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SoDaH: the SOils DAta Harmonization database, an open-source
synthesis of soil data from research networks, version 1.0.
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Abstract. Data collected from research networks present opportunities to test theories and develop models about factors
responsible for the long-term persistence and vulnerability of soil organic matter (SOM). Synthesizing datasets collected by
different research networks presents opportunities to expand the ecological gradients and scientific breadth of information
available for inquiry. Synthesizing these data are challenging, especially considering the legacy of soils data that has already
been collected and an expansion of new network science initiatives. To facilitate this effort, here we present the SOils DAta
Harmonization database (SoDaH; https://Iter.github.io/som-website, last accessed Dec. 22, 2020), a flexible database designed
to harmonize diverse SOM datasets from multiple research networks. SoDaH is built on several network science efforts in the
United States, but the tools built for SoDaH aim to provide an open-access resource to facilitate synthesis of soil carbon data.
Moreover, SoDaH allows for individual locations to contribute results from experimental manipulations, repeated
measurements from long-term studies, and local- to regional-scale gradients across ecosystems or landscapes. Finally, we also
provide data visualization and analysis tools that can be used to query and analyze the aggregated database. The SoDaH v1.0

dataset is archived and available at https://doi.org/10.6073/pasta/9733f6b6d2{fd12bf126dc36a763e0b4 (Wieder et al., 2020).

1 Introduction

Soil organic matter (SOM) contains two- to three-times the amount of carbon (C) as the atmosphere and terrestrial vegetation
combined, yet adequately describing SOM dynamics in numerical models remains a challenge (Jackson et al. 2017). Recent
biogeochemical research has attempted to understand how climate, biota, soil chemistry, and mineralogy interact to determine
SOM stabilization and persistence (Schmidt et al. 2011; Lehmann & Kleber 2015). Emerging theories also highlight how

interactions among these factors affect the production and apparent stabilization of microbial residues (Grandy & Neff 2008;
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Cotrufo et al. 2013; Kallenbach et al. 2016). Notably, these new studies emphasize the importance of soil mineralogy and
physical structure in limiting microbial access to otherwise decomposable substrates (Dungait et al. 2012; Miltner et al. 2012;
Schimel and Schaeffer 2012; Sulman et al. 2014).

Datasets that span environmental and edaphic gradients are critical for constraining soil C estimates and developing
and testing theoretical and numerical models that are based on these ideas (Wieder and Allison et al. 2015; Luo et al 2016;
Harden et al. 2018; Sulman et al. 2018; Malhotra et al. 2019). Data synthesized across scientific networks, notably those with
long-term observations and manipulations, are especially useful for establishing general patterns across broad environmental
gradients. These insights, and the primary data are valuable for model development. For example, efforts to synthesize and
archive results from the Long-Term Intersite Decomposition Experiment Team (LIDET; Gholz et al. 2000; Parton & Silver et
al. 2007; Adair et al. 2008; Harmon 2013) provide a valuable benchmark for parameterizing and evaluating models with litter
decomposition data (Bonan et al. 2013; Wieder and Grandy et al. 2015; Kyker-Snowman et al. 2019). Elsewhere, Zhang et al.
(2020) used data from three research networks in Europe, China, and Australia to parameterize and evaluate two soil carbon
models. Providing similar data syntheses with information on soil carbon and associated covariates (e.g., climate, productivity,
and soil physical and chemical properties) in public databases is critical to advancing understanding soil biogeochemistry.

Coordinated research activities and the expansion of research network infrastructure are broadening the scope and
breadth of information measured across sites in ways that can advance SOM science (Hinckley et al. 2016; Baatz et al. 2018;
Richter et al. 2018; Weintraub et al. 2019, Lajtha et al. 2018). With a 40-year investment in continuous or multi-year
measurements and a rich legacy of manipulative experiments, the Long-Term Ecological Research (LTER) Network provides
a publicly available data archive through the Environmental Data Initiative (EDI;
https://portal.edirepository.org/nis/home.jsp). The LTER network has an advantage of hosting diverse research experiments,
but because each site in the network has different research foci data are not collected or reported in a consistent manner
(Billings et al. 2020, but see Zak et al. 1994; Frank et al. 2012). By contrast, new investments in networks like the National
Ecological Observatory Network (NEON) provide a top-down, standardized framework for data collection across sites.
Synthesizing data from across LTER, NEON and other research networks present unique opportunities to deepen our general
understanding of soil biogeochemistry.

Here, we present a flexible database designed to harmonize diverse SOM datasets from across research networks. We
aim to provide an open-access resource to facilitate the synthesis of soil C data. This data resource can expand to accommodate
legacy datasets as they are identified and incorporate new data products as they become available. This data infrastructure is
critical to advance understanding in SOM dynamics at a time when the theoretical foundations and numerical representations

of soil biogeochemical processes are rapidly evolving.
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2 The SoDaH database

Our team created the SOils DAta Harmonization (SoDaH) database to bring together soil C data from diverse research
networks into a harmonized dataset that can be used for synthesis activities and model development. The research network
sources for SoDaH span different biomes and climates, encompass multiple ecosystem types, and have collected data across a
range of spatial, temporal, and depth gradients. The rich data sets assembled in SoDaH consist of observations from monitoring
efforts and long-term ecological experiments. The SoDaH database also incorporates related environmental covariate data
pertaining to climate, vegetation, soil chemistry, and soil physical properties. The data are harmonized and aggregated using
open-source code that enables a scripted, repeatable approach for soil data synthesis. Finally, to accompany SoDaH, we provide

data visualization and analysis tools that can be used to query and analyze the aggregated database.

2.1 Database Sources and Structure

Research networks provide a powerful observational platform for enhancing our understanding of ecosystems. For example,
in the United States, three research networks funded by the National Science Foundation collect soils data that deepen
understanding and improve the representation of soil biogeochemical processes in models. These include the LTER network
(https://lternet.edu/), Critical Zone Observatories and their successor sites (CZO; http://criticalzone.org/national/), and the
National Ecological Observatory Network (NEON; https://www.neonscience.org/, NEON 2020). Other coordinated research
activities that further expand data availability include community efforts like the Nutrient Network (NutNet;
https://mutnet.org/) and Detritus Input and Removal Treatments (DIRT; https://dirtnet.wordpress.com/). We compiled soils
data from these five research networks into the SoDaH database, version 1.0.

The unique perspectives and historical legacies of each network synergistically offer insights into understanding many
aspects of SOM dynamics. For example, data from LTER, DIRT and NutNet sites are generally long-term datasets that focus
on surface soil (< 30 cm) properties across gradients and response to experimental manipulations. Data from CZO sites tend
to contribute information on soil geochemical properties and expand focus to include deeper (> 30 cm) soil horizons. Finally,
NEON employs standardized data collection procedures that span continental-scale ecoclimatic gradients (Fig 1).

The SoDaH dataset focuses on soil organic carbon (SOC) concentration (% C), estimated SOC stocks (g C m2), and
associated covariates that may be useful in explaining variation in SOC stocks within and among sites. To avoid
confounding the interpretation of SOC measurements collected by different approaches (e.g. Walkley-Black and mass loss
on ignition), we focused on synthesizing SOC measurements from soil samples that were acidified if needed to remove
inorganic carbonates, then analyzed for total C using elemental analyzer. Beyond SOC, covariates collected in SoDaH
include abiotic factors (e.g., climate [mean annual temperature and precipitation], soil depth, bulk density, particle size
distribution, and mineralogy), vegetation characteristics (including vegetation type and above and belowground root

productivity, biomass, and chemistry), and additional soil chemical properties (total nitrogen, phosphorus, pH, etc.).
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Recognizing that the cyber landscape of soil databases is expanding (Malhotra et al. 2019), we wanted to structure
SoDaH in a manner consistent with existing databases, perhaps most notably the International Soil Carbon Network (ISCN;
Nave et al. 2016, Harden et al. 2017), which similarly focuses on SOC concentrations and stocks in bulk soils. The ISCN
uses a hierarchical data structure that links metadata information with fields for location, profile and soil layer data. We
maintained the ISCN’s basic structure in SoDaH (Fig. 2), as it provides a logical means to structure relationships between
different measurements (i.e., variables). A similar approach was also used in the International Soil Radiocarbon Database
(ISRaD; Lawrence et al. 2020), which primarily focuses on synthesis of additional information about radiocarbon from bulk
soils, soil fractions, and soil gases. Given this focus of ISRaD, the SoDaH database contains only sparse data on isotopes and
SOM fractions. Since SoDaH and ISCN focus on SOC measurements and have a similar structure, we hope they may be
used together in future studies.

The unique contribution from SoDaH, relative to other soil databases, is that SoDaH is built on several network
science efforts in the United States, and presents a usable, extensible database for contributing and analyzing data. Moreover,
SoDaH allows for individual locations to contribute results from experimental manipulations, repeated measurements from
long-term studies, and local- to regional-scale gradients across ecosystems or landscapes. Data from these kinds of studies
should be incorporated into existing database structures, like ISCN, but the additional metadata requested as part of SoDaH
helps database users understand more information about how data were collected from individual studies. Thus, SoDaH
allows for the harmonization of data spanning a greater range of spatial and temporal scales than other databases, and
enables the incorporation of ecosystems responses to manipulations, which is not a possibility for other databases.

Given the focus on experimental manipulations, we requested additional categorical information on location and
profile fields to clarify aspects of data collection and experimental design. This includes flags in the location field asking if
datasets include measurements that are repeated over multiple time points, come from experimental manipulations, or
represent gradient studies. We also asked dataset contributors to identify ‘control” or unmanipulated sample identifiers when
necessary. We accommodated various experimental designs and data hierarchies with fields to describe this information,
such as whether plots are grouped into blocks or watersheds, and the organization of treatment levels, in the profile field of
the database. For example, at one site, data may be collected from plots along an elevational transect; whereas, another
dataset may include information from a nitrogen fertilization treatment that was conducted on experimental plots in a
replicated block design. Maintaining these data hierarchies is important for database users to inform how best to aggregate
data collected from diverse networks, individual study sites, and unique experimental designs.

The workflow for synthesizing is summarized in Figure 3 and in the following sections. Briefly, Primary data
(Level-0) are identified by data providers and variables are mapped to standardized units and vocabulary using the metadata
templates (section 2.2). These data are harmonized into Level-1 data with soil harmonization script that renames variables,
conducts unit conversions, and performs quality control checks (section 2.3). Finally, Level-1 data are aggregated into the

Level-2 dataset, which can be visualized with the SoDah R Shiny app and queried with data analysis tools (section 2.4).
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2.2 Data Identification and Contributions

To begin populating the SoDaH database, we identified data contributors who were familiar with primary datasets available
from individual study sites and research networks. These primary data may or may not be in a published state but, if not
published, would be equivalent to data provided for publication. Many of the datasets in SoDaH were already published in
public repositories like EDI, the repository for LTER data, or available through the NEON data portal. Users can find these
primary data using the doi provided for individual dataset in the harmonized dataset. Other datasets that we wanted to
include in SoDaH, however, had not been published or were difficult to find or identify (mainly data from CZO sites and the
DIRT network, but also some LTER data). Publishing these primary data remains an active priority for our working group.
Data providers who were familiar with the diversity of datasets that are available at a study site or a network provided
expertise to link soil C datasets with appropriate ancillary data.

The SoDaH database was constructed by data contributions from individual sites or research networks who
provided flat (.csv) files to a shared directory on Google Drive. The dataset (or datasets) from each site, study, or network
were placed in their own subdirectory along with a metadata template that was used to map variable names in the primary
(Level-0) data to the structure of SoDaH (Fig. 3). The metadata template was developed to facilitate data harmonization in a
scripted, repeatable manner that maintained the integrity of the primary datasets (https://lter.github.io/som-
website/database.html). To simplify the workflow for data contributors, the metadata template only includes a single tab
each for location and profile data. Within these tabs, data contributors are able to add information on metadata (found on the
‘location’ tab) and layer or fraction data (found on the ‘profile’ tab; Fig. 2). Layer data includes information on soil chemical
and physical properties that may be measured on bulk soils for defined soil horizons or depth increments. Fraction data
would include similar measurements on defined fractions within individual soil layers (e.g., percent soil organic carbon on
density fractionated soils). Note, SoDaH currently has sparse data from measured soil fractions, which have therefore been
omitted from Fig. 2 for simplicity, but the database structure can include information on soil fractions.

This initial step of our data harmonization still requires manual effort from data providers, as they have to map the
names of measured variables from primary data with the appropriate variable in SoDaH. Data contributors enter relevant
metadata and site information that may not be included in the primary data sets. They provide additional information from
controlled drop-down cells with information on units for each variable (e.g., %C, g C kg™! soil, mg C kg™! soil, etc.) or on
methodologies used (e.g., soil P measured by Bray, Melich, etc.). In the harmonized dataset, we convert analyte names and
units to a standard output and include methodological information (section 2.3). This approach accommodates a broad suite
of soil and related variables (e.g., climate, vegetation characteristics, ecosystem productivity, etc.). In the future, we aim to
further reduce data provider input requirements, but only if the community converges on standardized variable names and
units of measure (sensu Billings et al. in press). Ultimately sophisticated metadata, such as controlled vocabularies and other,
more expressive semantic technologies, may facilitate scripted harvesting of data from disparate networks and repositories

(e.g., see review by Buck et al. 2019 for trends and examples in Marine Science).
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The metadata template in SoDaH matches site-level information with the detailed measurements collected at each
study site. Data on the location tab represents site characteristics for a single site or location (e.g., Prospect Hill Warming
experiment at Harvard Forest). Accordingly, the harmonization script broadcasts data provided on the location tab (latitude,
longitude, mean annual temperature, etc.) to every row of the harmonized dataset. Data on the profile tab includes profile
information about experimental levels (e.g., plots within experimental blocks) and experimental treatments (e.g. +N
fertilization) that help clarify how the data were collected. Data on the profile tab should also correspond to columns of
variables that are reported in the Level-0 data (e.g., soil organic C measured at different soil layers). Accordingly, the
harmonization script copies each unique measurement from the profile tab into a column of data in the harmonized dataset.
Data contributors, therefore, can move variables from the location to profile tabs when appropriate. For example, NutNet and
NEON data were submitted to SoDaH with information from multiple sites on a single .csv file that provided information
about each site as unique columns of data. We, therefore, moved site information (e.g., climate, latitude and longitude) onto
the profile tab for these networks. Similarly, gradient studies that report tabular data for individual soil profiles can move
information on slope, aspect, vegetation communities or parent material (typically on the location tab) onto the profile tab of
the metadata template.

The harmonization script can harmonize multiple datasets from the same study location. For example, a dataset may
consist of multiple data files that each contain details about different aspects of the study (e.g., soil data in one file,
aboveground productivity in another file); the harmonization script will harvest all variables identified in the metadata file
from the suite of data files (as long as they are in the same Google directory as the metadata file). However, because SoDaH
is a flat database values from these different data files will be stacked, meaning that information from different Level-0
datasets would be recorded in different rows of the aggregated Level-2 database (in the example above, soil properties and
productivity will be included, but in different rows). Additional aggregation steps, therefore, may be required to align data
within sites. Users can find this information in the database column labeled merge align, which is a logical that identifies if
multiple data files can be merged. Notes under columns align 1 and align 2 are intended to help communicate what
common data fields can help with this alignment (e.g. experimental or treatment levels, L/ and #x L1, respectively). To help
users understand the database column information, the complete database key is provided in the SoDaH online application

and gives users descriptions of the column contents.

2.3 Data Harmonization and Aggregation

We developed the soilHarmonization package in R (R Core Team 2020) to harmonize and aggregate the SoDaH database.

The soilHarmonization package is publicly available (https://github.com/lter/soilHarmonization). The package includes

functions that harmonize Level-0 data into Level-1 data. Data contributors or database managers use the data_harmonizaiton
function tools to read and harmonize user-provided primary data that are mapped to a metadata template with controlled

vocabulary and standard units (Fig. 3). Users point to the Google Drive directory where Level-0 data are located (primary
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data and metadata template), and the data _harmonizaiton function generates a new flat file(s) in which the variable names
and units are standardized in the output (Level-1 data). The harmonized dataset includes unique columns of data from those
defined in the profile tab as well as columns of data with site-level information from the location tab. The package also
includes a suite of QC tools that confirm proper data type (e.g., strings are not interspersed with numeric values) and that
numeric data, once converted to appropriate units, fall within an expected range. A summary of inputs, outputs,
harmonization steps, and a QC report are detailed in an accompanying document (.pdf) for each harmonized dataset. These
Level-1 data products are stored in the same Google Drive directory as the Level-0 data with resulting output identified with
a modified filename. This allows data contributors and database managers to verify the QC report and ensure appropriate
data harmonization.

After generating Level-1 data from all Level-0 data, we combined harmonized data files into an aggregated dataset
(.rds or .csv format; Fig. 3). This dataHarvest function is intended for use by database managers and is available on the
LTER SOM GitHub page (https://github.com/lter/lterwg-som/tree/main/data-aggregation/, last accessed Dec. 22, 2020).
This function aligns columns of Level-1 data into a single, Level-2, dataset. The resulting SoDaH database (version 1.0) we
describe here is a single, flat dataset that has columns corresponding to variables in the metadata template and rows for each

measurement.

2.4 Data Visualization and Analysis

To facilitate user interaction with the SoDaH database, and to provide a simplified approach for data queries and analysis,
we developed a web-based application using R Shiny (Chang et al. 2020). This SoDaH application is publicly accessible and
hosted by the National Center for Ecological Analysis and Synthesis (NCEAS) at https://cosima.nceas.ucsb.edu/lter-som
(last accessed Dec 22, 2020; source code: https://github.com/lter/Iterwg-som-shiny). With the SoDaH application, users can
perform a number of tasks to aid data discovery, visualization and analysis. We provide a brief description of this resource
that highlights key features of the R Shiny SoDaH application.

In the Query section of the application, the top portion of the page provides a variety of data filter options to assist
users with partitioning the database. Specifically, users may subset the database by any combination of research network,
experiment type, and soil depth, while also specifying whether they wish to include or exclude experimental treatments or
time-series data. Below the filter options, the Output section of the page contains three separate features arranged into
labeled application tabs. The Plot tab allows users to quickly create basic analysis plots (point, histogram, or boxplot) using
both covariates (e.g., Fe concentration) and metadata (e.g., mean annual precipitation). In the Map tab, users may specify
which analyte in the database to display on a spatial map. Numeric values are symbolized using a color gradient and the
interactive map functionality allows users to both adjust the map scale and select from numerous basemap options. Finally,

the Table tab provides users with the ability to directly view, search and download the user-specified data subset as a flat file
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(.csv). The plot, map and table features are all responsive to user specified changes in the data filters and will update in
realtime.

The data table on the Query page of the SoDaH Shiny application is responsive to the filter options at the top of the
Query page. When users click the “Download data” button next to the table, the downloaded .csv file will contain the same
data shown in the application table at that time. Code examples for working with the database, including how to filter by
specific column values, are provided in the GitHub repository (https://github.com/lter/Iterwg-som/data-
processing/Tarball v2 scripts, last accessed Dec. 22, 2020).

In the Data Summary section of the SoDaH application, two feature tabs are provided to help users identify the data
available for a specific site or analyte. The By Analytes tab allows users to view the number of analyte values that exist
across all of the unique sites in the database. Users may specify up to four different analytes at a time to be included in the
summary table output. The By Site tab allows users to view all of the analyte data available for a specific site. As the amount
of data may be quite large for some sites, options are provided to narrow the summary output to include only profile,
location or character class data.

The SoDaH application also includes a Data Key section, where users may view a full copy of the metadata
template used for the SoDaH database construction, including descriptions of database fields and their associated metadata.
The searchable key is split into two sections, location and profile, in the same manner as the metadata template used to
describe primary data for the harmonization process. Field names in the provided key match exactly with analyte and
metadata options provided in the Plot and Map features in the Query section of the application. Finally, the application
provides a Comments section where users may submit an inquiry about the database or the application.

For users seeking to move beyond the functionality provided by the SoDaH application, R scripts are provided
through the LTER SOM GitHub repository (https://github.com/lter/Iterwg-som/tree/main/data-projects, last accessed Dec.
22, 2020) to facilitate and demonstrate scripting language to import, filter, summarize and map data from the SoDaH
database. This repository is intended to facilitate use of the SoDaH database, and the scripts used to generate figures in this
paper are available in the repository. We encourage database users to draw from these existing resources and contribute new
scripts they develop for scientific analysis of data in SoDaH.

Additional data aggregation steps may be required to fully realize strengths of the SoDaH database. These could
include, identifying suitable approaches to aggregate, and aligning data within sites. The aggregation steps currently
implemented in SoDaH may not be appropriate for particular research questions, especially those concerning spatial and
temporal gradients. Therefore, users may need to align rows of data from the same profile or location, but were harvested
from multiple data files, which results in data being stacked within the flat database. For example, a site may contribute data
on soil chemical properties, soil physical properties, microbial stoichiometry and biomass, litterfall chemistry, and litterfall
fluxes with each as an independent dataset. Moreover, these variables may be measured multiple times during a long-term
study, but not necessarily at the same time or at the same frequency. Finally, information from a single site may include a

gradient study across a hillslope, chronosequence, or region that may influence how data users want to aggregate individual
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measurements. The SoDaH metadata template prompts data providers to indicate if data from multiple files need to be
aligned, and, if so, the grouping variable(s) that can be used to join this information (see section 2.2). The template also
prompts data providers to indicate if datasets include time-series data or data from a gradient study. Users of SoDaH are

encouraged to consider this information in their analyses.

3 Database description
3.1 Spatial and temporal distributions

The SoDaH database currently contains data from 215 locations and 186 unique study sites, with data contributed from
DIRT, NutNet, LTER, NEON, and CZO networks. There are more locations than study sites in the database because some
sites contributed datasets from multiple locations or experiments. The flat database contains 160 columns of variables and
nearly 300,000 rows of information, but is relatively sparsely populated, with 13.9 million non-missing observations
(roughly 30% of the database). Given the focus on NSF funded research networks and observatories, most of the
measurements are taken from the United States, but NutNet and DIRT networks include a number of international study sites
(Fig. 4).

Mean annual temperature from all locations was 10.1 + 7.1 °C (mean + 1o, n = 212) with a range of -12 to 27.2 °C.
Mean annual precipitation from all locations was 904 + 638 mm y-1 (n = 213), with a range of 105 to 4250 mm y-1. Land
cover classifications include urban, cultivated, rangeland/grasslands, shrublands, and forests, but land cover is reported only
for a subset (n = 87) of the study locations.

We briefly review characteristics of data contributed from the five networks represented in SoDaH (Fig. 5). The CZO
generally has a focus on making one-time characterizations that extend deeper in soil and regolith profiles than other networks.
Data from DIRT spans relatively few sites and only includes surface soil layers, but provides repeated measurements and their
response to experimental manipulations. The LTER network provides data from comparatively few study sites, but LTER sites
have longer measurement records than other networks in SoDaH given the network’s 40-year history. Some data from LTER
sites also include measurements to ~1m depth. By design, NEON provides data with broad geographic coverage and samples
both surface and deeper soil horizons. The current temporal record from NEON sites is relatively short, but is expected to
extend for the next 30 years. Finally, NutNet provides the greatest number and largest spatial distribution of sites, all from

grassland ecosystems with sampling depths from 0 to 10 cm.

3.2 Experimental manipulations, gradients, and time series

SoDaH is unique in the landscape of soil databases because it includes data from both experimental manipulations (at 132
sites) and gradient studies and includes time series of soil data. Nutrient manipulations from NutNet make up the majority

(109) of experimental manipulations. All experimental manipulations in SoDaH are summarized in Table 1 and include
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manipulations from all fifteen LTER sites for which we have data, six DIRT sites and one CZO site. The database also includes
gradient studies from 66 sites (with data from NEON, CZO and LTER networks), and time series data from 158 sites (with
data from NutNet, NEON, LTER, and DIRT networks, Table 1).

3.3 Database use and analyses

Aggregating data in SoDaH presents challenges in how to most appropriately group multiple measurements taken from
individual study locations that include diverse sampling protocols, unique experimental designs, and measurements from
multiple soil depths. Moreover, particular locations may include manipulative experiments, gradient studies, and time series
of repeated measurements. The appropriate aggregation of SoDaH requires users to become familiar with data structures of
the database to address particular scientific questions. For this reason, we see the RShiny web-app as an invaluable tool for
querying the data available from SoDaH. As mentioned in section 2.4, future contributions of code to analyse the SoDaH
database are encouraged. These contributions should be made to the LTER SOM GitHub repository, with a priority on
developing additional utilities to align and aggregate datasets from individual sites and locations. Contributions will be
reviewed by the SoDaH steering committee (currently Wieder, Pierson and Earl) and made publicly available. The committee

will continue oversight while new funding options and/or partnerships (e.g., ISCN) are explored.

3.4 Database contributions and database versioning

We built the SoDaH tools to help facilitate the harmonization of diverse soils datasets that focus on soil C. Towards that end,
we welcome contributions of new data from new sites that may be part of the research networks presented here, additional
research networks (e.g. Ameriflux https://ameriflux.lbl.gov/, Drought-Net https://wp.natsci.colostate.edu/droughtnet/, Long-
Term Agroecosystem Research https://Itar.ars.usda.gov, African soils database http://africasoils.net/services/data/, European
LTERs https://www.lter-europe.net/, or others), as well as data from sites that are unaffiliated with a research network. The
SoDaH website (https://Iter.github.io/som-website/database.html, last accessed Dec. 22, 2020) contains more information on
how to contribute data. Briefly, data contributors need to place primary datasets and a completed copy of the SoDaH metadata
template into a shared Google Drive folder and notify the SoDaH editor (soildataharmonization@gmail.com) that their data
are ready for ingestion into SoDaH. These data contributions will also be reviewed by the SoDaH steering committee. We ask
that new contributions of primary data that are harmonized into SoDaH be published with a unique DOI.

Updated releases of SoDaH will be made periodically after a threshold number of new contributions have been made
to the database, in light of any changes to the database structure, or if any errors are detected and corrected. Versions are
tracked with a version number in the form of “major.minor.” in addition to the date of publication. Each version of the dataset

will receive a unique citation and DOI through the EDI data portal for users to reference.
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4.0 Data availability and user guidelines

The SoDaH v1.0 database and some exemplary analyses are hosted in the EDI repository (Wieder et al., 2020;
https://doi.org/10.6073/pasta/9733f6b6d2ffd12bf126dc36a763e0b4 accessed Dec. 22 2020). We encourage users of SoDaH
data to cite both this publication and the dataset citation provided by the EDI data portal in their products.
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Table 1. Summary of the networks and number of sites contributing data from experimental manipulations, gradient studies, and
time series of repeated measurements. Gradient studies may include measurements along a hillslope catena (e.g., several CZO

485  sites), across vegetation communities (typically LTER sites), or surveys intended to capture local- to regional- variability
(especially NEON periodic soil sampling). Time series studies involve repeated measurements in the same sites over time (LTER
and NEON) and they which may also include experimental manipulations (e.g., NutNet, DIRT, & LTER).

490

Experimental Manipulation Networks (site)
Nutrient additions NutNet (109)
LTER (5)
Litter manipulations DIRT (6)
Agricultural management LTER (3)
Forest harvest LTER (2)
CZO (1)
Warming LTER (2)
Fire LTER (2)
Precipitation manipulation LTER (2)
CZO(1)
Elevated CO. LTER (1)
Other (mostly related to NutNet(109)
management, disturbance, or land LTER (10)
use history) CZO (1)
Gradient Studies NEON (47)
LTER (11)
CZO (7)
Time Series NutNet(109)*
NEON (35)§
LTER (10)
DIRT (5)

" Repeated measurements for NutNet are for plant productivity, not soil measurements
§ Not all NEON sites have been sampled more than once per dataset
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Figure 1: Conceptual diagram that summarizes the strengths and research foci of different experimental networks contributing to
495 SoDaH, modified from Weintraub et al. 2019.
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Metadata template
Location 1
1 Profile
Metadata

Experimental Level 1 L1 — —
Name of Person Entering Data curator_PersonName

Treatment_1_level tx_L1
Organization of Person Entering Data curator_organization

Observation Date observation_date
Email Address of Person Entering Data | curator_email I

Profile Vegetation veg_note_profile
Template Modification Date modification_date I

Soil Series soil_series
Digital Object Identifier (DOI) Number  doi_number

Layer
Location

Bulk Layer Organic Carbon (CN analyzer) Location 2
Network (e.g. LTER, CZO, etc) network concentration, inorganic C removed or not

present lyr_soc
Site code (e.g. LUQ) or name site_code |

Bulk Layer Total Nitrogen concentration lyr_n_tot 7
Location name location_name |

Layer Top layer_top
Latitude lat e T e

Layer Bottom layer_bot
Longitude long

. Bulk Density, Coarse Fragments Removed bd_samp 23, - RS s

Location

Profile

500 Figure 2: Diagram showing hierarchical relationship between data fields in the Soils Data Harmonization (SoDaH) database,
which includes metadata, location, profile and layer fields. Each data field lists a short description of some of the variables used
along with the variable name used in the database. To facilitate data contributions these data fields were grouped into Location
and Profile tabs on the metadata template used by data contributors. The right side of the figure illustrates data from two
hypothetical locations (e.g., a LTER and CZO site, respectively) where Location 1 includes data from two profiles that each have

505 information from one layer. Location 2 provides data from one profile that has information from three layers. Any location may
provide data from multiple profiles or layers. With data harmonization data for each profile and layer will inherit metadata and
location data that are provided in the location tab.
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Metadata template

Location tab Profile tab
Primary Site %C

data

Level-0

Person %Clay

data harmonization & QC
R soilHarmonization.R

Site Person | %C %Clay

Level-1 .

Harmonized data files (.csv) _HMGZD_NOTES.pdf

data aggregation I
N7 /| harvest HMGZD.R

Site Person | %C %Clay

- | Data Visualization (R Shiny)
Level-2 | Data Analysis (github repository)

¥

z

Aggregated SoDaH dataset (.rds) '~ ---cccmmmm e

510 Figure 3: Illustration of the SoDaH workflow and data levels. Primary data (Level-0) are identified by data providers and
variables are mapped to standardized units and vocabulary using the metadata templates. These data are harmonized into Level-1
data with soil harmonization script that renames variables, conducts unit conversions, and performs quality control checks.
Finally, Level-1 data are aggregated into the Level-2 dataset, which can be visualized with the SoDah R Shiny app and queried
with data analysis tools.
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Figure 4: Spatial distribution of study locations representing five research networks in SoDaH globally and in the contiguous USA.
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Figure S: Temporal coverage and depth of measurements taken from different study sites and grouped by research network. Our
intent with this figure is to illustrate the number of sites in each network, the temporal length of their data record, and the depth
to which soils are typically sampled.
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