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Abstract	14	
Observational	records	are	essential	for	assessing	long-term	changes	in	our	climate.	However,	these	15	
records	are	more	often	than	not	influenced	by	residual	non-climatic	factors	which	must	be	detected	16	
and	adjusted	prior	to	their	usage.	Ideally,	measurement	uncertainties	should	be	properly	quantified	17	
and	validated.	 In	the	context	of	the	Copernicus	Climate	Change	Service	(C3S),	a	novel	approach,	18	
named	 RHARM	 (Radiosounding	 HARMonization),	 has	 been	 developed	 to	 provide	 a	 harmonized	19	
dataset	of	temperature,	humidity	and	wind	profiles	along	with	an	estimation	of	the	measurement	20	
uncertainties	for	about	650	radiosounding	stations	globally.	The	RHARM	method	has	been	applied	21	
to	IGRA	daily	(0000	and	1200	UTC)	radiosonde	data	holdings	on	16	standard	pressure	levels	(from	22	
1000	to	10	hPa)	from	1978	to	present.	Relative	humidity	adjustment	and	data	provision	has	been	23	
limited	to	250	hPa	owing	to	pervasive	issues	on	sensors'	performance	in	the	upper	troposphere	and	24	
lower	stratosphere.	The	applied	adjustments	are	interpolated	to	all	reported	significant	 levels	to	25	
retain	information	content	contained	within	each	individual	ascent	profile.	Each	historical	station	26	
time	series	is	harmonized	using	two	distinct	methods.	Firstly,	the	most	recent	period	of	the	records	27	
when	modern	radiosonde	models	have	been	in	operation	at	each	station	(typically	starting	between	28	
2004	and	2010	but	varying	on	a	 station-by-station	basis)	are	post-processed	and	adjusted	using	29	
reference	 datasets	 from	 the	 GCOS	 Reference	 Upper	 Air	 Network	 (GRUAN)	 and	 from	 the	 2010	30	
WMO/CIMO	 (World	 Meteorological	 Organization/Commission	 for	 Instruments	 and	 Methods	 of	31	
Observation)	 radiosonde	 intercomparison.	 Subsequently,	 at	 each	mandatory	 pressure	 level,	 the	32	
remaining	historical	data	are	scanned	backward	in	time	to	detect	structural	breaks	due	to	prolonged	33	
systematic	effects	in	the	measurements	and	then	adjusted	to	homogenize	the	time	series.	34	
This	paper	describes	 the	dataset	portion	 related	 to	 the	adjustment	of	post-2004	measurements	35	
only.	A	 step-by-step	description	of	 the	algorithm	 is	 reported	and	 comparisons	with	GRUAN	and	36	
atmospheric	 reanalysis	 data	 for	 temperature	 and	 relative	 humidity	 data	 are	 discussed.	 The	37	
evaluation	shows	that	the	strongest	benefit	of	RHARM	compared	to	existing	products	is	related	to	38	
the	 substantive	 adjustments	 applied	 to	 relative	 humidity	 time	 series	 for	 values	 below	 15%	 and	39	
above	55%	as	well	as	to	the	provision	of	the	uncertainties	for	all	variables.	Uncertainties	have	been	40	
validated	using	the	ECMWF	reanalysis	short-range	forecast	outputs.		41	
The	 RHARM	 algorithm	 is	 the	 first	 to	 provide	 homogenized	 time	 series	 of	 temperature,	 relative	42	
humidity	and	wind	profiles	alongside	an	estimation	of	the	observational	uncertainty	for	each	single	43	
observation	 at	 each	 pressure	 level.	 A	 subset	 of	 RHARM	 data	 is	 available	 at	44	
http://doi.org/10.5281/zenodo.3973353	(Madonna	et	al.,	2020a).	 	45	
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1. Introduction	46	

Homogeneous	 climate	 data	 records	 (CDRs)	 are	 essential	 to	 diagnosing	 changes	 in	 our	 climate,	47	
understanding	its	variability,	and	assessing	and	contextualizing	future	climate	projections	(Cramer	48	
et	 al.	 2018).	 Use	 of	 CDRs	 influenced	 by	 residual	 non-climatic	 factors	 may	 lead	 to	 incorrect	49	
conclusions	about	the	changing	state	of	the	climate	(Kivinen	et	al.	2017).	Furthermore,	if	assimilated	50	
within	 a	 meteorological	 reanalysis,	 these	 climatic	 time	 series	 may	 introduce	 bias	 instead	 of	51	
positively	 impacting	 the	 final	 products	 (Dee	 et	 al.,	 2011).	 Therefore,	 when	 CDRs	 are	 used	 it	 is	52	
important,	for	any	kind	of	application	and	to	the	extent	possible,	to:	53	

• Detect	 and	 adjust	 for	 all	 known	 and	 quantifiable	 systematic	 inhomogeneities	 in	 the	54	
observation	 time	 series,	 due	 to	 a	 variety	 of	 causes	 (changes	 in	 station	 location,	55	
instrumentation,	 calibration	 or	 drift	 issues,	 different	 instrument	 sensitivity	 respect	 to	56	
different	networks,	changes	in	the	measurement	procedures,	etc.);	57	

• Establish	 measurement	 traceability	 ideally	 to	 an	 absolute	 reference	 (SI	 or	 community	58	
acknowledged)	“standard”	through	an	unbroken	chain	of	calibrations,	each	contributing	to	59	
the	measurement	uncertainty;	60	

• Quantify	 measurement	 uncertainties	 in	 any	 data	 where	 traceability	 was	 not	 properly	61	
established;	 in	 such	 cases,	 uncertainties	 must	 be	 instead	 estimated	 from	 the	 available	62	
metadata,	 results	 of	 sensors'	 intercomparisons,	 or	 other	 kinds	 of	 information	 about	 the	63	
measurement	process.	64	

Unfortunately,	 for	 historical	 in-situ	 observations	 it	 is	 often	 not	 easy	 to	 fulfil	 the	 above	 list	 of	65	
requirements,	especially	for	global	baseline	or	comprehensive	networks	(Thorne	et	al.,	2017),	where	66	
the	metadata	 and	 original	 pre-processed	 data	 (e.g.	 digital	 sensor	 counts)	 are	 either	missing	 or	67	
retained	solely	by	individual	station	PIs	(if	at	all)	and	not	routinely	shared	or	stored	in	their	data	68	
archives.	69	

This	 is	 the	case	 for	 radiosounding	measurements	of	 temperature	 (T),	 relative	humidity	 (RH)	and	70	
wind	which	still	represent	anchor	information	for	meteorological	reanalysis,	despite	the	advent	of	71	
GNSS-RO	(Global	Navigation	Satellite	System	-	Radio	Occultation)	measurements	which	have	proven	72	
to	be	also	a	very	valuable	observing	system	for	data	assimilation	(Bauer	et	al.	2013).		Nevertheless,	73	
GNSS-RO	 measurements	 are	 limited	 in	 their	 historical	 availability,	 starting	 only	 in	 c.2000.	74	
Radiosounding	measurements	 are	 the	 only	 available	 data	 source	 available	 to	 study	 the	 climate	75	
variability	in	the	troposphere	and	lowermost	stratosphere	since	the	mid-20th	Century.	They	also	76	
constitute	a	valuable	source	of	information	for	satellite	cal/val	activities	(Calbet	et	al.,	2016,	Loew	77	
et	 al.,	 2017,	 Finazzi	 et	 al.,	 2019).	 In	 ERA-Interim	 ECMWF	 reanalysis,	 the	 conventional	 observing	78	
system	which	includes	radiosoundings,	despite	proportionately	low	data	volumes,	still	represents	79	
an	indispensable	constraint	(Haimberger	et	al.,	2008).	A	similar	situation	exists	for	the	more	recent	80	
ECMWF	ERA5	reanalysis	data	and	for	other	meteorological	reanalysis	(Hersbach	et	al.,	2020).	81	

Quality	and	biases	of	radiosounding	observations	strongly	varies	with	sensor	type,	altitude	level,	82	
and	 through	 time.	 Several	 papers	 have	 been	 published	 using	 historical	 radiosounding	83	
measurements	 of	 temperature	 to	 construct	 CDRs	 (e.g.	 Free	 et	 al.	 2004;	 Thorne	 et	 al.,	 2005a;	84	
McCarthy	et	al.,	2008;	Sherwood	et	al.	2008;	Dai	et	al.,	2011;	Haimberger	et	al.,	2012).	These	have	85	
used	a	broad	range	of	approaches	enabling	an	exploration	of	structural	uncertainty	(Thorne	et	al.,	86	
2005b).	 Several	 products	 additionally	 include	 ensembles	 which	 explore	 parametric	 uncertainty	87	
(Haimberger	et	al.,	2012;	Thorne	et	al.,	2011).		88	

A	new	statistical	approach	has	been	recently	proposed	for	future	applications	(Fassò	et	al.,	2018).	89	
Intercomparison	 datasets	 made	 available	 by	 various	 research	 organizations,	 institutions	 and	90	
manufacturers	represent	an	invaluable	source	of	information	which	improves	the	interpretation	of	91	
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effects,	drifts	and	any	other	kind	of	 inhomogeneity	 in	the	recorded	time	series.	Most	notable	of	92	
these	are	the	periodic	intercomparison	campaigns	that	have	been	organized	by	WMO	CIMO	which	93	
have	 typically	 involved	 the	vast	majority	of	commercial	manufacturers	 (e.g.	Nash	et	al.,	2006	or	94	
Nash	 et	 al.,	 2011)	 providing	 a	 thorough	 snapshot	 of	 differences	 on	 a	 periodic	 basis.	 These	95	
intercomparisons	 involve	 the	 flying	of	multiple	 sonde	models	 on	 the	 same	 rig	 enabling	 a	 direct	96	
comparison	of	relative	performance	of	the	different	sensors	under	the	full	range	of	ascent	profile	97	
conditions	experienced	at	the	location	and	time	of	the	comparison.	98	

To	respond	to	the	need	of	providing	homogeneous	and	fully	traceable	upper-air	measurements	with	99	
quantified	 uncertainties,	 the	 Global	 Climate	 Observing	 System	 (GCOS)	 Reference	 Upper-Air	100	
Network	(GRUAN)	was	established	in	2006	(Bodeker	et	al.,	2018).	GRUAN	aims	to	provide	reference-101	
quality	observations	of	Essential	Climate	Variables	(ECVs,	Bojinski	et	al.,	2014)	above	Earth's	surface.	102	
GRUAN	is	providing	long-term,	high-quality	radiosounding	data	at	several	sites	around	the	world	103	
with	 characterized	 uncertainties,	 ensuring	 the	 traceability	 to	 SI	 units	 or	 accepted	 standards,	104	
providing	 extensive	 metadata	 and	 comprehensive	 documentation	 of	 measurements	 and	105	
algorithms.		106	

Reference-observing	 networks	 provide	 metrologically	 traceable	 observations,	 with	 quantified	107	
uncertainty,	 at	 small	 number	 of	 stations	 while	 baseline-observing	 networks	 provide	 long-term	108	
records	that	are	capable	of	catching	regional,	hemispheric	and	global-scale	features,	though	they	109	
lack	absolute	traceability	(Thorne	et	al.,	2017).	As	a	reference	network,	GRUAN	also	provides	a	basis	110	
for	 enhanced	 interpretation	 of	 the	 results,	with	 the	 quantification	 of	 uncertainties,	 from	 global	111	
baseline	 observations.	 For	 example,	 through	 providing	 instrumental	 corrections	 which	 can	 be	112	
extended	to	non-GRUAN	stations	to	adjust	quantifiable	systematic	effects	compromising	the	quality	113	
of	radiosoundings.			114	

The	 present	 paper	 provides	 an	 analytic	 description	 of	 the	 first	 part	 of	 a	 novel	 algorithm	 for	115	
homogenization	of	historical	radiosounding	data	records	available	since	1978	(earlier	records	are	116	
not	assessed	due	to	the	more	heterogeneous	data	availability	at	mandatory	levels	before)	which	117	
exploits	 the	 added	 value	 provided	 by	 GRUAN.	 The	 approach	 is	 named	 RHARM	 (Radiosounding	118	
HARMonization)	and	it	is	based	on	two	main	steps:	119	
	120	

1. Adjustment	of	systematic	effects	and	quantification	of	uncertainties	by	post-processing	the	121	
radiosounding	observations	of	temperature,	humidity	and	wind	since	2004	to	present	using	122	
the	 GRUAN	 data	 and	 algorithms	 as	 well	 as	 the	 2010	 WMO/CIMO	 radiosonde	123	
intercomparison	 dataset	 [hereinafter	 ID2010,	 Nash	 et	 al.	 2011],	 made	 available	 upon	124	
agreement	with	WMO;	125	

	126	
2. Identification	 of	 change-points	 in	 the	 time	 series	 and	 adjustment	 of	 non-climatic	127	

(systematic)	effects	using	statistical	methods	with	related	quantification	of	uncertainties	in	128	
the	historical	observations.		129	

	130	
The	present	paper	deals	with	the	first	part	of	the	RHARM	approach	which	is	able	to	post-process	131	
and	adjust	a	subset	of	650	radiosounding	stations	at	the	global	scale	available	from	the	Integrated	132	
Global	 Radiosonde	 Archive	 (IGRA	 -	 Durré	 et	 al.,	 2006;	 Durré	 et	 al.,	 2012).	 The	 RHARM	 dataset	133	
provides	 a	 combined	homogenization	option	which	 is	 complementary	 to	 the	 limited	number	of	134	
existing	 datasets	 of:	 homogenized	 radiosounding	 temperature	 measurements,	 e.g.	 Radiosonde	135	
Atmospheric	Temperature	Products	 for	Assessing	Climate	(RATPAC)	by	NOAA	(Free	et	al.,	2004),	136	
RAdiosonde	 OBservation	 COrrection	 using	 REanalyses	 (RAOBCORE),	 Radiosonde	 Innovation	137	
Composite	 Homogenization	 (RICH)	 by	 the	 University	 of	Wien	 (Haimberger	 et	 al.,	 2012),	 Hadley	138	
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Centre's	radiosonde	temperature	product	v2	(HadAT2)	by	Met	Office	(Thorne	et	al.,	2005),	Iterative	139	
Universal	Kriging	v2	(IUKv2)	by	University	of	New	South	Wales	(Sherwood	and	Nishant	et	al.,	2015);	140	
homogenized	radiosounding	humidity	measurements,	e.g.	the	Homogenized	RS92	radiosounding	141	
humidity	measurements	 (HomoRS92)	 by	 University	 of	 Albany	 (Dai	 et	 al.,	 2011)	 and	 the	 Hadley	142	
Centre's	radiosonde	temperature	and	humidity	product	(HadTH)	(McCarthy	et	al.,	2009);	and	the	143	
only	 homogenized	 radiosounding	 wind	 dataset	 "GRASPA"	 (Ramella-Pralungo	 et	 al.,	 2014a,b).	144	
Distinct	from	previous	efforts,	RHARM	is	the	first	approach	providing	the	homogenized	time	series	145	
of	temperature,	relative	humidity	and	wind	in	the	same	package.	Moreover,	RHARM	is	based	on	the	146	
use	of	"Reference	measurements"	to	calculate	and	adjust	for	systematic	effects,	instead	of	using	147	
background	 information	 provided	 by	 meteorological	 reanalysis,	 autoregressive	 models	 or	148	
neighboring	stations.	In	addition,	and	of	great	practical	importance,	each	harmonized	data	series	is	149	
provided	with	an	estimation	of	the	measurement	uncertainty.	RHARM	is	also	valuable	in	providing	150	
adjustments	on	each	single	radiosounding	profile.	151	
	152	
The	remainder	of	this	paper	is	organized	as	follows.	In	section	2,	the	data	sources	used	in	the	paper	153	
are	outlined.	In	section	3,	a	detailed	review	of	the	RHARM	data	processing	for	the	observations	post-154	
2004	is	provided.	Specifically,	in	section	3.1,	the	algorithms	applied	for	the	adjustment	of	T,	RH	and	155	
wind	profiles	measured	using	Vaisala	RS92	radiosondes	is	outlined,	while	section	3.2	describes	the	156	
adjustments	applied	to	all	other	radiosonde	types	than	RS92.		In	section	4,	comparisons	between	157	
IGRA,	 RHARM,	 GRUAN	 and	 ERA5	 data	 are	 shown	 and	 discussed	 to	 assess	 the	 consistency	 and	158	
performance	of	the	RHARM	algorithm.	Section	4.1	compares	IGRA,	RHARM	and	GRUAN	co-located	159	
data	 to	 assess	 the	 added-value	 provided	 by	 the	 RHARM	 post-processing	 of	 IGRA	 data	 and	 to	160	
ascertain	 the	 consistency	 of	 the	 RHARM	 algorithm	 with	 the	 GRUAN	 Data	 Processing	 (GDP).	 In	161	
section	4.2,	comparison	between	IGRA,	RHARM	and	ERA5	are	discussed	to	quantify	inconsistencies	162	
between	observational	and	atmospheric	reanalysis	data.	In	section	5,	the	consistency	of	the	RHARM	163	
estimated	uncertainties	with	the	GDP	is	discussed	and	a	validation	of	the	uncertainties	based	on	the	164	
use	of	ECMWF	forecast	model	data	is	presented.	Finally,	conclusions	and	an	outlook	are	provided	165	
in	Section	6.	166	
	167	

2. Data	sources	used	168	

The	RHARM	approach	is	applied	to	the	IGRA	database	which	is	the	most	comprehensive	collection	169	
of	historical	and	near-real-time	radiosonde	and	pilot	balloon	observations	from	around	the	globe,	170	
maintained	 and	 distributed	 by	 the	National	Oceanic	 and	Atmospheric	 Administration’s	National	171	
Centers	for	Environmental	 Information	(NCEI).	RHARM	is	applied	to	IGRA	Version	2	(Durre	et	al.,	172	
2018)	data	which	was	released	in	2016	and	incorporates	data	from	a	considerably	greater	number	173	
of	data	sources	with	an	increased	data	volume	by	30%	compared	to	Version	1,	extending	the	data	174	
back	in	time	to	as	early	as	1905,	and	improving	the	spatial	coverage.	IGRA	contains	observations	175	
from	 several	 networks	 and	 initiatives,	 including	 the	 GCOS	 Upper-air	 Network	 (GUAN),	 and	 the	176	
universal	 RAwinsonde	OBservation	 program	 (RAOB).	 The	 latter	 constitutes	 the	 largest	 available	177	
radiosounding	data	source	globally.		178	

From	the	IGRA	data	archive,	the	RHARM	approach	is	applied	to	a	subset	of	about	650	radiosounding	179	
stations	 and	 radiosoundings	 from	 ships.	 The	 subset	 consists	 of	 those	 records	with	 documented	180	
metadata	(i.e.	availability	of	the	radiosonde	code,	see	WMO	table	3685,	describing	the	radiosonde	181	
type	used	at	each	station	over	the	time)	since	2000	(for	most	of	the	stations)	and	for	fewer	stations	182	
since	1978.	For	these	stations,	depending	on	the	used	radiosonde	type,	adjustments	based	on	the	183	
application	of	GRUAN-like	data	processing	and	on	the	comparison	between	GRUAN	data	and	ID2010	184	
allow	us	to	provide	a	quality-enhanced	dataset	of	radiosoundings	since	2004,	where	radiosounding	185	
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profiles	are	corrected	for	several	instrumental	effects	(e.g.	the	well-known	solar	radiation	dry-bias).	186	
Beyond	the	650	homogenized	stations,	also	the	other	radiosounding	profiles	available	from	IGRA	187	
with	documented	metadata	and	a	radiosonde	model	compatible	with	the	GDP	or	the	ID2010	have	188	
been	 post-processed	 using	 RHARM.	 These	 additional	 profiles	 are	 provided	 in	 the	 final	 RHARM	189	
dataset	although	the	paucity	of	measurements	at	the	considered	measurements	station	does	not	190	
allow	to	complete	the	homogenization	of	the	corresponding	historical	 time	series	until	1-1-1978	191	
using	RHARM.	192	

The	RHARM	data	harmonization	process	involves	principally	the	Vaisala	RS92	radiosondes	(WMO	193	
radiosonde	code	=	14,	79,	80,	81)	launched	in	the	“GRUAN	era”	(2004-2017)	and	the	Vaisala	RS92	194	
NGP	 (WMO	 radiosonde	 code=52),	 processed	 in	 the	 same	 way	 as	 RS92	 on	 an	 assumption	 of	195	
similarity.	Since	2016,	the	Vaisala	RS41	sondes	are	also	available	(WMO	radiosonde	code=23,	24,	196	
41,	42)	though	these	are	not	post-processed	by	RHARM	yet	due	to	the	lack,	at	the	present	time,	of	197	
a	specific	GRUAN	RS41	data	product	and	of	any	manufacturer	independent	study	on	the	RS41	data	198	
processing.	 In	 Ingleby	 et	 al.	 (2017),	 operational	 radiosonde	 data	 are	 compared	 to	 ECMWF	199	
background	 values	 (12-hour	 forecast):	 mean	 and	 root-mean-square	 (rms)	 Observation-minus-200	
Background	 (O-B)	 statistics	 show	 that	 RS92	 NGP	 sondes	 have	 slightly	 poorer	 performance	201	
characteristics	 than	the	more	common	RS92	SGP,	while	 there	are	 indications	that	RS41	perform	202	
slightly	better	than	the	RS92.	These	indications	are	confirmed	by	the	comparisons	shown	in	Dirksen	203	
et	al.	(2019)	and	Madonna	et	al.	(2020b).	In	Jensen	et	al.	(2018),	a	comparison	is	provided	between	204	
RS41	 and	 RS92	 radiosondes	 on	 a	 limited	 dataset	 showing	 how	 RS41	 does	 provide	 important	205	
improvements,	particularly	 in	 cloudy	conditions.	GRUAN	 is	 currently	undertaking	a	 “distributed”	206	
RS41	vs	RS92	SGP	comparison	at	 its	 stations,	 the	outcome	of	which	will	 become	available	 soon	207	
(Dirksen	et	al.,	2020).	Following	its	completion,	it	is	possible	that	a	distinct	adjustment	approach	will	208	
be	applied	to	the	RS41	data,	if	the	eventual	analysis	warrants	such	a	differentiation.	209	

Table	1	gives	the	number	and	percentage	of	radiosonde	launches	available	in	the	C3S	database	and	210	
post-processed	using	the	RHARM.	Table	1	reveals	that	more	than	85	%	of	RHARM	post-processed	211	
radiosondes	are	manufactured	by	Vaisala.	On	the	one	hand,	this	increases	the	homogeneity	of	the	212	
dataset	 globally,	 whereas	 on	 the	 other	 hand	 the	 dataset	 is	 more	 prone	 to	 the	 impacts	 of	213	
unquantified	random	and	systematic	effects	unique	to	the	Vaisala	sondes.	These	can	be	identified	214	
by	 comparisons	 with	 other	 datasets	 such	 as	 atmospheric	 reanalysis	 (see	 section	 4).	 The	215	
radiosoundings	reported	in	Table	1	include	about	40,000	launches	from	37	ships	(mostly	travelling	216	
in	the	Atlantic	Ocean)	processed	using	RHARM.	217	
There	are	attendant	limitations	to	the	approach	proposed	above	for	Vaisala	sondes	in	that:	i)	the	218	
data	 processing	 of	 Vaisala	 RS92	 radiosoundings	 provided	 by	 IGRA	 stations	 is	 based	 on	 the	219	
manufacturer	processing	software	which	is	used	as	a	black-box	and	is	known	to	have	changed	with	220	
time	 (https://www.vaisala.com/en/sounding-data-continuity).	To	complicate	matters	yet	 further,	221	
the	timing	when	individual	stations	changed	software	is	not	often	discernible	either	from	available	222	
(incomplete)	metadata	or	the	data	series;	and	ii)	raw	high	resolution	profile	data	from	most	stations	223	
are	not	available	to	allow	the	full	exploitation	of	the	GRUAN	data	processing	methodology	despite	224	
their	sharing	being	called	for	in	the	latest	GCOS	Implementation	Plan	(GCOS,	2016).	Furthermore,	it	225	
is	rarely	if	ever	possible	to	properly	estimate	the	radiosonde	ascent	speed	from	IGRA	data	due	to	226	
missing	information	of	the	time	of	observations	(i.e.	the	observation	time	at	each	single	pressure	227	
level).	Therefore,	to	apply	the	radiation	correction	algorithm	proposed	in	Wang	et	al.	(2013)	and	228	
documented	 in	Dirksen	et	al.	 (2014),	an	average	ascent	speed	of	5	m	s-1	has	been	assumed.	For	229	
these	 reasons,	 it	 is	 not	 possible	 to	 directly	 apply	 the	 GDP	 processing	 as	 it	 stands,	 but	 only	 an	230	
approximation,	with	simplifying	assumptions,	can	be	applied.	231	

	232	
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Radiosonde	type	 Launches	 Percentage	
LMS6	 29148	 1.3	
DMF-09	Graw	 16736	 0.8	
VIZ/JinYang	 33721	 1.5	
Taiyuan	GTS1-1/GFE(L)		 13409	 0.6	
Nanjing	GTS1-2/GFE(L)	 17406	 0.8	
Meteolabor	 436	 0.0	
Meisei	 16179	 0.7	
Beijing	Changfeng	CF-06		 36393	 1.7	
M10,	Modem	 121446	 5.5	
Vaisala	RS92/RS41	 1893805	 85.9	
Intermet	 26505	 1.2	
Total	 2205183	 100	

	233	
Table	1:	Number	and	percentage	of	the	radiosonde	launches	available	since	2004	and	post-processed	using	the	RHARM	234	
approach.		The	total	number	of	soundings	available	within	IGRA	since	2004	for	the	stations	post-processed	using	RHARM	235	
is	4,785,543.	These	 include	55,325	balloon	 launches	with	a	Vaisala	RS41	sonde,	currently	not	post-processed	within	236	
RHARM.	237	
	238	
	239	
In	 Figure	 1,	 the	 global	 distribution	 of	 the	 RHARM	 post-processed	 stations	 is	 shown	 with	 the	240	
indication	 of	 the	 650	 station	 where	 the	 homogenization	 of	 the	 historical	 time	 series	 has	 been	241	
completed.	Figure	2,	instead,	shows	the	number	of	post-processed	launches	at	each	station.	242	
	243	

	244	
Figure	1:	Global	distribution	of	GRUAN	Reference	stations	(green	large	dots)	and	the	subset	of	IGRA	stations	harmonized	245	
using	the	RHARM	approach	(small	dots).	The	X	symbol	indicates	the	stations	where	homogenized	time	series	from	1-1-246	
1978	to	present	can	be	obtained	using	RHARM.	The	colour	legend	in	the	bottom	left	corner	specifies	the	principal	type	247	
of	radiosondes	used	at	each	station.	Some	stations	have	changed	sonde	types,	including	switching	manufacturers,	over	248	
the	period	of	the	present	analysis.	249	
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	250	
The	global	coverage	of	the	RHARM	dataset	appears	reasonably	complete,	except	for	Siberia	where	251	
a	small	number	of	launches	is	post-processed	using	RHARM	since	2004	on	and	these	prevent	the	252	
homogenization	of	historical	time	series.		The	station	density	in	North	America,	North	East	Asia,	and	253	
East	Africa	is	lower	than	in	Europe,	U.S	and	South	America.	Nevertheless,	the	latter	regions	include	254	
also	several	stations	with	the	smallest	number	of	available	launches,	while	the	stations	with	largest	255	
number	of	 launches	are	quite	uniformly	distributed	globally	 (Figure	2).	Table	2	confirms	the	 low	256	
number	of	measurements	available	in	the	Southern	Hemisphere	(SH),	although	it	is	already	known	257	
that	the	quantity	of	measurements	alone	cannot	address	the	value	of	the	dataset	for	a	specific	study	258	
without	a	representativeness	study	(Weatherhead	et	al.,	2017).	259	
	260	

	261	
	262	
Figure	2:	Quantity	of	RHARM	post-processed	 radiosoundings	available.	The	 scale	 in	 the	 left	bottom	corner	denotes	263	
available	radiosoundings	at	each	station	(in	thousands	of	ascents).		264	
	265	
	266	

Region Latitude	range Number	of	adjusted	launches	(thousands) Percentage 
Arctic 70N-90N 70.3 3.2 

Northern Hemisphere 
mid-latitudes 

25N-70N 
1177.9 53.4 

Tropics 25N-25S 611.3 27.7 
Southern Hemisphere 

mid-latitudes 
25S-70S 

325.7 14.8 
Antarctic 70S-90S 20.0 0.9 

Total  2205.2 100 
	267	
Table	2:	Number	of	launches	at	different	latitudes	for	the	stations	shown	in	Figure	1.	In	the	last	column	of	Table	2,	the	268	
percentage	with	respect	to	the	total	number	available	globally	is	also	provided.	269	
	270	
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Further	in-depth	statistical	analysis	of	the	IGRA	Version	2	historical	times	series	and	their	temporal	271	
and	spatial	coverage	at	different	pressure	levels	is	available	in	Durre	et	al.	(2018)	and	in	Ferreira	et	272	
al.	 (2019),	 the	 latter	 for	 relative	 humidity	 observations	 only.	 Another	 statistical	 analysis	 of	 the	273	
missing	data	and	of	their	spatial	coverage	is	provided	in	Sy	et	al.	(2020).	274	

Many	of	the	RHARM	stations	are	GCOS	Upper	Air	Network	(GUAN)	sites	with	a	commitment	to	long-275	
term	operation,	a	guideline	that	at	least	25	radiosonde	launches	per	month	should	reach	30	hPa,	276	
and	an	articulated	aim	for	compliance	with	best	practice	for	GUAN	stations,	although	in	reality	they	277	
very	 frequently	 fall	 short	 of	 these	 requirements	 (for	 more	 information	 see	278	
http://www.wmo.int/pages/prog/gcos/index.php?name=ObservingSystemsandData).	 Within	279	
ECMWF	 or	 other	 NWP	 systems	 (Dee	 et	 al.,	 2011;	 Ingleby	 et	 al.,	 2017),	 GUAN	 stations	 are	 not	280	
distinguished	from	the	broader	RAOB	network,	though	ECMWF	does	monitor	data	availability	from	281	
GUAN	 separately	 on	 behalf	 of	 GCOS	 (http://www.ecmwf.int/en/forecasts/quality-our-282	
forecasts/monitoring-observing-system).	Some	GUAN	stations	have	not	reported	observations	for	283	
long	 periods,	while	 for	 others	 there	may	 be	 temporary	 outages.	 In	 some	 cases,	 GUAN	 stations	284	
provide	radiosounding	profiles	to	greater	heights	than	neighboring	ones	or	two	ascents	a	day	rather	285	
than	one.	Recent	work	has	assessed	 the	quality	of	different	 radiosonde	 types	by	examining	O-B	286	
departures	 for	 the	 two-year	 period	 2015-2016	 (Ingleby	 et	 al.,	 2017).	GUAN	and	RAOB	data	 has	287	
shown	very	similar	performance.	As	the	two	networks	are	not	sufficiently	distinguishable,	they	are	288	
considered	fully	equivalent	for	the	purposes	of	RHARM.	There	is	presently	an	ongoing	GCOS	task	289	
team	for	GUAN	(https://library.wmo.int/doc_num.php?explnum_id=4469),	which	may	eventually	290	
provide	a	basis	to	distinguish	between	future	GUAN	operations	and	the	broader	RAOB	program.	291	
Furthermore,	the	nascent	Global	Basic	Observing	Network	if	adopted	and	fully	implemented	may	292	
provide	another	reason	to	differentiate	between	stations	based	upon	network	affiliation	in	future.	293	
Future	 updates	 of	 RHARM	 could	 reconsider	 the	 decision	 to	 treat	 as	 equivalent	 all	 such	294	
measurements	should	developments	require	such	a	re-evaluation.	295	

	296	

3. Methodology	297	

The	RHARM	homogenization	of	global	radiosounding	temperature,	humidity	and	wind	profiles	 is	298	
applied	to	daily	(00:00	and	12:00	UTC)	radiosonde	data	on	16	mandatory	pressure	levels	(10,	20,	30,	299	
50,	70,	100,	150,	200,	250,	300,	400,	500,	700,	850,	925,	1000	hPa)	arising	from	the	IGRA	database.	300	
Relative	humidity	(RH)	adjustments	are	limited	to	250	hPa	owing	to	pervasive	sensor	performance	301	
issues	at	greater	altitudes.	Profiles	are	post-processed	at	these	mandatory	pressure	levels	which	do	302	
not	change	on	a	per-profile	basis,	as	occurs	for	significant	levels.	The	applied	adjustments	are	then	303	
interpolated	to	the	significant	 levels.	Uncertainties	are	estimated	for	each	processing	step	 listed	304	
above	and	propagated	to	estimate	the	total	uncertainty.	305	

	306	
It	is	important	to	note	that	adjustments	at	1000	hPa	and	all	levels	above	10	hPa	(<10hPa),	due	to	307	
the	small	sizes	of	the	available	observation	sample,	must	be	handled	with	care	because	they	are	less	308	
representative	of	the	real	differences	at	the	corresponding	altitudes.		309	
	310	
	311	

3.1 Adjustment	of	Vaisala	temperature,	humidity	and	wind	profiles	312	

During	 daytime,	 the	 sensor	 boom	 of	 any	 radiosonde	 type	 is	 heated	 by	 solar	 radiation	 which	313	
introduces	 biases	 in	 temperature	 and	 humidity	 (Wang	 et	 al.,	 2013).	 The	 net	 heating	 of	 the	314	
temperature	sensor	and	the	dry-bias	affecting	the	relative	humidity	sensors	depends	on	the	amount	315	
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of	absorbed	 radiation	and,	 therefore,	 the	 solar	elevation	angle	 (α),	 as	well	 as	on	 the	cooling	by	316	
thermal	emission	and	ventilation	by	air	flowing	around	the	sensor	(Dirksen	et	al.,	2014).	317	

To	adjust	this	effect	in	the	measured	profiles	of	temperature	and	RH,	the	first	step	of	the	RHARM	318	
algorithm,	involving	only	the	Vaisala	RS92	sondes,	is	to	apply	a	solar	radiation	correction	to	the	T	319	
vertical	profiles	(all	levels,	mandatory	and	significant)	in	a	way	similar	to	the	GDP.	This	is	performed	320	
in	two	steps:			321	

1. first,	the	radiation	correction,	∆𝑇#$%&$'$,	applied	(subtracted)	by	the	manufacturer	(Vaisala)	322	
to	the	temperature	profiles	is	removed;	323	

2. second,	a	GRUAN-like	radiation	correction,	∆𝑇)*+$,,	 is	calculated	using	the	values	of	the	324	
actinic	flux	modelled	with	the	Streamer	RTM	(Key	and	Schweiger,	1998)	and	applied	to	the	325	
RS92	 sondes.	 Where	 GRUAN-like	 corrections	 cannot	 be	 applied,	 the	 manufacturer	326	
correction	is	left	unchanged.	327	

∆𝑇#$%&$'$	is	derived	from	the	tables	provided	by	the	manufacturer	and	accounts	for	the	changes	to	328	
the	 RS92	 data	 processing	 during	 the	 sonde	 model’s	 production	 lifetime	 (see	329	
https://www.vaisala.com/en/sounding-data-continuity).		330	

The	GRUAN	correction,	∆𝑇)*+$,,	is	defined	as:	331	
	332	

∆𝑇)*+$, 𝐼., 𝑝, 𝑣 = 𝑎𝑥4	[Eq.1]	333	
	334	

𝑥 = %5
67

	[Eq.2]	335	

	336	
where	𝐼.	is	the	actinic	flux	at	the	solar	zenith	angle	of	the	balloon	release	time,	calculated	using	the	337	
LOWTRAN	 v7	 solar	 position	 data	 (taken	 from	338	
https://code.arm.gov/vap/mfrsrod1barnmich/blob/ed71a3666e8e1781ed8d753e859b284f3b7dcc339	
2e/src/zensun.pro);	 p	 is	 the	pressure	 level;	 and	u	 is	 the	ascent	 speed	 in	m	 s-1.	Unfortunately,	 u	340	
cannot	be	directly	ascertained	from	IGRA	data	due	to	the	missing	reporting	of	the	observation	time	341	
at	each	pressure	level	for	most	soundings.	For	this	reason,	an	average	value	of	5	m	s-1	for	the	ascent	342	
speed	 is	assumed	 in	the	RHARM	approach.	This	corresponds	to	the	recommended	ascent	speed	343	
from	WMO	guidance	and	corresponds	well	to	known	profile	ascent	speeds	(e.g.	Madonna	et	al.,	344	
2020b).	 The	 coefficients	 a	 and	b	 in	 Eq.1	 are	 fit	 parameters	 arising	 from	 laboratory	experiments	345	
(Dirksen	et	al.,	2014)	yielding	a	=	0.18(±0.03)	and	b	=	0.55(±0.06).	346	

Once	∆𝑇)*+$,	is	calculated,	the	final	correction	applied	by	GRUAN	to	the	T	profiles	following	the	347	
approach	in	Dirksen	et	al.	(2014)	is	to	derive	a	best	estimate	that	lies	between	the	two	approaches:		348	

	349	
∆𝑇 = ∆89:;<=>∆8?<@A<B<

C
		[Eq.3]	350	

	351	

Within	RHARM,	the	final	adjustment	added	to	IGRA	temperature	profiles	is:	352	

	353	

∆𝑇*D$*E,*&FC = ∆𝑇#$%&$'$ − ∆𝑇 + ∆𝑇I 	[Eq.4]	354	

	355	

where	∆𝑇I 	 is	a	residual	calibration	bias	calculated	from	the	mean	difference	of	GRUAN	and	IGRA	356	
night	time	temperature	profiles	at	mandatory	pressure	levels	for	the	six	GRUAN	sites	reported	in	357	
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Table	3.	To	calculate	∆𝑇I,	outliers	are	filtered	using	a	robust	Z-score	method.	∆𝑇I 	is	added	to	both	358	
night	 and	 daytime	 profiles.	 If	 the	 value	 of	 Ia	 in	 equation	 2	 is	 equal	 to	 zero	 (i.e.	 ∆𝑇=0),	 the	359	
manufacturer	 radiation	 correction	 applied	 to	 IGRA	 profiles	 is	 not	modified	 and	 Eq.4	 reduces	 to	360	
∆𝑇*D$*E,*&FC = ∆𝑇I.	 Eq.	 4	 allows	 to	 remove	 the	 solar	 radiation	 correction	 applied	 by	 the	361	
manufacturer	 and	 to	 adjust	 the	 data	 using	 the	GRUAN	 correction	 plus	 an	 additional	 correction	362	
whose	aim	is	to	reduce,	on	average,	the	gap	with	the	GDP.		363	

The	 uncertainties	 on	 𝑇*D$*E,*&FC,	 𝜀 𝑇*D$*E,*&FC ,	 are	 calculated	 according	 to	 the	 following	364	
equation:		365	

𝜀 𝑇*D$*E,*&FC = 	 𝜀N,%5 ∆𝑇
C + 𝜀N,*O ∆𝑇

C+𝜀PQRS ∆𝑇 C + 𝜀I ∆𝑇 C + 𝜀* ∆𝑇 C
T
U	 [Eq.5]	366	

In	Eq.	5,	𝜀N,%5 ∆𝑇 	is	the	uncertainty	due	to	the	estimation	of	the	solar	actinic	flux;	𝜀N,*O ∆𝑇 	is	the	367	
uncertainty	 due	 to	 parameters	 estimated	 in	 the	 radiation	 correction	 model	 reported	 in	 Eq.	 1.	368	
Formulas	to	calculate	𝜀N,%5 ∆𝑇 	𝑎𝑛𝑑	𝜀N,*O ∆𝑇 	are	fully	documented	in	Dirksen	et	al.	(2014).	𝜀PQRS	is	369	
the	uncertainty	due	 to	 the	ventilation	 rate	 (including	 the	effect	of	 the	pendulum	motion	of	 the	370	
radiosonde	assumed	as	in	GRUAN	to	be	of	about	0.2	m	s-1);	𝜀I 	is	used	to	indicate	the	comparison	371	
uncertainties	estimated	from	the	standard	deviation	of	∆𝑇I;	𝜀* 	is	an	additional	random	uncertainty	372	
added	to	the	profiles	of	0.15	K	in	agreement	with	the	GDP	approach	(Dirksen	et	al.,	2014),	although	373	
for	RHARM	this	cannot	be	quantified	as	done	by	GRUAN	due	to	the	unavailability	of	raw	data.	When	374	
the	radiation	correction	of	the	manufacturer	is	left	unchanged,	𝜀 𝑇*D$*E,*&FC 	is	assumed	to	be	the	375	
same	 as	 the	 closest	 temperature	 profile	 in	 time	 measured	 under	 the	 same	 meteorological	376	
conditions	(i.e.	clear	sky	or	cloudy).	377	
	378	
	379	
GRUAN	code	 Station	name	and	country	 Latitude	 Longitude	 Altitude	 WMO	index	

CAB	 Cabauw,	Netherlands	 51.97°	 4.92°	 1	m	 06260	
LIN	 Lindenberg,	Germany	 52.21°	 14.12°	 98	m	 10393	
NYA	 Ny-Ålesund,	Norway	 78.92°	 11.92°	 5	m	 01004	
SGP	 Lamont,	OK,	USA	 36.60°	 -97.49°	 320	m	 74646	
SOD	 Sodankylä,	Finland	 67.37°	 26.63°	 179	m	 02836	
TAT	 Tateno,	Japan	 36.06°	 140.13°	 25	m	 47646	

	380	
Table	3:	List	of	the	GRUAN	stations	used	to	calculate	the	additional	calibration	bias	applied	in	the	RHARM	approach	to	381	
adjust	the	Vaisala	RS92	radiosoundings	available	from	IGRA.	382	

	383	

Following	the	application	of	temperature	adjustments,	the	measured	value	of	the	relative	humidity	384	
(all	levels),	𝑅𝐻*D$*E,*&FC	is	adjusted	for	the	solar	radiation	dry-bias,	estimated	by	the	effect	of	the	385	
T	 warm	 bias	 on	 the	 saturation	 vapor	 pressure,	 using	 a	 correction	 factor	 calculated	 using	 the	386	
following	formula:	387	

	388	

𝑅𝐻*D$*E,*&FC = 𝑐𝑓	𝑅𝐻%)*$,*&FC
6\ 8:]<:^,:A_U>`∆8:]<:^,:A_U

6\ 8:]<:^,:A_U
	[Eq.6]	389	

	390	

where	cf	 is	 scalar	a	 factor	accounting	 for	 the	temperature	dependency	of	 the	sensor	calibration	391	
estimated	at	night	by	a	comparison	with	GRUAN	measurements;	𝑝a	is	the	saturation	vapor	pressure	392	
and	 𝑓	 is	 a	 factor	 determined	 experimentally	 to	 weight	 the	 applied	 correction	 on	 different	393	

https://doi.org/10.5194/essd-2020-183

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 25 August 2020
c© Author(s) 2020. CC BY 4.0 License.



	

11	

radiosonde	batches	(Dirksen	et.,	2014).	The	factor	cf	may	embed	a	residual	contribution	from	the	394	
sensors’	time-lag	which	is	typically	small	for	the	RH	values	up	to	250	hPa.	For	the	sake	of	clarity,	a	395	
flow	diagram	describing	 the	application	of	 the	RHARM	adjustments	 to	both	T	and	RH	profiles	 is	396	
shown	in	Figure	3.	397	

	398	

	399	
Figure	3:	 Flow	diagram	summarizing	 the	post-processing	 steps	of	 the	RHARM	algorithm	 to	 adjust	 temperature	and	400	
relative	humidity	profiles	measured	by	the	RS92	sondes	since	2004.	In	the	diagram,	cf	is	a	calibration	factor,	pc	is	the	401	
saturation	 vapor	 pressure,	 f	 is	 a	 factor	 determined	 experimentally	 to	 weight	 the	 applied	 correction	 on	 different	402	
radiosonde	batches	used	over	the	years.	∆T	indicates	the	adjustments	applied	to	temperature,	∆RH	to	relative	humidity.	403	
The	 subscripts	 refer	 to	 the	GRUAN	adjustments,	 IGRA	adjustments	 (manufacturer-based	plus	 IGRA	quality	 control),	404	
RHARM	adjustments	and	to	RS92	Vaisala	sondes.	The	subscript	“r”	refers	to	a	residual	correction	derived	from	the	night	405	
time	comparison	between	GRUAN	and	IGRA	data	at	six	GRUAN	sites,	reported	in	Table	3.	406	
	407	

The	uncertainties	on	𝑅𝐻*D$*E,*&FC,	𝜀 𝑅𝐻*D$*E,*&FC ,	 are	 calculated	according	 to	 the	 following	408	
equation:		409	

𝜀 𝑅𝐻*D$*E,*&FC = 	 𝜀*de ∆𝑅𝐻
C + 𝜀*df ∆𝑅𝐻

C + 𝜀N` ∆𝑅𝐻 C + 𝜀* ∆𝑅𝐻 C
T
U		[Eq.7]	410	

In	Eq.	7,	𝜀*de(∆𝑅𝐻)	is	the	uncertainty	of	dry	bias	correction	and	𝜀*df(∆𝑅𝐻)	is	the	uncertainty	of	411	
the	radiation	sensitivity	factor	f	in	Eq.	5;	𝜀N`	is	the	uncertainty	due	to	calibration	factor	cf;	𝜀* 	is	an	412	
additional	 random	 uncertainty	 of	 2%	 RH.	 In	 analogy	 with	 temperature,	 when	 the	 radiation	413	
correction	of	the	manufacturer	is	left	unchanged,	𝜀 𝑅𝐻*D$*E,*&FC 	is	assumed	to	be	the	same	as	414	
the	closest	RH	profile	in	time	measured	under	the	same	meteorological	conditions.	415	

At	present,	 there	are	only	two	GRUAN	data	products	 (GDP),	 for	the	Vaisala	RS92	and	for	Meisei	416	
RG11	 sondes.	 RHARM	 applies	 adjustments	 to	 RS92	 Vaisala	 sondes	 only,	 which	 represents	 a	417	
substantive	portion	of	the	global	data.	For	the	Meisei	RG11	GDP,	its	recent	introduction	(Kobayashi	418	
et	al.,	2019)	has	not	allowed	yet	 the	 implementation	within	RHARM,	but	an	update	of	 the	data	419	
processing	will	be	implemented	in	the	near	future	along	with	any	other	GRUAN	GDP	which	might	420	
become	available.		421	

It	is	important	to	note	that	at	the	end	of	2010,	Vaisala	operational	processing	underwent	a	major	422	
change	with	the	inclusion	of	humidity	time-lag	correction	and	an	improved	dry-bias	correction	for	423	
RH.	Stations	applied	this	update	to	the	software	in	a	heterogeneous	way.	For	example,	Germany	424	
and	the	UK	started	using	it	in	2015,	some	others	earlier	and	others	later	or	not	at	all,	due	to	different	425	
choices	by	the	NMSs.	In	this	version	of	RHARM	it	is	very	difficult	to	take	into	account	such	changes	426	
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at	each	individual	station	given	the	grossly	insufficient	metadata	available.	Nevertheless,	this	may	427	
be	possible	in	future,	for	any	such	subsequent	changes,	using	native	BUFR	reports	which	have	the	428	
version	number	of	the	processing	in	their	extra	metadata.	Storing	of	these	files	on	a	routine	basis	429	
has	been	undertaken	by	ECMWF	starting	from	2016.	An	effort	to	cooperate	with	Vaisala	will	also	be	430	
undertaken	to	identify	when	individual	stations	switched,	in	order	to	improve	future	updates	of	the	431	
RHARM	dataset. 432	

Differently	from	temperature	and	relative	humidity	data,	the	GDP	on	wind	profiles	is	more	basic	433	
and	does	not	apply	as	many	corrections	to	the	raw	data.	The	manufacturer	software	retrieves	the	434	
magnitudes	of	u	and	v	from	the	Doppler	shift	in	the	GNSS	carrier	signal.	In	the	GRUAN	processing,	435	
these	vectors	are	smoothed	and	converted	into	wind	speed	and	direction.	The	noise	in	the	raw	data	436	
of	u	and	v,	due	to	the	radiosonde’s	pendulum	motion	and	the	noise	of	the	GNSS	data,	is	reduced	by	437	
using	a	low-pass	digital	filter	(Dirksen	et	al.,	2014).	This	smoothing	reduces	the	effective	temporal	438	
resolution	 of	 the	 wind	 data	 to	 40	 s.	 Using	 statistical	 uncertainties	 calculated	 for	 u	 and	 v,	 the	439	
uncertainty	of	the	wind	direction	ϕ	is	given	by:	440	
	441	

𝜀 ϕ = ijk
l

mnU>moU

i> n
o

U
p
	[Eq.	8]	442	

	443	
and	the	uncertainty	of	the	wind	speed	𝑤	by	444	
		445	

𝜀 w = smn U> pmo U

sU>pU
	[Eq.	9]	446	

	447	

Typical	values	are	between	0.4	and	1	ms-1	for	𝜀 w 	and	about	1°	for	𝜀 ϕ .	In	the	case	of	negligible	448	
wind,	when	u	and	v	approach	0,	the	value	of	𝜀 ϕ 	becomes	very	large.	For	such	cases,	the	absolute	449	
value	of	𝜀 ϕ 	is	limited	to	180°	(Dirksen	et	al.,	2014).	The	same	limitation	is	applied	to	uncertainties	450	
estimated	with	RHARM.	451	

The	 RHARM	 algorithm	 converts	 wind	 direction	 and	 speed	 reported	 in	 IGRA	 data	 files	 into	 the	452	
vectorial	components	u	and	v.	At	time	instant	t	and	at	a	pressure	level	p,	these	variables	are	related	453	
as	follows:	454	
	455	

u p, t = w p, t 	sin l
ijk

ϕ p, t 		[Eq.	10]	456	

	457	

v p, t = w p, t 	cos l
ijk

ϕ p, t 		[Eq.	11]	458	

	459	

 460	
The	conversion	into	u	and	v	components	avoids	issues	of	interpretation	over	averages	or	differences	461	
associated	with	the	use	of	the	discontinuous	wind	direction	scale.	Nevertheless,	to	facilitate	use	462	
applications	preferring	the	use	of	wind	speed	and	direction,	a	final	step	of	the	processing	converts	463	
the	 vectors	 back	 into	wind	 speed	 and	 direction.	 Eqs.	 8	 and	 9	 are	 then	 used	 also	 in	 RHARM	 to	464	
estimate	the	final	uncertainty	on	w	and	ϕ.	465	
	466	

To	adjust	the	IGRA	wind	profiles,	the	day	and	night	time	differences	for	u	and	v	between	the	GRUAN	467	
processed	and	the	IGRA	radiosounding	wind	profiles	have	been	calculated	using	the	stations	in	Table	468	
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1.	The	approach	is	the	same	as	for	temperature	and	relative	humidity,	although	Eq.	4	is	reduced	to	469	
∆𝑢*D$*E,*&FC = ∆𝑢I 	and	to	∆𝑣*D$*E,*&FC = ∆𝑣I,	for	each	of	the	wind	vectorial	components.	The	470	
standard	deviation	of	the	∆𝑢*D$*E,*&FC	and	∆𝑣*D$*E,*&FC	are	then	used	as	the	estimation	of	the	471	

adjustment	uncertainties,	which	will	be	expressed	as	𝜀 ∆𝑢*D$*E,*&FC = 	 𝜀I ∆𝑢 C + 𝜀* ∆𝑢 C
T
U	472	

and	𝜀 ∆𝑣*D$*E,*&FC = 	 𝜀I ∆𝑣 C + 𝜀* ∆𝑣 C
T
U.	𝜀* 	is	a	random	uncertainty	of	01.5	m	s-1	for	both	u	473	

and	v.		474	
This	 adjustment	 can	 only	 partly	 reconcile	 the	 difference	 between	 GDP	 and	 manufacturer	 data	475	
processing	at	all	the	sites	because	typically	the	difference	is	higher,	due	to	the	differences	in	the	476	
low-pass	filtering	applied	to	reduce	the	effect	of	the	radiosonde’s	pendulum	motion.		477	
The	adjustment	applied	to	temperature,	humidity	and	wind	profiles	at	the	mandatory	levels	as	well	478	
as	the	corresponding	uncertainties	are	finally	interpolated	at	the	significant	levels	available	in	the	479	
IGRA	files,	which	varies	from	profile-to-profile	and	is	used	to	mark	significant	geophysical	points	in	480	
the	profile	such	as	temperature	or	humidity	profile	inflections.	The	interpolation	is	performed	using	481	
a	 linear	 function	for	temperature,	while	a	cubic	spline	 interpolation	has	been	applied	to	RH	and	482	
wind	 component	 profiles.	 The	 resulting	 interpolation	 uncertainty	 has	 been	 evaluated	 using	 the	483	
comparison	of	the	effect	of	the	interpolation	at	GRUAN	stations	where	high	resolution	profiles	are	484	
available.	 This	 interpolation	 uncertainty	 has	 been	 added	 to	 the	 final	 uncertainty	 budget	 (for	 T,	485	
𝜎=0.25	K,	for	RH,	𝜎=0.5	%,	for	both	u	and	v,	𝜎=0.05	ms-1).	486	
	487	
 488	

3.2 Adjustment	of	other	radiosonde	types	489	
 490	
Section	3.1	described	the	adjustments	applied	to	the	RS92	sondes,	which	represent	the	main	link	of	491	
RHARM	to	GRUAN	data	and	the	GDP.	For	remaining	radiosonde	types,	the	adjustment	estimation	492	
requires	the	adoption	of	a	different	approach	due	to	the	unavailability	of	GRUAN	reference	products	493	
for	 the	vast	majority	of	 radiosonde	 types	other	 than	Vaisala	RS92.	To	harmonize	 these	 records,	494	
RHARM	makes	primary	recourse	to	the	ID2010,	which	is	a	unique	dataset	from	which	estimations	495	
of	 the	 performance	 of	 operational	 radiosondes	 in	 2010	 were	 evaluated	 through	 a	 joint	 effort	496	
between	the	scientific	community	and	the	various	manufacturers.	ID2010	allows	us	to	assess	the	497	
systematic	component	of	the	inter-sensor	differences,	it	does	not	contain	strong	outliers,	but	the	498	
post-processing	 applied	 may	 come	 at	 the	 cost	 of	 under-representing	 sonde-to-sonde	 random	499	
uncertainty	effects	(Nash	et	al.,	2011).	Furthermore,	the	use	of	complex	multi-sonde	rigs	may	alter	500	
the	sonde	characteristics	compared	to	standard	single-payload	flights	in	important	ways	vis-a-vis	501	
aspects	such	as	ventilation,	 thermal	effects	and	the	magnitude	and	periodicity	of	any	pendulum	502	
effects. 503	
 504	
Among	the	radiosonde	types	involved	in	the	intercomparison,	only	those	routinely	employed	at	a	505	
sufficient	number	of	stations	worldwide	have	been	considered	for	calculating	the	adjustments	for	506	
RHARM.	The	Vaisala	RS92-SGP	(WMO	radiosonde	code=80)	was	used	as	one	of	the	common	models	507	
during	 (almost)	 all	 flights,	 allowing	 us	 to	 tie	 each	 sonde	 to	 the	RS92	 (at	 least	 for	 the	 particular	508	
location,	 RS92	 model	 version,	 the	 most	 recent	 update	 in	 the	 RS92	 Vaisala	 data	 processing	 in	509	
operation	at	the	time,	and	the	season	of	the	campaign).	In	addition	to	keeping	consistency	with	one	510	
of	only	two	reference	products	currently	available	through	GRUAN,	Vaisala	RS92	sondes	available	511	
in	ID2010	have	been	post-processed	using	the	RHARM	algorithm.	The	list	of	the	selected	radiosonde	512	
types	is	given	in	Table	4.	513	
	514	
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Due	to	the	launching	setup	adopted	during	the	WMO	intercomparison,	a	few	radiosonde	types	were	515	
compared	 less	 frequently	 than	 others	 on	 the	 same	 payload.	 Specifically,	 there	was	 a	 subset	 of	516	
models	which	did	not	have	a	sufficient	sample	of	Vaisala	RS92	sondes	associated.	In	these	cases,	517	
the	Graw	radiosondes,	which	flew	on	sufficient	rigs	both	with	RS92	sondes	and	the	under-sampled	518	
sondes,	have	been	used	to	make	the	bridge	with	the	RS92	and	to	calculate	statistics	on	a	 larger	519	
number	of	comparisons.	Standard	deviations	have	been	recalculated	accordingly	to	consider	the	520	
additional	contribution	of	the	Graw	radiosonde	uncertainties	and	the	two-steps	required.	The	mean	521	
difference	between	RS92	temperature	profiles	and	the	profiles	measured	by	each	of	the	sondes	522	
listed	in	Table	4	(hereinafter	named	as	“NORS92”)	has	been	quantified	as:		523	
	524	

∆𝑇,~*&FC =
i
,

𝑇�,~*&FC − 	𝑇�
*D$*E,	*&FC,

��i 	[Eq.	12],	525	
	526	
and	the	standard	deviation	𝜎8=�:A_U 	is	calculated	from	the	spread	of	pairwise	estimates	of	∆𝑇,~*&FC	527	

arising	from	the	RHS	term	of	equation	12.	𝜎8=�:A_U = 𝜎8=�:A_UC + 𝜀 𝑇*D$*E,*&FC
C
	is	used	as	the	528	

best	estimate	of	the	uncertainty	for	∆𝑇,~*&FC	.	If	the	Graw	radiosonde	is	considered	as	the	link	with	529	
the	Vaisala	RS92,	Eq.12	becomes:	530	
	531	

∆𝑇,~*&FC =
i
,

𝑇�,~*&FC − 	𝑇�)*$�,
��i − i

E
𝑇�)*$� − 	𝑇�

*D$*E,	*&FCE
��i 		[Eq.	13],	532	

	533	
Although	 the	 ID2010	 have	 already	 been	 processed	 for	 the	 presence	 of	 outliers, ∆𝑇,~*&FC and 534	
𝜎8=�:A_U have	been	calculated	using	a	resistant	algorithm	where	the	mean	trims	away	outliers	using	535	
the	 median	 and	 the	 median	 absolute	 deviation	536	
(https://idlastro.gsfc.nasa.gov/ftp/pro/robust/resistant_mean.pro).	 This	 allows	 us	 to	 ensure	 that	537	
the	most	typical	differences	between	two	radiosonde	types	are	caught	in	the	calculated	differences,	538	
enabling	their	application	as	an	average	adjustment	on	a	wide	range	of	radiosondes.	Eqs.	12	and	13,	539	
with	the	related	considerations,	are	applied	also	to	wind	profiles.		540	
 541	

Abbrev. Name WMO	radiosonde	code 
RS92 VAISALA	RS92	SGP 80 
Graw DMF-09	Graw 17 

Modem M10,	Modem 57 
LM LMS6 11	(01/01/2008),	82	(07/11/2012) 

Meisei Meisei 30	(01/01/2010) 
JinYang JinYang 21 
IntermSA iMet-2	InterMet 97,	98,	99 
Daqiao Nanjing	GTS1-2/GFE(L) 33	(03/11/2011) 
Huayun Taiyuan	GTS1-1/GFE(L) 31	(03/11/2011) 
Changf Beijing	Changfeng	CF-06 45	(07/05/2014) 
ML Meteolabor 26 

 542	
Table	4:	List	of	the	operational	radiosondes	involved	in	the	2010	WMO/CIMO	radiosonde	intercomparison	which	have	543	
been	used	to	calculate	the	RHARM	adjustments.	Dates	in	brackets	are	referred	to	the	date	of	assignment	for	the	WMO	544	
radiosonde	code.	Please	note	that	also	RS92	is	included	in	the	list.	Adjustments	have	been	calculated	using	the	RS92-545	
SGP	sondes	as	the	reference,	in	order	to	be	physically	consistent	with	the	GRUAN	product.	For	consistency,	RS92-SGP	546	
sondes	launched	during	the	intercomparison	have	been	reprocessed	using	the	RHARM	post-processing	approach. 547	
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 548	

 549	
Figure	4:	Flow	diagram	summarizing	the	post-processing	steps	of	the	RHARM	algorithm	to	the	adjust	the	temperature	550	
and	relative	humidity	profiles	measured	for	all	radiosonde	types	other	than	RS92	reported	in	Table	4	in	the	period	since	551	
2004	onward.	In	the	diagram,	“X”	stands	for	T,	u	or	v.	The	subscript	RHARM	refers	to	the	output	adjusted	variable	and	552	
the	subscripts	RS92/NORS92	refer	to	the	input	radiosonde	type:	RS92	Vaisala	or	other.	553	
	554	
For	 relative	 humidity,	 also	 in	 order	 to	 be	 consistent	 with	 the	 RHARM	 post-processing	 of	 RS92	555	
sondes,	instead	of	Eq.	12	the	following	is	used:	556	
	557	
	558	

𝑐𝑓(𝑅𝐻),~*&FC =
i
,
	 *D�

:]<:^,:A_U

*D�
=�:A_U

,
��i 	[Eq.	14],	559	

	560	
where	𝑐𝑓(𝑅𝐻),~*&FC	 is	 a	 scalar	 calibration	 factor	 to	 remove	 systematic	 effects	on	 the	NORS92	561	
radiosondes;	the	related	standard	deviation,	𝜎N`(*D)=�:A_U,	is	calculated	via	error	propagation.	If	the	562	
Graw	radiosonde	is	considered	as	the	link	with	the	Vaisala	RS92,	Eq.14	becomes:	563	
	564	

𝑐𝑓(𝑅𝐻),~*&FC =
i
,
	 N`(*D)9:<�	*D�

:]<:^,9:<�

*D�
=�:A_U

,
��i 	[Eq.	15],	565	

	566	
To	facilitate	the	application	of	the	adjustments	for	all	significant	pressure	levels	available	in	the	IGRA	567	
dataset,	the	profiles	obtained	from	the	Eqs.	12,	13,	14	and	15,	including	all	the	available	(mandatory	568	
and	significant)	levels,	have	been	first	smoothed	to	an	effective	resolution	of	100	m	(Iarlori	et	al.,	569	
2015),	to	reduce	the	uncertainties	due	to	the	limited	sample	size,	and	then	interpolated	at	0.1	hPa	570	
resolution.	Interpolation	has	been	performed	to	allow	the	processing	chain	to	always	get	an	exact	571	
match	 with	 any	 of	 the	 mandatory	 and	 significant	 levels	 available	 in	 the	 IGRA	 files.	 As	 for	 the	572	
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significant	levels	reported	in	the	RS92	radiosonde	profiles,	the	interpolation	has	been	performed	573	
using	a	linear	function	for	temperature,	while	a	cubic	spline	interpolation	has	been	applied	to	RH	574	
and	wind	 component	 profiles.	 The	 interpolation	 uncertainty	 has	 been	 finally	 added	 to	 the	 final	575	
uncertainty	budget	(for	T,	𝜎=0.25	K,	for	RH,	𝜎=0.5	%,	for	both	u	and	v,	𝜎=0.05	ms-1).	576	
	577	
In	Figure	5,	∆𝑇*&FC,,~*&FC	 is	shown	with	the	corresponding	standard	deviations	𝜎∆8:A_U,=�:A_U 	 for	578	
ten	radiosonde	types	during	night	(upper	panels)	and	day	(lower	panels)	up	to	50	hPa.	∆𝑇*&FC,,~*&FC	579	
ranges	 between	 -0.2	 K	 and	 0.3	 K	 up	 to	 200	 hPa,	 both	 at	 night	 and	 day.	 At	 higher	 altitudes,	580	
∆𝑇*&FC,,~*&FC	 increases	with	 values	 between	 -0.3	 K	 and	 0.6	 K.	 For	 a	 few	 radiosonde	 types,	 the	581	
ID2010	provides	only	a	few	profiles	to	calculate	the	adjustments	up	to	50	hPa	and	beyond.	This	may	582	
strongly	increase	the	value	of	∆𝑇*&FC,,~*&FC	and	of	the	related	standard	deviation.	For	this	reason,	583	
the	profiles	in	Figure	5	have	been	cut	at	tailored	pressure	levels	pt	(ranging	between	30	hPa	and	100	584	
hPa)	 and	 at	 pressures	 lower	 than	pt	 the	 adjustment	 applied	 in	 RHARM	 is	 equal	 to	 the	 value	 of	585	
∆𝑇*&FC,,~*&FC	at	pt.	𝜎∆8:A_U,=�:A_U 	is	within	0.2	K	at	night	up	to	200	hPa	and	increases	to	0.3-0.4	K	at	586	
100	 hPa.	 A	 couple	 of	 radiosonde	 types	 show	 a	 larger	 standard	 deviation	 (e.g.	 JinYang).	 During	587	
daytime	𝜎∆8:A_U,=�:A_U 	is	larger	than	at	night	but	is	still	less	than	0.3K	up	to	200	hPa,	while	values	588	
above	this	level	are	very	similar	to	nighttime.	The	Meisei	comparison	profiles	appear	to	be	generally	589	
noisier	than	the	other	types,	particularly	during	the	day.	Is	 it	also	worth	noting	that	some	of	the	590	
apparent	periodicity	in	the	left	panels	of	Figure	5	are	likely	relate	to	manufacturer-to-manufacturer	591	
differences	in	accounting	for	the	effect	of	the	pendulum	motion	of	the	radiosondes.	592	

	593	
Figure	5:	Left	panels,	night	time	and	daytime	profiles	of	the	mean	differences	between	RS92	temperature	profiles	and	594	
the	profiles	measured	by	all	the	other	radiosonde	types	listed	in	Table	4;	right	panels,	profiles	of	the	standard	deviation	595	
of	the	mean	difference,	reported	in	the	corresponding	left	panels.	596	
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	597	

In	Figure	6,	 the	mean	difference	∆𝑅𝐻,~*&FC =
i
,

𝑅𝐻�
*D$*E,	*&FC − 	𝑅𝐻�,~*&FC,

��i 	 is	shown	with	598	
the	 corresponding	 standard	 deviation.	 The	 values	 of	 ∆𝑅𝐻,~*&FC	 are	 shown	 instead	 of	599	
𝑐𝑓(𝑅𝐻),~*&FC,	which	is	the	factor	calculated	in	Eq.15,	to	give	a	clearer	quantitative	representation	600	
of	the	difference	among	the	various	radiosonde	types	for	the	ID2010.	The	plots	in	Figure	6	are	shown	601	
up	to	250	hPa	which	is	the	maximum	altitude	at	which	the	RHARM	approach	performs	the	post-602	
processing.	∆𝑅𝐻,~*&FC	ranges	within	about	±10%	from	the	surface	up	to	500	hPa,	both	at	night	and	603	
day,	although	it	 is	mostly	positive	for	all	radiosonde	types	during	the	day:	this	 indicates	that	the	604	
adjustments	 applied	 to	 correct	 the	 effect	 of	 solar	 radiation	 by	 most	 of	 the	 manufacturers	605	
underestimates	 the	 RH	 profiles	 compared	 to	 the	 RHARM	 processed	 Vaisala	 RS92	 profiles.	 At	606	
pressure	levels	above	500	hPa,	∆𝑅𝐻,~*&FC	generally	increases	with	altitude	and	is	positive	during	607	
the	day.	The	only	exception	is	the	Modem	radiosondes	which	at	night	exhibit	negative	values	of	608	
∆𝑅𝐻,~*&FC,	smaller	than	-15%,	and	Daqiao	and	Meteolabor	for	very	few	levels	at	pressures	higher	609	
than	300	hPa.	𝜎∆*D=�:A_U 	 is	smaller	than	10%	at	night	and	day,	except	for	a	few	larger	values	at	610	
levels	below	400	hPa	reported	for	the	Daqiao,	Huayun	and	Meteolabor	radiosondes.		611	
	612	

	613	
Figure	6:	Same	as	Figure	5	but	for	RH.	614	
	615	

In	analogy	with	Figures	5	and	6,	Figure	7	shows	the	profiles	of	∆𝑢*&FC,,~*&FC	with	the	corresponding	616	
standard	deviations	𝜎∆7:A_U,=�:A_U.	The	ID2010,	apart	from	the	Daqiao	sondes,	includes	only	winds	617	
measurements	based	on	GNSS	tracking	of	the	radiosonde.	Moreover,	 in	the	ID2010	daytime	and	618	
night	 time	 measurements	 were	 treated	 together	 as	 no	 significant	 difference	 could	 be	 found	619	
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between	the	two	categories.	Nevertheless,	considering	that	a	different	approach	to	the	processing	620	
of	the	ID2010	is	adopted	by	RHARM	(i.e.	decomposition	into	vectorial	wind	components	u	and	v)	621	
and	that	here	only	one	radiosonde	model	(e.g.	RS92)	is	assumed	as	the	reference	for	the	calculation	622	
of	adjustment	profiles	for	all	other	sonde	types	of	the	ID2010,	we	treated	daytime	and	night	time	623	
data	separately	in	order	to	check	the	robustness	of	the	estimated	adjustments.	624	

At	night,	∆𝑢*&FC,,~*&FC	is	predominantly	negative	throughout	the	profile	for	all	manufacturers,	but	625	
smaller	than	-0.5	ms-1	up	to	400	hPa,	then	increases	up	to	-2.0	ms-1	at	100	hPa	reaching	its	maximum	626	
value.	During	the	day,	the	same	behavior	is	observed	although	the	values	from	the	surface	to	400	627	
hPa	show	greater	spread.	𝜎∆7:A_U,=�:A_U 	 is	 lower	than	2.0	ms-1	for	both	day	and	night,	except	for	628	
Graw	and	Modem	radiosondes	above	100	hPa	and	50	hPa	heights,	respectively.	Figure	8	shows	the	629	
same	as	Figure	7	but	for	∆𝑣*&FC,,~*&FC.	Both	at	night	and	day,	∆𝑣*&FC,,~*&FC	is	negative	and	smaller	630	
than	-0.5	ms-1	up	to	400	hPa	while	it	is	positive	at	lower	pressure	levels	with	values	lower	than	1.0	631	
ms-1.	The	small	sample	size	for	the	comparison	clearly	affects	the	values	of	∆𝑣*&FC,,~*&FC	at	levels	632	
above	 100	 hPa.	 The	 same	 is	 true	 for	 𝜎∆P:A_U,=�:A_U 	 for	 Graw	 and	 Modem	 sondes	 at	 night.	633	
𝜎∆7:A_U,=�:A_U 	is	generally	lower	than	1.0	ms-1	both	at	night	and	day.		634	

					635	

	636	
Figure	7:	Same	as	Figure	5	but	for	the	zonal	wind	component	(u).	637	
	638	
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As	for	temperature,	∆𝑢*&FC,,~*&FC	and	∆𝑣*&FC,,~*&FC	profiles	have	been	cut	at	tailored	pressure	639	
levels	pt	and	at	pressure	levels	lower	than	pt	the	adjustment	is	equal	to	the	value	of	∆𝑢*&FC,,~*&FC	640	
and	∆𝑣*&FC,,~*&FC	at	pt,	respectively.	641	

	642	
	643	

Figure	8:	Same	as	Figure	5	but	for	meridional	wind	component	(v).	644	
	645	

Wind	data	provided	with	 the	RHARM	approach	must	be	used	with	 caution	 considering	 that	 the	646	
radiosonde	types	reported	in	Table	4	are	processed	with	distinct	software	routines	provided	by	the	647	
respective	manufacturers	which	apply	distinct	smoothing	to	the	data.	The	unavailability	of	the	raw	648	
data	does	not	enable	reprocessing	of	the	data	to	provide	all	of	them	at	the	same	resolution	or	even	649	
at	a	known	resolution,	which	can	be	controlled	for	in	the	RHARM	software	and	optimized	to	remove	650	
spurious	effects	on	the	wind	measurement	by	the	radiosondes.		651	
	652	

4. Results	653	

4.1	RHARM	consistency	with	GRUAN	654	
Although	built	to	mimic	the	GDP,	the	RHARM	the	approach	is	not	applied	to	the	raw	radiosonde	655	
data.	This	may	generate	discrepancies	in	the	result	between	the	RHARM	and	the	GDP	which	must	656	
be	quantified.	By	construction,	the	performance	of	the	RHARM	approach	are	expected	be	similar	657	
on	average	to	the	GDP.			658	
	659	
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To	evaluated	the	consistency	of	the	RHARM	adjustments	applied	to	the	RS92	IGRA	sondes	with	the	660	
GDP,	in	Figure	9	the	“GRUAN	minus	RHARM''	mean	difference	profiles	of	temperature	and	RH	are	661	
compared	with	the	corresponding	profiles	for	“GRUAN	minus	IGRA”.	The	plots	in	Figure	9	have	been	662	
limited	to	100	hPa	for	the	temperature	and	to	250	hPa	for	the	RH:	the	latter	is	the	minimum	pressure	663	
for	the	all	the	RH	profiles	adjusted	using	the	RHARM	approach,	while	for	temperature	adjustments	664	
above	100	hPa	are	the	same	or	very	close	to	those	carried	out	at	100	hPa.	For	temperature	at	night,	665	
the	difference	GRUAN-IGRA	is	almost	constant	from	the	surface	up	to	300	hPa	with	a	value	of	0.12-666	
0.13	K,	while	below	300	hPa	it	is	a	slightly	smaller	with	values	of	0.1	K.	Instead,	the	GRUAN-RHARM	667	
difference	is	closer	to	zero	along	the	entire	pressure	range	with	values	smaller	than	0.07	K	up	to	250	668	
hPa	 and	 close	 to	 zero	 at	 higher	 altitudes.	During	 the	 day,	 the	GRUAN-IGRA	difference	 is	 nearly	669	
constant	 at	 all	 the	 pressure	 levels	with	 a	 value	 of	 about	 0.12	 K.	 The	 standard	 deviation	 of	 the	670	
difference	is	almost	the	same	for	night	and	day	with	increasing	values	towards	lower	pressures	from	671	
0.2	to	0.3	K.	These	values	agree	with	the	results	of	the	comparison	shown	for	GRUAN	vs	Vaisala	data	672	
products	 (Dirksen	 et	 al.,	 2014)	 and	 with	 the	 manufacturer	 specifications	673	
(https://www.vaisala.com/sites/default/files/documents/RS92SGP-Datasheet-B210358EN-F-674	
LOW.pdf).	 For	 at	 least	 some	 cases,	 the	 GRUAN-IGRA	 difference	may	 be	 related	 to	 rounding	 of	675	
temperature	values	in	alphanumeric	TEMP	reports	(Ingleby,	2017)	and/or	a	systematic	contribution	676	
of	0.05	K	due	to	the	conversion	of	Celsius	to	Kelvin	by	the	decoding	software	affecting	alphanumeric	677	
to	 BUFR	 transition	when	 radiosoundings	 data	 are	 transmitted	 to	 the	WMO	 Information	 System	678	
(WIS).		679	

For	RH	at	night,	the	GRUAN-IGRA	difference	increases	with	height	from	less	than	0.5%	RH	to	2.0%	680	
RH	and,	during	the	day,	from	0.7	%	RH	to	1.8%	RH.	The	RHARM	adjustments	are	able	to	reduce	on	681	
average	the	difference	achieving	negligible	values,	close	to	zero,	both	during	night	and	day.	The	682	
standard	deviation	 is	similar	 for	both	the	difference	profile	at	night	and	day	with	values	ranging	683	
between	1.5	%	RH	and	5.0	%	RH,	increasing	with	decreasing	pressures.	684	

In	analogy	to	temperature	and	RH,	the	wind	speed	mean	differences	have	been	calculated	using	685	
both	night	and	daytime	observations,	because	there	 is	not	any	difference	 in	the	data	processing	686	
applied	in	the	three	considered	datasets	(GRUAN,	IGRA	and	RHARM).	Both	the	GRUAN-IGRA	and	687	
GRUAN-RHARM	difference	profiles,	shown	in	Figure	10,	are	very	close	to	zero	from	1000	hPa	to	300	688	
hPa.	Above	this	altitude,	RHARM	has	a	smaller	mean	difference	than	IGRA	with	respect	to	GRUAN	689	
values,	always	positive	and	smaller	than	0.05	m/s,	while	IGRA	shows	differences	with	GRUAN	within	690	
about	 ±0.3	m/s.	 The	 residual	 differences	 between	 GRUAN	 and	 RHARM	may	 be	 due	 to	 several	691	
reasons,	 such	 as	 rounding	 problems	 or	 differences	 in	 the	 smoothing	 window	 used	 by	 the	692	
manufacturers	and	GRUAN	data	processing.	693	

	694	
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	695	
Figure	 9:	 Mean	 difference	 profiles	 of	 temperature	 (top	 panels)	 and	 relative	 humidity	 (bottom	 panels)	 with	 the	696	
corresponding	standard	deviations	(horizontal	bar)	calculated	from	the	comparison	of	the	night	time	(panels	a	and	c)	697	
and	daytime	(panels	b	and	d)	difference	“GRUAN	minus	IGRA”	(black	lines)	and	“GRUAN	minus	RHARM”	(red	lines)	for	698	
the	profiles	available	at	all	GRUAN	stations,	in	the	period	2010-2018.		699	
	700	

	701	
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	702	
Figure	10:	Same	as	panels	in	Figure	9	but	for	wind	speed	including	both	night	and	daytime	observations.	703	
	704	

In	Figure	11,	the	probability	density	functions	(pdfs)	calculated	for	the	IGRA	and	RHARM	datasets	705	
(Figure	1)	in	the	Northern	Hemisphere	(NH)	at	300	hPa	are	shown	for	temperature,	RH	and	wind	706	
speed	components.	The	median,	 the	 first	and	 third	quartiles	of	 the	pdfs	shown	 in	Figure	11	are	707	
reported	 in	 Table	 5	 for	 convenience.	 For	 temperature,	 it	 appears	 evident	 that	 the	 applied	708	
adjustments	minimally	 alter	 the	 IGRA	 pdf:	 the	 small	magnitude	 of	 the	 RHARM	 adjustments	 for	709	
temperature	also	indicates	the	enhanced	quality	of	the	data	collected	by	most	recent	radiosonde	710	
types	available	on	the	market	compared	to	the	historical	observations	(Thorne	et	al.,	2012).	The	711	
RHARM	pdf	is	slightly	“warmer”	than	the	IGRA	one,	with	a	median	value	0.05	K	larger,	indicating	712	
that	an	apparent	systematic	underestimation	in	the	IGRA	data.	713	

For	 RH,	 there	 is	 a	 strong	 difference	 between	 the	 IGRA	 and	 RHARM	 pdfs	 mainly	 due	 to	 the	714	
adjustment	 for	 the	 effects	 of	 solar	 radiation:	 the	 RHARM	pdf	 is	 characterized	 by	wetter	 values	715	
revealing	that	the	manufacturer	applied	correction	is	not	sufficient	and	can	provide	too	dry	values.	716	
The	median	value	for	RHARM	is	2%	larger	than	for	IGRA:	this	result	reflects	the	effect	of	the	humidity	717	
radiosonde	 dry-bias.	 RHARM	 has	 significant	 differences	 in	 its	 RH	 values	 compared	 to	 IGRA,	718	
especially	at	RH	values	below	15%	RH	and	above	55%	RH.		719	

For	wind	speed	components,	as	anticipated,	the	systematic	effects	have	a	smaller	magnitude	than	720	
for	temperature	and	RH;	the	IGRA	and	RHARM	pdfs	are	fairly	similar	with	a	difference	of	the	median	721	
value	of	about	0.1	ms-1	 for	 the	u	wind	speed	and	of	0.52	ms-1	 for	v,	with	 the	RHARM	pdf	more	722	
skewed	toward	positive	values	than	IGRA.	723	

Figure	12	shows	the	same	comparison	as	Figure	11	(300	hPa)	but	calculated	for	all	stations	in	the	724	
tropics	(±25°	latitude).	The	corresponding	median,	the	first	and	third	quartiles	are	reported	in	Table	725	
6.	Similar	conclusions	to	Figure	11	can	be	drawn,	in	particular	for	temperature,	as	the	warmer	values	726	
recorded	 in	 the	NH	by	RHARM	become	more	evident	 in	 the	 tropics	 (difference	of	0.13	K	 in	 the	727	
median).	 In	 general,	 the	 difference	 between	 IGRA	 and	 RHARM	 is	 the	 same	 as	 for	 NH:	 the	728	
temperature	pdf	 is	closer	to	a	normal	distribution	with	much	smaller	variance,	due	to	the	 larger	729	
atmospheric	 stability	and	 to	 the	smaller	 seasonality,	while	 the	RH	pdf	 is	very	similar	 to	NH.	The	730	

https://doi.org/10.5194/essd-2020-183

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 25 August 2020
c© Author(s) 2020. CC BY 4.0 License.



	

23	

difference	in	the	RH	median	value	is	2%	RH	like	in	the	NH.	The	wind	pdfs	exhibit	a	difference	in	the	731	
median	values	of	0.30	ms-1	for	the	u	wind	speed	and	of	0.32	ms-1	for	v,	with	the	RHARM	pdf	again	732	
more	skewed	toward	positive	values	than	IGRA.		733	
	734	

	735	
Figure	11:	pdfs	calculated	in	the	Northern	Hemisphere	(NH)	at	300	hPa	for	the	IGRA	and	RHARM	datasets	of	temperature	736	
(panel	a),	RH	(panel	b),	u	wind	component	(panel	c)	and	v	wind	component	(panel	d),	using	the	station	shown	in	Figure	737	
1.		738	
	739	
	740	

NH	 1st	Quartile	(Q1)	 Median	 3rd	Quartile	(Q3)	
T	IGRA	(K)	 224.15	 229.05	 234.25	

T	RHARM	(K)	 224.22	 229.10	 234.27	
RH	IGRA	(%)	 12	 28	 51	

RH	RHARM	(%)	 14	 30	 54	
u	IGRA	(m	s-1)	 -9.90	 0.01	 8.92	

u	RHARM	(m	s-1)	 -9.05	 0.11	 9.26	
v	IGRA	(m	s-1)	 -28.56	 -15.94	 -5.27	

v	RHARM	(m	s-1)	 -27.46	 -15.42	 -4.94	
	741	

Table	5:	first,	second	(median)	and	third	quartiles	of	the	pdfs	shown	in	Figure	11.	742	
	743	
	744	
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	745	
Figure	12:	same	as	Figure	11	but	calculated	at	the	Tropics	(±25°	latitude).	746	
	747	
	748	

Tropics	 1st	Quartile	(Q1)	 Median	 3rd	Quartile	(Q3)	
T	IGRA	(K)	 241.25	 242.45	 243.45	

T	RHARM	(K)	 241.42	 242.58	 243.54	
RH	IGRA	(%)	 0.10	 0.27	 0.55	

RH	RHARM	(%)	 0.11	 0.29	 0.57	
u	IGRA	(m	s-1)	 -4.11	 -0.50	 2.92	

u	RHARM	(m	s-1)	 -3.78	 -0.20	 3.08	
v	IGRA	(m	s-1)	 -7.46	 1.23	 6.80	

v	RHARM	(m	s-1)	 -6.65	 1.55	 7.07	
	749	
Table	6:	first,	second	(median)	and	third	quartiles	of	the	pdfs	shown	in	Figure	12.	750	
	751	
In	Figure	13,	instead	it	 is	reported	a	comparison	between	the	pdfs	among	the	GRUAN,	IGRA	and	752	
RHARM	RH	values	for	all	the	GRUAN	stations	in	the	period	2008-2018.	The	comparison	comprises	753	
all	the	night	and	daytime	observations	performed	with	the	RS92	sondes	on	00:00	and	12:00	UTC,	at	754	
300	hPa.	The	comparison	between	the	two	panels	shows	the	impact	of	the	RHARM	adjustments	755	
applied	 to	 the	 original	 IGRA	 data.	 The	 RHARM	RH	 values	 become	 considerably	more	 similar	 to	756	
GRUAN,	 especially	 for	 values	 higher	 than	 55%	 RH.	 These	 results	 imply	 that	manufacturer	 data	757	
processing	applied	to	the	RH	radiosounding	profiles	measured	by	Vaisala	RS92	radiosondes	is	not	758	
adequate	to	compensate	for	 instrumental	effects,	as	 it	 is	 inducing	a	dry-bias.	Similar	conclusions	759	
can	be	inferred	by	the	ID2010	data	discussed	above	for	the	other	radiosonde	manufacturers.	760	
	761	
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	762	

	763	
Figure	13:	top	panel,	comparison	between	GRUAN	(black)	and	IGRA	(grey)	RH	measurements	at	300	hPa	for	the	profiles	764	
available	at	all	GRUAN	stations	(only	RS92	sondes),	in	the	period	2010-2018	The	comparison	comprises	all	the	night	and	765	
daytime	observations	on	00:00	and	12:00	UTC.	Bottom	panel,	same	as	top	panel	but	for	GRUAN	(black)	and	RHARM	766	
(grey).	767	

4.2 Comparisons	with	ERA5	768	
An	 important	 step	 in	 the	 performance	 assessment	 of	 the	 RHARM	 data	 is	 the	 comparison	with	769	
atmospheric	reanalysis	data.	The	latter	incorporates	millions	of	observations	into	a	data	assimilation	770	
system,	 every	 6-12	 hours	 over	 the	 period	 being	 analyzed,	 providing	 a	 systematic	 approach	 to	771	
produce	data	sets	for	climate	monitoring	and	research.	The	various	reanalysis	products	available	772	
from	the	existing	climate	services	have	proven	to	be	valuable	when	used	appropriately	(Dee	et	al.,	773	
2016).	Nevertheless,	 reanalysis	 reliability	 can	considerably	vary	depending	on	 the	 location,	 time	774	
period,	and	variable	considered	(Dee	et	al.,	2016).	The	changing	mix	of	observations,	and	biases	in	775	
observations	and	models,	can	introduce	spurious	variability	and	trends	 into	reanalysis	output.	 In	776	
this	section,	IGRA	and	RHARM	are	compared	with	the	ERA5	ECMWF	atmospheric	reanalysis.	ERA5	777	
is	 the	 latest	 climate	 reanalysis	 produced	 by	 ECMWF	 providing	 hourly	 data	 on	 regular	 latitude-778	
longitude	grids	at	0.25°	x	0.25°	resolution	(Hersbach	et	al.,	2020),	with	atmospheric	parameters	on	779	
37	 pressure	 levels.	 ERA5	 is	 publicly	 available	 through	 the	 Copernicus	 Climate	 Data	 Store	 (CDS,	780	
https://cds.climate.copernicus.eu).		781	
	782	
IGRA	and	RHARM	monthly	averages	of	temperature	and	RH	have	been	compared	with	the	monthly	783	
averages	 obtained	 for	 the	nearest	 ERA5	 grid-point	 to	 each	 radiosounding	 station.	 Simultaneous	784	
vertical	profiles	on	12	UTC	and	00	UTC	at	mandatory	levels	have	been	considered	only.	Considering	785	
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the	high	resolution	of	ERA5	and	its	spatial	representativeness,	the	representativeness	uncertainty	786	
due	to	the	use	of	the	nearest	grid-point	should	be	comparable	with	other	methods	(e.g.	kriging,	787	
bilinear	interpolation,	etc.).	788	
	789	
Figure	14	compares	the	300	hPa	monthly	zonal	anomalies	(i.e	deviation	from	the	mean	created	by	790	
subtracting	 climatological	 values	 from	 monthly	 means)	 of	 temperature	 and	 of	 RH	 calculated	791	
between	01/08/2006	and	01/08/2018	for	IGRA,	RHARM	and	ERA5	for	Northern	Hemisphere	(NH),	792	
tropics	and	Southern	Hemisphere	(SH)	locations.	Figure	15	shows	the	same	as	Figure	14	but	for	the	793	
Arctic	region	(70°-	90°	N)	and	the	Antarctic	region	(70°-	90°	S).		794	

	795	

	796	
	797	
Figure	14:	monthly	temperature	and	RH	anomalies	calculated	for	IGRA	(blue),	RHARM	(red)	and	ERA5	meteorological	798	
reanalysis	(black)	at	300	hPa.	Temperature	anomalies	are	reported	in	the	left	panel,	RH	anomalies	in	the	right	panels.	799	
Panel	a	and	b	are	for	NH,	panel	c	and	d	for	the	tropics,	panels	e	and	f	for	SH.	800	
	801	

In	 Table	7,	 the	decadal	 trends	 for	 the	 time	 series	of	 temperature	monthly	 anomalies,	 shown	 in	802	
Figure	14	and	15,	are	reported.	Monthly	anomalies	are	calculated	aggregating	all	the	available	data	803	
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within	each	month,	and	each	latitude	region	for	both	the	observations	and	the	reanalysis.	Trends	804	
are	calculated	on	the	monthly	anomalies.	Table	8,	instead,	refers	to	the	decadal	trends	for	the	time	805	
series	of	RH	monthly	anomalies.	Both	the	tables	also	report	the	median	absolute	deviation	(MAD)	806	
from	the	 fitted	 linear	 trends,	which	gives	an	estimate	of	 the	 statistical	uncertainty	affecting	 the	807	
trends.	Trends	have	been	calculated	using	a	robust	least	absolute	deviation	method	(Wong	et	al.,	808	
1989).	This	method	has	proven	to	be	equivalent	to	other	regression	methods	commonly	used	in	809	
literature,	 such	 Theil-Sen	 and	 Levenberg-Marquardt	 (Sy	 et	 al.,	 2020),	 though	 faster	 in	 terms	 of	810	
computation	efficiency.		811	

For	both	T	and	RH,	IGRA,	RHARM	and	ERA5	show	the	same	upward	trend	of	0.6	K/decade	in	the	812	
tropics	at	300	hPa,	where	also	the	agreement	of	the	temperature	anomalies	is	very	good.	Trends	at	813	
other	 latitudes	 are	 very	 close.	 In	 the	 NH	 (Figure	 14a),	 at	 300	 hPa,	 a	 trend	 of	 2.0	 K/decade	 is	814	
estimated	 from	 the	observations	while	a	 trend	of	0.5	K/decade	 is	estimated	 from	ERA5.	 Similar	815	
results	are	obtained	considering	European	stations	only	(Madonna,	2020).	In	the	period	2007-2010,	816	
the	 observations	 show	 negative	 anomalies	 like	 ERA5	 but	 larger	 in	 absolute	 value.	 After	 2015,	817	
observed	 anomalies	 are	 positive	 and	 exhibit	 a	 greater	 upward	 trend	 than	 ERA5.	 RHARM	values	818	
slightly	 reduce	the	difference	with	ERA5.	 In	Antarctica	at	300	hPa	 (Figure	15c),	ERA5	exhibits	an	819	
upward	trend	of	0.5	K/decade,	which	 is	 in	conflict	with	 the	almost	zero-trend	estimated	 for	 the	820	
observations,	although	there	is	a	good	agreement	between	ERA5	and	the	observed	anomalies	after	821	
2015.		822	

For	 RH	 in	 the	 NH	 at	 300	 hPa	 (Figure	 14b),	 the	 three	 datasets	 show	 a	 downward	 trend	with	 a	823	
maximum	difference	of	1.2%/decade.	Similar	results	are	obtained	considering	the	European	domain	824	
only	(Madonna,	2020).	The	RHARM	anomaly	is	more	positive	than	IGRA	until	2012.	In	the	tropics,	825	
trends	for	RH	show	differences	between	observations	(IGRA	and	RHARM)	and	reanalysis	of	up	to	826	
4%/decade.	In	the	entire	time	series,	differences	in	the	anomalies	are	observed,	the	most	prominent	827	
after	2015	when,	after	a	strong	dry	anomaly	observed	in	2013-2014	(-9%	RH),	an	increasing	positive	828	
anomaly	is	observed	ranging	from	2%	RH	in	2015	to	6%	RH	in	2018.	This	observed	positive	anomaly	829	
differs	from	the	ERA5	values,	which	oscillate	around	zero	in	the	same	period,	and	it	is	independent	830	
of	 the	 longitude	 (additional	 analysis	 not	 shown).	Also	 in	 this	 case,	 RHARM	adjustments	 tend	 to	831	
slightly	reduce	the	gap	between	IGRA	and	ERA5:	the	anomaly	reduction	is	due	to	large	adjustments	832	
from	RHARM	applied	 in	the	period	2006-2008	enabling	the	removal	of	systematic	effects	on	the	833	
IGRA	radiosounding	profiles.	This	translates	to	a	smaller	trend	in	the	period	2006-2018	for	RHARM	834	
RH	time	series	than	for	IGRA.	The	strong	positive	humidity	anomalies	observed	in	the	tropics	appear	835	
to	be	correlated	with	significant	positive	anomalies	of	the	bi-monthly	multivariate	El	Niño/Southern	836	
Oscillation	 (ENSO)	 index	 “MEI.v”2”	 (Hu	 and	 Fedorov,	 2017)	 available	 at	837	
https://www.esrl.noaa.gov/psd/enso/mei)	which	start	in	January	2015	and	reaches	within	the	same	838	
year	 values	 larger	 than	 2.0.	 Boosted	 by	 an	 El	 Niño	 event,	 the	 year	 2015	 was	 the	 first	 of	 five	839	
consecutive	 years	 among	 the	 six	 warmest	 years	 in	 the	 140-year	 observational	 record	 (see	840	
https://www.ncdc.noaa.gov/sotc/global)	 which	 may	 be	 related	 to	 the	 observed	 strong	 positive	841	
anomalies	 of	 relative	 humidity	 at	 the	 tropics	 and	 in	 the	 SH.	A	 possible	 positive	 trend	 in	 upper-842	
tropospheric	humidity	has	been	already	claimed	in	previous	work	(e.g.	Dessler	and	Davis,	2010).	843	

In	 the	SH,	 the	 situation	 is	 similar	 to	 the	 tropics	with	 the	 following	differences:	 the	 temperature	844	
anomalies	have	a	good	agreement	and	show	the	same	trends,	although	the	values	of	the	observed	845	
extremes	are	much	larger	than	in	ERA5.	For	RH,	a	very	similar	scenario	to	the	tropics	is	shown	with	846	
positive	anomalies	which	starts	in	2015	with	values	up	6%	RH,	also	in	this	case	not	detected	in	ERA5.	847	
For	both	the	tropics	and	the	SH,	monthly	anomalies	at	500	hPa	show	a	similar	scenario	to	300	hPa	848	
(not	shown),	although	with	smaller	differences	among	the	datasets.	849	

https://doi.org/10.5194/essd-2020-183

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 25 August 2020
c© Author(s) 2020. CC BY 4.0 License.



	

28	

Finally,	 for	 both	 the	 Arctic	 and	 Antarctic	 (Figure	 15),	 IGRA	 and	 RHARM	 show	 upward	 trends,	850	
differently	from	ERA5,	with	a	discrepancy	smaller	than	5%/decade	in	the	Arctic	and	of	3%/decade	851	
in	the	Antarctic.		852	

	853	

	854	
Figure	15:	same	as	Figure	14	but	panels	a	and	b	are	for	the	Arctic,	panel	c	and	d	for	Antarctica.		855	
	856	
	857	
	858	
	859	

T	trends	(K/da)	 IGRA	trend	 IGRA	MAD	 RHARM	trend	 RHARM	MAD	 ERA5	trend	 ERA5	MAD	
NH	 2.04	 0.49	 1.99	 0.49	 0.45	 0.55	
Tropics	 0.60	 0.32	 0.56	 0.32	 0.57	 0.38	
SH	 0.61	 0.51	 0.58	 0.51	 0.28	 0.51	
Antarctic	 -0.05	 0.72	 -0.05	 0.72	 0.49	 0.62	
Arctic	 0.43	 0.93	 0.41	 0.93	 0.58	 0.42	

	860	
Table	7:	decadal	trends	of	temperature	(K/da)	estimated	using	a	robust	least	absolute	deviation	method	for	five	zonal	861	
regions	using	IGRA,	RHARM,	ERA5	data.	For	each	dataset,	two	columns	are	reported	in	the	table,	one	with	the	estimated	862	
decadal	trend	and	the	other	with	the	median	absolute	deviation	(MAD)	from	the	fitted	linear	trends.	863	
	864	
	865	
	866	
	867	
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RH	trends	(%/da)	 IGRA	trend	 IGRA	MAD	 RHARM	trend	 RHARM	MAD	 ERA5	trend	 ERA5	MAD	
NH	 -0.3	 2.74	 -1.5	 2.92	 -0.6	 5.05	
Tropics	 4.7	 5.02	 3.9	 5.26	 0.7	 7.24	
SH	 3.9	 4.29	 2.9	 4.62	 -0.1	 5.66	
Antarctic	 2.5	 6.39	 1.5	 6.87	 -0.4	 9.13	
Arctic	 2.0	 7.45	 0.7	 7.79	 -2.7	 5.69	

Table	8:	same	as	Table	7	for	RH.	868	

5. Uncertainties:	consistency	with	GRUAN	and	independent	validation		869	
A	unique	value	of	the	RHARM	dataset	is	that,	for	the	first	time,	an	estimation	of	the	uncertainty	is	870	
provided	for	each	single	observation	(i.e.	at	each	pressure	level).	In	this	section,	a	statistical	analysis	871	
of	the	uncertainty	values	is	provided.	The	differences	between	the	RHARM	approach	and	the	GDP,	872	
described	in	section	4.1,	may	also	affect	the	quantification	of	the	uncertainty	budget,	where	the	873	
unavailability	of	the	raw	radiosounding	data	forces	the	RHARM	algorithm	to	use	average	statistics	874	
to	quantify	a	few	uncertainty	contributions	instead	of	a	point-by-point	evaluation.	875	
	876	
To	 investigate	 the	 consistency	of	 the	 estimated	 values	 of	 the	uncertainty	 by	RHARM,	 Figure	 16	877	
undertakes	a	comparison	between	RHARM	and	GRUAN	uncertainties	for	temperature	and	relative	878	
humidity.	The	plots	are	based	on	the	pdfs	of	the	uncertainty	estimated	by	using	the	data	available	879	
at	 sites	 reported	 in	 Table	 1	 and	 the	 corresponding	 observations	 from	 RHARM.	 Uncertainty	 for	880	
RHARM	is	generally	larger	than	the	uncertainties	obtainable	using	the	GDP	as	expected	given	the	881	
methodological	considerations	outlined	 in	section	3.	That	 is	to	say	that	the	RHARM	assumptions	882	
increase,	on	average,	the	uncertainty	compare	to	an	ideally	corresponding	GDP.	883	
	884	
In	particular,	for	temperature	(Figure	16,	left	panel),	the	median	value	of	the	GRUAN	pdf	is	of	0.16	885	
K	versus	a	value	of	0.22	K	for	RHARM	(median	values	are	considered	for	the	analysis	given	the	shape	886	
of	 the	pdf).	The	 interquartile	range	(IQR)	 for	GRUAN	is	0.20	K	while	 for	RHARM	is	0.26	K.	These	887	
numbers	confirm	that	on	average	the	uncertainty	estimation	obtained	for	RHARM	overestimates	888	
the	GRUAN	uncertainty.	Nevertheless,	due	 to	 the	 static	nature	of	 the	assumptions	made	within	889	
RHARM	it	might	happen	that	the	RHARM	uncertainty	may	occasionally	underestimate	the	GRUAN	890	
uncertainty	 as	 occurs	 for	 a	 portion	 of	 values	 the	 below	 0.1	 K	 which	 increase	 the	 RHARM	 pdf	891	
compared	 to	 GRUAN	 (Figure	 16,	 left	 panel).	 These	 values	 are	 mainly	 related	 to	 night	 time	892	
measurements.		893	
	894	
For	RH,	the	median	value	of	the	GRUAN	pdf	is	of	1.1%	versus	a	value	of	3.6%	for	RHARM	with	an	895	
IQR	for	GRUAN	is	0.1	%,	while	for	RHARM	is	3.0	%.	Maximum	values	observed	with	GRUAN	are	less	896	
than	8	%	while	RHARM	shows	also	values	larger	than	10	%	and	very	few	values	larger	than	20	%.	897	
	898	
Finally,	for	the	uncertainties	of	wind	speed	and	direction,	calculated	using	Eqs.	8	and	9,	these	are	899	
based	on	the	uncertainties	calculated	for	u	and	v	which,	on	their	turn,	are	estimated	as	the	addition	900	
in	quadrature	of	 two	constant	 terms,	 in	opposition	 to	GRUAN	where	 the	 random	uncertainty	 is	901	
quantified	at	each	measurement	vertical	 level	using	a	 low-pass	digital	filter.	The	resulting	typical	902	
uncertainties	 for	RHARM	wind	speed	 is	0.3-1.9	m	s-1	while	 for	GRUAN	 is	0.1-1.3	m	s-1.	For	wind	903	
direction,	the	typical	values	of	the	uncertainties	are	similar	for	both	RHARM	and	GRUAN	and	in	the	904	
order	of	1°.		905	
	906	
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The	investigation	of	the	pdf	for	the	RHARM	uncertainties	as	a	function	of	latitudes	for	temperature	907	
and	RH	(not	shown)	shows	very	similar	shapes	with	small	difference	revealing,	therefore,	how	the	908	
uncertainties	estimated	by	the	RHARM	approach	are	not	latitude-dependent.		909	
	910	

	911	
Figure	16:	Comparison	of	pdfs	of	the	uncertainty	calculated	using	the	GRUAN	data	processing	(GDP)	and	the	RHARM	912	
approach	at	the	six	stations	shown	in	Table	1.	Pdfs	are	relative	to	temperature	(panel	a)	and	relative	humidity	(panel	b)	913	
	914	
To	ascertain	the	quality	of	the	estimated	uncertainties,	validation	is	an	indispensable	practice	which	915	
should	be	applied	on	every	observational	dataset.	Validation	of	uncertainties	means	that	these	must	916	
be	“evaluated	by	 independent	means	 to	establish	quantitative	 realism	and	the	credibility	of	 the	917	
uncertainty	estimates”	(Merchant	et	al.,	2019).	In	order	to	provide	a	validation	of	the	uncertainty	918	
estimated	by	the	RHARM	approach,	the	methodology	described	in	Merchant	et	al.	(2019)	has	been	919	
applied.	This	is	based	on	the	study	of	the	probability	density	function	of	the	ratio:	920	
	921	

�:]<:^����f

7:]<:^
U >7��f

U >7��\
U

	[Eq.	16],	922	

	923	
where	 xRHARM	 is	 the	 measured	 estimate	 of	 the	 measurand,	 xref	 indicates	 the	 estimate	 of	 the	924	
measurand	in	the	reference	dataset	used	for	the	validation,	u	denotes	the	uncertainty	and	umis	is	925	
the	geophysical	variability	arising	from	temporal,	spatial,	and	definitional	mismatch	between	the	926	
RHARM	 and	 reference	 data.	 A	 correct	 quantification	 of	 uncertainties	 and	 variability	 should	 be	927	
reflected	in	a	normal	distribution	of	the	ratio	in	Eq.	16,	with	a	standard	deviation	equal	to	unity.		928	
	929	
Acknowledging	that	the	ideal	solution	for	the	validation	must	be	based	on	independent	reference	930	
measurements	 (Thorne	 et	 al.,	 2017)	 of	 the	 same	measurand,	 GRUAN	 data	 would	 be	 the	 ideal	931	
candidate.	However,	RHARM	has	used	information	from	and	mimics	part	of	the	GDP	meaning	that	932	
circularity	considerations	preclude	its	use	for	such	a	purpose.	An	alternative	solution	is	adopted	in	933	
this	paper	which	is	to	use	the	ERA5	background	(6-hours	forecast)	as	a	reference	value.	Whilst	this	934	
background	is	a	reliable	estimation	of	the	atmospheric	state,	it	is	not	a	real	reference	measurement	935	
in	 that	 it	 is	not	 itself	 an	SI	 traceable	measurement	nor	does	 it	have	 comprehensive	uncertainty	936	
estimates.	Observation	minus	Background	departures	have	been	already	used	as	a	diagnostic	tool	937	
for	 different	 latitude	 belts	 (Ingleby	 et	 al.,	 2017)	 because	 they	 can	 be	 considered,	 to	 a	 first	938	
approximation,	relatively	homogenous.	They	also	form	the	basis	for	the	RAOBCORE	/	RICH	family	of	939	
dataset	 approaches	 (Haimberger	 et	 al.,	 2012).	 Therefore,	 the	 use	 of	 the	 ERA5	 background	 as	 a	940	
reference	 for	 the	 test	 described	 in	 Eq.	 16	 appears	 to	 be	 a	 viable	 solution	 to	 infer	 quantitative	941	
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information	 for	 the	 validation	 of	 uncertainties.	 Other	 datasets	 may	 be	 used,	 such	 a	 GNSS-RO;	942	
nevertheless,	GNSS-RO	are	a	valuable	solution	for	dry	temperatures	in	the	UTLS,	while	for	the	mid	943	
and	lower	troposphere	the	deconvolution	of	temperature	and	RH	in	the	retrieval	is	dependent	on	a	944	
first	guess	model.	Furthermore,	GNSS-RO	rarely	can	provide	profile	information	all	the	way	down	945	
to	the	surface.	946	
	947	
Using	the	background	as	the	reference	dataset	in	Eq.	16,	uref	has	been	estimated	applying	the	Leave-948	
One-Out	Cross	validation	method,	LOOCV	(Stone,	1974),	to	the	background	while	umis	is	evaluated	949	
as	the	standard	deviation	of	the	O-B	climatology	at	each	station.	In	Figure	17,	the	ratio	of	Eq.	16	is	950	
shown	 for	 O-B	 temperature	 and	 RH	 values	 for	 all	 the	 stations	 in	 the	 NH	 and	 in	 the	 tropics,	951	
respectively,	at	300	hPa.	Each	panel	of	Figure	17	also	shows	the	best	fitted	normal	distribution	to	952	
the	data.	O-B	mean	values	are	instead	representative	of	O-B	discrepancy.	In	the	NH,	the	ratio	for	953	
temperature	 has	 a	mean	 value	 of	 0.1,	 while	 the	 standard	 deviation	 is	 0.73	 indicating	 that	 the	954	
uncertainty	at	300	hPa	for	temperature	is	overestimated	of	about	27%.	The	overestimated	values	955	
of	the	uncertainty	increase	the	value	of	the	pdf,	compared	to	the	fitted	curve,	in	the	middle	of	the	956	
distribution	while	decreasing	the	pdf	at	the	tails.	In	the	tropics,	a	mean	value	of	the	ratio	of	-0.8	and	957	
a	standard	deviation	of	1.0	indicate	that	the	uncertainty	is	well	estimated	with	a	small	number	of	958	
overestimated	 values.	 For	 the	 RH,	 both	 in	 the	 NH	 and	 at	 the	 tropics,	 the	 uncertainty	 is	959	
overestimated.	For	the	NH,	the	mean	value	of	the	ratio	is	-1.3	and	the	standard	deviation	is	0.71	960	
while	in	the	tropics	the	mean	value	is	-0.6	with	a	standard	deviation	of	0.84	and	larger	number	of	961	
overestimated	values	than	in	the	NH.	For	RH	uncertainties,	the	pdfs	for	both	the	NH	and	the	tropics	962	
are	negatively	skewed	with	a	shape	similar	to	the	normal	distribution	except	for	an	interval	of	values	963	
on	 the	 right	 of	 the	 mean	 value.	 This	 might	 be	 related	 to	 systematic	 effects	 affecting	 the	 O-B	964	
comparison,	possibly	due	to	inhomogeneities	in	the	O-B	departures	within	an	entire	latitude	belt,	965	
which	can	broaden	the	data	O-B	distribution	and	 influence	the	value	of	 the	validation	using	 the	966	
model	forecast	as	a	reference.		967	
	968	
In	general,	 the	RHARM	uncertainties	appears	to	be	a	good	estimate	or	an	overestimation	of	the	969	
theoretical	 standard	 deviation.	 This	 can	 be	 considered	 a	 good	 result	 for	 the	 RHARM	 dataset	970	
considering	that	dangerous	underestimations	of	the	uncertainties	for	temperature	and	RH	values	971	
can	 be	 considered	 a	 rare	 even.	 Nevertheless,	 the	 next	 version	 of	 the	 RHARM	 dataset	 will	 be	972	
investigated	to	check	whether	the	uncertainty	overestimation,	where	occurring,	could	be	reduced.	973	
Future	uncertainty	assessments	will	be	also	oriented	to	the	implementation	of	more	sophisticated	974	
models,	using	techniques	like	the	kriging	or	modelling	Gaussian	processes	to	improve	the	capability	975	
to	 estimate	 uref	 and	 umis	 to	 improve	 the	 characterization	 of	 the	 uncertainties	 in	 the	 RHARM	976	
dataset.	977	
		978	
	979	
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 980	

 981	

Figure	17:	pdfs	of	the	ratio	reported	in	Eq.	16	calculated	using	O-B	data	(RHARM-minus-Background)	 in	the	NH	(left	982	
panels)	 and	 in	 the	 tropics	 (bottom	panels)	 at	 300	hPa	 for	 temperature	 (top	panels)	 and	 for	RH	 (bottom	panels)	 to	983	
validate	the	uncertainties	estimated	using	the	RHARM	approach.	Background	data	are	from	the	ERA5	6-hours	forecast	984	
model.	For	comparison	with	ideal	uncertainty	estimates,	the	best	fitted	normal	distribution	to	each	dataset	(blue	line)	985	
is	 also	 shown.	 In	 an	 ideal	 case	 where	 uncertainty	 would	 be	 properly	 estimated	 with	 the	 RHARM	 algorithm,	 the	986	
distribution	should	have	a	standard	deviation	equal	to	unity.	Deviations	from	zero	are	due	to	the	O-B	discrepancy.	987	

6. Conclusions	and	discussion	988	

The	 work	 presented	 in	 this	 paper	 introduces	 the	 first	 metrologically-based	 component	 of	 the	989	
RHARM	approach.	RHARM	is	able	to	adjust	a	subset	of	historical	radiosonde	observations	for	which	990	
adequate	metadata	exist,	and	to	quantify	their	uncertainties	through	a	post	processing	chain	based	991	
upon	a	combination	of	reference	measurements	provided	by	GRUAN	and	comparative	performance	992	
measurements	collected	during	the	2010	WMO/CIMO	campaign.		993	
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The	RHARM	dataset	provides	one	homogenization	option,	complementary	to	existing	datasets	of	994	
homogenized	radiosounding	temperature	measurements	and	to	the	handful	of	existing	products	995	
for	 RH	 and	 wind.	 RHARM	 differs	 from	 these	 previous	 efforts	 due	 to	 the	 use	 of	 "Reference	996	
measurements"	 to	 calculate	 and	 adjust	 for	 systematic	 effects	 instead	 of	 using	 background	997	
information	provided	by	reanalysis,	autoregressive	models	or	neighboring	stations.	In	addition,	each	998	
harmonized	data	series	is	provided	with	an	estimation	of	the	uncertainty.	The	different	approach,	999	
upon	which	RHARM	is	based,	enables	a	more	comprehensive	exploration	of	structural	uncertainties	1000	
in	historical	records.	1001	

In	an	ideal	world,	we	would	have	access	to	the	raw	radiosounding	data	and	be	able	to	reprocess	all	1002	
the	data	consistently	to	metrologically	traceable	standards.	In	the	real	world,	save	for	GRUAN	sites	1003	
and	intercomparison	campaigns,	we	do	not	have	such	an	option.	There	is	an	action	currently	under	1004	
discussion	by	GCOS	in	its	most	recent	Implementation	Plan	to	explore	the	possibility	to	collect	and	1005	
reprocess	data	from	those	sites	who	usually	hold	the	original	raw	count	data	locally,	although	the	1006	
timeline	and	the	resources	to	start	the	action	are	still	uncertain.		1007	

The	adjustments	presented	herein	must	be	considered	as	the	best	solution/compromise	between	1008	
the	heterogeneity	of	the	investigated	manufacturer	processed	data	profiles	arising	from	IGRA	and	1009	
the	need	 to	be	coherent	among	 the	different	adjustments	calculated	 from	the	comparison	with	1010	
different	sources	(e.g.	GRUAN,	ID2010).		1011	

The	final	goal	of	RHARM	is	to	calculate	average	adjustments	which	should	result	 in	an	improved	1012	
estimation	of	the	climatological	variability	for	temperature,	humidity	and	wind	profiles.	This	means	1013	
that	on	an	individual	station	basis,	the	benefit	of	applying	the	proposed	adjustment	could	be	limited	1014	
or	could	even	increase	the	difference	with	the	“true”	value	or	not	properly	estimate	the	uncertainty.	1015	
This	is	different	from	the	solar	radiation	correction	discussed	in	Section	3	which,	though	not	exactly	1016	
the	same	as	GDP,	adjusts	the	data	distribution,	being	applied	as	post-processing	of	the	data	and	not	1017	
only	as	an	average	correction.		1018	

It	is	also	very	important	to	clarify	that	daytime	corrections	are	representative	of	an	average	between	1019	
launches	performed	during	the	day	at	various	local	solar	launch	times	and	latitudes	and,	therefore,	1020	
various	 solar	 elevation	 angles.	 This	 can	 induce	 additional	 error	 sources	 which	 cannot	 be	 easily	1021	
quantified	but	which	shall	be	considered	and	harmonized	using	statistical	methods	or	inferred	by	1022	
future	radiosonde	intercomparisons.	1023	

The	RHARM	algorithm	also	aims	to	show	the	importance	of	the	availability	of	Reference	data	from	1024	
GRUAN	 and	 from	 the	 periodical	WMO/CIMO	 radiosonde	 intercomparison	 data,	 as	well	 as	 from	1025	
other	 experiments	 carried	 out	 according	 to	 the	 highest	 international	 best	 practices.	 These	 are	1026	
fundamental	sources	to	quantify	the	uncertainties	in	the	characterization	of	present	and	historical	1027	
radiosounding	datasets.	The	collection	and	preservation	of	raw	data	by	all	radiosounding	stations	1028	
would	 improve	 the	 basis	 to	 build	 the	 highest	 possible	 quality	 dataset	 of	 radiosounding	1029	
measurements.	The	future	availability	of	new	WMO/CIMO	intercomparison	data	will	enhance	the	1030	
capability	 of	 the	 RHARM	approach	 to	 improve	 the	 quality	 of	 both	 near-real	 time	 and	 historical	1031	
radiosoundings	data.	Moreover,	 the	availability	of	 the	enhanced	BUFR	data	 reports	 (BTEM/BTEF	1032	
files	replacing	TEMP	and	previous	BUFR	version),	for	radiosounding	measurement	submitted	to	the	1033	
WIS,	foster	the	reporting	of	high	resolution	vertical	profiles	with	improved	metadata,	making	the	1034	
gap	 between	 files	 reported	 by	 reference	 and	 baseline	 networks	 smaller.	 These	 files	 are	 made	1035	
available	upon	request	by	ECMWF	(P.I.	Bruce	Ingleby)	and	will	be	processed	and	incorporated	from	1036	
global	observations	shortly	 in	 the	updated	version	of	RHARM.	The	availability	of	metadata	 from	1037	
2016	on,	when	enhanced	BUFR	 files	 start	 to	be	 available,	will	 also	 improve	near	 real-time	data	1038	
availability.	In	addition,	the	availability	of	new	GRUAN	data	products,	such	as	for	the	Meisei	iMS-1039	
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100	sonde	(Kobayashi	et	al.,	2019),	will	be	incorporated	into	subsequent	versions	of	RHARM.	These	1040	
innovations	will	further	improve	RHARM.	The	disagreement	between	the	ERA5	reanalysis	and	the	1041	
observations	 anomalies,	 discussed	 in	 Section	 4.2,	 are	 an	 example	 of	 the	 need	 to	 increase	 the	1042	
number	and	the	quality	of	the	observations	available	at	the	global	scale	with	the	estimation	of	the	1043	
related	uncertainties.	1044	

In	 a	 follow-up	 paper,	 under	 preparation,	 an	 extension	 of	 the	 RHARM	 dataset	 to	 the	 historical	1045	
radiosounding	time	series	will	be	presented.	This	extension	starts	from	the	RHARM	post-processed	1046	
data,	shown	in	this	paper,	used	as	an	anchor	point	to	homogenize	radiosounding	time	series	before	1047	
2004,	at	each	single	station,	using	statistical	methods.	 In	particular,	the	 identification	of	change-1048	
points	 in	 the	 time	 series	 is	 obtained	 applying	 a	 CUmulative	 SUMming	 (CUSUM)	 test	 while	 the	1049	
adjustments	of	instrumental	effects	are	obtained	adjusting	iteratively	the	trend	of	the	time	series,	1050	
from	the	most	recent	data	to	the	past	(Madonna,	2020).	1051	

In	 conclusion,	 RHARM	may	 initiate	 a	 new	 generation	 of	 homogenization	 techniques	which	 fully	1052	
exploit	the	real	value	of	reference	measurements	and	of	intercomparison	datasets.	1053	

7. Data	availability	1054	
A	copy	of	the	RHARM	dataset	 is	stored	in	the	Copernicus	Climate	Data	Store	(CDS)	although	not	1055	
publicly	 available	 yet.	 For	 review	 purposes	 only,	 a	 subset	 has	 been	 made	 available	 at	1056	
http://doi.org/10.5281/zenodo.3973353	(Madonna	et	al.,	2020a).	1057	
	1058	
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