and model-based products, and is valuable for better
understanding the hydro-meteorological response to climate change. However, SM is highly variable in both
space and time, and data gaps in the availability of measurements taken from individual monitoring sites
hinder scientific studies covering longer time periods, e.g. more than five years. Therefore, it is still
challenging to obtain accurate long-term regional-scale SM due to the sparse nature of monitoring networks
and highly variable soil conditions.

Spatial upscaling is usually necessary to obtain the regional-scale SM of an in situ network from multiple
monitoring sites to match the footprint of satellite- or grid cell of model-based products. A frequently used
approach for upscaling point-scale SM measurements to a spatial domain is the arithmetic average, mostly
because of its simplicity (Su et al. 2011; 2013). Many other studies also adopted weighted averaging methods,
whereby the weights are assigned to account for spatial heterogeneity in the area covered by in situ
monitoring sites within the network. For instance, Colliander et al. (2017) employed Voronoi diagrams to
determine the weights of individual monitoring sites within core regional-scale networks used for the
worldwide validation of the Soil Moisture Active/Passive (SMAP) SM products. Dente et al. (2012a)
established weights based on the topography and soil texture for the sites of the Tibet-Obs’ Maqu network.
Qin et al. (2013, 2015) derived the weights by minimizing a cost function between in situ SM of individual
monitoring sites and a representative SM of the network that is estimated using the apparent-thermal-inertia-

based (ATI) method (Gao et al., 2017). Alternative methods, such as time stability and ridge regression, have
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been adopted in other investigations (i.e. Zhao et al., 2013, Kang et al., 2017). While a large number of studies
have assessed the performance of different upscaling methods in other areas such as the Tonzi Ranch network
in California and the Heihe watershed (Moghaddam et al., 2014, Wang et al., 2014), only a few investigations
have been done for the TP (Gao et al., 2017, Qin et al., 2015). Since the number of monitoring sites changes
over time due to damage of SM sensors in the Tibet-Obs, it is essential to evaluate and select an appropriate
upscaling method for a limited number of monitoring sites (i.e. < four sites).

This paper reports on the status of the Tibet-Obs and presents a long-term in situ SM and spatially upscaled
SM dataset for the period between 2009 and 2019. The 10-year SM dataset of Tibet-Obs includes the original
15-min in situ measurements taken at a depth of 5 cm collected from the three regional-scale networks (i.e.
Magqu, Naqu, and Ngari as shown in Fig. 1), and the continuous regional-scale SM produced using an
appropriately selected spatial upscaling method. To achieve this, four methods are studied namely the
arithmetic average (AA), Voronoi diagram (VD), time stability (TS), and apparent thermal inertia (ATI)
methods. The seasonal dynamic and trend of the regional-scale SM time series are analysed and the 10-year
SM dataset is used to validate three model-based SM products, e.g. ERA5-land (Mufioz-Sabater et al., 2018),
MERRAZ2 (Modern-Era Retrospective Analysis for Research and Applications, version 2) (GMAO, 2015),
and GLDAS Noah (Global Land Data Assimilation System with Noah Land Surface Model) (Rodell et al.,
2004).

This paper is organized as follows. Section 2 describes the status of the Tibet-Obs and the in situ SM
measurements, as well as the precipitation data and the three model-based SM products. Section 3 introduces
the four SM spatial upscaling methods, Mann Kendall trend test and Sen’s slope estimate, and performance
metrics. Section 4 presents the inter-comparison of the four SM spatial upscaling methods, the production
and analysis of regional-scale SM dataset for a 10-year period, and its application to validate the three model-
based SM products. Section 5 provides the discussion and suggestions for maintaining Tibet-Obs. Section 6

documents the information on data availability and the conclusions are drawn in Section 7.

2 Data
2.1 Status of the Tibet-Obs

The Tibet-Obs consists of the Maqu, Naqu, and Ngari (including Shiquanhe and Ali) regional-scale SMST
monitoring networks (Fig. 1) that cover the cold humid climate, cold semiarid climate, and cold arid climate,
respectively. Each network includes a number of monitoring sites that measure the SMST at different soil
depths. Brief descriptions of each network and corresponding surface SM measurements taken at a depth of
5 cm are given in following subsections. The readers are referred to the existing literature (Su et al., 2011;

Dente et al. 2012a; Zhao et al., 2018) for additional information on the networks.



106

107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

127

128
129
130
131
132
133
134
135
136
137
138
139
140

2.1.1 Maqu network

The Maqu network is located in the north-eastern edge of the TP (33°30°-34°15°N, 101°38°-102°45°E) at the
first major bend of the Yellow River. The landscape is dominated by the short grass at elevations varying
from 3400 to 3800 m. The climate type is characterized as cold-humid with cold dry winters and rainy
summers. The mean annual air temperature is about 1.2 °C, with -10 °C for the coldest month (January) and
11.7 °C for the warmest month (July) (Zheng et al., 2015a).

The Maqu network covers an area of approximately 40 km by 80 km and consists originally of 20 SMST
monitoring sites installed in 2008 (Dente et al. 2012a). During the period between 2014 and 2016, eight new
sites were installed due to the damage of several old monitoring sites by local people or animals. The basic
information of each monitoring site is summarized in Table Al (Su et al.,, 2011), and the typical
characteristics of topography and land cover within the network are shown in Fig. 2 as well.

The Decagon 5TM ECH:0 probes are used to measure the SMST at nominal depths of 5, 10, 20, 40, and 80
cm (Fig. 3). The 5TM probe is a capacitance sensor measuring the dielectric permittivity of soil, and the Topp
equation (Topp et al., 1980) is used to convert the dielectric permittivity to the volumetric SM. The accuracy
of the 5TM volumetric SM was improved via a soil-specific calibration performed under laboratory
conditions for each soil type found in the Maqu area (Dente et al. 2012a), leading to a decrease in the root
mean square error (RMSE) from 0.06 to 0.02 m® m™ (Dente et al. 2012a). Table 2 provides the specific
periods of data missing during each year and the total data lengths of surface SM for each monitoring site.
Among these sites, the CST05, NSTO01, and NSTO03 have collected more than nine years of SM
measurements, while the data records for the NST21, NST22, and NST31 are less than one year. In May
2019, there were still 12 sites that provided SM data.

2.1.2 Ngari network

The Ngari network is located in the western part of the TP at the headwater of the Indus River. It consists of
two SMST networks established around the cities of Ali and Shiquanhe, respectively. The landscape is
dominated by a desert ecosystem at elevations varying from 4200 to 4700 m. The climate is characterized as
cold-arid with a mean annual air temperature of 7.0 °C. The annual precipitation is less than 100 mm that
falls mainly in the monsoon season (July-August) (van der Velde et al., 2014b).

The Shiguanhe network consisted originally of 16 SMST monitoring sites installed in 2010 (Su et al. 2011),
and five new sites were installed in 2016. The basic information of each monitoring site is summarized in
Table A3 (Su et al., 2011), and the typical characteristics of topography and land cover within the network
are also shown in Fig. 4. The Decagon 5TM ECH.0 probes were installed at depths of 5, 10, 20, 40, and
60/80 cm to measure the SMST (Fig. 3). Table 3 provides the specific periods of data missing during each
year and the total data lengths of surface SM for each site. Among these sites, the SQ02, SQ03, SQ06, and
SQ14 have collected more than eight years of SM measurements, while the data records for the SQ13, SQ15,
and SQ18 are less than two years. In August 2019, there were still 12 sites that provided SM data. The Ali



141
142

143

144
145
146
147
148
149
150
151
152
153
154
155
156
157

158

159
160
161
162
163
164
165
166
167
168
169
170
171

network comprises of four SM monitoring sites (Table A3), which will not be used for further analysis in

this study due to limited number of monitoring sites and the availability of data records (Table 3).

2.1.3 Naqu network

The Naqu network is located in the Naqu river basin with an average elevation of 4500 m. The climate is
characterized as cold semi-arid with cold dry winters and rainy summers. Over three-quarters of the total
annual precipitation sum (400 mm) falls between June and August (Su et al., 2011). The landscape is
dominated by short grass.

The network consists originally of five SMST monitoring sites installed in 2006 (Su et al. 2011), and six new
sites were installed between 2010 and 2016. The basic information of each monitoring site is summarized in
Table A5, and the typical topography and land cover within the network are shown in Fig. 5 as well. The
Decagon 5TM ECH,O probes were installed at depths of 5/2.5, 10/7.5, 15, 30, and 60 cm to measure the
SMST, and an on-site soil-specific calibration is reported in van der Velde (2010) and yielded a RMSE of
0.029 m®* m, Table 4 provides the specific periods of data missing during each year and the total data lengths
of surface SM for each site. Among these sites, only two sites (Naqu and MS sites in Table A5) have collected
SM measurements for more than six years, while the data records for the others are less than four years.
Similar to the Ali network, the Naqu network will also not be used for the further analysis in this study due

to limited number of monitoring sites and the availability of data records.

2.2 Precipitation data

Precipitation data is available from the dataset of daily climate data from Chinese surface meteorological
stations. This dataset is maintained by the China Meteorological Administration (CMA) and based on the
measurements from 756 basic and reference surface meteorological observation and automatic weather
stations (AWS) in China from 1951 to present. The online dataset mainly includes seven meteorological
variables such as air pressure, air temperature, relative humidity, wind speed, evaporation, sunshine duration,
and precipitation. The precipitation data from two weather stations (see Fig. 1), i.e. Maqu (34°00°N,
102°05°E) and Shiquanhe (32°30°N, 80°05°E) are used in this study. The available daily precipitation is the
cumulative value for the period between 20h of previous day and 20h of current day at Beijing time, which
is available from https://data.cma.cn/data/detail/dataCode/SURF_CLI_CHN_MUL_DAY .html (last access
11 March 2021). The daily precipitation is summed up for each month to obtain the monthly cumulative
value in this study, which can be found at https://doi.org/10.4121/uuid:21220b23-ff36-4ca9-a08f-
ccd53782e834 (last access 16 April 2021). The monthly precipitation data for the period between 2009 and
2019 is mainly used in this study for the trend analysis (see Section 4.2).
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2.3 Model-based soil moisture products
2.3.1 ERA5-land soil moisture product

ERAS5-land is a reanalysis dataset produced by running land component of the ECMWF (European Centre
for Medium-Range Weather Forecasts) ERA5 climate model (Albergel et al., 2018). ERA5-land provides
SM data currently available from 1981 to present for every hour with a spatial resolution of 0.1°, and the data
is available from https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab (last access 11
March 2021). More information about the ERA5-land product readers are referred to Mufioz-Sabater et al.,

(2018). The data of volumetric total soil water content for the top soil layer (0-7 cm) is used in this study.

2.3.2 MERRAZ2 soil moisture product

MERRAZ2 is an atmospheric reanalysis dataset produced by NASA using the Goddard Earth Observing
System Model version 5 (GEOS-5) and atmospheric data assimilation system (ADAS), version 5.12.4.
MERRAZ2 provides SM data currently available from 1980 to present at hourly time interval and spatial
resolution of 0.5° (latitude) by 0.625° (longitude). The data is available from
https://disc.gsfc.nasa.gov/datasets/M2TINXLND _5.12.4/summary (last access 11 March 2021). For more
information about the MERRAZ2 product readers are referred to GMAO (2015). The liquid volumetric soil

water content of the surface layer (0-5 cm) is used in this study.

2.3.3 GLDAS Noah soil moisture product

GLDAS-2.1 Noah is a combination of model-based and satellite observed meteorological data, such as
Global Precipitation Climatology Project (GPCP) version 1.3, forced onto the Noah Model 3.6 in Land
Information System (LIS) version 7 to simulate water and energy exchanges between land and atmosphere.
GLDAS-2.1 Noah provides SM data currently available from 2000 to present at a 3-hourly time interval with
a spatial resolution of 0.25°. The data is available from https://disc.gsfc.nasa.gov/datasets/fGLDAS
_NOAHO025_3H_2.1/summary (last access 11 March 2021). More details on the GLDAS Noah product can
be found in Rodell et al. (2004). The liquid soil water content of the top soil layer (0-10 cm) is used in this
study.

3 Methods
3.1 Spatial upscaling of soil moisture measurements

The principle of spatial upscaling a set of point measurements to an area is based on assigning weights to
individual sites, often using additional information, in such way that the selected collection is representative
for the selected domain. The method can in its simplest form be represented by a linear equation
mathematically as follows:

6. = 63p (1)
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07 = [075%,075°, ..., 02517 (1b)
where 8;7°[m® m~] represents the upscaled SM, 8255[m® m-] represents the vector of SM measurements, N
represents the total number of SM monitoring sites, t represents the time (e.g. the t day), and S [-] represents
the vector with weights.

In this study, only the surface SM measurements taken from the Maqu and Shiquanhe networks are upscaled
to obtain the regional-scale SM for 10-year (2009-2019) periods due to the availability of much longer
records in comparison to the Naqu and Ali networks (see Section 2.1). Four upscaling methods are
investigated and inter-compared with each other to find the most suitable method for the application to the
Tibet-Obs. Brief descriptions of the selected upscaling methods are given in Appendix B. The arithmetic
average (hereafter “AA”) assigns an equal weight coefficient to each SM monitoring site (See Appendix B.1),
and the Voronoi diagram (hereafter “VD”) determines the weight based on the geographic distribution of all
the SM monitoring sites (see Appendix B.2). The time stability method (hereafter “TS”) regards the most
stable site as representative site for the network (see Appendix B.3), and the apparent thermal inertia (ATI)

method is based on the close relationship between apparent thermal inertia (t) and SM (see Appendix B.4).

3.2 Trend analysis

The Mann-Kendall test and Sen’s slope estimate (Gilbert, 1987; Mann, 1945; Smith et al., 2012) are adopted
to analyze the trend of the 10-year time series for the upscaled SM, model-based SM products (i.e. ERA5-
land, GLDAS Noah, and MERRAZ2), and precipitation. Specifically, the trend analysis is based on the
monthly data, and all the missing data is regarded as an equal value smaller than other valid data. The test
consists of calculating the seasonal statistics S and its variance VAR(S) separately for each month during the
10-year period, and the seasonal statistics are then summed to obtain the Z metric.

For month i (e.g. January), the statistics S; can be computed as:

Si = Yher itk Sgn(Xip — Xix) (23)
1 Xi,l > Xi,k
sgn(Xi — Xip) = 0 Xip = Xix
-1 Xip < Xig

where k and | represent the different year and | > k, X;; and X represent the monthly value of the variable
for the month i of the year k and I, respectively.

The VAR(S;) is computed as:

VAR(S) = % [N;(N; = )(2N; +5) = oL, tip(tip — D2ty +5)] (2b)
where N; is the length of the record for the month i (e.g. the 10 year data record in this study with N;=10),
g; is the number of equal-value data in month i, ¢;,, is the number of equal-value data in the p™ group for
month i.

After obtaining the S; and VAR(S;), the statistic S’ and VAR(S") for the selected season (e.g. warm season
is from May up to October and cold season is from November to April) can be summed as:

§'=ZiLS (2¢)
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VAR(S") = Y™, VAR(S) (2d)
where M represents the number of months in the selected season, e.g. M is 12 for the full year, and M is 6
for the warm and cold seasons.

Subsequently, the Z metric can be computed as:

( s'-1 ot
I Var(s") if §>0
Z = 0 if =0 (2e)
s'+1 . ,
t e if <0

If the statistics Z is positive (negative) and its absolute value is greater than Z, _,, (here & =0.05, Z;_g,;, =
1.96), the trend of the SM time series is regarded as upward (downward) at the significance level of a.
Otherwise, we accept the hypothesis that no significant trend is found.

If the trend shows upward or downward, we will further estimate the slope (change per unit time) with Sen’s
method (Sen, 1968). The slopes of each month can be calculated as:

Q= Ttk (20
Then rank all the individual slopes (Q;) for all months and find the median, which is considered as the

seasonal Kendall slope estimate.

3.3 Comparison metrics

The metrics used to evaluate the accuracy of the upscaled SM are the bias [m® m®], RMSE [m® m?], and
unbiased RMSE (UbRMSE [m? m]), which can be formulated as:

TH o™ - a?ps)

Bias = " (33)
M tru_ pupPsy2

RMSE = Ef=1(9t+ (3b)

ubRMSE = VRMSE? — BIAS? (3¢c)

where ™ represents the SM that is considered as the ground truth, and 5;"’Srepresents the upscaled SM.

The closer the metric is to zero, the more accurate the estimation is.
The metric used to assess the correlation between two time series is the Nash-Sutcliffe efficiency coefficient
(NSE [-]), expressed by:

Tra (8- 8;P%)?

NSE =1— o= oy (4)

The value of the NSE ranges from -== to 1, and the closer the metric is to 1, the better the match of the
estimated SM with the reference (65™).

The metrics used to define the most representative SM time series (i.e. the best upsclaed SM) is the
comprehensive evaluation criterion (CEC [-]) obtained by combining the mean relative difference (MRD [-

]) and standard deviation of the relative difference (c(RD) [-]) (Jacobs et al., 2004). Detailed description of

above mentioned three metrics are given in Appendix B.3. It should be noted that the 93%’5 and 625 in Egs.
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(B4) and (B5) represent the upscaled SM using four different methods and their average when using the CEC

to determine the best upscaled SM. The most representative time series is identified by the lowest CEC value.

3.4 Preprocessing of model-based soil moisture products

The performance of the ERA5-land, MERRAZ2, and GLDAS Noah SM products are assessed using the
upscaled SM data of the Maqu and Shiquanhe networks for a 10-year period. The corresponding regional-
scale SM for each product has been obtained by averaging the data from all the grid cells falling in the
respective network areas. The numbers of grid cells covering the Maqu and Shiquanhe networks are 77 and
20 for the ERA5-land product, 12 and 4 for the GLDAS Noah product, and only one for the MERRA2
product. For the ERA5-land and MERRAZ2 products the data available at hourly and 3-hourly time steps are
averaged to daily value and the units of GLDAS Noah SM is converted from kg m2 to m® m™. Further it
should be noted that the uppermost soil layer of the ERA5-land (0-7 cm), MERRAZ2 (0-5 cm), and GLDAS
Noah (0-10 cm) SM products are assumed to match the in situ observations at depth of 5 cm considering the

4 cm influence zone found under laboratory conditions for the 5TM sensor by Benninga et al. (2018).

4 Results
4.1 Inter-comparison of soil moisture upscaling methods

In this section, four upscaling methods (see Section 3.1) are inter-compared first with the input of the
maximum number of available SM monitoring sites for a single year in the Maqu and Shiquanhe networks
to find the most suitable upscaled SM that can best represent the areal conditions (i.e. ground truth, SMyuth).
Later on, the performance of the four upscaling methods is further investigated with the input of reducing
number of SM monitoring sites to find the most suitable method for producing long-term (~10 year) upscaled
SM for the Maqu and Shiquanhe networks.

Fig. 6 shows the time series of daily average SM for the Maqu and Shiquanhe networks produced by the four
upscaling methods based on the maximum number of available SM monitoring sites (hereafter “SM aa-max”,
“SMvp-max”, “SMTs-max”’, and “SMati-max”’). Two different periods are selected for the two networks due to the
fact that the number of available monitoring sites reaches the maximum in different periods for the two
networks, e.g. 17 sites for Maqu between November 2009 and October 2010 and 12 sites for Shiquanhe
between August 2018 and July 2019, respectively (see Tables A2 and A4 in the Appendix A). For the Maqu
network, the SMaa-max, SMvp-max, and SMrs.max are comparable to each other, while the SMari-max deviates
substantially during the winter (between December and February) and summer periods (between June and
August). On the other hand, the SMati-max for the Shiquanhe network is comparable to SMaa-max and SMyp.
max, While SMrs.max’s behavior is clearly different from the others. It seems that the ATI method performs
better in the Shiquanhe network due to the existence of a stronger relationship between z and 6 in the desert

ecosystem.
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Table B1 lists the values of MRD (see Eq. (B4) in Appendix B), o(RD) (Eqg. (B3)), and CEC (Eq. (B6))
calculated for the upscaled SM produced by the four upscaling methods. The CEC is used here to determine
the most suitable upscaled SM that can best represent the areal conditions for the two networks. It can be
found that the SMaa-max Yields consistently the lowest CEC values for both networks, indicating that the
SMaa-max €an be used to represent actual areal conditions, which will thus be regarded as the ground truth for
following analysis (i.e. SMuumn). The arithmetic average of the dense in situ measurements was also used as
the ground truth in other studies (Qin et al., 2013; Su et al., 2013) and found to yield reliable results by van
der Velde et al. (2021).

As shown in Tables A2 and A4 (see Appendix A), the number of available SM monitoring sites decreased as
time progressed. There are only three (i.e. CST05, NSTO1, and NSTO03) and four (i.e. SQ02, SQ03, SQO6,
and SQ14) monitoring sites that provided more than nine years of in situ SM measurement data for the Maqu
and Shiquanhe networks, respectively (see Tables 2 and 3). This indicates that the minimum number of
available monitoring sites can be used to produce the long-term (~10 year) consistent upscaled SM are three
and four for the Maqu and Shiquanhe networks, respectively. Fig. 7 shows the daily average SM time series
produced by the four upscaling methods based on the minimum available monitoring sites (hereafter “AA-
min”, “TS-min”, “VD-min”, and “ATI-min”). The SMuun Obtained by the AA-max is also shown for
comparison purposes. For the Maqu network, the upscaled SM produced by the AA-min, VD-min, and TS-
min generally capture well the SMyun Variations, while the upscaled SM of the ATI-min shows dramatic
deviations. Similarly, the upscaled SM produced by the AA-min and VD-minare consistent with the SMwym
for the Shiquanhe network with slight overestimations, while significant deviations are noted for the upscaled
SM of the TS-min and ATI-min. Table B2 lists the error statistics (e.g. Bias, RMSE, ubRMSE, and NSE)
computed between the upscaled SM produced by these four upscaling methods with the input of the minimum
available sites and the SMyy. The upscaled SM produced by the AA-min shows better performance for both
networks as indicated by the lower RMSE and higher NSE values in comparison to the other three upscaling
methods.

Apart from the maximum and minimum number of available SM monitoring sites mentioned above, there
are about 14, 10, 8, and 6 available monitoring sites during different time spans for the Maqu network, and
for the Shiquanhe network are about 11, 10, 6, and 5 available monitoring sites (see Tables A2 and A4 in the
Appendix A). Fig. B2 shows the radar diagram of error statistics (i.e. RMSE and NSE) computed between
the SMuuih and the upscaled SM produced by the four upscaling methods for different numbers of available
monitoring sites. For the Maqu network, the performances of the AA and VD methods are better than the TS
and ATI methods as indicated by smaller RMSEs and higher NSEs for all the estimations. A similar
conclusion can be drawn for the Shiquanhe network, while the performance of the ATl method is largely
improved when the number of available monitoring sites is not less than 10. It is interesting to note that the
upscaled SM produced by the AA-min is comparable to those obtained with more sites (e.g. 10 sites) as
indicated by comparable RMSE and NSE values for both networks. It indicates that the AA-min is suitable
to produce long-term (~10 years) upscaled SM for both networks, which yield RMSEs of 0.022 and 0.011
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m3 m-3 for the Maqu and Shiquanhe networks in comparison to the SMyun produced by the AA-max based

on the maximum available monitoring sites.

4.2 Long-term analysis of upscaled soil moisture measurements

In this section, the AA-min is first adopted to produce the consecutive upscaled SM time series (hereafter
“SMaa-min”) for approximately an 10-year period for the Maqu and Shiquanhe networks, respectively. In
addition, the other time series of upscaled SM are produced by the AA method with input of all available SM
monitoring sites regardless of the continuity (hereafter “SMaa-vaiia”’), which is widely used to validate the
various SM products (Dente et al. 2012a; Chen et al. 2013; Zheng et al. 2018b) for short periods (e.g. < 2
years). This method may, however, leads to inconsistent SM time series for a long-term period due to the fact
that the number of available sites is different in distinct periods (see Tables A2 and A4 in the Appendix A).
Trend analyses (see Section 3.2) are applied to both SMaa-min and SMaa-vaiia t0 investigate the impact of
changes of available SM monitoring sites on the long-term (i.e. 10-year) trend.

Fig. 8a shows the time series of SMaa-minand SMaa-vaiid 2long with the daily precipitation data for the Maqu
network during the period between May 2009 and May 2019. Both two time series of the SM show similar
seasonality with low values in winter due to frozen soils and high values in summer due to rainfall (see
subplot of Fig. 8a). Deviations can be found between the SMaa-min and SMaa-vaiia €Specially for the period
between 2014 and 2019, whereby the SM aa-vaiid tends to produce smaller SM values in the warm season. Fig.
9a shows further the Mann Kendall trend test and Sen’s slope estimate for the SMaa-min, SMaa-vaiid, and
precipitation of the Maqu network area for the full year, warm seasons, and cold seasons in a 10-year period.
As described in Section 3.2, the time series would present a monotonous trend if the absolute value of
statistics 7 is greater than a critical value, i.e. Zoos = 1.96 in this study. The results show that there is not
significant trend found for both precipitation and SMaa-min time series, while the SMaa-vaiia Shows a drying
trend with a Sen’s slope of -0.008 for warm seasons. The drying trend of the SMaa-vaiid iS caused by the
change of available SM monitoring sites (see Table A2). Specifically, several monitoring sites (e.g. NST11-
NST15) located in the wetter area were damaged since 2013, and four new monitoring sites (i.e. NST21-
NST25) were installed in the drier area in 2015 (see Table 2), which affects the trend of the SMaa-valid.

Fig. 8b shows the time series of the SMaa-min and SMaa-vaiid along with the daily precipitation data for the
Shiguanhe network during the period between August 2010 and August 2019. Both time series of the SM
display a similar seasonality as found for the Maqgu network (see subplot of Fig. 8b). However, obvious
deviations can be noticed for the inter-annual variations, and the SMaa-vaiis tends to produce lager values
before 2014 but smaller values since then. The Mann Kendall trend test and Sen’s slope estimate for the
SMaa-min, SMaa-vaiid, and precipitation time series of the Shiquanhe network area are shown in Fig. 9b. The
SMaa-min demonstrates a wetting trend with a Sen’s slope of 0.003, while an opposite drying trend is found
for the SMaa-vaiis due to a change in number of available SM monitoring sites (see Table A4) similar to the

results from the Maqu network. Specifically, several monitoring sites (e.g. SQ11 and SQ12) located in the
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wetter area were damaged around 2014, and five new monitoring sites (i.e. SQ17-21) were installed in the
drier area in 2016 (see Table 3).

In summary, the SMaa-vaiia 1S likely affected by the change of available SM monitoring sites over time that
leads to inconsistent trend with the SMaa-min. This indicates that the SMaa-min is superior to the SMaa-vaiia for

the production of the long-term consistent upscaled SM time series.

4.3 Application of the long-term upscaled soil moisture to validate the model-based products

In this section, the long-term upscaled SM time series (i.e. SMaa-min) produced for the two networks are
applied to validate the reliability of three model-based SM products, i.e. ERA5-land, MERRAZ2, and GLDAS
Noah, to demonstrate the uniqueness of this dataset for validating existing reanalysis datasets for a long term
period (~10 years). Since the ERA5-land product provides only total volumetric soil water content, the period
when the soil is subject to freezing and thawing (i.e. November-April) is excluded for this evaluation.

Fig. 10a shows the time series of SMaa-minand daily average SM data derived from the three products for the
Maqu network during the period between May 2009 and May 2019. The error statistics, i.e. bias and RMSE,
computed between the three products and the SMaa-min for both warm (May-October) and cold seasons
(November-April) are given in Table 5. Although the three products generally capture the seasonal variations
of the SMaa-min, the magnitude of the temporal SM variability is underestimated. Both GLDAS Noah and
MERRAZ2 products underestimate the SM measurements during the warm season leading to biases of about
-0.112 and -0.113 m® m3, respectively. This may be due to the fact that the LSMs adopted for producing
these products do not consider the impact of vertical soil heterogeneity caused by organic matter contents
that is widely present in the soil Tibetan surface (Chen et al., 2013; Zheng et al., 2015a). In addition, the
MERRAZ2 product overestimates the SM measurements during the cold season with bias of about 0.006 m?
m=. The ERA5-land product is able to capture the magnitude of SMaa-min dynamics in the warm season but
has a larger volatility and yields a RMSE of about 0.067 m® m3. The trend analysis for the three model-based
SM products are shown in Fig. 9a as well. All three products do not show significant trend in warm seasons
as the SMaa-min, While the GLDAS Noah and MERRAZ2 products show a wetting trend in cold seasons that
is in disagreement with the SMaa-min trend.

Fig. 10b shows the time series of SMaa-min and daily SM data derived from the three products for the
Shiguanhe network area during the period between August 2010 and August 2019, and the corresponding
error statistics are given in Table 5 as well. Although the three products generally capture the seasonal
variations of the SMaa-min, both GLDAS Noah and MERRAZ2 products overestimate the SMaa-min during the
entire study period leading to positive biases, and also positive bias (about 0.002 m® m( is found in the
ERAS5-land product for the warm season. The trend analyses for the three SM products are also shown in Fig.
9b. Both the ERA5-land and MERRAZ2 products are able to reproduce the wetting trend found for the SMaa-
min, While the GLDAS Noah product is not able to capture the trend.

12
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In summary, the currently model-based SM products do not provide a reliable representation of the trend and
the dynamics of measured SM on the long-term (~10 years) in the grassland and desert ecosystems that
dominate the Tibetan landscape.

5 Discussion

As shown in previous sections, the number of available SM monitoring sites in the Tibet-Obs generally
changes with time. For instance, several monitoring sites of the Maqu network located in the wetter area were
damaged since 2013, and four new monitoring sites were installed in the drier area in 2015 that affects the
trend of SM time series (i.e. SMaa-vaiid Shown in Section 4.2). On the other hand, the 10-year upscaled SM
data (i.e. SMaa-min) produced in this study utilizing three and four monitoring sites with long-term continuous
measurements would yield RMSEs of about 0.022 and 0.011 m® m™for the Maqu and Shiquanhe networks,
respectively (see Section 4.1). Therefore, to provide a higher-quality continuous SM time series for the future,
it is necessary to find an appropriate strategy to maintain the monitoring sites of Tibet-Obs. This section
discusses the possible strategies with the Maqu and Shiquanhe networks as examples.

At first, a sensitivity analysis is conducted to quantify the impact of the number of monitoring sites on the
regional SM estimate. The SM time series described in Section 4.1 (i.e. 11/2009-10/2010 for the Maqu
network and 8/2018-7/2019 for the Shiquanhe network) is used to test the sensitivity, and there are in total
17 and 12 available monitoring sites for the Maqu and Shiquanhe networks, respectively. Taking the Maqu
network as an example, we randomly pick different numbers of sites from 1 to 16 of the 17 sites to make up
different combinations, and then compute the RMSEs of the averaged SM obtained with these combinations
(Famiglietti et al., 2008; Zhao et al., 2013). These RMSEs are further grouped into nine levels ranging from
0.004 to 0.02 m® m, and the percentage of the combinations falling into each level is summarized in Table
6. In general, the percentage increases with increasing number of monitoring sites at any RMSE levels. It can
be noted that more than 50% of combinations are able to comply with the RMSE requirement of 0.004 m?
m=2 if the number of available monitoring sites are 16 and 11 in the Maqu and Shiquanhe networks,
respectively. If the number of available monitoring sites are more than 13 and 6 in the Maqu and Shiquanhe
networks, there are about 60% of combinations with 13 sites (6 sites ) are able to comply with the RMSE
requirement of 0.01 m® m. For an RMSE of 0.02 m® m, more than 50% of combinations complies with
this requirement if the number of available monitoring sites is more than 7 and 3 for the two networks,
respectively. In summary, the number of monitoring sites required to maintain current networks depends on
the defined RMSE requirement.

As shown in Section 4.1, the usage of a minimum number of sites (i.e. three for Maqu and four for Shiquanhe)
with about 10-year continuous measurements yields RMSEs of 0.022 and 0.011 m® m for the Maqu and
Shiquanhe networks, respectively. Since there are still 12 monitoring sites providing SM measurements for
both networks until 2019 (see Tables 2 and 3), it is possible to decrease the RMSEs when the selected
permanent monitoring sites are appropriately determined. For the Shiquanhe network, the optimal strategy is

to keep the current 12 monitoring sites, which is exactly the combination used in Section 4.1. For the Maqu
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network, it can be found that there is about 3.52% of combinations with 12 sites could yield the minimum
RMSE of 0.006 m® m (see Table 6). In order to find the optimal combination with 12 sites for the Maqu
network, all the possible combinations (i.e. the number of 6188) are ranked by RMSE values from the
smallest to largest, and Table 7 lists the examples of ranking 1-5™ and 95-100™. It can be noted that the 100™
combination contains the largest number of currently available monitoring sites (i.e. 7 sites including CST03,
CSTO05, NST01, NST03, NST05, NST06, and NST10) with a RMSE of less than 0.006 m® m-. Therefore,
the 100" combination of 12 monitoring sites (as shown in Table 7) is suggested for the Maqu network.

In summary, it is suggested to maintain the current 12 monitoring sites for the Shiquanhe network, while for
the Maqu network it is suggested to restore five old monitoring sites, i.e. CST02, NST11, NST13, NST14,
and NST15.

6 Data availability

The 10-year (2009-2019) surface SM dataset is freely available from the 4TU.ResearchData repository at
https://doi.org/10.4121/uuid:21220b23-ff36-4ca9-a08f-ccd53782e834 (Zhang et al., 2020). The original in
situ SM data, the upscaled SM data, and the supplementary data are stored in .xlIsx files. A user guide
document is given to introduce the content of the dataset, the status of the Tibet-Obs, and the online dataset

utilized in the study.

7 Conclusions

In this paper, we report on the status of the Tibet-Obs and present the long-term in situ SM and spatially
upscaled SM dataset for the period 2009-2019. In general, the number of available SM monitoring sites
decreased over time due to damage of sensors. Until 2019, there are only three and four sites that provide an
approximately 10-year consistent SM time series for the Maqu and Shiquanhe networks, respectively.
Comparisons between four upscaling methods, i.e. arithmetic averaging (AA), Voronoi diagram (VD), time
stability (TS), and apparent thermal inertia (ATI), show that the AA method with input of the maximum
number of available SM monitoring sites (AA-max) can be used to represent the actual areal SM conditions
(SMyun). The arithmetic average of the three and four monitoring sites with long-term continuous
measurements (AA-min) are found to be most suitable to produce the upscaled SM dataset for the period
2009-2019, which yields RMSEs of 0.022 and 0.011 m® m? for the Maqu and Shiquanhe networks in
comparison to the SMyyh.

Trend analysis of the approximately 10-year upscaled SM time series produced by the AA-min (SMaa-min)
shows that the Shiquanhe network in the western part of the TP is getting wet while no significant trend is
found for the Maqu network in the east. The usage of all the available monitoring sites each year leads to
inconsistent time series of SM that cannot capture the trend of SMaa-min reliably. Comparisons between the
SMaa-min @and the model-based SM products from the ERA5-land, GLDAS Noah, and MERRAZ2 further

demonstrate that current model-based SM products still show deficiencies in representing the trend and the
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dynamics of the SM measured on the TP. Moreover, strategies for maintaining the Tibet-Obs are provided,
and it is suggested to maintain currently 12 operational sites for the Shiquanhe network, while for the Maqu
network it is suggested to restore five old sites.

The 10-year (2009-2019) surface SM dataset presented in this paper includes the 15-min in situ measurements
taken at a depth of 5 cm collected from three regional-scale networks (i.e. Maqu, Naqu, and Ngari including
Ali and Shiquanhe) of the Tibet-Obs, and the spatially upscaled SM datasets produced by the AA-min for
the Maqu and Shiquanhe networks. This dataset is valuable for calibrating/validating long-term satellite- and
model-based SM products, evaluation of SM upscaling methods, development of data fusion methods, and

quantifying the coupling of SM with precipitation at 10-year scale.
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Fig. 1. Locations of the Tibet-Obs including Maqu, Naqu, and Ngari (including Ali and Shiquanhe) soil moisture
monitoring networks. The weather stations of Maqu and Shiquanhe operated by the China Meteorological
Administration (CMA) are also shown. (Base map is from Esri, Copyright: © Esri)
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Fig. 2. (a) Overview of the Magu monitoring network, and typical characteristics of topography and land cover
within the network: (b) river valley, (c) hill valley, (d) hill slope, (e) valley, (f) wetland and (g) grass. The colored
triangles in (a) represent different data lengths of surface SM measurements for each site, and the colored boxes
represent the coverage of selected model-based products. The site name in the bracket in (b)-(g) indicates the site
location for which the photograph is selected. (Base map copyright: ©2018 Garmin)
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Fig. 3. Examples of typical installation of sensors in monitoring sites of (a) Maqu and (b) Ngari networks.
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Fig. 4. Overview of the Ngari monitoring network including (a) Shiquanhe and (b) Ali networks, and typical
characteristics of topography and land cover within the network: (c) flat, (d) slope, (e) desert, and (f) sparse grass.
The colored triangles in (a) and (b) represent different data lengths of surface SM measurements for each site,
and the colored boxes represent the coverage of selected model-based products. The site name in the bracket in
(c)-(f) indicates the site location for which the photograph is selected. (Base map copyright: ©2018 Garmin)
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Fig. 5. (a) Overview of the Naqu monitoring network, and typical characteristics of topography and land cover
within the network: (b) plain and (c) grassland. The colored triangles in (a) represent different data lengths of
surface SM measurements for each site. The site name in the bracket in (b) and (c) indicates the site location for
which the photograph is selected. (Base map copyright: ©2018 Garmin)
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Table 1. Summary of the main Tibet-Obs applications and corresponding findings.

Literature In situ data Satellite- and/or model-based products Key findings
Denteetal.  Maqu network, LPRM AMSR-E SM product, ASCAT SM i) The weighted average of SM depended on
(2012a) period between product the percentage spatial coverage strata can be
2008 and 2009 regarded as the ground reference.
ii) The AMSR-E and ASCAT products are
able to provide reasonable area SM during
monsoon seasons.
Denteetal.  Maqu network, Soil Moisture and Ocean Salinity (SMOS) The SMOS product exhibits a systematic dry
(2012b) period of 2010 Level 2 SM product bias (0.13 m® m™®) at the Maqu network.
Zeng et al. Maqu network, SMOS Level 3 SM product (version 2.45), i) The ECV and ERA products give the best
(2015) period between Advanced Microwave Scanning Radiometer  performance, and all products are able to
2008 and 2010 for Earth Observation System SM products  capture the SM dynamic except for the NASA
(AMSR-E) SM products developed by product.
National Aeronautics and Space ii) The JAXA AMSR-E/AMSR?2 products
Administration (NASA version 6), Land underestimate SM, while the ASCAT product
Parameter Retrieval Model (LPRM version  overestimates it.
2), and Japan Aerospace Exploration iii) The SMOS product exhibits big noise and
Agency (JAXA version 700), AMSR2 bias, and the LPRM AMSR-E product shows a
Level 3 SM product (version 1.11), significantly larger seasonal amplitude.
Advanced Scatterometer SM product
(ASCAT version TU-Wien-WARP 5.5),
ERA-Interim SM product (version 2.0), and
Essential Climate Variable SM product
(ECV version 02.0)
Zhengetal.  Maqu network, Noah LSM (land surface model) The modified hydraulic parameterization is
(2015a) period between simulations able to resolve the SM underestimation in the
2009 and 2010 upper soil layer under wet conditions, and it
also leads to better capture for SM profile
dynamics combined with the modified root
distribution.
Bi & Ma Maqu network, GLDAS SM products produced by Noah, The SM simulated by the four LSMs can give
(2015) period between Mosaic CLM and Variable Infiltration reasonable SM dynamics but still show
2008 and 2011 Capacity (VIC) models negative biases probably resulted from the
high soil organic carbon content.
Li etal. Maqu network, Soil Moisture Active Passive (SMAP) i) The standard and enhanced SMAP products
(2018) period between Level 3 standard (36km) and enhanced have similar performance for SM spatial
2015 and 2016 (9km) passive SM products (version 3), distributions.
Community Land Model (CLM4.5) ii) The SM of enhanced SMAP product
simulations exhibits good agreement with the CLM4.5 SM
simulation.
Zhao et al. Maqu network, Downscaled SM from five typical triangle- ~ The model treating the surface SM as a
(2017) period between based empirical SM relationship models second-order polynomial with LST, vegetation
2008 and 2010 indices, and surface albedo outperforms other
models.
Juetal. Maqu network, VIC LSM simulations The IEPFM (immune evolution particle filter
(2019) period of 2012 with Markov chain Monte Carlo simulation) is
able to mitigate particle impoverishment and
provide better assimilation results.
Zhengetal.  Ngari network, SMAP Level 2 radiometer SM product Modifying surface roughness and employing
(2018b) period between soil temperature and texture information can
2015 and 2016 improve the SMAP SM retrievals for the
desert ecosystem of the TP.
Zhang etal. Maqu and Ngari ERA-Interim SM product, MERRA SM All these products exhibit overestimation at
(2018) networks, period  product, GLDAS_Noah SM product the Ngari network while underestimation at the

between 2010
and 2013

(version2.0 and version2.1)

Maqu network except for the ERA-Interim
product.
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Zheng et al.

(2018a)

Wei et al.
(2019)

Liu et al.
(2019)

Yang et al.
(2020)

Suetal.
(2013)

Zeng et al.
(2016)

Cheng et al.

(2019)

Maqu and Ngari
networks, period
between 2015
and 2016

Maqu and Ngari
networks, period
between 2015
and 2016

Maqu and Ngari
networks, period
between 2012
and 2016

Maqu and Ngari
network, period
between 2008
and 2011

Maqu and Naqu
networks, period
between 2008
and 20009.

Maqu, Naqu and
Ngari networks,
period between
2010 and 2011
Maqu, Naqu and
Ngari networks,
period of 2010

SMAP Level 1C radiometer brightness
temperature products (version 3)

SMAP Level 3 SM passive product

SMAP Level 3 SM products (version 4.00),
SMOS-IC SM products (version 105),
Fengyun-3B Microwave Radiation

Image SM product (FY3B MWRI), JAXA
AMSR2 Level 3 SM product, LPRM
AMSR2 Level 3 SM product (version 3.00)

AMSR-E brightness temperature product

AMSR-E SM product, ASCAT Level 2 SM
product, ECMWF SM analyses i.e.
optimum interpolation and extended
Kalman filter products

LPRM AMSR-E SM product, ERA-Interim
SM product

European Space Agency Climate Change
Initiative Soil Moisture SM product (ESA
CCISM version 4.4), ERA5 SM product

i) The SMAP algorithm underestimates the
significance of surface roughness while
overestimates the impact of vegetation.

ii) The modified brightness temperature
simulation can result in better SM retrievals.

The downscaled SM still can keep accuracy
compared to the SM of original SMAP
product.

i) The JAXA AMSR2 product underestimates
area SM while the LPRM AMSR?2 product
overestimates it.

ii) The SMOS-IC product exhibits some noise
of SM temporal variation.

iii) The SMAP product has the highest
accuracy among the five products while FY3B
shows relatively lower accuracy.

The assimilated SM products exhibit higher
accuracy than the AMSR-E product and LSM
simulations for wet areas, whereas their
accuracy is similar for dry areas.

i) The Naqu area SM is overestimated by the
ECMWEF products in monsoon seasons, while
the Maqu area SM produced by the ECMWF
is comparable to previous studies.

ii) The SM estimate cannot be considerably
improved by assimilating ASCAT data due to
the CDF matching approach and the data
quality.

The blended SM is able to capture temporal
variations across different climatic zones over
the TP.

i) The seasonal variation and spatial
distribution of SM can be captured by all four
products i.e., ESA CCI_active, ESA
CCI_passive, ESA CCI_combined, and ERA5.
ii) The ESA CCI_active and ESA
CCI_combined products exhibit narrower
magnitude than the ESA CCI passive and
ERAS products.

iii) The SM uptrend across the TP can be
found from the ERAS5 product.
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Table 2. Data records of all the SMST monitoring sites performed for the Maqu network. Blank cells represent
that there are no measurements performed. Cells with hyphen represent that data is available. The number in
710  cells represents the month(s) when the data is missing during a year.

2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | Datalength
(months)
csTo1 | — — | 1012 | V6 36
10~12
csTo2 | — — | 5~12 | 1~10 6 7~12 46
csTo3 | — — — — | 612 | 1~10 | 7~12 1~9 | 5~12 68
13 | 12
CST04 | 1-5 2 0| 8~10 | 7~12 1~6 | 7~12 73
csTos | — — — — 6 — — | 57 — 1~2 | 6~12 119
NSTOL | 1-5 — — — 6 — — 5~7 — — | 612 116
7~8
NSTO02 | 1-3 10-12 40
NSTO3 | — — | 510 | — 6 — — | 57 — — | 612 115
NSTO4 | — — | 1012 33
NSTO5 | 3-5 — — — | 612 | 17 — 57 | 7~12 | 1~7 | 6~12 92
1-3
NSTO6 | — i 1-3 — 6 — — 6~7 | 812 | 1~7 | 6~12 104
12 | 12 | 13
NSTO7 3 6,12 1 2 | 35| » | e 101
NsTos | — | 2t | 1 | — [0 | 10 | — | 67 | — | — | 612 95
1~4 1~2 1-3 | 1-2
NSTO9 | 1,12 | 1-3 6 | 70| 12 | 27 5 6~12 99
NST10 | — | 11~12 71:152 1~6 | 6~12 1~7 | 6~12 44
NST11 | — — — 7-8 6 7~12 63
NST12 | 10~12 | 1-9 — — | 6~12 | 1~10 | 7-12 49
NST13 | — — — — 6 — | 712 77
NST14 | 6-9 — — — 6 |10-12 64
NST15 | — | 10~12 | 1~5 | 6~12 33
NST21 1~7 | 7~12 1
NST22 1~7 | 7~12 1
NST24 1~7 | 2~12 | 1~7 — — | 612 40
NST25 1~7 — | 2212 | 1-8 — | 612 39
NST31 1-8 | 7~12 10
NST32 15 | 6~12 12
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Table 3. Same as the Table 2 but for the Ngari network.

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 | Data length (months)
Shiquanhe network
SQO1 1~7 — — — 9~12 1~9 52
SQ02 1~7 — — — 5-9 — — — — 9-12 104
SQO03 1~7 — — — 8~9 — — — — 9~12 107
SQ04 1~7 — | 9-12 25
SQO05 1~7 — — — 5~12 45
SQ06 1~7 — 9-12 1 2-9 — — — — 9-12 96
SQO7 1~7 — — 9~12 1-8 — 7~8 7~8 — 9~12 93
SQO08 1~7 8~12 1-8 8~9 — — — — 9~12 82
SQO09 1~7 — 9~12 1-8 9~12 37
SQ10 1-8 — — 7-12 1~9 | 7-12 | 1-8 — | 912 67
SQ11 1~7 — — 9-12 1-8 | 9-12 49
SQ12 1~7 — | 912 25
SQ13 1-7 | 8-~12 12
QU | 17 | — | — — sﬁg — | = — | = | 91 106
SQ16 1~7 7-8 — — 3-8 | 9-12 53
SQ17 1~-8 — — 9~12 36
SQ18 1-8 1 9-12 23
SQ19 1~-8 — — 9~12 36
SQ20 1~-8 — — 9~12 36
SQ21 1~-8 — — 9~12 36
Ali network
Ail 1-7 — | 9-12 | 1-8 1-8 | 8~12 40
Aliol 1~7 8~12 1~-8 — 8 — — — 8~12 82
mioz | 77118 | — | — 8 — | = | = |81 85
Ali03 1~7 — — 3~12 1-8 — — — 8~12 78
715 Table 4. Same as the Table 2 but for the Nagqu network.
2010 | 2011 2012 2013 2014 2015 2016 2017 2018 2019 | Data length (months)
Naqu 1~7 — — 8~9 6~8 6~9 — 9~12 1-8 9~12 88
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East 18 | — | 912 2
West | 1~7 | 1-8 — | 19 | 7712 | 17 | 812 42
18 | 1-3

North btz | g | 12 18 | 9-12 | 1-8 | 9-12 42
South 18 | 9-12 12
Kema 1~9 3~9 — 8~12 26

Ms | 17 | — |10-12| 19 | 8% | 15 | — | 912 | 18 | 9-12 76

11-12

NQO1 18 | 9~12 12
NQO2 18 | 9~12 12
NQO3 18 | 9-12 | 18 | 9~12 2
NQO4 1-8 | 9-12 12

Table 5. Error statistics computed between the SMaa-min and the three model-based SM products for the Maqu
and Shiquanhe networks.

Bias (m*m?) RMSE (m*m) Bias (m®m) RMSE (m*m?)
Warm season Cold season
Maqu

ERAS5-land 0.050 0.067 - -
GLDAS Noah -0.112 0.125 -0.049 0.088

MERRA2 -0.113 0.124 0.006 0.097

Shiquanhe

ERAS5-land 0.002 0.079 - -
GLDAS Noah 0.010 0.116 0.052 0.058

MERRA2 0.054 0.069 0.049 0.053

720 Table 6. Percentages of the site combinations that fall into an accuracy requirement in terms of RMSE.

RMSE 0.004 0.006 0.008 0.010 0.012 0.014 0.016 0.018 0.020

Maqu network

n=1 (%)

n=2 (%) 0.74 3.68
n=3 (%) 0.44 1.32 3.97 7.79
n=4 (%) 0.21 1.05 3.74 9.16 16.93
n=5 (%) 0.03 0.58 3.10 9.31 18.23 28.18
n=6 (%) 0.09 1.87 8.27 19.18 31.22 42.36
n=7 (%) 0.69 6.21 18.11 3191 43.98 54.32
n=8 (%) 0.08 3.29 14.97 30.32 43.97 55.36 64.79
n=9 (%) 0.84 9.58 26.27 42.42 55.47 65.94 74.16
n=10 (%) 0.01 391 19.74 38.94 54.41 66.13 75.21 82.23
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n=11 (%) 0.53 11.10 32.92 51.7 65.66 75.9 83.32 88.87
n=12 (%) 352 23.95 473 64.03 75.87 84.45 90.14 94.30
n=13 (%) 0.29 13.82 39.87 61.81 75.67 85.38 91.55 95.38 97.77
n=14 (%) 3.68 32.35 57.79 74.85 86.47 92.79 96.91 98.82 99.41
n=15 (%) 21.32 56.62 75.00 88.97 95.59 98.53 99.26 100.00 100.00
n=16 (%) 52.94 82.35 94.12 94.12 100.00 100.00 100.00 100.00 100.00
Shiquanhe network
n=1 (%) 8.33 16.67 25.00
n=2 (%) 1.52 152 4.55 13.64 30.30 37.88 42.42 48.48
n=3 (%) 6.82 21.36 25.45 33.18 42.73 53.18 59.55 65.00
n=4 (%) 1.62 11.31 29.7 41.41 51.11 57.37 63.23 70.51 77.58
n=5 (%) 3.66 2311 36.87 49.12 60.23 68.18 76.14 82.32 88.26
n=6 (%) 11.36 30.95 44.37 59.85 70.24 79.11 85.28 90.15 93.29
n=7 (%) 20.20 39.77 56.06 68.31 77.90 86.87 93.43 96.84 98.48
n=8 (%) 29.29 50.51 62.63 77.58 89.09 96.57 97.98 98.99 99.60
n=9 (%) 33.64 59.55 82.73 91.36 96.36 98.18 99.55 99.55 100.00
n=10 (%) 48.48 78.79 92.42 96.97 96.97 100.00 100.00 100.00 100.00
n=11 (%) 83.33 91.67 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Table 7. The combinations of monitoring sites ranked by RMSE values of average SM at the Maqu network.

Rank Sitel Site2 Site3 Sited Site5 Site6 Site7 Site8 Site9 Site10 Sitell Sitel2 RMSE
1 CSTO1  CST02 NST02 NSTO3  NST04 NST05 NST06 NSTO7 NST10 NST13 NST14 NST15  0.00402
2 CSTO1  CST02 CSTO4 NSTO1  NSTO2 NSTO3 NST04 NSTO5 NSTO6 NSTO7 NST13  NST15  0.00417
3 CST02  NSTO1  NST02 NSTO3 NST04 NST05 NST06 NSTO7 NST10 NST13 NST14 NST15  0.00450
4 CSTO1 ~ CST02  NSTO1  NST02 NSTO3 NST04 NSTO5 NST06 NSTO7 NST13 NST14 NST15  0.00450
5 CSTO01  CST02 CST03  NST02 NSTO3 NST04 NSTO05 NST06 NSTO7 NST10 NST14 NST15  0.00451

96 CSTO1  CST02 CST03  CSTO4 CSTO5 NSTO3  NST06 NST10 NST11  NST13 NST14 NST15  0.00555
97 CSTO01  CST02 CST03  NSTO1  NSTO02 NST04 NSTO05 NST06 NST11  NST13 NST14 NST15  0.00555
98 CST01  CST02 CST03  CSTO4 CSTO5 NSTO1  NST02 NSTO5 NSTO6 NST10 NST11  NST15  0.00556
99 CSTO3  NST02 NSTO3  NST04 NSTO5 NST06 NSTO7 NST10 NST11  NST13 NST14 NST15  0.00557
100 CST02 CST03 CST05 NSTOL NST03 NSTO5 NSTO6 NST10 NST11 NST13 NST14 NST15  0.00557
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725  Appendix A. Basic information of the Tibet-Obs

Table Al. Site information of the Maqu network (site name, elevation, topography (TPG), land cover (LC), soil
texture at 5-15 cm depth (STX), soil bulk density at 5cm depth (BD), soil organic matter content at 5-15cm depth
(OMC), Not Available (NA), BD and OMC values are measured in the laboratory).

Site name  Elevation (m) TPG LC STX BD (kg m™®) OMC (g/kg)
CST01 3431 River valley Grass NA NA NA
CST02 3449 River valley Grass NA NA NA
CST03 3507 Hill valley Grass NA NA NA
CST04 3504 Hill valley Grass NA NA NA
CST05 3542 Hill valley Grass NA NA NA
NSTO1 3431 River valley Grass Silt loam 0.96 18
NSTO02 3434 River valley Grass Silt loam 0.81 18
NSTO3 3513 Hill slope Grass Silt loam 0.63 49
NST04 3448 River valley Wetland Silt loam 0.26 229
NSTO5 3476 Hill slope Grass Silt loam 0.75 22
NSTO06 3428 River valley Grass Silt loam 0.81 23
NSTO7 3430 River valley Grass Silt loam 0.58 23
NSTO08 3473 Valley Grass Silt loam 1.06 34
NST09 3434 River valley Grass Sandy loam 0.91 17
NST10 3512 Hill slope Grass Loam-silt loam 1.05 24
NST11 3442 River valley Wetland Organic soil 0.24 136
NST12 3441 River valley Grass Silt loam 1.02 39
NST13 3519 Valley Grass Silt loam 0.67 29
NST14 3432 River valley Grass Silt loam 0.68 30
NST15 3752 Hill slope Grass Silt loam 0.78 56
NST21 3428 River valley Grass Silt loam NA NA
NST22 3440 River valley Grass Silt loam NA NA
NST24 3446 River valley Grass Silt loam NA NA
NST25 3600 Hill slope Grass Silt loam NA NA
NST31 3490 NA NA NA NA NA
NST32 3490 Hill valley Grass NA NA NA

730 Table A2. Soil moisture with temporal persistence for the Maqu network. Light gray shaded cells represent that
no data is missing, dark gray shaded cells indicates data is missing with little influence.
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Time

2009.11~
2010.11

2010.11.~
2011.11

2011.11~
2012.11

2012.11~
2013.11

2013.11~ | 2014.11~ | 2015.11~
2014.11 2015.11 2016.11

2016.11~ | 2017.11~
2017.11 2018.11

CSTO05

NSTO1

NSTO03

NSTO06

NSTO7

NST13

NSTO1

NST14

CSTO03

NSTO05

CSTO01

CST04

NSTO02

NSTO04

CST02

NST10

NST15

Table A3. Same as the Table A1 but for the Ngari network (BD and OMC data are not available).

Site name Elevation (m) TPG LC STX
Shiquanhe network
SQO01 4306 Flat Desert Loamy sand
SQ02 4304 Gentle slope Desert Sand
SQ03 4278 Gentle slope Desert (with sparse bushes) Sand
SQ04 4269 Edge of a wetland Sparse grass Loamy sand
SQ05 4261 Edge of a marsh Sparse grass Sand
SQ06 4257 Flat Sparse grass Loamy Sand
SQ07 4280 Flat Desert (with sparse bushes) Sand
SQO08 4306 Flat Desert Sand
SQ09 4275 Flat Desert/river bed Sand
SQ10 4275 Flat Grassland Fine sand with some
thick roots

SQ11 4274 Flat Grassland with bushes Loamy sand
SQ12 4264 Flat Edge of riverbed Sandy loam
SQ13 4292 Flat Valley bottom Sand
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SQ14 4368 Slope Desert Sandy loam
SQ16 4288 Flat Desert/river bed Loam
SQ17 4563 NA NA NA
SQ18 4634 NA NA NA
SQ19 4647 NA NA NA
SQ20 4695 NA NA NA
SQ21 4606 NA NA NA
Ali network

Ali 4288 Flat Grass Loamy sand
Ali0l 4262 Flat Sparse grass Sand
Ali02 4266 Flat Sparse grass Sand
Ali03 4261 Edge of a wetland Grass Sand

735 Table A4. Same as Table A2 but for the Shiquanhe network.

Time

2010.8~
2011.8

2011.8~
2012.8

2014.8~
2015.8

2015.8~ 2016.8~
2016.8 2017.8

2017.8~ 2018.8~
2018.8 2019.8

SQ02

SQ03

SQ06

SQ14

SQ08

SQ07

SQ17

SQ19

5Q20

SQ21

SQ10

SQ11

Table A5. Same as the Table Al but for the Naqu network (BD and OMC data are not available).

Site name Elevation (m) TPG LC STX
Naqu 4509 Plain Grassland Loamy sand
East 4527 Flat hill top Grassland Loamy sand
West 4506 Plain Grassland Loamy sand
North 4507 Slope on riverbank Grassland Loamy sand
South 4510 Slope of wetland Wetland Loamy sand
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740

745

750

755

Kema 4465 River valley Grass Silt loam

MS 4583 NA NA NA
NQO1 4517 NA NA NA
NQO02 4552 NA NA NA
NQO3 4638 NA NA NA
NQO4 4632 NA NA NA

Appendix B. Spatial upscaling methods
B.1 Arithmetic averaging

The arithmetic averaging method assigns an equal weight coefficient to each SM monitoring site of the

network, which can be formulated as:

1
6,7 = 3L 0% (B1)

where i represents the i SM monitoring site.

B.2 Voronoi diagram

The Voronoi diagram method divides the network area into several parts according to the distances between
each SM monitoring site. This approach determines the weight of each site (w; [-]) based on the geographic

distribution of all the SM monitoring sites within the network area, which can be formulated as:

aups _ Z?’:l Wﬂgf’s (BZ)

N
t Zi=1wi

B.3 Time stability

The time stability method is based on the assumption that the spatial SM pattern over time tends to be
consistent (Vachaud et al., 1985), and the most stable site can be regarded as the representative site of the
network. For each SM monitoring site i within the time window (M days in total), the mean relative

difference MRD; [-] and standard deviation of the relative difference o(RD;) [-] are estimated as:

1
O'(RDL) = EZItVIzl(RDt,i — MRDl)Z (BS)
1 90}’5_97’E
MRD; = EZ&W (B4)
obs_pobs
RD,; = L0 (B5)

9ebs
where 6275 [m® m] represents the SM measured on the t" day at the i monitoring site, 675 [m® m]

represents the mean SM measured at all available monitoring sites on the t" day. MRD; quantifies the bias of

each SM monitoring site to identify a particular location is wetter or drier than regional mean, and o(RD;)
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765

770

775

780

785

790

characterizes the precision of the SM measurement. Jacobs et al., (2004) combined above two statistical

metrics as a comprehensive evaluation criterion (CEC; [-]):

CEC; = /(MRD;)? + o(RD;)? (B6)

The most stable site is identified by the lowest CEC; value.

B.4 Apparent thermal inertia

The apparent thermal inertia (ATI) method is based on the close relationship between apparent thermal inertia
(r [K?]) and SM (@ [m* m?]) (Van doninck et al., 2011; Veroustraete et al., 2012). If the true areal SM (™
[m® m™®]) is available, then the weight vector B can be derived by the ordinary least-squares (OLS) method
that minimizes the cost function J as:

J =26 - BTor)? (B7)
However, the 8™ [m® m~] is usually not available in practice, and the representative SM (8, " [m® m]) is
thus introduced that contains random noise but with no bias. Since the OLS method may results in overfitting
with usage of the 6; ", a regularization term is introduced and Eq. (B7) can be re-formulated as (Tarantola,
2005):

J = SO — BTOP)0 (B — BTOZ%) + BT (B8)
where o [m® m™] represents the standard deviation of 8;°7, R [-] is the regularization parameter.

The core issue of the ATI approach is to obtain the 8, °” and minimize the cost function of Eqg. (B8) to obtain
B and R. The 6;“Pcan be retrieved from the apparent thermal inertia T via empirical regression g(z), and
has strong connection with the surface status, e.g. land surface temperature and albedo, which is defined as:
t=C=* (B9)
where C [-] represents the solar correction factor, a [-] represents the surface albedo, and A [K] represents
the amplitude of the diurnal temperature cycle. The albedo and land surface temperature data obtained from
the MODIS MCD43A3 and MYD11A1/MOD11A1 Version 6 products are used to derive the ATI according
to Eq. (B9) in this study.

The solar correlation factor C in Eq. (B9) is computed as:

C = singsin8(1 — tan?tan?8)/? + cospcosdarccos(—tanptand) (B10)
with

8 = 0.00691 — 0.399912 cos(y) + 0.070257 sin(y) — 0.006758 cos(2y) + 0.000907 sin(2y) —
0.002697cos(3y) + 0.00148sin(3y) (B11)
and

V=S (B12)

where o represents the latitude [rad], 8 represents the solar declination [rad], and n, represents the Julian

day number.
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The amplitude of the diurnal LST A is estimated as LSTmax - LSTmin for a single day. Finally, we use the
regression analysis between in situ SM measurements (6) at each monitoring site and corresponding ATI (t)
to obtain the g(-) form.

There are 17 and 12 monitoring sites participate in the regression analysis for the Maqu and Shiquanhe
networks during the periods of 11/2009-10/2010 and 8/2018-7/2019, respectively. The ATI cannot be
obtained for each monitoring site in every day since the satellite-based LST data are contaminated by clouds.
In order to make full use of the data, we make the ATI-SM pair for the 1% monitoring site on the 1% day as
No. 1, the pair for the 17" (or 12'") monitoring site in the Maqu (or Shiquanhe) network on the 1% day as the
No. 17 (or No. 12), the pair for the 1% monitoring site at the 2" day as the No. 18 (No. 13), and so on. Later
on, we select a certain number of ATI-SM pairs (e.g. 40, 50, 60, 70, 80, 90, and 100) as a group to compute
the averaged ATI and SM and construct the most reliable (i.e. with the maximum R?) regression relationship
between them. If the ATI or SM data at one day is missing, this pair is ignored. As shown in Fig. B1, the
empirical relationship is generated from 80 pairs ATl and SM averaged for the Maqu and Shiquanhe
networks.

When the empirical relationship g(+) is determined, the regional-average SM can be derived from grid-
averaged ATI by the function g(-), which it is regarded as 8, °” in Eq. (B8). Finally, the optimal 8 (3) is
obtained by minimizing the cost function (i.e. Eq. (B8)), and the upscaled SM can be estimated as:

0,” = pogrs (B13)
The detailed description of the ATI method is referred to Qin et al. (2013).

(a) Maqu (b) Shiquanhe
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Fig. B1 Empirical relationship between 80 pair of ATI and SM averaged for the (a) Maqu and (b) Shiquanhe
networks.

35



(a) Maqu 3 sites 3 sites
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Fig. B2. Radar diagram of error statistics (i.e. RMSE and NSE) computed between the SMtuth produced by the
AA-max and the upscaled SM produced by the four upscaling methods with input of different number of available
monitoring sites for the (a) Maqu and (b) Shiquanhe networks.

820 Table B1. Evaluation metrics computed for the upscaled SM produced with four methods with input of the
maximum available monitoring sites.

Maqu Shiquanhe
Methods
MRD o(RD) CEC MRD o(RD) CEC
AA-max 0.009 0.054 0.055 0.012 0.046 0.047
TS-max 0.022 0.089 0.092 0.011 0.114 0.114
VD-max -0.026 0.064 0.069 -0.042 0.033 0.053
ATI-max -0.005 0.145 0.145 0.016 0.068 0.070

Table B2. Error statistics computed between the SM obtained by the four upscaling methods with input of the
minimum available monitoring sites, and the SMuth produced by the AA-max for the Maqu and Shiquanhe
825 networks.

Bias (m*m) RMSE(m®m?) UbRMSE (m*m?) NSE
Maqu
AA-min 0.005 0.022 0.021 0.954
TS-min 0.025 0.050 0.044 0.747
VD-min -0.007 0.022 0.020 0.954
ATI-min -0.052 0.099 0.084 0.030
Shiquanhe
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AA-min
TS-min
VD-min
ATI-min

0.010
-0.001
0.019
-0.001

0.011
0.013
0.020
0.021

0.005
0.013
0.006
0.021

0.816
0.768
0.400
0.393
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