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Abstract. Data collected from research networks present opportunities to test theories and develop models about factors 

responsible for the long-term persistence and vulnerability of soil organic matter (SOM). Synthesizing datasets collected by 55 
different research networks presents opportunities to expand the ecological gradients and scientific breadth of information 

available for inquiry. Synthesizing these data are challenging, especially considering the legacy of soils data that has already 

been collected and an expansion of new network science initiatives. To facilitate this effort, here we present the SOils DAta 

Harmonization database (SoDaH; https://lter.github.io/som-website, last accessed Dec. 22, 2020), a flexible database designed 

to harmonize diverse SOM datasets from multiple research networks. SoDaH is built on several network science efforts in the 60 
United States, but the tools built for SoDaH aim to provide an open-access resource to facilitate synthesis of soil carbon data. 

Moreover, SoDaH allows for individual locations to contribute results from experimental manipulations, repeated 

measurements from long-term studies, and local- to regional-scale gradients across ecosystems or landscapes. Finally, we also 

provide data visualization and analysis tools that can be used to query and analyze the aggregated database. The SoDaH v1.0 

dataset is archived and available at https://doi.org/10.6073/pasta/9733f6b6d2ffd12bf126dc36a763e0b4 (Wieder et al., 2020). 65 

1 Introduction  

Soil organic matter (SOM) contains two- to three-times the amount of carbon (C) as the atmosphere and terrestrial vegetation 

combined, yet adequately describing SOM dynamics in numerical models remains a challenge (Jackson et al. 2017). Recent 

biogeochemical research has attempted to understand how climate, biota, soil chemistry, and mineralogy interact to determine 

SOM stabilization and persistence (Schmidt et al. 2011; Lehmann & Kleber 2015). Emerging theories also highlight how 70 
interactions among these factors affect the production and apparent stabilization of microbial residues (Grandy & Neff 2008; 
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Cotrufo et al. 2013; Kallenbach et al. 2016). Notably, these new studies emphasize the importance of soil mineralogy and 

physical structure in limiting microbial access to otherwise decomposable substrates (Dungait et al. 2012; Miltner et al. 2012; 

Schimel and Schaeffer 2012; Sulman et al. 2014).  

Datasets that span environmental and edaphic gradients are critical for constraining soil C estimates and developing 75 
and testing theoretical and numerical models that are based on these ideas (Wieder and Allison et al. 2015; Luo et al 2016; 

Harden et al. 2018; Sulman et al. 2018; Malhotra et al. 2019). Data synthesized across scientific networks, notably those with 

long-term observations and manipulations, are especially useful for establishing general patterns across broad environmental 

gradients. These insights, and the primary data are valuable for model development. For example, efforts to synthesize and 

archive results from the Long-Term Intersite Decomposition Experiment Team (LIDET; Gholz et al. 2000; Parton & Silver et 80 
al. 2007; Adair et al. 2008; Harmon 2013) provide a valuable benchmark for parameterizing and evaluating models with litter 

decomposition data (Bonan et al. 2013; Wieder and Grandy et al. 2015; Kyker-Snowman et al. 2019). Elsewhere, Zhang et al. 

(2020) used data from three research networks in Europe, China, and Australia to parameterize and evaluate two soil carbon 

models. Providing similar data syntheses with information on soil carbon and associated covariates (e.g., climate, productivity, 

and soil physical and chemical properties) in public databases is critical to advancing understanding soil biogeochemistry.  85 
Coordinated research activities and the expansion of research network infrastructure are broadening the scope and 

breadth of information measured across sites in ways that can advance SOM science (Hinckley et al. 2016; Baatz et al. 2018; 

Richter et al. 2018; Weintraub et al. 2019, Lajtha et al. 2018). With a 40-year investment in continuous or multi-year 

measurements and a rich legacy of manipulative experiments, the Long-Term Ecological Research (LTER) Network provides 

a publicly available data archive through the Environmental Data Initiative (EDI; 90 
https://portal.edirepository.org/nis/home.jsp). The LTER network has an advantage of hosting diverse research experiments, 

but because each site in the network has different research foci data are not collected or reported in a consistent manner 

(Billings et al. 2020, but see Zak et al. 1994; Frank et al. 2012). By contrast, new investments in networks like the National 

Ecological Observatory Network (NEON) provide a top-down, standardized framework for data collection across sites. 

Synthesizing data from across LTER, NEON and other research networks present unique opportunities to deepen our general 95 
understanding of soil biogeochemistry. 

Here, we present a flexible database designed to harmonize diverse SOM datasets from across research networks. We 

aim to provide an open-access resource to facilitate the synthesis of soil C data. This data resource can expand to accommodate 

legacy datasets as they are identified and incorporate new data products as they become available. This data infrastructure is 

critical to advance understanding in SOM dynamics at a time when the theoretical foundations and numerical representations 100 
of soil biogeochemical processes are rapidly evolving. 
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2 The SoDaH database 

Our team created the SOils DAta Harmonization (SoDaH) database to bring together soil C data from diverse research 

networks into a harmonized dataset that can be used for synthesis activities and model development. The research network 

sources for SoDaH span different biomes and climates, encompass multiple ecosystem types, and have collected data across a 105 
range of spatial, temporal, and depth gradients. The rich data sets assembled in SoDaH consist of observations from monitoring 

efforts and long-term ecological experiments. The SoDaH database also incorporates related environmental covariate data 

pertaining to climate, vegetation, soil chemistry, and soil physical properties. The data are harmonized and aggregated using 

open-source code that enables a scripted, repeatable approach for soil data synthesis. Finally, to accompany SoDaH, we provide 

data visualization and analysis tools that can be used to query and analyze the aggregated database.  110 

2.1 Database Sources and Structure 

Research networks provide a powerful observational platform for enhancing our understanding of ecosystems. For example, 

in the United States, three research networks funded by the National Science Foundation collect soils data that deepen 

understanding and improve the representation of soil biogeochemical processes in models. These include the LTER network 

(https://lternet.edu/), Critical Zone Observatories and their successor sites (CZO; http://criticalzone.org/national/), and the 115 
National Ecological Observatory Network (NEON; https://www.neonscience.org/, NEON 2020). Other coordinated research 

activities that further expand data availability include community efforts like the Nutrient Network (NutNet; 

https://nutnet.org/) and Detritus Input and Removal Treatments (DIRT; https://dirtnet.wordpress.com/). We compiled soils 

data from these five research networks into the SoDaH database, version 1.0.  

The unique perspectives and historical legacies of each network synergistically offer insights into understanding many 120 
aspects of SOM dynamics. For example, data from LTER, DIRT and NutNet sites are generally long-term datasets that focus 

on surface soil (< 30 cm) properties across gradients and response to experimental manipulations. Data from CZO sites tend 

to contribute information on soil geochemical properties and expand focus to include deeper (> 30 cm) soil horizons. Finally, 

NEON employs standardized data collection procedures that span continental-scale ecoclimatic gradients (Fig 1).  

The SoDaH dataset focuses on soil organic carbon (SOC) concentration (% C), estimated SOC stocks (g C m-2), and 125 
associated covariates that may be useful in explaining variation in SOC stocks within and among sites. To avoid 

confounding the interpretation of SOC measurements collected by different approaches (e.g. Walkley-Black and mass loss 

on ignition), we focused on synthesizing SOC measurements from soil samples that were acidified if needed to remove 

inorganic carbonates, then analyzed for total C using elemental analyzer. Beyond SOC, covariates collected in SoDaH 

include abiotic factors (e.g., climate [mean annual temperature and precipitation], soil depth, bulk density, particle size 130 
distribution, and mineralogy), vegetation characteristics (including vegetation type and above and belowground root 

productivity, biomass, and chemistry), and additional soil chemical properties (total nitrogen, phosphorus, pH, etc.).  
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Recognizing that the cyber landscape of soil databases is expanding (Malhotra et al. 2019), we wanted to structure 

SoDaH in a manner consistent with existing databases, perhaps most notably the International Soil Carbon Network (ISCN; 

Nave et al. 2016, Harden et al. 2017), which similarly focuses on SOC concentrations and stocks in bulk soils. The ISCN 135 
uses a hierarchical data structure that links metadata information with fields for location, profile and soil layer data. We 

maintained the ISCN’s basic structure in SoDaH (Fig. 2), as it provides a logical means to structure relationships between 

different measurements (i.e., variables). A similar approach was also used in the International Soil Radiocarbon Database 

(ISRaD; Lawrence et al. 2020), which primarily focuses on synthesis of additional information about radiocarbon from bulk 

soils, soil fractions, and soil gases. Given this focus of ISRaD, the SoDaH database contains only sparse data on isotopes and 140 
SOM fractions. Since SoDaH and ISCN focus on SOC measurements and have a similar structure, we hope they may be 

used together in future studies.  

The unique contribution from SoDaH, relative to other soil databases, is that SoDaH is built on several network 

science efforts in the United States, and presents a usable, extensible database for contributing and analyzing data. Moreover, 

SoDaH allows for individual locations to contribute results from experimental manipulations, repeated measurements from 145 
long-term studies, and local- to regional-scale gradients across ecosystems or landscapes. Data from these kinds of studies 

should be incorporated into existing database structures, like ISCN, but the additional metadata requested as part of SoDaH 

helps database users understand more information about how data were collected from individual studies. Thus, SoDaH 

allows for the harmonization of data spanning a greater range of spatial and temporal scales than other databases, and 

enables the incorporation of ecosystems responses to manipulations, which is not a possibility for other databases.  150 
Given the focus on experimental manipulations, we requested additional categorical information on location and 

profile fields to clarify aspects of data collection and experimental design. This includes flags in the location field asking if 

datasets include measurements that are repeated over multiple time points, come from experimental manipulations, or 

represent gradient studies. We also asked dataset contributors to identify ‘control’ or unmanipulated sample identifiers when 

necessary. We accommodated various experimental designs and data hierarchies with fields to describe this information, 155 
such as whether plots are grouped into blocks or watersheds, and the organization of treatment levels, in the profile field of 

the database. For example, at one site, data may be collected from plots along an elevational transect; whereas, another 

dataset may include information from a nitrogen fertilization treatment that was conducted on experimental plots in a 

replicated block design. Maintaining these data hierarchies is important for database users to inform how best to aggregate 

data collected from diverse networks, individual study sites, and unique experimental designs.  160 
The workflow for synthesizing is summarized in Figure 3 and in the following sections. Briefly, Primary data 

(Level-0) are identified by data providers and variables are mapped to standardized units and vocabulary using the metadata 

templates (section 2.2). These data are harmonized into Level-1 data with soil harmonization script that renames variables, 

conducts unit conversions, and performs quality control checks (section 2.3). Finally, Level-1 data are aggregated into the 

Level-2 dataset, which can be visualized with the SoDah R Shiny app and queried with data analysis tools (section 2.4).   165 
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2.2 Data Identification and Contributions 

To begin populating the SoDaH database, we identified data contributors who were familiar with primary datasets available 

from individual study sites and research networks. These primary data may or may not be in a published state but, if not 

published, would be equivalent to data provided for publication. Many of the datasets in SoDaH were already published in 170 
public repositories like EDI, the repository for LTER data, or available through the NEON data portal. Users can find these 

primary data  using  the doi provided for individual dataset in the harmonized dataset.  Other datasets that we wanted to 

include in SoDaH, however, had not been published or were difficult to find or identify (mainly data from CZO sites and the 

DIRT network, but also some LTER data). Publishing these primary data remains an active priority for our working group. 

Data providers who were familiar with the diversity of datasets that are available at a study site or a network provided 175 
expertise to link soil C datasets with appropriate ancillary data. 

The SoDaH database was constructed by data contributions from individual sites or research networks who 

provided flat (.csv) files to a shared directory on Google Drive. The dataset (or datasets) from each site, study, or network 

were placed in their own subdirectory along with a metadata template that was used to map variable names in the primary 

(Level-0) data to the structure of SoDaH (Fig. 3). The metadata template was developed to facilitate data harmonization in a 180 
scripted, repeatable manner that maintained the integrity of the primary datasets (https://lter.github.io/som-

website/database.html). To simplify the workflow for data contributors, the metadata template only includes a single tab 

each for location and profile data. Within these tabs, data contributors are able to add information on metadata (found on the 

‘location’ tab) and layer or fraction data (found on the ‘profile’ tab; Fig. 2). Layer data includes information on soil chemical 

and physical properties that may be measured on bulk soils for defined soil horizons or depth increments. Fraction data 185 
would include similar measurements on defined fractions within individual soil layers (e.g., percent soil organic carbon on 

density fractionated soils). Note, SoDaH currently has sparse data from measured soil fractions, which have therefore been 

omitted from Fig. 2 for simplicity, but the database structure can include information on soil fractions.  

This initial step of our data harmonization still requires manual effort from data providers, as they have to map the 

names of measured variables from primary data with the appropriate variable in SoDaH. Data contributors enter relevant 190 
metadata and site information that may not be included in the primary data sets. They provide additional information from 

controlled drop-down cells with information on units for each variable (e.g., %C, g C kg-1 soil, mg C kg-1 soil, etc.) or on 

methodologies used (e.g., soil P measured by Bray, Melich, etc.). In the harmonized dataset, we convert analyte names and 

units to a standard output and include methodological information (section 2.3). This approach accommodates a broad suite 

of soil and related variables (e.g., climate, vegetation characteristics, ecosystem productivity, etc.). In the future, we aim to 195 
further reduce data provider input requirements, but only if the community converges on standardized variable names and 

units of measure (sensu Billings et al. in press). Ultimately sophisticated metadata, such as controlled vocabularies and other, 

more expressive semantic technologies, may facilitate scripted harvesting of data from disparate networks and repositories 

(e.g., see review by Buck et al. 2019 for trends and examples in Marine Science).  
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 The metadata template in SoDaH matches site-level information with the detailed measurements collected at each 200 
study site. Data on the location tab represents site characteristics for a single site or location (e.g., Prospect Hill Warming 

experiment at Harvard Forest). Accordingly, the harmonization script broadcasts data provided on the location tab (latitude, 

longitude, mean annual temperature, etc.) to every row of the harmonized dataset. Data on the profile tab includes profile 

information about experimental levels (e.g., plots within experimental blocks) and experimental treatments (e.g. +N 

fertilization) that help clarify how the data were collected. Data on the profile tab should also correspond to columns of 205 
variables that are reported in the Level-0 data (e.g., soil organic C measured at different soil layers). Accordingly, the 

harmonization script copies each unique measurement from the profile tab into a column of data in the harmonized dataset. 

Data contributors, therefore, can move variables from the location to profile tabs when appropriate. For example, NutNet and 

NEON data were submitted to SoDaH with information from multiple sites on a single .csv file that provided information 

about each site as unique columns of data.  We, therefore, moved site information (e.g., climate, latitude and longitude) onto 210 
the profile tab for these networks.  Similarly, gradient studies that report tabular data for individual soil profiles can move 

information on slope, aspect, vegetation communities or parent material (typically on the location tab) onto the profile tab of 

the metadata template.  

The harmonization script can harmonize multiple datasets from the same study location. For example, a dataset may 

consist of multiple data files that each contain details about different aspects of the study (e.g., soil data in one file, 215 
aboveground productivity in another file); the harmonization script will harvest all variables identified in the metadata file 

from the suite of data files (as long as they are in the same Google directory as the metadata file). However, because SoDaH 

is a flat database values from these different data files will be stacked, meaning that information from different Level-0 

datasets would be recorded in different rows of the aggregated Level-2 database (in the example above, soil properties and 

productivity will be included, but in different rows). Additional aggregation steps, therefore, may be required to align data 220 
within sites. Users can find this information in the database column labeled merge_align, which is a logical that identifies if 

multiple data files can be merged.  Notes under columns align_1 and align_2 are intended to help communicate what 

common data fields can help with this alignment (e.g. experimental or treatment levels, L1 and tx_L1, respectively). To help 

users understand the database column information, the complete database key is provided in the SoDaH online application 

and gives users descriptions of the column contents.   225 

2.3 Data Harmonization and Aggregation 

We developed the soilHarmonization package in R (R Core Team 2020) to harmonize and aggregate the SoDaH database. 

The soilHarmonization package is publicly available (https://github.com/lter/soilHarmonization).  The package includes 

functions that harmonize Level-0 data into Level-1 data. Data contributors or database managers use the data_harmonizaiton 

function tools to read and harmonize user-provided primary data that are mapped to a metadata template with controlled 230 
vocabulary and standard units (Fig. 3). Users point to the Google Drive directory where Level-0 data are located (primary 
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data and metadata template), and the data_harmonizaiton function generates a new flat file(s) in which the variable names 

and units are standardized in the output (Level-1 data). The harmonized dataset includes unique columns of data from those 

defined in the profile tab as well as columns of data with site-level information from the location tab. The package also 

includes a suite of QC tools that confirm proper data type (e.g., strings are not interspersed with numeric values) and that 235 
numeric data, once converted to appropriate units, fall within an expected range. A summary of inputs, outputs, 

harmonization steps, and a QC report are detailed in an accompanying document (.pdf) for each harmonized dataset. These 

Level-1 data products are stored in the same Google Drive directory as the Level-0 data with resulting output identified with 

a modified filename. This allows data contributors and database managers to verify the QC report and ensure appropriate 

data harmonization.   240 
After generating Level-1 data from all Level-0 data, we combined harmonized data files into an aggregated dataset 

(.rds  or .csv  format; Fig. 3). This dataHarvest function is intended for use by database managers and is available on the 

LTER SOM GitHub page (https://github.com/lter/lterwg-som/tree/main/data-aggregation/, last accessed Dec. 22, 2020).  

This function aligns columns of Level-1 data into a single, Level-2, dataset. The resulting SoDaH database (version 1.0) we 

describe here is a single, flat dataset that has columns corresponding to variables in the metadata template and rows for each 245 
measurement.  

2.4 Data Visualization and Analysis 

To facilitate user interaction with the SoDaH database, and to provide a simplified approach for data queries and analysis, 

we developed a web-based application using R Shiny (Chang et al. 2020). This SoDaH application is publicly accessible and 

hosted by the National Center for Ecological Analysis and Synthesis (NCEAS) at https://cosima.nceas.ucsb.edu/lter-som 250 
(last accessed Dec 22, 2020; source code: https://github.com/lter/lterwg-som-shiny). With the SoDaH application, users can 

perform a number of tasks to aid data discovery, visualization and analysis. We provide a brief description of this resource 

that highlights key features of the R Shiny SoDaH application. 

In the Query section of the application, the top portion of the page provides a variety of data filter options to assist 

users with partitioning the database. Specifically, users may subset the database by any combination of research network, 255 
experiment type, and soil depth, while also specifying whether they wish to include or exclude experimental treatments or 

time-series data.  Below the filter options, the Output section of the page contains three separate features arranged into 

labeled application tabs. The Plot tab allows users to quickly create basic analysis plots (point, histogram, or boxplot) using 

both covariates (e.g., Fe concentration) and metadata (e.g., mean annual precipitation). In the Map tab, users may specify 

which analyte in the database to display on a spatial map. Numeric values are symbolized using a color gradient and the 260 
interactive map functionality allows users to both adjust the map scale and select from numerous basemap options. Finally, 

the Table tab provides users with the ability to directly view, search and download the user-specified data subset as a flat file 
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(.csv). The plot, map and table features are all responsive to user specified changes in the data filters and will update in 

realtime.  

The data table on the Query page of the SoDaH Shiny application is responsive to the filter options at the top of the 265 
Query page. When users click the “Download data” button next to the table, the downloaded .csv file will contain the same 

data shown in the application table at that time. Code examples for working with the database, including how to filter by 

specific column values, are provided in the GitHub repository (https://github.com/lter/lterwg-som/data-

processing/Tarball_v2 scripts, last accessed Dec. 22, 2020). 

In the Data Summary section of the SoDaH application, two feature tabs are provided to help users identify the data 270 
available for a specific site or analyte. The By Analytes tab allows users to view the number of analyte values that exist 

across all of the unique sites in the database. Users may specify up to four different analytes at a time to be included in the 

summary table output. The By Site tab allows users to view all of the analyte data available for a specific site. As the amount 

of data may be quite large for some sites, options are provided to narrow the summary output to include only profile, 

location or character class data. 275 
The SoDaH application also includes a Data Key section, where users may view a full copy of the metadata 

template used for the SoDaH database construction, including descriptions of database fields and their associated metadata. 

The searchable key is split into two sections, location and profile, in the same manner as the metadata template used to 

describe primary data for the harmonization process. Field names in the provided key match exactly with analyte and 

metadata options provided in the Plot and Map features in the Query section of the application. Finally, the application 280 
provides a Comments section where users may submit an inquiry about the database or the application. 

For users seeking to move beyond the functionality provided by the SoDaH application, R scripts are provided 

through the LTER SOM GitHub repository (https://github.com/lter/lterwg-som/tree/main/data-projects, last accessed Dec. 

22, 2020) to facilitate and demonstrate scripting language to import, filter, summarize and map data from the SoDaH 

database. This repository is intended to facilitate use of the SoDaH database, and the scripts used to generate figures in this 285 
paper are available in the repository. We encourage database users to draw from these existing resources and contribute new 

scripts they develop for scientific analysis of data in SoDaH.  

Additional data aggregation steps may be required to fully realize strengths of the SoDaH database. These could 

include, identifying suitable approaches to aggregate, and aligning data within sites. The aggregation steps currently 

implemented in SoDaH may not be appropriate for particular research questions, especially those concerning spatial and 290 
temporal gradients. Therefore, users may need to align rows of data from the same profile or location, but were harvested 

from multiple data files, which results in data being stacked within the flat database. For example, a site may contribute data 

on soil chemical properties, soil physical properties, microbial stoichiometry and biomass, litterfall chemistry, and litterfall 

fluxes with each as an independent dataset. Moreover, these variables may be measured multiple times during a long-term 

study, but not necessarily at the same time or at the same frequency. Finally, information from a single site may include a 295 
gradient study across a hillslope, chronosequence, or region that may influence how data users want to aggregate individual 
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measurements. The SoDaH metadata template prompts data providers to indicate if data from multiple files need to be 

aligned, and, if so, the grouping variable(s) that can be used to join this information (see section 2.2). The template also 

prompts data providers to indicate if datasets include time-series data or data from a gradient study. Users of SoDaH are 

encouraged to consider this information in their analyses. 300 

3 Database description 

3.1 Spatial and temporal distributions 

The SoDaH database currently contains data from 215 locations and 186 unique study sites, with data contributed from 

DIRT, NutNet, LTER, NEON, and CZO networks. There are more locations than study sites in the database because some 

sites contributed datasets from multiple locations or experiments. The flat database contains 160 columns of variables and 305 
nearly 300,000 rows of information, but is relatively sparsely populated, with 13.9 million non-missing observations 

(roughly 30% of the database). Given the focus on NSF funded research networks and observatories, most of the 

measurements are taken from the United States, but NutNet and DIRT networks include a number of international study sites 

(Fig. 4).  

Mean annual temperature from all locations was 10.1 ± 7.1 ℃ (mean ± 1𝝈, n = 212) with a range of -12 to 27.2 ℃. 310 
Mean annual precipitation from all locations was 904 ± 638 mm y-1 (n = 213), with a range of 105 to 4250 mm y-1. Land 

cover classifications include urban, cultivated, rangeland/grasslands, shrublands, and forests, but land cover is reported only 

for a subset (n = 87) of the study locations.  

We briefly review characteristics of data contributed from the five networks represented in SoDaH (Fig. 5). The CZO 

generally has a focus on making one-time characterizations that extend deeper in soil and regolith profiles than other networks. 315 
Data from DIRT spans relatively few sites and only includes surface soil layers, but provides repeated measurements and their 

response to experimental manipulations. The LTER network provides data from comparatively few study sites, but LTER sites 

have longer measurement records than other networks in SoDaH given the network’s 40-year history. Some data from LTER 

sites also include measurements to ~1m depth. By design, NEON provides data with broad geographic coverage and samples 

both surface and deeper soil horizons. The current temporal record from NEON sites is relatively short, but is expected to 320 
extend for the next 30 years. Finally, NutNet provides the greatest number and largest spatial distribution of sites, all from 

grassland ecosystems with sampling depths from 0 to 10 cm. 

3.2 Experimental manipulations, gradients, and time series 

SoDaH is unique in the landscape of soil databases because it includes data from both experimental manipulations (at 132 

sites) and gradient studies and includes time series of soil data. Nutrient manipulations from NutNet make up the majority 325 
(109) of experimental manipulations. All experimental manipulations in SoDaH are summarized in Table 1 and include 
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manipulations from all fifteen LTER sites for which we have data, six DIRT sites and one CZO site. The database also includes 

gradient studies from 66 sites (with data from NEON, CZO and LTER networks), and time series data from 158 sites (with 

data from NutNet, NEON, LTER, and DIRT networks, Table 1).   

3.3 Database use and analyses 330 

Aggregating data in SoDaH presents challenges in how to most appropriately group multiple measurements taken from 

individual study locations that include diverse sampling protocols, unique experimental designs, and measurements from 

multiple soil depths. Moreover, particular locations may include manipulative experiments, gradient studies, and time series 

of repeated measurements. The appropriate aggregation of SoDaH requires users to become familiar with data structures of 

the database to address particular scientific questions. For this reason, we see the RShiny web-app as an invaluable tool for 335 
querying the data available from SoDaH. As mentioned in section 2.4, future contributions of code to analyse the SoDaH 

database are encouraged. These contributions should be made to the LTER SOM GitHub repository, with a priority on 

developing additional utilities to align and aggregate datasets from individual sites and locations. Contributions will be 

reviewed by the SoDaH steering committee (currently Wieder, Pierson and Earl) and made publicly available. The committee 

will continue oversight while new funding options and/or partnerships (e.g., ISCN) are explored. 340 
 
 

3.4 Database contributions and database versioning  

We built the SoDaH tools to help facilitate the harmonization of diverse soils datasets that focus on soil C. Towards that end, 

we welcome contributions of new data from new sites that may be part of the research networks presented here, additional 345 
research networks (e.g. Ameriflux https://ameriflux.lbl.gov/, Drought-Net https://wp.natsci.colostate.edu/droughtnet/, Long-

Term Agroecosystem Research https://ltar.ars.usda.gov, African soils database http://africasoils.net/services/data/, European 

LTERs https://www.lter-europe.net/, or others), as well as data from sites that are unaffiliated with a research network. The 

SoDaH website (https://lter.github.io/som-website/database.html, last accessed Dec. 22, 2020) contains more information on 

how to contribute data. Briefly, data contributors need to place primary datasets and a completed copy of the SoDaH metadata 350 
template into a shared Google Drive folder and notify the SoDaH editor (soildataharmonization@gmail.com) that their data 

are ready for ingestion into SoDaH. These data contributions will also be reviewed by the SoDaH steering committee. We ask 

that new contributions of primary data that are harmonized into SoDaH be published with a unique DOI. 

Updated releases of SoDaH will be made periodically after a threshold number of new contributions have been made 

to the database, in light of any changes to the database structure, or if any errors are detected and corrected. Versions are 355 
tracked with a version number in the form of “major.minor.” in addition to the date of publication. Each version of the dataset 

will receive a unique citation and DOI through the EDI data portal for users to reference. 
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4.0 Data availability and user guidelines 

The SoDaH v1.0 database and some exemplary analyses are hosted in the EDI repository (Wieder et al., 2020; 

https://doi.org/10.6073/pasta/9733f6b6d2ffd12bf126dc36a763e0b4 accessed Dec. 22 2020). We encourage users of SoDaH 360 
data to cite both this publication and the dataset citation provided by the EDI data portal in their products.  
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Table 1. Summary of the networks and number of sites contributing data from experimental manipulations, gradient studies, and 
time series of repeated measurements.  Gradient studies may include measurements along a hillslope catena (e.g., several CZO 
sites), across vegetation communities (typically LTER sites), or surveys intended to capture local- to regional- variability 485 
(especially NEON periodic soil sampling).  Time series studies involve repeated measurements in the same sites over time (LTER 
and NEON) and they which may also include experimental manipulations (e.g., NutNet, DIRT, & LTER).  

Experimental Manipulation Networks (site) 

Nutrient additions NutNet (109) 
LTER (5) 

Litter manipulations DIRT (6) 

Agricultural management LTER (3) 

Forest harvest LTER (2) 
CZO (1) 

Warming LTER (2) 

Fire LTER (2) 

Precipitation manipulation LTER (2) 
CZO(1) 

Elevated CO2 LTER (1) 

Other (mostly related to 
management, disturbance, or land 
use history) 

NutNet(109) 
LTER (10) 
CZO (1) 

Gradient Studies NEON (47) 
LTER (11) 
CZO (7) 

Time Series NutNet(109)^ 
NEON (35)§ 
LTER (10) 
DIRT (5) 

^ Repeated measurements for NutNet are for plant productivity, not soil measurements 
§ Not all NEON sites have been sampled more than once per dataset 
 490 
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Figure 1: Conceptual diagram that summarizes the strengths and research foci of different experimental networks contributing to 
SoDaH, modified from Weintraub et al. 2019. 495 
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Figure 2: Diagram showing hierarchical relationship between data fields in the Soils Data Harmonization (SoDaH) database, 500 
which includes metadata, location, profile and layer fields. Each data field lists a short description of some of the variables used 
along with the variable name used in the database. To facilitate data contributions these data fields were grouped into Location 
and Profile tabs on the metadata template used by data contributors. The right side of the figure illustrates data from two 
hypothetical locations (e.g., a LTER and CZO site, respectively) where Location 1 includes data from two profiles that each have 
information from one layer. Location 2 provides data from one profile that has information from three layers. Any location may 505 
provide data from multiple profiles or layers.  With data harmonization data for each profile and layer will inherit metadata and 
location data that are provided in the location tab.  
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Figure 3: Illustration of the SoDaH workflow and data levels. Primary data (Level-0) are identified by data providers and 510 
variables are mapped to standardized units and vocabulary using the metadata templates. These data are harmonized into Level-1 
data with soil harmonization script that renames variables, conducts unit conversions, and performs quality control checks. 
Finally, Level-1 data are aggregated into the Level-2 dataset, which can be visualized with the SoDah R Shiny app and queried 
with data analysis tools.   

 515 
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Figure 4: Spatial distribution of study locations representing five research networks in SoDaH globally and in the contiguous USA. 
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Figure 5: Temporal coverage and depth of measurements taken from different study sites and grouped by research network. Our 
intent with this figure is to illustrate the number of sites in each network, the temporal length of their data record, and the depth 
to which soils are typically sampled. 
 525 


