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Abstract. The Tibetan Plateau observatory of plateau scale soil moisture and soil temperature (Tibet-Obs) 16 

was established ten years ago, which has been widely used to calibrate/validate satellite- and model-based 17 

soil moisture (SM) products for their applications to the Tibetan Plateau (TP). This paper reports on the status 18 

of the Tibet-Obs and presents a 10-year (2009-2019) surface SM dataset produced based on in situ 19 

measurements taken at a depth of 5 cm collected from the Tibet-Obs that consists of three regional-scale SM 20 

monitoring networks, i.e. the Maqu, Naqu, and Ngari (including Ali and Shiquanhe) networks. This surface 21 

SM dataset includes the original 15-min in situ measurements collected by multiple SM monitoring sites of 22 

the three networks, and the spatially upscaled SM records produced for the Maqu and Shiquanhe networks. 23 

Comparisons between four spatial upscaling methods, i.e. arithmetic averaging, Voronoi diagram, time 24 

stability, and apparent thermal inertia, show that the arithmetic average of the monitoring sites with long-25 

term (i.e. ≥ six years) continuous measurements are found to be most suitable to produce the upscaled SM 26 

records. Trend analysis of the 10-year upscaled SM records indicates that the Shiquanhe network area in the 27 

western part of the TP is getting wet while there is not significant trend found for the Maqu network area in 28 

the east. To further demonstrate the uniqueness of the upscaled SM records in validating existing SM products 29 

for long term period (~10 years), comparisons are conducted to evaluate the reliability of three reanalysis 30 

datasets for the Maqu and Shiquanhe network areas. It is found that current model-based SM products still 31 

show deficiencies in representing the trend and variation of measured SM dynamics in the Tibetan grassland 32 

(i.e. Maqu) and desert ecosystems (i.e. Shiquanhe) that dominate the landscape of the TP. The dataset would 33 

be also valuable for calibrating/validating long-term satellite-based SM products, evaluation of SM upscaling 34 

methods, development of data fusion methods, and quantifying the coupling strength between precipitation 35 

and SM at 10-year scale. The dataset is available in the 4TU.ResearchData repository at 36 

https://doi.org/10.4121/uuid:21220b23-ff36-4ca9-a08f-ccd53782e834 (Zhang et al., 2020). 37 
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1 Introduction 38 

The Tibetan Plateau observatory (Tibet-Obs) of plateau scale soil moisture and soil temperature (SMST)  was 39 

setup in 2006 and became fully operational in 2010 to calibrate/validate satellite- and model-based soil 40 

moisture (SM) products at regional scale (Su et al., 2011). The Tibet-Obs mainly consists of three regional-41 

scale SMST monitoring networks, i.e. Maqu, Naqu, and Ngari, which cover different climate and land surface 42 

conditions across the Tibetan Plateau (TP) and include multiple in situ SMST monitoring sites in each 43 

network. The SM data collected from the Tibet-Obs have been widely used in past decade to calibrate/validate 44 

satellite- and model-based SM products (e.g. Su et al., 2013; Zheng et al., 2015a; Colliander et al., 2017), 45 

and to evaluate and develop SM upscaling methods (e.g. Qin et al., 2013; 2015), SM retrieval algorithms for 46 

microwave remote sensing (e.g. van der Velde et al., 2012; 2014a; Zheng et al., 2018a; 2018b; 2019), and 47 

fusion methods to merge in situ SM and satellite- or model-based products (e.g. Yang et al., 2020; Zeng et 48 

al., 2016).  49 

Key information and outcomes of the main scientific applications using the Tibet-Obs SM data are 50 

summarized in Table 1. As shown in Table 1, the state-of-the-art satellite- and model-based products are 51 

useful but still show deficiencies of different degrees in different hydrometeorological conditions on the TP, 52 

and further evaluation and improvement of the latest versions of these products remain imperative. In general, 53 

previous studies mainly focused on the evaluation of SM products using the Tibet-Obs data for short term 54 

period (i.e. less than five years), while up to now the Tibet-Obs have collected in situ measurements more 55 

than 10 years. Development of an approximate 10-year in situ SM dataset collected from the Tibet-Obs would 56 

further enhance the calibration/validation of long-term satellite- and model-based products, and should be 57 

valuable for better understanding the hydrometeorological response to climate changes. However, the SM is 58 

highly variable in both space and time, and data gaps in the availability of measurements taken from 59 

individual monitoring site hinder scientific studies of longer  periods, e.g. more than five years. Therefore, it 60 

is still challenging to obtain accurate long-term regional-scale SM due to the sparse nature of monitoring 61 

networks and highly variable soil conditions. 62 

Spatial upscaling is usually necessary to obtain the regional-scale SM of an in situ network from multiple 63 

monitoring sites to match the footprint-scale of satellite- or model-based products. A frequently used 64 

approach for upscaling point-scale SM measurements to a spatial domain is the arithmetic average, mostly 65 

because of its simplicity (Su et al. 2011; 2013). Many other studies also adopted the weighted averaging 66 

methods, whereby the weights are assigned to account for spatial heterogeneity within the network areas 67 

covered by in situ monitoring sites. For instance, Colliander et al. (2017) employed Voronoi diagrams for the 68 

worldwide validation of the Soil Moisture Active/Passive (SMAP) SM products to determine the weights of 69 

individual monitoring sites within core regional-scale networks based on the geographic location; Dente et 70 

al. (2012a) determined the weights based on the topography and soil texture for the Maqu SM monitoring 71 

network of the Tibet-Obs; Qin et al. (2013, 2015) derived the weights by minimizing a cost function between 72 

in situ SM of individual monitoring site and a representative SM of the network that is estimated using the 73 

apparent-thermal-inertia-based (ATI) method (Gao et al., 2017). Alternative methods, such as time stability 74 
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and ridge regression, have been adopted in other investigations (i.e. Zhao et al., 2013, Kang et al., 2017). 75 

While a large number of studies have assessed the performance of different upscaling methods in other areas 76 

such as the Tonzi Ranch network in California and the Heihe watershed (Moghaddam et al., 2014, Wang et 77 

al., 2014), only few investigations have been done for the TP (Gao et al., 2017, Qin et al., 2015). Since the 78 

number of monitoring sites changes over time due to damage of SM sensors in the Tibet-Obs, it is essential 79 

to evaluate and select an appropriate upscaling method for a limited number of monitoring sites.  80 

This paper reports on the status of the Tibet-Obs and presents a long-term in situ SM and spatially upscaled 81 

SM dataset for the period between 2009 and 2019. The 10-year SM dataset includes the original 15-min in 82 

situ measurements taken at a depth of 5 cm collected from the three regional-scale networks (i.e. Maqu, Naqu, 83 

and Ngari as shown in Fig. 1) of the Tibet-Obs, and the consistent regional-scale SM produced by an 84 

appropriately selected spatial upscaling method. To achieve this aim, four methods are used in this study 85 

including the arithmetic averaging (AA), Voronoi diagram (VD), time stability (TS), and apparent thermal 86 

inertia (ATI) methods. Moreover, the variation and trend of the regional-scale SM time series are analyzed, 87 

and this 10-year SM dataset is used to validate the performance of three model-based SM products, e.g. 88 

ERA5-land (Albergel et al., 2018), MERRA2 (Modern-Era Retrospective Analysis for Research and 89 

Applications, version 2) (Gelaro et al., 2017), and GLDAS Noah (Global Land Data Assimilation System 90 

with Noah Land Surface Model) (Rodell et al., 2004), to demonstrate the uniqueness of this dataset for 91 

validating existing reanalysis datasets for a long term period (~10 years). 92 

This paper is organized as follows. Section 2 describes the status of the Tibet-Obs and in situ SM 93 

measurements, as well as the precipitation data and the three model-based SM products. Section 3 introduces 94 

the four SM spatial upscaling methods, Mann Kendall trend test and Sen’s slope estimate, and statistical 95 

metrics. Section 4 presents the inter-comparison of the four SM spatial upscaling methods, the production 96 

and analysis of regional-scale SM dataset for a 10-year period, and its application to validate the three model-97 

based SM products. Section 5 provides the discussion and suggestion on maintaining the Tibet-Obs. Section 98 

6 documents the information of data availability. Finally, conclusions are drawn in Section 7. 99 

2 Data 100 

2.1 Status of the Tibet-Obs 101 

The Tibet-Obs consists of the Maqu, Naqu, and Ngari (including Shiquanhe and Ali) regional-scale SMST 102 

monitoring networks (Fig. 1) that cover the cold humid climate, cold semiarid climate, and cold arid climate, 103 

respectively. Each network includes different number of monitoring sites that measure the SMST at different 104 

soil depths. Brief descriptions of each network and corresponding surface SM measurements taken at a depth 105 

of 5 cm are given in following subsections. The readers are referred to existing literatures (Su et al., 2011; 106 

Dente et al. 2012a; Zhao et al., 2018) for additional information of networks.  107 
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2.1.1 Maqu network 108 

The Maqu network is located in the north-eastern edge of the TP (33°30’-34°15’N, 101°38’-102°45’E) at the 109 

first major bend of the Yellow River. The landscape is dominated by the short grass at elevations varying 110 

from 3400 to 3800 m. The climate type is characterized as cold-humid with cold dry winters and rainy 111 

summers. The mean annual air temperature is about 1.2 ℃, with -10 ℃ for the coldest month (January) and 112 

11.7 ℃ for the warmest month (July) (Zheng et al., 2015a).  113 

The Maqu network covers an area of approximately 40 by 80 km2 and consists originally of 20 SMST 114 

monitoring sites installed in 2008 (Dente et al. 2012a). During the period between 2014 and 2016, eight new 115 

sites were installed due to the damage of several old monitoring sites by local people or animals. The basic 116 

information of each monitoring site is summarized in Table A1 (Su et al., 2011), and the typical 117 

characteristics of topography and land cover within the network are shown in Fig. 2 as well. The Decagon 118 

5TM ECH2O probes were used to measure the SMST at depths of 5, 10, 20, 40, and 80 cm (Fig. 3). The 5TM 119 

probe is a capacitance sensor measuring the dielectric permittivity of soil, and the Topp equation (Topp et 120 

al., 1980) is used to convert the dielectric permittivity to the volumetric SM. The accuracy of the 5TM output 121 

was further improved via a soil-specific calibration performed for each soil type found in the Maqu network 122 

area (Dente et al. 2012a), leading to a decrease in the root mean square error (RMSE) from 0.06 to 0.02 m3 123 

m-3 (Dente et al. 2012a). Table 2 provides the specific periods of data missing during each year and the total 124 

data lengths of surface SM for each monitoring site. Among these sites, the CST05, NST01, and NST03 have 125 

collected more than nine years of SM measurements, while the data records for the NST21, NST22, and 126 

NST31 are less than one year. In May 2019, there are still 12 monitoring sites that provided SM data. 127 

2.1.2 Ngari network 128 

The Ngari network is located in the western part of the TP at the headwater of the Indus River. It consists of 129 

two SMST networks established around the cities of Ali and Shiquanhe, respectively. The landscape is 130 

dominated by a desert ecosystem at elevations varying from 4200 to 4700 m. The climate type is 131 

characterized as cold-arid with a mean annual air temperature of 7.0 ℃. The annual precipitation is less than 132 

100 mm that falls mainly in the monsoon season (July-August) (van der Velde et al., 2014).  133 

The Shiquanhe network consists originally of 16 SMST monitoring sites installed in 2010 (Su et al. 2011), 134 

and five new sites were installed in 2016. The basic information of each monitoring site is summarized in 135 

Table A3 (Su et al., 2011), and the typical characteristics of topography and land cover within the network 136 

are also shown in Fig. 4. The Decagon 5TM ECH2O probes were installed at depths of 5, 10, 20, 40, and 137 

60/80 cm to measure the SMST (Fig. 3). Table 3 provides the specific periods of data missing during each 138 

year and the total data lengths of surface SM for each site. Among these sites, the SQ02, SQ03, SQ06, and 139 

SQ14 have collected more than eight years of SM measurements, while the data records for the SQ13, SQ15, 140 

and SQ18 are less than two years. In August 2019, there are still 12 sites that provided SM data. The Ali 141 

network comprise four SM monitoring sites (Table A3), which will thus not be used for the further analysis 142 

in this study due to limited number of monitoring sites and data records (Table 3). 143 
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2.1.3 Naqu network 144 

The Naqu network is located in the Naqu river basin with an average elevation of 4500 m. The climate type 145 

is characterized as cold-semiarid with cold dry winters and rainy summers. Over three-quarters of total annual 146 

precipitation (400 mm) falls between June and August (Su et al., 2011). The landscape is dominated by the 147 

short grass. 148 

The network consists originally of five SMST monitoring sites installed in 2006 (Su et al. 2011), and six new 149 

sites were installed between 2010 and 2016. The basic information of each monitoring site is summarized in 150 

Table A5, and the typical characteristics of topography and land cover within the network are shown in Fig. 151 

5 as well. The Decagon 5TM ECH2O probes were installed at depths of 5/2.5, 10/7.5, 15, 30, and 60 cm to 152 

measure the SMST, and the soil-specific calibration was also performed by van der Velde (2010) that yields 153 

a RMSE of about 0.029 m3 m-3. Table 4 provides the specific periods of data missing during each year and 154 

the total data lengths of surface SM for each site. Among these sites, only two sites (Naqu and MS sites in 155 

Table A5) have collected more than six years of SM measurements, while the data records for the others are 156 

less than four years. Similar to the Ali network, the Naqu network will also not be used for the further analysis 157 

in this study due to limited number of monitoring sites and data records. 158 

2.2 Precipitation data  159 

The precipitation data is from two weather stations, i.e. Maqu (34°00’N, 102°05’E) and Shiquanhe (32°30’N, 160 

80°50’E) (Fig. 1), operated by the China Meteorological Administration (CMA) which provides the near-161 

surface meteorological data of about 700 weather stations in China. The daily precipitation data is available 162 

at https://data.cma.cn/dataService/cdcindex/datacode/SURF_CLI_CHN_MUL_DAY.html, and the unit for 163 

the precipitation is mm. 164 

2.3 Model-based soil moisture products 165 

2.3.1 ERA5-land soil moisture product 166 

The ERA5 product is the latest generation of atmospheric reanalysis dataset produced by the ECMWF 167 

(European Centre for Medium-Range Weather Forecasts). The ERA5-land product is based on running the 168 

land component of the model that is driven by the atmospheric analysis of the ERA5 product (Muñoz-Sabater 169 

et al., 2018). The product provides SM data currently available from 1981 to 2-3 months before the present 170 

at hourly time interval with a finer spatial resolution (~9 km) that is freely available at the link of 171 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=form. More information about 172 

the ERA5-land product can be referred to Albergel et al. (2018). In this study, the data of volumetric total 173 

soil water content for the top soil layer (0-7 cm) is used for the analysis. 174 

2.3.2 MERRA2 soil moisture product 175 

The MERRA2 product is a widely used atmospheric reanalysis dataset produced by NASA using advanced 176 

GEOS-5 model (Goddard Earth Observing System Model version5) and GSI (Gridpoint Statistical 177 

https://data.cma.cn/dataService/cdcindex/datacode/SURF_CLI_CHN_MUL_DAY.html
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=form
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Interpolation) assimilation system. It is driven by observation-based precipitation data instead of model-178 

generated precipitation in comparison to the MERRA product (1979-2016). The product provides SM data 179 

currently available from 1980 to the present with a spatial resolution of 0.5° lat by 0.625° lon at daily scale 180 

that is freely accessed at https://search.earthdata.nasa.gov/search?q=M2T1NXINT. More information about 181 

the MERRA2 product can be referred to Gelaro et al. (2017). In this study, the data of volumetric liquid soil 182 

water content for the surface layer (0-5 cm) is used.  183 

2.3.3 GLDAS Noah soil moisture product 184 

The GLDAS dataset is produced by the LDAS (Land Data Assimilation System) that aims at providing spatial 185 

fields of land surface states (e.g. SMST) and fluxes (e.g. evapotranspiration and runoff) by integrating remote 186 

sensing and in situ observations based on advanced LSMs and data assimilation techniques. Version 3.3 of 187 

Noah LSM is used to produce the GLDAS Noah product that is currently available from 2000 to the present 188 

at 3-hourly time interval with a spatial resolution of 0.25o that is freely available at the link of  189 

https://search.earthdata.nasa.gov/search?q=GLDAS_NOAH025_3H_2.0. More information about the 190 

GLDAS Noah product can be referred to Rodell et al. (2004). In this study, the data of soil water content for 191 

the top soil layer (0-10 cm) is used. 192 

3 Methods  193 

3.1 Spatial upscaling of soil moisture measurements 194 

The principle of spatial upscaling method is to determine the weight for each SM monitoring site with the 195 

aid of extra information. The method generally follows the linear functional form, which can be 196 

mathematically defined as: 197 

𝜽̅𝒕
𝒖𝒑𝒔

= 𝜽𝒕
𝒐𝒃𝒔𝜷                                                                                                                                               (1a)            198 

𝜽𝒕
𝒐𝒃𝒔 = [𝜽𝒕,𝟏

𝒐𝒃𝒔, 𝜽𝒕,𝟐
𝒐𝒃𝒔, … , 𝜽𝒕,𝑵

𝒐𝒃𝒔]𝑻                                                                                                                      (1b)      199 

where 𝜽̅𝒕
𝒖𝒑𝒔

[m3 m-3] represents the upscaled SM, 𝜽𝒕
𝒐𝒃𝒔[m3 m-3] represents the vector of SM measurements, 𝑁 200 

represents the total number of SM monitoring sites, 𝑡 represents the time (e.g. the tth day), and 𝛽 [-] represents 201 

the weight vector. 202 

In this study, only the surface SM measurements taken from the Maqu and Shiquanhe networks are upscaled 203 

to obtain the regional-scale SM for a long-term period due to the availability of much longer data records in 204 

comparison to the Naqu and Ali networks (see Section 2.1). Four upscaling methods are investigated and 205 

inter-compared with each other to find the most suitable method for the application to the Tibet-Obs. Brief 206 

descriptions of the selected upscaling methods are given in Appendix B. The arithmetic averaging method 207 

(hereafter “AA”) assigns an equal weight coefficient to each SM monitoring site (see Appendix B.1), while 208 

the Voronoi diagram method (hereafter “VD”) determines the weight based on the geographic distribution 209 

of all the SM monitoring sites (see Appendix B.2). On the other hand, the time stability method (hereafter 210 

“TS”) regards the most stable site as the representative site of the SM monitoring network (see Appendix 211 
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B.3), while the apparent thermal inertia (ATI) method is based on the close relationship between apparent 212 

thermal inertia (𝜏) and SM (see Appendix B.4). 213 

3.2 Trend analysis 214 

The Mann-Kendall test and Sen’s slope estimate (Gilbert, 1987; Mann, 1945; Smith et al., 2012) are adopted 215 

in this study to analyze the trend of 10-year upscaled SM time series and model-based products (i.e. ERA5-216 

land, GLDAS Noah, and MERRA2). Specifically, the trend analysis is based on the monthly average SM, 217 

and all the missing data is regarded as an equal value smaller than other valid data. The test consists of 218 

calculating the seasonal statistics S and its variance VAR(S) separately for each month during the 10-year 219 

period, and the seasonal  statistics are then summed to obtain the Z statistics.  220 

For the month 𝑖 (e.g. January), the statistics 𝑆𝑖 can be computed as: 221 

𝑆𝑖 = ∑ ∑ 𝑠𝑔𝑛(𝑆𝑀𝑖,𝑙 − 𝑆𝑀𝑖,𝑘)
10
𝑙=𝑘+1          9

𝑘=1                                                                                                 (2a)                               222 

𝑠𝑔𝑛(𝑆𝑀𝑖,𝑙 − 𝑆𝑀𝑖,𝑘) =  {

    1          𝑆𝑀𝑖,𝑙 > 𝑆𝑀𝑖,𝑘 

   0          𝑆𝑀𝑖,𝑙 = 𝑆𝑀𝑖,𝑘

−1          𝑆𝑀𝑖,𝑙 < 𝑆𝑀𝑖,𝑘

 223 

where k and l represent the different year and l > k, SMi,l and SMi,k represent the monthly average SM for the 224 

month 𝑖 of the year k and l, respectively. 225 

The 𝑉𝐴𝑅(𝑆𝑖)  is computed as: 226 

𝑉𝐴𝑅(𝑆𝑖) =  
1

18
 [𝑁𝑖(𝑁𝑖 − 1)(2𝑁𝑖 + 5) − ∑ 𝑡𝑖,𝑝(𝑡𝑖,𝑝 − 1)(2𝑡𝑖,𝑝 + 5)

𝑔𝑖
𝑝=1 ]                                                                   (2b) 227 

where 𝑁𝑖 is the length of the record for the month 𝑖 (e.g. the 10 year data record in this study with 𝑁𝑖=10),  228 

𝑔𝑖 is the number of equal-value data in month 𝑖, 𝑡𝑖,𝑝 is the number of equal-value data in the 𝑝th group for 229 

month 𝑖. 230 

After obtaining the 𝑆𝑖 and 𝑉𝐴𝑅(𝑆𝑖), the statistic 𝑆′ and 𝑉𝐴𝑅(𝑆′) for the selected season (e.g. warm season 231 

between May and October and cold season between November and April in this study) can be summed as: 232 

𝑆′ = ∑ 𝑆𝑖     
𝑀
𝑖=1                                                                                                                                                                   (2c) 233 

𝑉𝐴𝑅(𝑆′) =  ∑ 𝑉𝐴𝑅(𝑆𝑖)    
𝑀
𝑖=1                                                                                                                                                 (2d) 234 

where M represents the number of months in the selected season, e.g. M = 12 for the full year, while M = 6 235 

for the warm and cold season, respectively. 236 

Then the statistics Z can be computed as: 237 

𝑍 = 

{
 
 

 
 

𝑆′−1

√𝑉𝑎𝑟(𝑆′)
                𝑖𝑓 𝑆′ > 0 

   0                         𝑖𝑓   𝑆′ = 0
𝑆′+1

√𝑉𝑎𝑟(𝑆′)
               𝑖𝑓  𝑆′ < 0 

                                                                                                                   (2e) 238 

If the statistics 𝑍 is positive (negative) and its absolute value is greater than 𝑍1−𝛼/2 (here 𝛼 = 0.05,  𝑍1−𝛼/2 = 239 

1.96), the trend of the SM time series is regarded as upward (downward) at the significance level of 𝛼. 240 

Otherwise, we accept the hypothesis that there is not significant trend found for the SM time series. 241 
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If the trend is monotonous, we will further estimate the slope (change per unit time) with Sen’s method (Sen, 242 

1968). The slopes of each month can be calculated as: 243 

𝑄𝑖 = 
𝑆𝑀𝑖,𝑙− 𝑆𝑀𝑖,𝑘 

𝑙−𝑘
                                                                                                                                                                    (2f) 244 

Then rank all the individual slopes (𝑄𝑖) for all months and find the median which is considered as the 245 

seasonal Kendall slope estimate. 246 

3.3 Metrics used for statistical comparison 247 

The metrics used to evaluate the accuracy of the upscaled SM are the bias [m3 m-3], RMSE [m3 m-3], and 248 

unbiased RMSE (ubRMSE [m3 m-3]) as: 249 

Bias =  
∑ (𝜃𝑡

𝑡𝑟𝑢− 𝜽̅𝒕
𝒖𝒑𝒔

)𝑀
𝑡=1

M
                                                                                                                                  (3a)                      250 

RMSE = √
∑ (𝜃𝑡

𝑡𝑟𝑢− 𝜽̅𝒕
𝒖𝒑𝒔

)2𝑀
𝑡=1

𝑀
                                                                                                                           (3b)                                                                                 251 

ubRMSE =  √𝑅𝑀𝑆𝐸2 − 𝐵𝐼𝐴𝑆2                                                                                                                    (3c)                       252 

where 𝜃𝑡
𝑡𝑟𝑢 represents the SM that is considered as the ground truth, and 𝜽̅𝒕

𝒖𝒑𝒔
represents the upscaled SM. 253 

The closer the metric is to zero, the more accurate the estimation is. 254 

The metrics used for the correlation analysis are the Nash-Sutcliffe efficiency coefficient (NSE [-]) as: 255 

NSE = 1 − 
∑ (𝜃𝑡

𝑡𝑟𝑢− 𝜽̅𝒕
𝒖𝒑𝒔

)2𝑛
𝑡=1

∑ (𝜃𝑡
𝑡𝑟𝑢− 𝜃𝑡

𝑡𝑟𝑢̅̅ ̅̅ ̅̅ ̅)2𝑛
𝑡=1

                                                                                                                           (4)                       256 

The value of the NSE ranges from -∞ to 1, and the closer the metric is to 1, the better the match of the 257 

estimated SM with the reference (𝜃𝑡
𝑡𝑟𝑢).  258 

The metrics used to define the most representative SM time series (i.e. the best upsclaed SM) is the 259 

comprehensive evaluation criterion (CEC [-]) combined by two statistical metrics including relative 260 

difference (MRD [-]) and standard deviation of the relative difference (σ(𝑅𝐷) [-]) (Jacobs et al., 2004). 261 

Detailed description of above mentioned three metrics are given in Appendix B.3. It should be noted that the 262 

𝜃𝑡,𝑖
𝑜𝑏𝑠 and 𝜃𝑡

𝑜𝑏𝑠̅̅ ̅̅ ̅̅  in Eqs. (B4) and (B5) represent the upscaled SM using four different methods and their average 263 

here when using the CEC to determine the best upscaled SM. The most representative time series is identified 264 

by the lowest CEC value.                                                                                                                                                           265 

3.4 Preprocessing of model-based soil moisture products  266 

The performance of the ERA5-land, MERRA2, and GLDAS Noah SM products are assessed using the 267 

upscaled SM data of the Maqu and Shiquanhe networks for a 10-year period. The corresponding regional-268 

scale SM for each product can be obtained by averaging the grid data falling in the network areas. The 269 

numbers of grids covering the Maqu and Shiquanhe networks are 77 and 20 for the ERA5-land product, 12 270 

and 4 for the GLDAS Noah product, and only one for the MERRA2 product. Moreover, the ERA5-land and 271 

MERRA2 products with the temporal resolution of hourly and 3-hourly are averaged to daily-scale, and the 272 

unit of GLDAS Noah SM is converted from kg m−2 to m3 m−3. The uppermost layer of the ERA5-land (0-7 273 
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cm), MERRA2 (0-5 cm), and GLDAS Noah (0–10 cm) SM products are considered to match the in situ 274 

observations at depth of 5 cm. 275 

4 Results 276 

4.1 Inter-comparison of soil moisture upscaling methods 277 

In this section, four upscaling methods (see Section 3.1) are inter-compared first with the input of the 278 

maximum number of available SM monitoring sites for a single year in the Maqu and Shiquanhe networks 279 

to find the most suitable upscaled SM that can best represent the areal conditions (i.e. ground truth, SMtruth). 280 

Later on, the performance of the four upscaling methods is further investigated with the input of reducing 281 

number of SM monitoring sites to find the most suitable method for producing long-term (~10 year) upscaled 282 

SM for the Maqu and Shiquanhe networks.  283 

Fig. 6 shows the time series of daily average SM for the Maqu and Shiquanhe networks produced by the four 284 

upscaling methods based on the maximum number of available SM monitoring sites (hereafter “SMAA-max”, 285 

“SMVD-max”, “SMTS-max”, and “SMATI-max”). Two different periods are selected for the two networks due to the 286 

fact that the number of available monitoring sites reaches the maximum in different periods for the two 287 

networks, e.g. 17 sites for Maqu between November 2009 and October 2010 and 12 sites for Shiquanhe 288 

between August 2018 and July 2019, respectively (see Tables A2 and A4 in the Appendix A). For the Maqu 289 

network, the SMAA-max, SMVD-max, and SMTS-max are comparable to each other, while the SMATI-max shows 290 

distinct deviations during the winter (between December and February) and summer periods (between June 291 

and August). On the other hand, the SMATI-max for the Shiquanhe network is comparable to SMAA-max and 292 

SMVD-max, while deviation is observed for the SMTS-max. It seems that the ATI method performs better in the 293 

Shiquanhe network due to the existence of a stronger relationship between τ and θ in the desert ecosystem.  294 

Table B1 lists the values of MRD (see Eq. (B4) in Appendix B), 𝜎(𝑅𝐷) (Eq. (B3)), and CEC (Eq. (B6)) 295 

calculated for the upscaled SM produced by the four upscaling methods. The CEC is used here to determine 296 

the most suitable upscaled SM that can best represent the areal conditions for the two networks. It can be 297 

found that the SMAA-max yields the lowest CEC values for both networks, indicating that the SMAA-max can be 298 

used to represent actual areal conditions, which will thus be regarded as the ground truth for following 299 

analysis (i.e. SMtruth). The arithmetic average of the dense in situ measurements was also used as the ground 300 

truth in other studies (Qin et al., 2013; Su et al., 2013). 301 

As shown in Tables A2 and A4 (see Appendix A), the number of available SM monitoring sites decreases 302 

with increasing time span of in situ measurements. There are only three (i.e. CST05, NST01, and NST03) 303 

and four (i.e. SQ02, SQ03, SQ06, and SQ14) monitoring sites that provided more than nine years of in situ 304 

SM measurement data for the Maqu and Shiquanhe networks, respectively (see Tables 2 and 3). This 305 

indicates that the minimum number of available monitoring sites can be used to produce the long-term (~10 306 

year) consistent upscaled SM are three and four for the Maqu and Shiquanhe networks, respectively. Fig. 7 307 

shows the daily average SM time series produced by the four upscaling methods based on the minimum 308 
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available monitoring sites (hereafter “AA-min”, “TS-min”, “VD-min”, and “ATI-min”). The SMtruth obtained 309 

by the AA-max is also shown for comparison purpose. For the Maqu network, the upscaled SM produced by 310 

the AA-min, VD-min, and TS-min generally capture well the SMtruth variations, while the upscaled SM of 311 

the ATI-min shows dramatic deviations. Similarly, the upscaled SM produced by the AA-min and VD-min 312 

are consistent with the SMtruth for the Shiquanhe network with slight overestimations, while significant 313 

deviations are noted for the upscaled SM of the TS-min and ATI-min. Table B2 lists the error statistics (e.g. 314 

Bias, RMSE, ubRMSE, and NSE) computed between the upscaled SM produced by these four upscaling 315 

methods with the input of the minimum available sites and the SMtruth. The upscaled SM produced by the 316 

AA-min shows better performance for both networks as indicated by the lower RMSE and higher NSE values 317 

in comparison to the other three upscaling methods. 318 

Apart from the maximum and minimum numbers of available SM monitoring sites mentioned above, there 319 

are about 14, 10, 8, and 6 available monitoring sites during different time spans for the Maqu network, and 320 

for the Shiquanhe network are about 11, 10, 6, and 5 available monitoring sites (see Tables A2 and A4 in the 321 

Appendix A). Fig. B2 shows the radar graph of error statistics (i.e. RMSE and NSE) computed between the 322 

SMtruth and the upscaled SM produced by the four upscaling methods based on the input of different numbers 323 

of available monitoring sites. For the Maqu network, the performances of the AA and VD methods are better 324 

than the TS and ATI methods as indicated by smaller RMSEs and higher NSEs for all the estimations. A 325 

similar conclusion can be obtained for the Shiquanhe network, while the performance of the ATI method is 326 

largely improved when the number of available monitoring sites is not less than 10. It is interesting to note 327 

that the upscaled SM produced by the AA-min are comparable to those produced with more available sites 328 

(e.g. 10 sites) as indicated by comparable RMSE and NSE values for both networks. It indicates that the AA-329 

min is suitable to produce long-term (~10 years) upscaled SM for both networks, which yield RMSEs of 330 

0.022 and 0.011 m3 m-3 for the Maqu and Shiquanhe networks in comparison to the SMtruth produced by the 331 

AA-max based on the maximum available monitoring sites.  332 

4.2 Long-term analysis of upscaled soil moisture measurements 333 

In this section, the AA-min is first adopted to produce the consecutive upscaled SM time series (hereafter 334 

“SMAA-min”) for an approximately 10-year period for the Maqu and Shiquanhe networks, respectively. In 335 

addition, the other time series of upscaled SM are produced by the AA method with input of all available SM 336 

monitoring sites regardless of the continuity (hereafter “SMAA-valid”), which is widely used to validate the 337 

various SM products (Dente et al. 2012a; Chen et al. 2013; Zheng et al. 2018b) for a short term period (e.g. 338 

≤ 2 years). This method may, however, leads to inconsistent SM time series for a long-term period due to the 339 

fact that the number of available sites is different in distinct periods (see Tables A2 and A4 in the Appendix 340 

A). Trend analysis (see Section 3.2) are applied to both SMAA-min and SMAA-valid to investigate the impact of 341 

change of available SM monitoring sites over time on the long-term (i.e. 10-year) trend. 342 

Fig. 8a shows the time series of SMAA-min and SMAA-valid along with the daily precipitation data for the Maqu 343 

network during the period between May 2009 and May 2019. Both two time series of the SM show similar 344 
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seasonality with low values in winter due to frozen of soil and high values in summer due to rainfall (see 345 

subplot of Fig. 8a). Deviations can be found between the SMAA-min and SMAA-valid especially for the period 346 

between 2014 and 2019, whereby the SMAA-valid tends to produce smaller SM values in the warm season. Fig. 347 

9a shows further the Mann Kendall trend test and Sen’s slope estimate for the SMAA-min, SMAA-valid, and 348 

precipitation of the Maqu network area for the full year, warm seasons, and cold seasons in a 10-year period. 349 

As described in Section 3.2, the time series would present a monotonous trend if the absolute value of 350 

statistics Z  is greater than a critical value, i.e. Z0.05 = 1.96 in this study. The results show that there is not 351 

significant trend found for both precipitation and SMAA-min time series, while the SMAA-valid shows a drying 352 

trend with a Sen’s slope of -0.008 for warm seasons. The drying trend of the SMAA-valid is caused by the 353 

change of available SM monitoring sites (see Table A2). Specifically, several monitoring sites (e.g. NST11- 354 

NST15) located in the wetter area were damaged since 2013, and four new monitoring sites (i.e. NST21- 355 

NST25) were installed in the drier area in 2015 (see Table 2) that affect the trend of the SMAA-valid. 356 

Fig. 8b shows the time series of the SMAA-min and SMAA-valid along with the daily precipitation data for the 357 

Shiquanhe network during the period between August 2010 and August 2019. Both time series of the SM 358 

show similar seasonal variations as the Maqu network (see subplot of Fig. 8b). However, obvious deviation 359 

can be noted for the inter-annual variations, and the SMAA-valid tends to produce lager values before 2014 but 360 

smaller values since then. The Mann Kendall trend test and Sen’s slope estimate for the SMAA-min, SMAA-valid, 361 

and precipitation time series of the Shiquanhe network area are shown in Fig. 9b. The SMAA-min demonstrates 362 

a wetting trend with a Sen’s slope of 0.003, while an opposite drying tendency is found for the SMAA-valid due 363 

to the change of available SM monitoring sites (see Table A4) as the Maqu network. Specifically, several 364 

monitoring sites (e.g. SQ11 and SQ12) located in the wetter area were damaged around 2014, and five new 365 

monitoring sites (i.e. SQ17-21) were installed in the drier area in 2016 (see Table 3).  366 

In summary, the SMAA-valid are likely affected by the change of available SM monitoring sites over time that 367 

leads to inconsistent trend with the SMAA-min. This indicates that the SMAA-min is superior to the SMAA-valid for 368 

the production of the long-term consistent upscaled SM time series.  369 

4.3 Application of the long-term upscaled soil moisture to validate the model-based products 370 

In this section, the long-term upscaled SM time series (i.e. SMAA-min) produced for the two networks are 371 

applied to validate the reliability of three model-based SM products, i.e. ERA5-land, MERRA2, and GLDAS 372 

Noah, to demonstrate the uniqueness of this dataset for validating existing reanalysis datasets for a long term 373 

period (~10 years). Since the ERA5-land product only provides the data of volumetric total soil water content, 374 

the period when the soil is subject to freezing and thawing transition (i.e. November-April) is excluded for 375 

this evaluation. 376 

Fig. 10a shows the time series of SMAA-min and daily average SM data derived from the three products for the 377 

Maqu network area during the period between May 2009 and May 2019. The error statistics, i.e. bias and 378 

RMSE, computed between the three products and the SMAA-min for both warm (May-October) and cold 379 

seasons (November-April) are given in Table 5. Although the three products generally capture the seasonal 380 
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variations of the SMAA-min, the magnitude of the temporal SM variability is underestimated. Both GLDAS 381 

Noah and MERRA2 products underestimate the SM measurements during the warm season leading to bias 382 

of about -0.112 and -0.113 m3 m-3, respectively. This may be due to the fact that the LSMs adopted for 383 

producing these products do not consider the impact of vertical soil heterogeneity caused by organic matter 384 

contents widely existed in the surface layer of the Tibetan soil (Chen et al., 2013; Zheng et al., 2015a). In 385 

addition, the MERRA2 product overestimates the SM measurements during the cold season with bias of 386 

about 0.006 m3 m-3. The ERA5-land product is able to capture the magnitude of SMAA-min dynamics in the 387 

warm season but with more fluctuation that yields a RMSE of about 0.067 m3 m-3. The trend analysis for the 388 

three model-based SM products are shown in Fig. 9a as well. All three products do not show significant trend 389 

in warm seasons as the SMAA-min, while the GLDAS Noah and MERRA2 products show a wetting trend in 390 

cold seasons that disagree with the SMAA-min. 391 

Fig. 10b shows the time series of SMAA-min and daily SM data derived from the three products for the 392 

Shiquanhe network area during the period between August 2010 and August 2018, and the corresponding 393 

error statistics are given in Table 5 as well. Although the three products generally capture the seasonal 394 

variations of the SMAA-min, both GLDAS Noah and MERRA2 products overestimate the SMAA-min for the 395 

entire study period leading to positive bias values, and overestimation is also noted for the ERA5-land product 396 

in the warm season with bias of about 0.002 m3 m-3. The trend analysis for the three SM products are also 397 

shown in Fig. 9b. Both the ERA5-land and MERRA2 products are able to reproduce the wetting trend found 398 

for the SMAA-min, while the GLDAS Noah product cannot capture well the trend.  399 

In summary, the currently model-based SM products still show deficiencies in representing the trend and 400 

variation of measured SM dynamics for a long-term period (~10 years) in the Tibetan grassland and desert 401 

ecosystems that dominate the landscape of the TP. 402 

5 Discussion  403 

As shown in previous sections, the number of available SM monitoring sites in the Tibet-Obs generally 404 

changes with time. For instance, several monitoring sites of the Maqu network located in the wetter area were 405 

damaged since 2013, and four new monitoring sites were installed in the drier area in 2015 that would affect 406 

the trend of SM time series  (i.e. SMAA-valid shown in Section 4.2). On the other hand, the 10-year upscaled 407 

SM data (i.e. SMAA-min) produced in this study utilizing three and four monitoring sites with long-term 408 

continuous measurements would yield RMSEs of about 0.022 and 0.011 m3 m-3 for the Maqu and Shiquanhe 409 

networks, respectively (see Section 4.1). Therefore, to provide a higher-quality continuous SM time series 410 

for the future, it is necessary to find an appropriate strategy to maintain the monitoring sites of Tibet-Obs. 411 

This section discusses the possible strategies for the Maqu and Shiquanhe networks as examples.  412 

At first, a sensitivity analysis is conducted to quantify the impact of the number of monitoring sites on the 413 

regional SM estimate. The SM time series described in Section 4.1 (i.e. 11/2009-10/2010 for the Maqu 414 

network and 8/2018-7/2019 for the Shiquanhe network) are used to test the sensitivity, and there are totally 415 

17 and 12 available monitoring sites for the Maqu and Shiquanhe networks, respectively. Taking the Maqu 416 



 

13 

 

network as an example, we randomly pick different numbers of sites from 1 to 16 among the 17 sites to make 417 

up different combinations, and then compute the RMSEs of the averaged SM obtained by these combinations 418 

(Famiglietti et al., 2008; Zhao et al., 2013). These RMSEs are further grouped into nine levels ranging from 419 

0.004 to 0.02 m3 m-3, and the percentage of the combinations falling into each level is summarized in Table 420 

6. In general, the percentage increases with increasing number of monitoring sites at any RMSE levels. It can 421 

be noted that more than 50% of combinations are able to comply with the RMSE requirement of 0.004 m3 422 

m-3 if the number of available monitoring sites are 16 and 11 in the Maqu and Shiquanhe networks, 423 

respectively. If the number of available monitoring sites are not less than 13 and 6 in the Maqu and Shiquanhe 424 

networks, there would be about 60% of combinations with 13 sites (6 sites ) are able to comply with the 425 

RMSE requirement of 0.01 m3 m-3. For the RMSE requirement of 0.02 m3 m-3, more than 50% of 426 

combinations would achieve the requirement if the number of available monitoring sites are not less 7 and 3 427 

in the two networks, respectively. In summary, the number of monitoring sites required to maintain current 428 

networks depends on the defined RMSE requirement.  429 

As shown in Section 4.1, the usage of a minimum number of sites (i.e. three for Maqu and four for Shiquanhe) 430 

with about 10-year continuous measurements yields RMSEs of 0.022 and 0.011 m3 m-3 for the Maqu and 431 

Shiquanhe networks, respectively. Since there are still 12 monitoring sites providing SM measurements for 432 

both networks until 2019 (see Tables 2 and 3), it is possible to decrease the RMSEs if the monitoring sites 433 

selected for maintaining are appropriately determined. For the Shiquanhe network, the optimal strategy is to 434 

keep the current 12 monitoring sites, which is exactly the combination used in Section 4.1. For the Maqu 435 

network, it can be found that there is about 3.52% of combinations with 12 sites could yield the lowest RMSE 436 

of 0.006 m3 m-3 (see Table 6). In order to find the optimal combination with 12 sites for the Maqu network, 437 

all the possible combinations (i.e. the number of 6188) are ranked by RMSE values from the smallest to 438 

largest, and Table 7 lists the examples of ranking 1-5th and 95-100th. It can be noted that the 100th combination 439 

contains the largest number of currently available monitoring sites (i.e. 7 sites including CST03, CST05, 440 

NST01, NST03, NST05, NST06, and NST10) with a RMSE of less than 0.006 m3 m-3. Therefore, the 100th 441 

combination of 12 monitoring sites (as shown in Table 7) is suggested for the Maqu network.  442 

In summary, it is suggested to maintain well current 12 monitoring sites for the Shiquanhe network, while 443 

for the Maqu network it is suggested to restore five old monitoring sites, i.e. CST02, NST11, NST13, NST14, 444 

and NST15. 445 

6 Data availability  446 

The 10-year (2009-2019) surface SM dataset is freely available from the 4TU.ResearchData repository at 447 

https://doi.org/10.4121/uuid:21220b23-ff36-4ca9-a08f-ccd53782e834 (Zhang et al., 2020). The original in 448 

situ SM data, the upscaled SM data, and the supplementary data are stored in .xlsx files. A user information 449 

document is given to introduce the content of the dataset, the status of the Tibet-Obs, and existing dataset 450 

link utilized in the study.  451 

https://doi.org/10.4121/uuid:21220b23-ff36-4ca9-a08f-ccd53782e834
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7 Conclusions 452 

In this paper, we report on the status of the Tibet-Obs and present the long-term in situ SM and spatially 453 

upscaled SM dataset for the period 2009-2019. In general, the number of available SM monitoring sites 454 

decreased over time due to damage of sensors. Until 2019, there are only three and four sites that provide an 455 

approximately 10-year consistent SM time series for the Maqu and Shiquanhe networks, respectively. 456 

Comparisons between four upscaling methods, i.e. arithmetic averaging (AA), Voronoi diagram (VD), time 457 

stability (TS), and apparent thermal inertia (ATI), show that the AA method with input of the maximum 458 

number of available SM monitoring sites (AA-max) can be used to represent the actual areal SM conditions 459 

(SMtruth). The arithmetic average of the three and four monitoring sites with long-term continuous 460 

measurements (AA-min) are found to be the most suitable to produce the upscaled SM dataset for the period 461 

2009-2019, which may yield RMSEs of 0.022 and 0.011 m3 m-3 for the Maqu and Shiquanhe networks in 462 

comparison to the SMtruth. 463 

Trend analysis of the approximately 10-year upscaled SM time series produced by the AA-min (SMAA-min) 464 

shows that the Shiquanhe network area in the western part of the TP is getting wet while there is not 465 

significant trend found for the Maqu network area in the east. The usage of all the available monitoring sites 466 

in each year leads to inconsistent time series of SM that cannot capture well the trend of SMAA-min. 467 

Comparisons between the SMAA-min and the model-based SM products from the ERA5-land, GLDAS Noah, 468 

and MERRA2 further demonstrate that current model-based SM products still show deficiencies in 469 

representing the trend and variation of measured SM dynamics on the TP. Moreover, strategies for 470 

maintaining the Tibet-Obs are provided, and it is suggested to maintain well current 12 monitoring sites for 471 

the Shiquanhe network, while for the Maqu network it is suggested to restore five old monitoring sites.  472 

The 10-year (2009-2019) surface SM dataset presented in this paper includes the 15-min in situ measurements 473 

taken at a depth of 5 cm collected from three regional-scale networks (i.e. Maqu, Naqu, and Ngari including 474 

Ali and Shiquanhe) of the Tibet-Obs, and the spatially upscaled SM datasets produced by the AA-min for 475 

the Maqu and Shiquanhe networks. This dataset is valuable for calibrating/validating long-term satellite- and 476 

model-based SM products, evaluation of SM upscaling methods, development of data fusion methods, and 477 

quantifying the coupling strength between precipitation and SM at 10-year scale. 478 
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 654 

Fig. 1. Locations of the Tibet-Obs including Maqu, Naqu, and Ngari (including Ali and Shiquanhe) soil moisture 655 
monitoring networks. The weather stations of Maqu and Shiquanhe operated by the China Meteorological 656 
Administration (CMA) are also shown. (Base map is from Esri, Copyright: © Esri) 657 
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 658 

Fig. 2. (a) Overview of the Maqu monitoring network, and typical characteristics of topography and land cover 659 
within the network: (b) river valley, (c) hill valley, (d) hill slope, (e) valley, (f) wetland and (g) grass. The colored 660 
triangles in (a) represent different data lengths of surface SM measurements for each site, and the colored boxes 661 
represent the coverage of selected model-based products. The site name in the bracket in (b)-(g) indicates the site 662 
location for which the photograph is selected. (Base map copyright: ©2018 Garmin) 663 

 664 

Fig. 3. Examples of typical installation of sensors in monitoring sites of (a) Maqu and (b) Ngari networks. 665 



 

21 

 

 666 

Fig. 4. Overview of the Ngari monitoring network including (a) Shiquanhe and (b) Ali networks, and typical 667 
characteristics of topography and land cover within the network: (c) flat, (d) slope, (e) desert, and (f) sparse grass. 668 
The colored triangles in (a) and (b) represent different data lengths of surface SM measurements for each site, 669 
and the colored boxes represent the coverage of selected model-based products. The site name in the bracket in 670 
(c)-(f) indicates the site location for which the photograph is selected. (Base map copyright: ©2018 Garmin) 671 

 672 

Fig. 5. (a) Overview of the Naqu monitoring network, and typical characteristics of topography and land cover 673 
within the network: (b) plain and (c) grassland. The colored triangles in (a) represent different data lengths of 674 
surface SM measurements for each site. The site name in the bracket in (b) and (c) indicates the site location for 675 
which the photograph is selected. (Base map copyright: ©2018 Garmin) 676 

 677 
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 678 

Fig. 6. Comparisons of daily average SM for the (a) Maqu and (b) Shiquanhe networks produced by the four 679 
upscaling methods with input of the maximum number of available SM monitoring sites. 680 

 681 

Fig. 7. Comparisons of daily average SM for the (a) Maqu and (b) Shiquanhe networks produced by the four 682 
upscaling methods with input of the minimum number of available SM monitoring sites. 683 

 684 

Fig. 8.  Temporal variation of SMAA-min,  SMAA-valid, and precipitation for the (a) Maqu and (b) Shiquanhe networks 685 
in a 10-year period as well as the subplot with a 2-year period. 686 
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 687 

Fig. 9.  Mann Kendall trend test and Sen’s slope estimate for precipitation, SMAA-min, SMAA-valid, and model-based 688 
SM derived from the ERA5-land,  GLDAS Noah, and MERRA2 for the (a) Maqu and (b) Shiquanhe networks in 689 
a 10-year period. 690 

 691 

Fig. 10. Comparisons between the model-based SM derived from the ERA5-land, MERRA2, and GLDAS Noah 692 
products and the upscaled SM (SMAA-min) for the (a) Maqu and (b) Shiquanhe networks in a 10-year period.  693 
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Table 1. Summary of the main Tibet-Obs applications and corresponding findings. 694 

Literature In situ data Satellite- and/or model-based products Key findings 

Dente et al. 
(2012a) 

Maqu network, 
period between 

2008 and 2009 

LPRM AMSR-E SM product, ASCAT SM 
product 

i)  The weighted average of SM depended on 
the percentage spatial coverage strata can be 

regarded as the ground reference. 

ii) The AMSR-E and ASCAT products are 
able to provide reasonable area SM during 

monsoon seasons. 

 
Dente et al. 

(2012b) 

Maqu network, 

period of 2010 

Soil Moisture and Ocean Salinity (SMOS) 

Level 2 SM product 

The SMOS product exhibits a systematic dry 

bias (0.13 m3 m-3) at the Maqu network. 

 
Zeng et al. 

(2015) 

Maqu network, 

period between 
2008 and 2010 

 

 

SMOS Level 3 SM product (version 2.45), 

Advanced Microwave Scanning Radiometer 
for Earth Observation System SM products 

(AMSR-E) SM products developed by 

National Aeronautics and Space 
Administration (NASA version 6), Land 

Parameter Retrieval Model (LPRM version 

2), and Japan Aerospace Exploration 
Agency (JAXA version 700), AMSR2 

Level 3 SM product (version 1.11), 

Advanced Scatterometer SM product 
(ASCAT version TU-Wien-WARP 5.5), 

ERA-Interim SM product (version 2.0), and 

Essential Climate Variable SM product 
(ECV version 02.0) 

 

i)  The ECV and ERA products give the best 

performance, and all products are able to 
capture the SM dynamic except for the NASA 

product. 

ii) The JAXA AMSR-E/AMSR2 products 
underestimate SM, while the ASCAT product 

overestimates it. 

iii) The SMOS product exhibits big noise and 
bias, and the LPRM AMSR-E product shows a 

significantly larger seasonal amplitude. 

 

Zheng et al. 
(2015a) 

Maqu network, 
period between 

2009 and 2010 

 

Noah LSM (land surface model) 
simulations 

The modified hydraulic parameterization is 
able to resolve the SM underestimation in the 

upper soil layer under wet conditions, and it 

also leads to better capture for SM profile 
dynamics combined with the modified root 

distribution. 

 
Bi & Ma 

(2015) 

Maqu network, 

period between 

2008 and 2011 

GLDAS SM products produced by Noah, 

Mosaic CLM and Variable Infiltration 

Capacity (VIC) models 

The SM simulated by the four LSMs can give 

reasonable SM dynamics but still show 

negative biases probably resulted from the 
high soil organic carbon content. 

 

Li et al. 
(2018) 

Maqu network, 
period between 

2015 and 2016 

Soil Moisture Active Passive (SMAP) 
Level 3 standard (36km) and enhanced 

(9km) passive SM products (version 3), 

Community Land Model (CLM4.5) 
simulations 

i)  The standard and enhanced SMAP products 
have similar performance for SM spatial 

distributions. 

ii) The SM of enhanced SMAP product 
exhibits good agreement with the CLM4.5 SM 

simulation. 

 
Zhao et al. 

(2017) 

Maqu network, 

period between 

2008 and 2010 

Downscaled SM from five typical triangle-

based empirical SM relationship models 

The model treating the surface SM as a 

second-order polynomial with LST, vegetation 

indices, and surface albedo outperforms other 
models. 

 

Ju et al. 
(2019) 

Maqu network, 
period of 2012 

VIC LSM simulations The IEPFM (immune evolution particle filter 
with Markov chain Monte Carlo simulation) is 

able to mitigate particle impoverishment and 

provide better assimilation results. 

 

Zheng et al. 

(2018b) 

Ngari network, 

period between 
2015 and 2016 

SMAP Level 2 radiometer SM product Modifying surface roughness and employing 

soil temperature and texture information can 
improve the SMAP SM retrievals for the 

desert ecosystem of the TP. 

 
Zhang et al. 

(2018) 

Maqu and Ngari 

networks, period 
between 2010 

and 2013 

ERA-Interim SM product, MERRA SM 

product, GLDAS_Noah SM product 
(version2.0 and version2.1) 

All these products exhibit overestimation at 

the Ngari network while underestimation at the 
Maqu network except for the ERA-Interim 

product. 
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Zheng et al. 

(2018a) 

Maqu and Ngari 

networks, period 

between 2015 

and 2016 

SMAP Level 1C radiometer brightness 

temperature products (version 3) 

i)  The SMAP algorithm underestimates the 

significance of surface roughness while 

overestimates the impact of vegetation.  

ii) The modified brightness temperature 
simulation can result in better SM retrievals.  

 

Wei et al. 
(2019) 

Maqu and Ngari 
networks, period 

between 2015 

and 2016 

SMAP Level 3 SM passive product The downscaled SM still can keep accuracy 
compared to the SM of original SMAP 

product. 

Liu et al. 

(2019) 

Maqu and Ngari 

networks, period 

between 2012 
and 2016 

 

SMAP Level 3 SM products (version 4.00),  

SMOS-IC SM products (version 105), 

Fengyun-3B Microwave Radiation 
Image SM product (FY3B MWRI), JAXA 

AMSR2 Level 3 SM product, LPRM 

AMSR2 Level 3 SM product (version 3.00) 

i)  The JAXA AMSR2 product underestimates 

area SM while the LPRM AMSR2 product 

overestimates it. 
ii) The SMOS-IC product exhibits some noise 

of SM temporal variation. 

iii) The SMAP product has the highest 
accuracy among the five products while FY3B 

shows relatively lower accuracy. 

 
Yang et al. 

(2020) 

Maqu and Ngari 

network, period 

between 2008 
and 2011 

AMSR-E brightness temperature product The assimilated SM products exhibit higher 

accuracy than the AMSR-E product and LSM 

simulations for wet areas, whereas their 
accuracy is similar for dry areas.  

 

 
Su et al. 

(2013) 

Maqu and Naqu 

networks, period 

between 2008 
and 2009. 

AMSR-E SM product, ASCAT Level 2 SM 

product, ECMWF SM analyses i.e. 

optimum interpolation and extended 
Kalman filter products 

 

i)  The Naqu area SM is overestimated by the 

ECMWF products in monsoon seasons, while 

the Maqu area SM produced by the ECMWF 
is comparable to previous studies.  

ii) The SM estimate cannot be considerably 

improved by assimilating ASCAT data due to 
the CDF matching approach and the data 

quality. 

 
Zeng et al. 

(2016) 

Maqu, Naqu and 

Ngari networks, 

period between 
2010 and 2011 

LPRM AMSR-E SM product, ERA-Interim 

SM product 

The blended SM is able to capture temporal 

variations across different climatic zones over 

the TP.  

Cheng et al. 

(2019) 

Maqu, Naqu and 

Ngari networks, 
period of 2010 

European Space Agency Climate Change 

Initiative Soil Moisture SM product (ESA 
CCISM version 4.4), ERA5 SM product 

i)  The seasonal variation and spatial 

distribution of SM can be captured by all four 
products i.e., ESA CCI_active, ESA 

CCI_passive, ESA CCI_combined, and ERA5. 

ii) The ESA CCI_active and ESA 
CCI_combined products exhibit narrower 

magnitude than the ESA CCI passive and 

ERA5 products. 
iii) The SM uptrend across the TP can be 

found from the ERA5 product. 

695 
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Table 2. Data records of all the SMST monitoring sites performed for the Maqu network. Blank cells represent 

that there is not measurement performed. Cells with hyphen represent that there is not data missing. The number 

in cells represents the month(s) when the data is missing for each year.  

 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 
Data length 

(months) 

CST01  —   — 10~12 
1~6 

10~12 
              36 

CST02  —   — 5~12 1~10 6  7~12           46 

CST03  —   —   —  —  6~12 1~10 7~12     1~9 5~12 68 

CST04 1~5   — 12 
1~3 

11~12 

1~2 

6 
8~10 7~12   1~6 7~12   73 

CST05   —  —   —   —  6   —   — 5~7  —  1~2 6~12 119 

NST01 1~5  —   —  —  6  —   —  5~7  —    — 6~12 116 

NST02 1~3   —  —  
7~8 

10~12 
              40 

NST03  —   —  5~10  —  6  —    — 5~7   —   — 6~12 115 

NST04  —   —  10~12                 33 

NST05 3~5  —   —   — 6~12 1~7  —  5~7 7~12 1~7 6~12 92 

NST06   — 
1~3 

12 
1~3  —  6   —  —  6~7 8~12 1~7 6~12 104 

NST07   —  —  3  —  6, 12 1 12 
1~2 

7,12 

1~2 

12 

1~3 

9~12 
  101 

NST08   — 
2, 4 

9~12 
1~5  —  6~10 1~10   — 6~7  —   —  6~12 95 

NST09 1, 12 
1~4 

12 
1~3  —  

1~2 

 6 
7~10 12 

1~3 

7, 12 

1~2 

 7 
 —  6~12 99 

NST10  —  11~12 
1~5 

7~12 
1~6 6~12         1~7 6~12 44 

NST11   —   —  —  7~8 6 7~12           63 

NST12 10~12 1~9  —   —  6~12 1~10 7~12         49 

NST13  —   —   —   —  6  —  7~12         77 

NST14 6~9   —   —  —  6 10~12           64 

NST15   — 10~12 1~5 6~12               33 

NST21           1~7 7~12         11 

NST22           1~7 7~12         11 

NST24           1~7 2~12 1~7   —   — 6~12 40 

NST25           1~7   — 2~12 1~8   — 6~12 39 

NST31                 1~8 7~12   10 

NST32                   1~5 6~12 12 

 

Table 3. Same as the Table 2 but for the Ngari network. 700 
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  2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 Data length (months) 

Shiquanhe network 

SQ01 1~7  —    —  —  9~12 1~9        52 

SQ02 1~7   —  —   —  5~9  —    —   —  —  9~12 104 

SQ03 1~7   —   —  —  8~9   —  —    —  —  9~12 107 

SQ04 1~7  — 9~12               25 

SQ05 1~7   —   —  —  5~12          45 

SQ06 1~7  —  9~12 1 2~9   —   —   —  —  9~12 96 

SQ07 1~7   —  —  9~12 1~8   — 7~8 7~8  —  9~12 93 

SQ08 1~7 8~12   1~8 8~9  —    —  —   —  9~12 82 

SQ09 1~7   — 9~12 1~8 9~12           37 

SQ10   1~8  —   —  7~12  1~9 7~12 1~8   — 9~12 67 

SQ11 1~7  —   —  9~12         1~8 9~12 49 

SQ12 1~7  — 9~12               25 

SQ13 1~7 8~12                 12 

SQ14 1~7  —   —    — 
6 

8~9 
  —  —    —  —  9~12 106 

SQ16 1~7 7~8   —  —  3~8 9~12         53 

SQ17             1~8   —  —  9~12 36 

SQ18             1~8 1 9~12   23 

SQ19             1~8  —   —  9~12 36 

SQ20             1~8   —  —  9~12 36 

SQ21             1~8   —  —  9~12 36 

Ali network 

Ail 1~7  — 9~12 1~8       1~8 8~12   40 

Ali01 1~7 8~12 1~8  —  8   —   —  —  8~12   82 

Ali02 
1~7 

11~12 
1~8  —   —  8  —   —   —  8~12   85 

Ali03 1~7  —   — 3~12 1~8  —    —   — 8~12   78 

 

Table 4. Same as the Table 2 but for the Naqu network. 

 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 Data length (months) 

Naqu  1~7   —   — 8~9 6~8 6~9   — 9~12 1~8 9~12 88 

East   1~8  —  9~12             24 
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West 1~7 1~8   — 1~9 7~12  1~7 8~12       42 

North   
1~8 

11~12 

1~3 

9  
9~12     1~8 9~12 1~8  9~12 42 

South   1~8 9~12               12 

Kema       1~9  3~9  —  8~12       26 

MS 1~7   — 10~12 1~9 
8~9 

11~12 
1~5  —  9~12 1~8  9~12 76 

NQ01                 1~8  9~12 12 

NQ02                 1~8  9~12 12 

NQ03             1~8 9~12 1~8 9~12  24 

NQ04                 1~8  9~12 12 

 

Table 5. Error statistics computed between the SMAA-min  and the three model-based SM products for the Maqu 

and Shiquanhe networks. 705 

 Bias (m3 m-3) RMSE (m3 m-3) Bias (m3 m-3) RMSE (m3 m-3) 

 Warm season Cold season 

 Maqu 

ERA5-land 0.050 0.067 - - 

GLDAS Noah -0.112 0.125 -0.049 0.088 

MERRA2 -0.113 0.124 0.006 0.097 

 Shiquanhe 

ERA5-land 0.002 0.079 - - 

GLDAS Noah 0.010 0.116 0.052 0.058 

MERRA2 0.054 0.069 0.049 0.053 

 

Table 6. Percentages of each combination’s RMSE fall into different levels of defined RMSE requirement. 

RMSE 0.004 0.006 0.008 0.010 0.012 0.014 0.016 0.018 0.020 

Maqu network 

n=1 (%)                    

n=2 (%)                0.74 3.68 

n=3 (%)            0.44 1.32 3.97 7.79 

n=4 (%)          0.21 1.05 3.74 9.16 16.93 

n=5 (%)        0.03 0.58 3.10 9.31 18.23 28.18 

n=6 (%)        0.09 1.87 8.27 19.18 31.22 42.36 

n=7 (%)        0.69 6.21 18.11 31.91 43.98 54.32 

n=8 (%)      0.08 3.29 14.97 30.32 43.97 55.36 64.79 

n=9 (%)      0.84 9.58 26.27 42.42 55.47 65.94 74.16 

n=10 (%)    0.01 3.91 19.74 38.94 54.41 66.13 75.21 82.23 

n=11 (%)    0.53 11.10 32.92 51.7 65.66 75.9 83.32 88.87 
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n=12 (%)    3.52 23.95 47.3 64.03 75.87 84.45 90.14 94.30 

n=13 (%)  0.29 13.82 39.87 61.81 75.67 85.38 91.55 95.38 97.77 

n=14 (%)  3.68 32.35 57.79 74.85 86.47 92.79 96.91 98.82 99.41 

n=15 (%)  21.32 56.62 75.00 88.97 95.59 98.53 99.26 100.00 100.00 

n=16 (%)  52.94 82.35 94.12 94.12 100.00 100.00 100.00 100.00 100.00 

Shiquanhe network 

n=1 (%)             8.33 16.67 25.00 

n=2 (%)   1.52 1.52 4.55 13.64 30.30 37.88 42.42 48.48 

n=3 (%)   6.82 21.36 25.45 33.18 42.73 53.18 59.55 65.00 

n=4 (%) 1.62 11.31 29.7 41.41 51.11 57.37 63.23 70.51 77.58 

n=5 (%) 3.66 23.11 36.87 49.12 60.23 68.18 76.14 82.32 88.26 

n=6 (%) 11.36 30.95 44.37 59.85 70.24 79.11 85.28 90.15 93.29 

n=7 (%) 20.20 39.77 56.06 68.31 77.90 86.87 93.43 96.84 98.48 

n=8 (%) 29.29 50.51 62.63 77.58 89.09 96.57 97.98 98.99 99.60 

n=9 (%) 33.64 59.55 82.73 91.36 96.36 98.18 99.55 99.55 100.00 

n=10 (%) 48.48 78.79 92.42 96.97 96.97 100.00 100.00 100.00 100.00 

n=11 (%) 83.33 91.67 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

 

Table 7. The combinations of monitoring sites ranked by RMSE values of average SM at the Maqu network. 

Rank Site1 Site2 Site3 Site4 Site5 Site6 Site7 Site8 Site9 Site10 Site11 Site12 RMSE 

1 CST01 CST02 NST02 NST03 NST04 NST05 NST06 NST07 NST10 NST13 NST14 NST15 0.00402 

2 CST01 CST02 CST04 NST01 NST02 NST03 NST04 NST05 NST06 NST07 NST13 NST15 0.00417 

3 CST02 NST01 NST02 NST03 NST04 NST05 NST06 NST07 NST10 NST13 NST14 NST15 0.00450 

4 CST01 CST02 NST01 NST02 NST03 NST04 NST05 NST06 NST07 NST13 NST14 NST15 0.00450 

5 CST01 CST02 CST03 NST02 NST03 NST04 NST05 NST06 NST07 NST10 NST14 NST15 0.00451 

96 CST01 CST02 CST03 CST04 CST05 NST03 NST06 NST10 NST11 NST13 NST14 NST15 0.00555 

97 CST01 CST02 CST03 NST01 NST02 NST04 NST05 NST06 NST11 NST13 NST14 NST15 0.00555 

98 CST01 CST02 CST03 CST04 CST05 NST01 NST02 NST05 NST06 NST10 NST11 NST15 0.00556 

99 CST03 NST02 NST03 NST04 NST05 NST06 NST07 NST10 NST11 NST13 NST14 NST15 0.00557 

100 CST02 CST03 CST05 NST01 NST03 NST05 NST06 NST10 NST11 NST13 NST14 NST15 0.00557 

 710 
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Appendix A. Basic information of the Tibet-Obs 

Table A1. Site information of the Maqu network (site name, elevation, topography (TPG), land cover (LC), soil 

texture at 5-15 cm depth (STX), soil bulk density at 5cm depth (BD), soil organic matter content at 5-15cm depth 

(OMC), Not Available (NA), BD and OMC values are measured in the laboratory). 715 

 

Table A2. Soil moisture with temporal persistence for the Maqu network. Light gray shaded cells represent that 

there is not data missing, dark gray shaded cells represent there is data missing with little influence. 

Site name Elevation (m) TPG LC STX BD (kg m-3) OMC (g/kg) 

CST01 3431 River valley Grass NA NA NA 

CST02 3449 River valley Grass NA NA NA 

CST03 3507 Hill valley Grass NA NA NA 

CST04 3504 Hill valley Grass NA NA NA 

CST05 3542 Hill valley Grass NA NA NA 

NST01 3431 River valley Grass Silt loam 0.96 18 

NST02 3434 River valley Grass Silt loam 0.81 18 

NST03 3513 Hill slope Grass Silt loam 0.63 49 

NST04 3448 River valley Wetland Silt loam 0.26 229 

NST05 3476 Hill slope Grass Silt loam 0.75 22 

NST06 3428 River valley Grass Silt loam 0.81 23 

NST07 3430 River valley Grass Silt loam 0.58 23 

NST08 3473 Valley Grass Silt loam 1.06 34 

NST09 3434 River valley Grass Sandy loam 0.91 17 

NST10 3512 Hill slope Grass Loam-silt loam 1.05 24 

NST11 3442 River valley Wetland Organic soil  0.24 136 

NST12 3441 River valley Grass Silt loam 1.02 39 

NST13 3519 Valley Grass Silt loam 0.67 29 

NST14 3432 River valley Grass Silt loam 0.68 30 

NST15 3752 Hill slope Grass Silt loam 0.78 56 

NST21 3428 River valley Grass Silt loam NA NA 

NST22 3440 River valley Grass Silt loam NA NA 

NST24 3446 River valley Grass Silt loam  NA NA 

NST25 3600 Hill slope  Grass Silt loam NA NA 

NST31 3490 NA NA NA NA NA 

NST32 3490 Hill valley Grass NA NA NA 
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Time 
2009.11~ 

2010.11 

2010.11.~

2011.11 

2011.11~ 

2012.11 

2012.11~ 

2013.11 

2013.11~ 

2014.11 

2014.11~ 

2015.11 

2015.11~ 

2016.11 

2016.11~ 

2017.11 

2017.11~

2018.11 

CST05                  - 

NST01                   

NST03                   

NST06   
 

              

NST07                   

NST13                   

NST01                   

NST14               

CST03                   

NST05                   

CST01                   

CST04                   

NST02                   

NST04                   

CST02                   

NST10                   

NST15                   

 

Table A3. Same as the Table A1 but for the Ngari network (BD and OMC data are not available). 720 

Site name Elevation (m) TPG LC STX 

Shiquanhe network  

SQ01 4306 Flat Desert Loamy sand 

SQ02 4304 Gentle slope Desert Sand 

SQ03 4278 Gentle slope Desert (with sparse bushes) Sand 

SQ04 4269 Edge of a wetland Sparse grass Loamy sand 

SQ05 4261 Edge of a marsh Sparse grass Sand 

SQ06 4257 Flat Sparse grass Loamy Sand 

SQ07 4280 Flat Desert (with sparse bushes) Sand 

SQ08 4306 Flat Desert  Sand 

SQ09 4275 Flat Desert/river bed Sand   

SQ10 4275 Flat Grassland 
Fine sand with some 

thick roots 

SQ11 4274 Flat Grassland with bushes Loamy sand  

SQ12 4264 Flat Edge of riverbed Sandy loam  

SQ13 4292 Flat Valley bottom Sand  



 

32 

 

 

Table A4. Same as Table A2 but for the Shiquanhe network.  

Time 
2010.8~ 

2011.8 

2011.8~ 

2012.8 

2012.8~ 

2013.8 

2013.8~ 

2014.8 

2014.8~ 

2015.8 

2015.8~ 

2016.8 

2016.8~ 

2017.8 

2017.8~ 

2018.8 

2018.8~ 

2019.8 

SQ02                  

SQ03                   

SQ06                  

SQ14                   

SQ08                   

SQ07                   

SQ17                   

SQ19                   

SQ20                   

SQ21                   

SQ10                   

SQ11                   

 

Table A5. Same as the Table A1 but for the Naqu network (BD and OMC data are not available). 

SQ14 4368 Slope Desert Sandy loam 

SQ16 4288 Flat Desert/river bed Loam 

SQ17 4563 NA NA NA 

SQ18 4634 NA NA NA 

SQ19 4647 NA NA NA 

SQ20 4695 NA NA NA 

SQ21 4606 NA NA NA 

Ali network 

Ali 4288 Flat Grass Loamy sand  

Ali01 4262 Flat Sparse grass Sand  

Ali02 4266 Flat Sparse grass Sand  

Ali03 4261 Edge of a wetland Grass  Sand 

Site name Elevation (m) TPG LC STX 

Naqu 4509 Plain Grassland Loamy sand 

East 4527 Flat hill top Grassland Loamy sand 

West 4506 Plain Grassland Loamy sand 

North 4507 Slope on riverbank Grassland Loamy sand  

South 4510 Slope of wetland Wetland Loamy sand 
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Appendix B. Spatial upscaling methods 725 

B.1 Arithmetic averaging  

The arithmetic averaging method assigns an equal weight coefficient to each SM monitoring site of the 

network, which can be formulated as: 

𝜽̅𝒕
𝒖𝒑𝒔

=
𝟏

𝑵
∑ 𝜽𝒕,𝒊

𝒐𝒃𝒔𝑵
𝒊=𝟏                                                                                                                                          (B1)                               

where 𝑖 represents the ith SM monitoring site. 730 

B.2 Voronoi diagram  

The Voronoi diagram method divides the network area into several parts according to the distances between 

each SM monitoring site. This approach determines the weight of each site (𝑤𝑖  [-]) based on the geographic 

distribution of all the SM monitoring sites within the network area, which can be formulated as:  

𝜽̅𝒕
𝒖𝒑𝒔

= 
∑ 𝑤𝑖𝜃𝑡,𝑖

𝑜𝑏𝑠𝑁
𝑖=1

∑ 𝑤𝑖
𝑁
𝑖=1

                                                                                                                                           (B2)                                 735 

B.3 Time stability  

The time stability method is based on the assumption that the spatial SM pattern over time tends to be 

consistent (Vachaud et al., 1985), and the most stable site can be regarded as the representative site of the 

network. For each SM monitoring site 𝑖  within the time window (M days in total), the mean relative 

difference 𝑀𝑅𝐷𝑖  [-] and standard deviation of the relative difference σ(𝑅𝐷𝑖) [-] are estimated as: 740 

 σ(𝑅𝐷𝑖) =  √
1

𝑀−1
∑ (𝑅𝐷𝑡,𝑖 −𝑀𝑅𝐷𝑖)

2𝑀
𝑡=1                                                                                                        (B3)                                 

𝑀𝑅𝐷𝑖 = 
1

𝑀
∑

𝜃𝑡,𝑖
𝑜𝑏𝑠−𝜃𝑡

𝑜𝑏𝑠̅̅ ̅̅ ̅̅ ̅

𝜃𝑡
𝑜𝑏𝑠̅̅ ̅̅ ̅̅ ̅

𝑀
𝑡=1                                                                                                                             (B4)                                        

𝑅𝐷𝑡,𝑖 = 
𝜃𝑡,𝑖
𝑜𝑏𝑠−𝜃𝑡

𝑜𝑏𝑠̅̅ ̅̅ ̅̅ ̅

𝜃𝑡
𝑜𝑏𝑠̅̅ ̅̅ ̅̅ ̅                                                                                                                                           (B5)                                                                               

where 𝜃𝑡,𝑖
𝑜𝑏𝑠  [m3 m-3] represents the SM measured on the tth day at the ith monitoring site, 𝜃𝑡

𝑜𝑏𝑠̅̅ ̅̅ ̅̅  [m3 m-3] 

represents the mean SM measured at all available monitoring sites on the tth day. 𝑀𝑅𝐷𝑖  quantifies the bias of 745 

each SM monitoring site to identify a particular location is wetter or drier than regional mean, and σ(𝑅𝐷𝑖) 

Kema 4465 River valley Grass Silt loam 

MS 4583 NA NA NA 

NQ01 4517 NA NA NA 

NQ02 4552 NA NA NA 

NQ03 4638 NA NA NA 

NQ04 4632 NA NA NA 



 

34 

 

characterizes the precision of the SM measurement. Jacobs et al., (2004) combined above two statistical 

metrics as a comprehensive evaluation criterion (𝐶𝐸𝐶𝑖 [-]): 

 𝐶𝐸𝐶𝑖 = √(𝑀𝑅𝐷𝑖)
2 + σ(𝑅𝐷𝑖)

2                                                                                                                   (B6)                                  

The most stable site is identified by the lowest 𝐶𝐸𝐶𝑖 value.                        750 

B.4 Apparent thermal inertia 

The apparent thermal inertia (ATI) method is based on the close relationship between apparent thermal inertia 

(𝜏  [K-1]) and SM (𝜃 [m3 m-3]) (Van doninck et al., 2011; Veroustraete et al., 2012). If the true areal SM (𝜃̅𝑡
𝑡𝑟𝑢 

[m3 m-3]) is available, then the weight vector 𝛽 can be derived by the ordinary least-squares (OLS) method 

that minimizes the cost function  𝐽 as:  755 

𝐽 = ∑ (𝜃𝑡
𝑡𝑟𝑢  − 𝛽𝑇𝜃𝑡

𝑜𝑏𝑠)2𝑀
𝑡=1                                                                                                                           (B7)                               

However, the 𝜃𝑡
𝑡𝑟𝑢 [m3 m-3] is usually not available in practice, and the representative SM (𝜃̅𝑡

𝑟𝑒𝑝
 [m3 m-3]) is 

thus introduced that contains random noise but with no bias. Since the OLS method may results in overfitting 

with usage of the 𝜃̅𝑡
𝑟𝑒𝑝

, a regularization term is introduced and Eq. (B7) can be re-formulated as (Tarantola, 

2005): 760 

𝐽 = ∑ (𝜃̅𝑡
𝑟𝑒𝑝

− 𝛽𝑇𝜃𝑡
𝑜𝑏𝑠)𝜎−2(𝜃̅𝑡

𝑟𝑒𝑝
− 𝛽𝑇𝜃𝑡

𝑜𝑏𝑠)𝑀
𝑡=1 + 𝑅𝛽𝑇𝛽                                                                             (B8)                               

where σ [m3 m-3] represents the standard deviation of 𝜃̅𝑡
𝑟𝑒𝑝

, R [-] is the regularization parameter.  

The core issue of the ATI approach is to obtain the  𝜃̅𝑡
𝑟𝑒𝑝

 and minimize the cost function of Eq. (B8) to obtain 

β and R. The 𝜃̅𝑡
𝑟𝑒𝑝

can be retrieved from the apparent thermal inertia 𝜏 by the empirical regression g(𝜏), and 

𝜏 has strong connection with the surface status, e.g. land surface temperature and albedo, which is defined 765 

as: 

τ = C
1−𝑎

𝐴
                                                                                                                                                         (B9)                              

where 𝐶 [-] represents the solar correction factor, 𝑎 [-] represents the surface albedo, and 𝐴 [K] represents 

the amplitude of the diurnal temperature cycle. The albedo and land surface temperature data obtained from 

the MODIS MCD43A3 and MYD11A1/MOD11A1 Version 6 products are used to derive the ATI according 770 

to Eq. (B9) in this study. 

The solar correlation factor 𝐶 in Eq. (B9) is computed as: 

C = sinφsinδ(1 − 𝑡𝑎𝑛2φ𝑡𝑎𝑛2δ)1 2⁄ + 𝑐𝑜𝑠𝜑𝑐𝑜𝑠𝛿arccos (−𝑡𝑎𝑛𝜑𝑡𝑎𝑛𝛿)                                                 (B10) 

with 

δ = 0.00691 − 0.399912 cos(γ) + 0.070257 sin(γ) − 0.006758 cos(2γ) + 0.000907 sin(2γ) −775 

0.002697cos(3γ) + 0.00148sin (3γ)                                                                                                        (B11) 

and 

γ =
2𝜋(𝑛𝑑−1)

365.25
                                                                                                                                                 (B12) 

where φ represents the latitude [rad], δ represents the solar declination [rad], and 𝑛𝑑 represents the Julian 

day number.  780 
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The amplitude of the diurnal LST A is estimated as LSTmax - LSTmin for a single day. Finally, we use the 

regression analysis between in situ SM measurements (𝜃) at each monitoring site and corresponding ATI (τ) 

to obtain the g(∙) form. 

There are 17 and 12 monitoring sites participate in the regression analysis for the Maqu and Shiquanhe 

networks during the periods of 11/2009-10/2010 and 8/2018-7/2019, respectively. The ATI cannot be 785 

obtained for each monitoring site in every day since the satellite-based LST data are contaminated by clouds. 

In order to make full use of the data, we make the ATI-SM pair for the 1st monitoring site on the 1st day as 

No. 1, the pair for the 17th (or 12th) monitoring site in the Maqu (or Shiquanhe) network on the 1st day as the 

No. 17 (or No. 12), the pair for the 1st monitoring site at the 2nd day as the No. 18 (No. 13), and so on. Later 

on, we select a certain number of ATI-SM pairs (e.g. 40, 50, 60, 70, 80, 90, and 100) as a group to compute 790 

the averaged ATI and SM and construct the most reasonable regression relationship between them. If the 

ATI or SM data at one day is missing, this pair is ignored. As shown in Fig. B1, the empirical relationship is 

generated from 80-pair-averaged ATI and SM for the Maqu and Shiquanhe networks.  

When the empirical relationship g(∙) is determined, the regional-average SM can be derived from grid-

averaged ATI by the function g(∙), which it is regarded as 𝜃̅𝑡
𝑟𝑒𝑝

 in Eq. (B8). Finally, the optimal 𝛽 (𝛽̂) is 795 

obtained by minimizing the cost function (i.e. Eq. (B8)), and the upscaled SM can be estimated as: 

𝜽̅𝒕
𝒖𝒑𝒔

= 𝛽̂𝜽𝒕
𝒐𝒃𝒔                                                                                                                                                   (B13)              

The detailed description of the ATI method is referred to Qin et al. (2013). 

 

Fig. B1 Empirical relationship between 80-pair-averaged ATI and SM at the (a) Maqu and (b) Shiquanhe 800 
networks. 
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Fig. B2. Radar graph of error statistics (i.e. RMSE and NSE) computed between the SMtruth produced by the AA-

max and the upscaled SM produced by the four upscaling methods with input of different number of available 805 
monitoring sites for the (a) Maqu and (b) Shiquanhe networks. 

Table B1. Evaluated metrics computed for the upscaled SM produced by the four upscaling methods with input 

of the maximum available monitoring sites. 

Methods 
Maqu Shiquanhe 

MRD σ(RD) CEC MRD σ(RD) CEC 

AA-max 0.009 0.054 0.055 0.012 0.046 0.047 

TS-max 0.022 0.089 0.092 0.011 0.114 0.114 

VD-max -0.026 0.064 0.069 -0.042 0.033 0.053 

ATI-max -0.005 0.145 0.145 0.016 0.068 0.070 

 

Table B2. Error statistics computed between the SM obtained by the four upscaling methods with input of the 810 
minimum available monitoring sites and the SMtruth produced by the AA-max for the Maqu and Shiquanhe 

networks. 

 Bias (m3 m-3) RMSE(m3 m-3) ubRMSE(m3 m-3) NSE 

Maqu 

AA-min 0.005 0.022 0.021 0.954 

TS-min 0.025 0.050 0.044 0.747 

VD-min -0.007 0.022 0.020 0.954 

ATI-min -0.052 0.099 0.084 0.030 

 Shiquanhe 
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AA-min 0.010 0.011 0.005 0.816 

TS-min -0.001 0.013 0.013 0.768 

VD-min 0.019 0.020 0.006 0.400 

ATI-min -0.001 0.021 0.021 0.393 

 


