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Dear Topical Editor and Reviewers: 

 

On behalf of my co-authors, we thank you very much for reviewing our manuscript and giving us the opportunity to revise the 

manuscript. We appreciate the comments on our manuscript entitled “GLC_FCS30: Global land-cover product with fine 

classification system at 30 m using time-series Landsat imagery” (essd-2020-182). 

We have revised the manuscript carefully according to the comments. All the changes were high-lighted (red color) in the 

manuscript. And the point-by-point response to the comments of the reviewers is also listed below. 

Looking forward to hearing from you soon. 

 

Best regards, 

 

Prof. Liangyun Liu 

liuly@radi.ac.cn 

State Key Laboratory of Remote Sensing, Aerospace Information Research Institute, Chinese Academy of Sciences 

No.9 Dengzhuang South Road, Haidian District, Beijing 100094, China 
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Response to comments 

Paper #: essd-2020-182 

Title: GLC_FCS30: GLC_FCS30: Global land-cover product with fine classification system at 30 m 

using time-series Landsat imagery 

Journal: Earth System Science Data 

 

Reviewer #1 

It is good to see the study using time series Landsat to map global land cover and making the product 

public available. The classification legend is finer (~30 classes) than the currently available global 30 m 

land cover products. The training data are derived from the existing land cover maps (CCI_LC) and the 

Landsat time series temporal metrics were classified using random forest in the GEE platform. The 

product is validated using reference data collected from different sources for the validation of the existing 

land cover products and examined by the authors. Validation showed 82.5%overall accuracy in the 9-

class level 0 legend and 68.7% accuracy in the ~30 class level-2 legend. Furthermore, the authors also 

make their global validation dataset public available, which could benefit other map producers. I have a 

few comments on the clarification of the study. Many sentences are vague including the key information 

of the methodology. 

Great thanks for the positive comments. The manuscript has been improved according to your and another 

reviewer’s comments. 

 

Issue 1: It is unclear to me whether the training data reflectance comes from MODIS or from Landsat. 

This is the key of the paper. The term ‘Global Spatial Temporal Spectral Library’ sounds like the training 

reflectance is from the MODIS data. If the training data reflectance is derived from MODIS NBAR while 

the trained model is applied on Landsat surface reflectance, there will be some inconsistencies. Both the 

Landsat across scene viewing geometry variation and the Landsat and MODIS NBAR solar geometry 

difference will create inconsistency between MODIS NBAR and Landsat reflectance. MODIS NBAR is 

defined for local noon solar geometry and the Landsat overpass time is 10:30 am local time. Their solar 

zenith differences can be up to 20 depending on the location and time of the year. Furthermore, there will 

be spectral band pass difference between the two sensors. 

Great thanks for the key comment. The training data reflectance is derived from Landsat imagery in this 

study. The MCD43A4 NBAR dataset is used for identifying the spectrally homogeneous MODIS–

Landsat areas to further guarantee the confidence of the training data. To make the deriving training 

samples clearer, the corresponding part has been revised as: 



3 

 

 

Figure 3. The flowchart of deriving training samples by using multi-source datasets. 

Similar to our previous works (Zhang et al., 2019; Zhang et al., 2018), four key steps were adopted to 

guarantee the confidence of each training point, as illustrated in the Figure 3. As in Zhang et al. (2019), 

the spectrally homogeneous MODIS–Landsat areas were firstly identified based on the variance of a 3×3 

local window using spectral thresholds of [0.03, 0.03, 0.03, 0.06, 0.03, and 0.03] for the six spectral bands 

(blue, green, red, NIR, SWIR1, and SWIR2) in the both MCD43A4 NBAR products and Landsat SR 

imagery (Feng et al., 2012). It should be noted that the year-composited Landsat SR data were 

downloaded from GEE platform with the sinusoidal projection. As the MCD43A4 NBAR is corrected for 

view-angle effects and Landsat has a small view angle of ±7.5°, the view-angle difference between 

MCD43A4 and Landsat SR could be considered negligible.  

Before the process of refinement and labeling, the CCI_LC land-cover products, which had geographical 

projections, were reprojected to the sinusoidal projection of MCD43A4. The spatial resolution of 

MCD43A4 was 1.67 times that of the CCI_LC land-cover product and the spectrally homogeneous 

MODIS–Landsat areas had been identified in the 3×3 local windows. Also, Defourny et al. (2018) and 

Yang et al. (2017b) found that the CCI_LC performed better over homogeneous areas; therefore, a larger 

local 5×5 window was applied to the CCI_LC land-cover product to refine and label each spectrally 

homogeneous MODIS-Landsat pixel. Specifically, the land-cover heterogeneity in the local 5×5 window 

was calculated as being the percentages of land-cover types occurring within the window (Jokar Arsanjani 

et al., 2016a). Aware of the possibility of reprojection and classification errors in the CCI_LC products, 

the land-cover heterogeneity threshold was empirically selected as approximately 0.95; in other words, if 

the maximum frequency of dominant land-cover types was less than 22 in the 5×5 window, the point was 

excluded from GSPECLib. After a spatial-spectral filter had been applied to MCD43A4 and a 

heterogeneity filter to the CCI_LC product, the points that had homogeneous spectra and land-cover types 

were retained. In addition, to further remove the abnormal points contaminating by classification error in 

the CCI_LC, the homogeneous points were refined based on their spectral statistics distribution, in which 

the normal samples would form the peak of the distribution whereas the influenced samples were on the 

long tail (Zhang et al., 2018). It should be noted that the geographical coordinates of each homogeneous 
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point were selected as being the center of the local window in the CCI_LC product because this had a 

higher spatial resolution than that of MCD43A4. 

Then, Zhu et al. (2016) and Jin et al. (2014) found that the distribution (proportional to area and equal 

allocation) and balance of training data had significant impact on classification results, and quantitatively 

demonstrated that the proportional approach usually achieve higher overall accuracy than the equal 

allocation distribution. In addition, Zhu et al. (2016) also suggested to extract a minimum of 600 training 

pixels and a maximum of 8000 training pixels per class for alleviating the problem of unbalancing training 

data. In this study, the proportional distribution and sample balancing parameters were used to resample 

these homogeneous points in each GSPECLib 158.85 km×158.85 km geographic grid cell. 

Lastly, different from the previous spectrally based classification using MCD43A4 reflectance spectra 

(Zhang et al., 2019), in this study, we proposed to use the Landsat reflectance spectra , derived by 

combining the global training samples and time-series Landsat imagery, to produce the global 30 m land-

cover mapping. However, as the spatial resolution difference between Landsat SR (30 m) and 

homogeneous training samples (300 m), therefore, the “metric centroid” algorithm proposed by Zhang 

and Roy (2017) was used to find the optimal and corresponding training points at a resolution of 30 m. 

Specifically, as each homogeneous point corresponded to an area equivalent to 10×10 Landsat pixels, the 

normalized distances (Eq. (2)) between each Landsat pixel and the mean of all 10×10 pixel areas were 

calculated. The optimal and corresponding training points at 30 m were selected as the ones having the 

minimum normalized distance, 

𝐷𝑖 = (𝜌𝑖 −
1

𝑛
∑ 𝜌𝑗

𝑛
𝑗=1 )

2

, 𝑖 = 1,2, … , 𝑛                                               (2)                                                            

where 𝜌𝑖 is a vector representing the annually composited Landsat SR for 2015 and 𝑛 is the number of 

Landsat pixels within a 10×10 local window (defined as 100). If several 30-m pixels had the same 

minimum 𝐷𝑖 value then one pixel was selected at random. 

 

Issue 2: Does the authors imply that the global land cover uses fine classification system in some region 

but uses coarse classification system in other regions? If so, please make it more explicit in the paper 

(abstract and conclusion) and clearer (what region uses fine classification system). This is important for 

users who consider to use the products. What is the CCI_LC coverage? 

Great thanks for the comment. Yes, as the land-cover labels came from the CCI_LC products, the 

GLC_FCS30-2015 used the level-1 classification system (containing 16 land-cover types) at global scale, 

and described by a more detailed legend (14 detailed land-cover types) – where available - to reach a 

higher level of detail in the legend. The spatial distribution of 14 regional and detailed land-cover types 

has been added in Section 5.2 as: 

The CCI_LC map used fine classification system in some region but used coarse classification system in 

other regions (Defourny et al. 2018). Because the training samples were derived from the CCI_LC land-

cover product, our GLC_FCS30 product inherited these characteristics. Therefore, although the 

GLC_FCS30-2015 provided a global 30-m land-cover product with 30 land-cover types (Table 2), the 14 
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LCCS level-2 detailed land-cover types were applied only for certain regions rather than globe, illustrated 

in the Figure 12. 

 

Figure 12. The spatial distributions of 14 detailed regional land-cover types in the GLC_FCS30-2015 

products. 

Further, to make it more explicit in the paper, it has been added in the abstract and conclusion section 

as: 

Abstract Section 

Therefore, it is concluded that the GLC_FCS30-2015 product is the first global land-cover dataset that 

provides a fine classification system (containing 16 global LCCS land-cover types as well as 14 

detailed and regional land-cover types) with high classification accuracy at 30 m. The GLC_FCS30-

2015 global land-cover products produced in this paper is free access at 

https://doi.org/10.5281/zenodo.3986871 (Liu et al., 2020). 

Conclusion Section 

“In this study, a global land-cover product for 2015 that had a fine classification system (containing 16 

global LCCS land-cover types as well as 14 detailed and regional land-cover types) and 30-m spatial 

resolution (GLC_FCS30-2015) was developed by combining time-series of Landsat imagery and global 

training data derived from multi-source datasets” 

Lastly, the CCI_LC and GLC_FCS30-2015 shares similar spatial distribution for these 14 detailed land-

cover types because the training samples are derived from the CCI_LC and MCD43A4 NBAR products.  
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Issue 3: Something is wrong about no. of classes: “containing 30 land-cover types” and “(24 fine land 

cover types).” Later on in Section 3.1, the 34 CCI_LC classes were“removal of four” and “three wetland 

land-cover types were further combined into one” so there should be 28 classes? 

Great thanks for pointing out this mistake. After carefully checking, the CCI_LC actually provides the 

land-cover products containing 36 classes. So our GLC_FCS30-2015 contained 30 land-cover types. The 

mistake has been revised as: 

“; and 2) the CCI_LC land-cover product has a detailed classification scheme containing 36 land-cover 

types, achieves the required classification accuracy over homogeneous areas (75.38% overall), and has a 

relatively high spatial resolution of 300 m as well as a stable transition between the different annual land-

cover products (Defourny et al., 2018; Yang et al., 2017b)…” 

 

Issue 4: For the level-2 classification legend in Table 2, how the level-1 and level-2 classes can be used 

together for classification. For example, deciduous broadleaved forest 60, closed deciduous broadleaved 

forest 61, and Open deciduous broadleaved forest 62 cannot be put together for classification. It is either 

60 itself OR both 61 and 62. It cannot be all the three together in classification. 

Great thanks for the comment. As mentioned before, the training samples came from the MCD43A4 

NBAR dataset, Landsat year-composited imagery and CCI_LC land-cover products which 

simultaneously contained the LCCS global classification system and detailed regional classification 

system (containing 14 detailed land-cover types) only for certain regions, therefore, there will be a 

phenomenon where global and regional land-cover types coexist at the same time in these certain regions 

when training the local random forest models. 

Therefore, our ongoing works are combining quantitative retrieval models and multi-source datasets to 

improve the diversity of global land-cover types in GLC_FCS30-2015, by using the Fractional Vegetation 

Cover (FVC) estimation models to retrieve the annual maximum FVC and then distinguish between open 

and closed broadleaved or needleleaved forests, combining the time-series NDVI to split the evergreen 

and deciduous shrublands. It has been revised in the Section 5.2 as: 

“In future work, quantitative retrieval models and multi-source datasets should be combined to improve 

the diversity of global land-cover types in GLC_FCS30-2015 and further avoid the existence of global 

LCCS classification system and detailed regional land-cover classification system. This could be done, 

for example, by using the Fractional Vegetation Cover (FVC) estimation models (Yang et al., 2017a) to 

retrieve the annual maximum FVC and then distinguish between open and closed broadleaved or 

needleleaved forests, combining the time-series NDVI to split the evergreen and deciduous shrublands, 

as well as integrating the GLCNMO training dataset to further distinguish consolidated from 

unconsolidated bare areas (Tateishi et al., 2014; Tateishi et al., 2011).” 

 

Specific comments 
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Introduction “stamping effect was noticeable” it is unclear what is stamping effect? Use the term which 

has been used in the literature. 

Great thanks for the comment. According to your suggestion, the sentence has been revised by referencing 

the original literature: 

“…as the overall accuracy for the detailed land-cover types was only 52.76% and the patch effects was 

noticeable caused by the temporal differences among the Landsat scenes…” 

 

Figure 1, the Landsat end overlap (row overlaps) cannot be considered as two observations. 

Great thanks for the comment. Yes, the areas where there was overlap cannot be considered as two 

observations. This figure was used to explain the spatial distributions of total clear observations. To avoid 

the confusion, the corresponding paragraph has been revised as: 

“Fig. 1 illustrates the clear-sky Landsat-8 SR temporal frequency after the cloud, cloud shadow and 

saturated pixels have been masked out. The statistical results indicated that: 1) most land areas, except 

for tropical areas, had a high availability of clear-sky Landsat imagery; and 2) areas with a low frequency 

of clear-sky Landsat SR were mainly located in rainforest areas including the Amazon rainforest, African 

rainforests and Indian–Malay rainforests, which are areas mainly covered by evergreen broadleaved 

forests.” 

 

Section 2.2 Define what is the GImpS-2015 product. 

Great thanks for pointing out this mistake. The ‘GImpS-2015’ has been revised as ‘MSMT_IS30-2015’, 

so the revised sentence was: 

“The validation results indicated that the MSMT_IS30-2015 product achieved an overall accuracy of 95.1% 

and a kappa coefficient of 0.898 using 11,942 validation samples from fifteen representative regions.” 

 

Section 3.1.This step is not conducted in GEE? The authors stated the Landsat data “were reprojected to 

the sinusoidal projection of MCD43A4.” The “metric centroid” algorithm is proposed in Zhang and Roy 

2017 NOT by Roy and Kumar (2016). I don’t quite follow what is the purpose of the “metric centroid” 

algorithm since the training reflectance is derived from MODIS rather than Landsat. The “metric centroid” 

algorithm is used if the training reflectance is from Landsat and the training class label from MODIS. 

Great thanks for the comment. Yes, this step was conducted in the localhost computation environment 

instead of the GEE platform, and the Landsat were reprojected to the sinusoidal projection of MCD43A4 

to extract the spectrally homogeneous MODIS-Landsat areas (Step 1) and derive the training sample 

library at 30 m using the “metric centroid” method (Step 4). To clarify the process of deriving the training 

sample, the part has been revised as: 
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Figure 3. The flowchart of deriving training samples by using multi-source datasets. 

Similar to our previous works (Zhang et al., 2019; Zhang et al., 2018), four key steps were adopted to 

guarantee the confidence of each training point, as illustrated in the Figure 3. As in Zhang et al. (2019), 

the spectrally homogeneous MODIS–Landsat areas were firstly identified based on the variance of a 3×3 

local window using spectral thresholds of [0.03, 0.03, 0.03, 0.06, 0.03, and 0.03] for the six spectral bands 

(blue, green, red, NIR, SWIR1, and SWIR2) in the both MCD43A4 NBAR products and Landsat SR 

imagery (Feng et al., 2012). It should be noted that the year-composited Landsat SR data were 

downloaded from GEE platform with the sinusoidal projection. As the MCD43A4 NBAR is corrected for 

view-angle effects and Landsat has a small view angle of ±7.5°, the view-angle difference between 

MCD43A4 and Landsat SR could be considered negligible.   

Before the process of refinement and labeling, the CCI_LC land-cover products, which had geographical 

projections, were reprojected to the sinusoidal projection of MCD43A4. The spatial resolution of 

MCD43A4 was 1.67 times that of the CCI_LC land-cover product and the spectrally homogeneous 

MODIS–Landsat areas had been identified in the 3×3 local windows. Also, Defourny et al. (2018) and 

Yang et al. (2017b) found that the CCI_LC performed better over homogeneous areas; therefore, a larger 

local 5×5 window was applied to the CCI_LC land-cover product to refine and label each spectrally 

homogeneous MODIS-Landsat pixel. Specifically, the land-cover heterogeneity in the local 5×5 window 

was calculated as being the percentages of land-cover types occurring within the window (Jokar Arsanjani 

et al., 2016a). Aware of the possibility of reprojection and classification errors in the CCI_LC products, 

the land-cover heterogeneity threshold was empirically selected as approximately 0.95; in other words, if 

the maximum frequency of dominant land-cover types was less than 22 in the 5×5 window, the point was 

excluded from GSPECLib. After a spatial–spectral filter had been applied to MCD43A4 and a 

heterogeneity filter to the CCI_LC product, the points that had homogeneous spectra and land-cover types 

were retained. In addition, to further remove the abnormal points contaminating by classification error in 

the CCI_LC, the homogeneous points were refined based on their spectral statistics distribution, in which 

the normal samples would form the peak of the distribution whereas the influenced samples were on the 

long tail (Zhang et al., 2018). It should be noted that the geographical coordinates of each homogeneous 
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point were selected as being the center of the local window in the CCI_LC product because this had a 

higher spatial resolution than that of MCD43A4. 

Then, Zhu et al. (2016) and Jin et al. (2014) found that the distribution (proportional to area and equal 

allocation) and balance of training data had significant impact on classification results, and quantitatively 

demonstrated that the proportional approach usually achieve higher overall accuracy than the equal 

allocation distribution. In addition, Zhu et al. (2016) also suggested to extract a minimum of 600 training 

pixels and a maximum of 8000 training pixels per class for alleviating the problem of unbalancing training 

data. In this study, the proportional distribution and sample balancing parameters were used to resample 

these homogeneous points in each GSPECLib 158.85 km×158.85 km geographic grid cell. 

The “metric centroid” algorithm has been revised as: 

Lastly, different from the previous spectrally based classification using MCD43A4 reflectance spectra 

(Zhang et al., 2019), in this study, we proposed to use the Landsat reflectance spectra , derived by 

combining the global training samples and time-series Landsat imagery, to produce the global 30 m land-

cover mapping. However, as the spatial resolution difference between Landsat SR (30 m) and 

homogeneous training samples (300 m), therefore, the “metric centroid” algorithm proposed by Zhang 

and Roy (2017) was used to find the optimal and corresponding training points at a resolution of 30 m. 

Specifically, as each homogeneous point corresponded to an area equivalent to 10×10 Landsat pixels, the 

normalized distances (Eq. (2)) between each Landsat pixel and the mean of all 10×10 pixel areas were 

calculated. The optimal and corresponding training points at 30 m were selected as the ones having the 

minimum normalized distance, 

𝐷𝑖 = (𝜌𝑖 −
1

𝑛
∑ 𝜌𝑗

𝑛
𝑗=1 )

2

, 𝑖 = 1,2, … , 𝑛                                               (2)                                                            

where 𝜌𝑖 is a vector representing the annually composited Landsat SR for 2015 and 𝑛 is the number of 

Landsat pixels within a 10×10 local window (defined as 100). If several 30-m pixels had the same 

minimum 𝐷𝑖 value then one pixel was selected at random. 

 

Section 3.2. Land-cover classification on the GEE platform Delete the comment on “Hughes 

phenomenon”. Hughes phenomenon is for certain classifiers. I don’t think it is still relevant for random 

forest given large number of training samples. The authors in fact admitted it by saying random forest “is 

less sensitive to noise and feature selection than other” classifiers. 

Great thanks for the suggestion. The sentence of “Hughes phenomenon” has been removed in the section. 

 

Section 4 “the yellow marks in Table 5” there is no yellow mark in Table 5. Figure 7. What is the size of 

figure 7 a, b and c small areas? 

Great thanks for the comment. The yellow marks in the Table 5 have been added.  
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The size of the enlargement figures is 40km×60 km, the information has been added in the title of Figure 

8 and the scale bars also have been added in the corresponding figures in the following: 
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Figure 8. Comparison between GLC_FCS30-2015 and other land-cover products (CCI_LC-2015 products developed by 

(Defourny et al., 2018), the MCD12Q1-2015 developed by (Friedl et al., 2010), the FROM_GLC-2015 developed by 

(Gong et al., 2013) and the GlobeLand30 developed by (Chen et al., 2015)) in three 5°×5° regions. In each case, 2–3 

local enlargements with the size of 40km×60 km (a-c) were used to reveal further details of each land-cover product. 

 

Lines 470-475, I would suggest deleting this paragraph. This is a little aggressive. 

Great thanks for the suggestion. The aggressive paragraph has been removed in the revised manuscript. 
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Discussion. It is good to see Figure 8. However, it is a little misleading. If Figure 8 only shows the number 

of training samples, why “where there are relatively uniform land-cover types, there are fewer training 

samples”. I would think the other way around.  

Great thanks for the comment. The reason why “where there are relatively uniform land-cover types, there 

are fewer training samples” is because we use the resample to balance the training samples in Section 3.1, 

therefore, the homogeneous areas have relatively fewer training samples comparing these transition areas. 

The part has been added as: 

“Then, Zhu et al. (2016) and Jin et al. (2014) found that the distribution (proportional to area and equal 

allocation) and balance of training data had significant impact on classification results, and quantitatively 

demonstrated that the proportional approach usually achieve higher overall accuracy than the equal 

allocation distribution. In addition, Zhu et al. (2016) also suggested to extract a minimum of 600 training 

pixels and a maximum of 8000 training pixels per class for alleviating the problem of unbalancing training 

data. In this study, the proportional distribution and sample balancing parameters were used to resample 

these homogeneous points in each GSPECLib 158.85 km×158.85 km geographic grid cell.” 

 

In order to avoid the misleading, the sentence of “where there are relatively uniform land-cover types, 

there are fewer training samples” has been deleted in the revised manuscript as: 

“Figure 9 illustrates the number of global training samples in each 1°×1° geographical grid cell. The 

statistics are generally consistent with the land-cover patterns shown in Fig. 5. In addition, in contrast to 

other studies that used manual interpretation of samples for global land-cover mapping (Friedl et al., 2010; 

Gong et al., 2013; Tateishi et al., 2014), the total number of training samples in this study reaching 

27,858,258 points and so was tens to hundreds of times higher than that used in these global land-cover 

classifications.” 

 

For each 5 by 5 degree local training, does the authors also use some training samples outside the 3 by 3 

tiles if there is insuffient samples in the 3 by 3 tiles? If so make it clearer in the paper. 

Great thanks for the comment. We didn’t import the training samples outside the 3 by 3 tiles. Actually, 

we have built a backup training sample library to avoid missing training samples of sparse land-cover 

types, however, after using the training samples from neighboring 3 by 3 5°×5° geographical tiles, the 

missing training samples in the central tile almost were supplemented by neighboring 3 × 3 tiles, which 

caused the backup library to lose its function. 
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“Therefore, it can be assumed that the training data derived from the updated GSPECLib were accurate 

and suitable for large-area land-cover mapping at 30 m.” If the GSPECLib’s contribution is only to 

identify homogenous locations, do not overemphasize in discussion or conclusion. Use something like 

derivation of training data from existing land cover products. 

Great thanks for the comment. Based on the suggestion, the statement has been revised as: 

“Therefore, it can be assumed that the training data, derived by combining the MCD43A4 NBAR and 

CCI_LC land-cover products, were accurate and suitable for large-area land-cover mapping at 30 m.” 

 

Line 525, “applied only for certain regions”, which region? Users deserve to know before using the data. 

Great thanks for the comment. Yes, it is necessary to provide the spatial distribution for the 14 LCCS 

level-2 detailed land-cover types. According to the suggestion, the spatial distributions of 14 detailed 

land-cover types has been added as: 

“The CCI_LC map used fine classification system in some region but used coarse classification system 

in other regions (Defourny et al. 2018). Because the training samples were derived from the CCI_LC 

land-cover product, our GLC_FCS30 product inherited these characteristics. Therefore, although the 

GLC_FCS30-2015 provided a global 30-m land-cover product with 30 land-cover types (Table 2), the 14 

LCCS level-2 detailed land-cover types were applied only for certain regions rather than globe, illustrated 

in the Figure 12.” 

 
Figure 12. The spatial distributions of 14 detailed land-cover types in the GLC_FCS30-2015 products. 

 

file:///D:/全球中分辨率制图/论文/2019_GLC_FCS30/ESSD/审稿意见/essd-2020-182-manuscript.docx%23_ENREF_47
file:///D:/全球中分辨率制图/论文/2019_GLC_FCS30/ESSD/审稿意见/essd-2020-182-manuscript.docx%23_ENREF_47
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Data availability Make it explicit that the validation dataset is also public available. I believe it is an 

important contribution to the community. 

Thanks for the suggestion. According to your suggestion, the free access of validation dataset has been 

added in the Data availability section as: 

“The corresponding validation dataset, producing by integrating existing prior datasets, high-resolution 

Google Earth imagery, time-series of NDVI values for each vegetated point and visual checking by 

several interpreters, is available at http://doi.org/10.5281/zenodo.3551994 (Liu et al., 2019).” 

 

Conclusion “global training data derived from GSPECLib”. It is a little misleading if the GSPECLib is 

only to identify homogeneous locations. Use something like derivation of training data from existing land 

cover products. 

Great thanks for the comment. Based on the suggestion, the sentence has been revised as: 

“In this study, a global land-cover product for 2015 that had a fine classification system (containing 16 

global LCCS land-cover types as well as 14 detailed and regional land-cover types) and 30-m spatial 

resolution (GLC_FCS30-2015) was developed by combining time-series of Landsat imagery and 

global training data derived from multi-source datasets. Specifically, by combining MCD43A4 

NBAR, CCI_LC land-cover products and Landsat imagery, the difficulties of collecting sufficient reliable 

training data were easily solved and the fine classification system was also made use of.” 
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Response to comments 

Paper #: essd-2020-182 

Title: GLC_FCS30: GLC_FCS30: Global land-cover product with fine classification system at 30 m 

using time-series Landsat imagery 

Journal: Earth System Science Data 

 

Reviewer #2 

While I appreciate the authors’ tremendous efforts in this global-scale mapping project, I have several 

major concerns.  

Great thanks for the comment. The manuscript has been improved according to your and another 

reviewer’s comments. 

 

From the remote sensing perspective, the novelty of this project is low. Almost all the methods have been 

developed and used somewhere in the previous land-cover mapping projects. 

Great thanks for the comment. As the global-scale mapping involves tremendous efforts and workloads, 

we split the project into three parts: 1) the work of “Fine Land-Cover Mapping in China Using Landsat Datacube 

and an Operational SPECLib-Based Approach” analyzed the accuracy and robustness of the automatic 

classification strategy; 2) the work of “Development of a global 30 m impervious surface map using 

multisource and multitemporal remote sensing datasets with the Google Earth Engine platform” used the 

multi-source and multi-temporal imagery to guarantee the high accuracy of impervious surfaces. 3) Based 

on our previous works (1-2), we combined the time-series Landsat imagery and GSPECLib to generate 

the GLC_FCS30-2015 global 30 m land-cover products. Therefore, we think the project is an 

incremental innovation because the GLC_FCS30-2015 is the first global 30 m land-cover product 

based on an automatic classification strategy, and has significant advantages over mapping 

accuracy comparing with the current global 30 m products. 

Zhang, X., Liu, L., Chen, X., Xie, S., and Gao, Y.: Fine Land-Cover Mapping in China Using Landsat 

Datacube and an Operational SPECLib-Based Approach, Remote Sensing, 11, 1056, 

https://doi.org/10.3390/rs11091056, 2019. 

Zhang, X., Liu, L., Wu, C., Chen, X., Gao, Y., Xie, S., and Zhang, B.: Development of a global 30 m 

impervious surface map using multisource and multitemporal remote sensing datasets with the Google 

Earth Engine platform, Earth Syst. Sci. Data, 12, 1625-1648, https://doi.org/10.5194/essd-12-1625-2020, 

2020. 
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The classification system proposed in the study looks relatively simple. The study is not targeting the 

issue - “a fine land-cover system is still lacking” - as described at the end of the Introduction.  

Great thanks for the comment. According to the reviewing in the introduction, the current global 30 m 

land-cover products mainly used the simple classification system (containing 10 major land-cover types), 

however, our GLC_FCS30-2015 products adopted the CCI_LC (Climate Change Initiative Global Land 

Cover) classification system containing 30 land-cover types, so it has significant advantages over land-

cover diversity comparing with current global 30 m products (for example, only ten land-cover types in 

GlobeLand30). Based on the comment, the sentence has been deleted in the Introduction as: 

“Overall, due to the difficulties in collecting sufficient accurate training data with a fine classification 

system and the computing requirements involved, producing a global 30-m land-cover classification with 

a fine classification system is a challenging and labor-intensive task.” 

 

However, the construction of the training database is a great effort that should be given more emphasis in 

the description of methods (e.g., adding a flowchart) and in the discussion (e.g., effects of sample outliers 

on mapping accuracies across land cover classes). See details below.  

Great thanks for the comment. Based on the suggestion, the details of the deriving training samples have 

been added (the effects of sample outliers have been explained in the next comment) 

 

Figure 3. The flowchart of deriving training samples by using multi-source datasets. 

Similar to our previous works (Zhang et al., 2019; Zhang et al., 2018), four key steps were adopted to 

guarantee the confidence of each training point, as illustrated in the Figure 3. As in Zhang et al. (2019), 

the spectrally homogeneous MODIS–Landsat areas were firstly identified based on the variance of a 3×3 

local window using spectral thresholds of [0.03, 0.03, 0.03, 0.06, 0.03, and 0.03] for the six spectral bands 

(blue, green, red, NIR, SWIR1, and SWIR2) in the both MCD43A4 NBAR products and Landsat SR 

imagery (Feng et al., 2012). It should be noted that the year-composited Landsat SR data were 
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downloaded from GEE platform with the sinusoidal projection. As the MCD43A4 NBAR is corrected for 

view-angle effects and Landsat has a small view angle of ±7.5°, the view-angle difference between 

MCD43A4 and Landsat SR could be considered negligible.  

Before the process of refinement and labeling, the CCI_LC land-cover products, which had geographical 

projections, were reprojected to the sinusoidal projection of MCD43A4. The spatial resolution of 

MCD43A4 was 1.67 times that of the CCI_LC land-cover product and the spectrally homogeneous 

MODIS–Landsat areas had been identified in the 3×3 local windows. Also, Defourny et al. (2018) and 

Yang et al. (2017b) found that the CCI_LC performed better over homogeneous areas; therefore, a larger 

local 5×5 window was applied to the CCI_LC land-cover product to refine and label each spectrally 

homogeneous MODIS-Landsat pixel. Specifically, the land-cover heterogeneity in the local 5×5 window 

was calculated as being the percentages of land-cover types occurring within the window (Jokar Arsanjani 

et al., 2016a). Aware of the possibility of reprojection and classification errors in the CCI_LC products, 

the land-cover heterogeneity threshold was empirically selected as approximately 0.95; in other words, if 

the maximum frequency of dominant land-cover types was less than 22 in the 5×5 window, the point was 

excluded from GSPECLib. After a spatial–spectral filter had been applied to MCD43A4 and a 

heterogeneity filter to the CCI_LC product, the points that had homogeneous spectra and land-cover types 

were retained. In addition, to further remove the abnormal points contaminating by classification error in 

the CCI_LC, the homogeneous points were refined based on their spectral statistics distribution, in which 

the normal samples would form the peak of the distribution whereas the influenced samples were on the 

long tail (Zhang et al., 2018). It should be noted that the geographical coordinates of each homogeneous 

point were selected as being the center of the local window in the CCI_LC product because this had a 

higher spatial resolution than that of MCD43A4. 

Then, Zhu et al. (2016) and Jin et al. (2014) found that the distribution (proportional to area and equal 

allocation) and balance of training data had significant impact on classification results, and quantitatively 

demonstrated that the proportional approach usually achieve higher overall accuracy than the equal 

allocation distribution. In addition, Zhu et al. (2016) also suggested to extract a minimum of 600 training 

pixels and a maximum of 8000 training pixels per class for alleviating the problem of unbalancing training 

data. In this study, the proportional distribution and sample balancing parameters were used to resample 

these homogeneous points in each GSPECLib 158.85 km×158.85 km geographic grid cell. 

Lastly, different from the previous spectrally based classification using MCD43A4 reflectance spectra 

(Zhang et al., 2019), in this study, we proposed to use the Landsat reflectance spectra , derived by 

combining the global training samples and time-series Landsat imagery, to produce the global 30 m land-

cover mapping. However, as the spatial resolution difference between Landsat SR (30 m) and 

homogeneous training samples (300 m), therefore, the “metric centroid” algorithm proposed by Zhang 

and Roy (2017) was used to find the optimal and corresponding training points at a resolution of 30 m. 

Specifically, as each homogeneous point corresponded to an area equivalent to 10×10 Landsat pixels, the 

normalized distances (Eq. (2)) between each Landsat pixel and the mean of all 10×10 pixel areas were 

calculated. The optimal and corresponding training points at 30 m were selected as the ones having the 

minimum normalized distance, 
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𝐷𝑖 = (𝜌𝑖 −
1

𝑛
∑ 𝜌𝑗

𝑛
𝑗=1 )

2

, 𝑖 = 1,2, … , 𝑛                                                (2)                                                                                     

where 𝜌𝑖 is a vector representing the annually composited Landsat SR for 2015 and 𝑛 is the number of 

Landsat pixels within a 10×10 local window (defined as 100). If several 30-m pixels had the same 

minimum 𝐷𝑖 value then one pixel was selected at random. 

I also feel there is a lack of in-depth discussion. For a large-scale project, data uncertainties, model 

calibration, and land-cover heterogeneity could have a significant effect on mapping accuracy. But the 

current form of discussion is superficial and needs to add a comprehensive evaluation of the developed 

database. 

Great thanks for the comment. Based on the suggestion and subsequent comments, the Discussion has 

been totally strengthened as: 

1) As for the analysis of training data uncertainties 

To demonstrate the importance of sample sizes, 200,000 points, approximately 1% of total training 

samples, were randomly selected to quantitatively analyse the relationship between overall accuracy and 

the corresponding sample size. Specifically, we used the 10-fold cross-validation method to split these 

points into training and validation samples, and then gradually increase the size of training samples with 

the step of 2% and repeat the process for 100 times. Figure 10a illustrated the overall accuracy (Level-0 

and LCCS level-1 classification systems) increased for the increased percentage of training samples. It 

was found that the overall accuracy rapidly increased when the percentage of training samples increased 

from 1% to 30%, while it remained relatively stable when the percentage of training samples was higher 

than 30%. Therefore, the appropriate sample size should be larger than the 60,000 (30% of the total input 

points), fortunately, the local training samples in this study almost all exceeded the 60,000 because the 

training samples from neighboring 3 × 3 tiles were used to train the random forest model and classify the 

central tile. Similarly, Foody (2009) also found that the sample size had a positive relationship with the 

classification accuracy up to the point where the sample size was saturated, and Zhu et al. (2016) 

suggested that the optimal size was a total of 20,000 training pixels to classify an area about the size of a 

Landsat scene. 

Secondly, many studies have demonstrated that the sample outliers had influence on the land-cover 

classification accuracy (Mellor et al. 2015, Pelletier et al. 2017). In this study, using previous 200,000 

training points, we further analyzed the relationship between overall classification accuracy and erroneous 

training sample by randomly changing the category of a certain percentage of these samples and using 

the “noisy” samples to train the random forest classifier. Similar to the previous quantitative analysis of 

sample size, we gradually increased the percentage of erroneous training samples with the step of 2% and 

then repeat the process for 100 times. Figure 10b showed that the overall accuracy of two classification 

systems (level-0 and LCCS level-1) generally decreased with the increasing of percentage of erroneous 

sample points. It remained relatively stable when the percentage of erroneous training sample was 

controlled within 30%, and decreased obviously after exceeding the threshold of 30%. Meanwhile, the 

overall accuracy of simple classification system was more susceptible to the erroneous samples than that 

of the LCCS classification system in the Figure 10b. Similarly, many scientists have also demonstrated 
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that a small number of erroneous training data have little effect on the classification results (Gong et al., 

2019; Mellor et al., 2015; Pelletier et al., 2016; Zhu et al., 2016): for example, Mellor et al. (2015) found 

the error rate of the RF classifier was insensitive to mislabeled training data, and the overall accuracy 

decreased from 78.3% to 70.1% when the proportion of mislabeled training data increased from 0% to 

25%. Similarly, Pelletier et al. (2016) found the RF classifier was little affected by low random noise 

levels up to 25%–30% but that the performance dropped at higher noise levels. 

 

Figure 10. Sensitivity analysis showing the relations between the overall classification accuracy and the 

percentage of total samples and erroneous sample points. 

Defourny et al. (2018) demonstrated that CCI_LC achieved an overall accuracy of 75.38% for 

homogeneous areas. In this study, some measures have been taken to guarantee the confidence of training 

samples. Some complicated land-cover types were then further optimized to improve the accuracy of the 

training data; for example, impervious surfaces were imported as an independent product and directly 

superimposed over the final global land-cover classifications, the three wetland types were merged into 

an overall wetland land-cover type, and four mosaicked land-cover types were removed (Table 2). After 

optimizing these complicated land-cover types, the overall accuracy of CCI_LC reached 77.36% for 

homogeneous areas based on the confusion matrix of Defourny et al. (2018). In addition, other measures, 

including the spectral filters applied to the MCD43A4 NBAR data, the land-cover homogeneity constraint 

for CCI_LC land-cover products, and the “metric centroid” algorithm for removing the resolution 

differences, were used to further improve confidence in the training data. Therefore, a part of training 

samples (exceeding 18000 points) in the previous analysis were randomly selected to quantitatively 

evaluate the confidence of the global training dataset, after pixel-by pixel interpretation and inspection, 

the validation results indicated that these samples had satisfactory performance with the overall accuracy 

of 91.7% for the Level-0 classification system and 82.6% for Level-1 LCCS classification system. 

Therefore, it can be assumed that the training data, derived by combining the MCD43A4 NBAR and 

CCI_LC land-cover products, were accurate and suitable for large-area land-cover mapping at 30 m. 

Lastly, the sample balance is also an important factor in land-cover classification especially for rare land-

cover types, because unbalanced training data would cause the under-fitting of classification model for 

rare land-cover types and further degrade the classification accuracy. In this study, we used the sample 

balancing parameters (a minimum of 600 training pixels and a maximum of 8000 training pixels per class), 

based on the work of Zhu et al. (2016), to alleviate the problem of unbalancing training data when deriving 
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training samples from the GSPECLib in the Section 3.1, therefore, Figure 8 II and III illustrated that the 

water body, which was the rare land-cover type in the whole regions, have been accurately captured in 

the corresponding enlargement figures. 

2) As for the relationship between land-cover heterogeneity and the classification accuracy 

Except for the training sample uncertainties (including sample size, outliers) in the section 5.1, the land-

cover heterogeneity also had a significant effect on the classification accuracy (Calderón-Loor et al., 2021; 

Wang and Liu, 2014). To clarify the relationship between land-cover heterogeneity and overall accuracy 

of the GLC_FCS30-2015 land-cover map, we firstly used the Shannon entropy to calculate the spatial 

heterogeneity using the GLC_FCS30_2015 at spatial resolution of 0.05°×0.05° (Eq. 4). Figure 11a 

illustrated the land-cover heterogeneity of GLC_FCS30 land-cover map. Intuitively, the highly 

heterogeneous regions mainly corresponded to the climatic transition zone especially for the sparse 

vegetation areas. Then, we combined the land-cover heterogeneity and global validation datasets (in the 

Section 2.3) to calculate the mean accuracy at different heterogeneity illustrated in Figure 11b. It could 

be found that the classification accuracy had negative relationship with land-cover heterogeneity with the 

slope of -0.3347, namely, the GLC_FCS30 had better performance in the homogeneous areas than that of 

the heterogeneous areas. Similarly, Defourny et al. (2018) also demonstrated that the CCI_LC land-cover 

products achieved the higher accuracy of 77.36% in the homogeneous areas than that of 75.38% in the all 

areas.  

𝐻 = − ∑ (𝑃𝑖 × 𝑙𝑜𝑔2
𝑃𝑖)𝑛

𝑖=1   (4) 

 

Figure 11. The land-cover heterogeneity of GLC_FCS30 land-cover map at a spatial resolution of 0.05°, and the relationship between 

land-cover heterogeneity and overall accuracy using the global validation datasets. 

Detailed comments 

Line 10: add ’a’ before ’lack’. L15: Include full names with the acronyms when they are first introduced. 

Great thanks for the comment. The missed words were added throughout. The full names of the acronyms 

(CCI_LC and MCD43A4 NBAR) in L15 have been added. 
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L99: The “lack of global satellite data coverage” is no longer a challenge for MODIS and Landsat that 

have been free of charge for over a decade. In fact, we are now in a data-rich era, which is why 

supercomputing and effective data mining are critical. 

Great thanks for the comment. Yes, with the free access of MODIS and Landsat imagery, the “lack of 

global satellite data coverage” is no longer a challenge. Therefore, the sentence has been revised as: 

“Secondly, the high cost of collecting satellite data with consistent global coverage, the lack of the 

high-performance computing requirements and the difficulties in preparing image mosaics also cause 

problems.” 

L145-146: Why not directly using the ASTER GDEM product? The most recent version 3 of GDEM has 

better accuracy than SRTM. 

Great thanks for the useful suggestion. The GLC_FCS30-2015 land-cover maps began production in 2019, 

when GDEM version 3 was not integrated on the GEE platform. Based on your suggestion, our further 

work would use the GDEM version 3 to replace the SRTM dataset. 

Section 2.3: What are your criteria for deriving how many points for each land cover class? 

Great thanks for the important comment. The sample size of each land-cover type is determined by the 

stratified random sampling. The works of Foody et al. (2009) and Olofsson et al. (2014) have detailedly 

explained how to use the area proportion to calculate the appropriate validation sample size. The part has 

been added as: 

To guarantee the confidence of the validation points, several existing prior datasets (see Table 1), high-

resolution Google Earth imagery and time-series of NDVI values for each vegetated point were integrated 

to derive the global validation datasets. Many studies have demonstrated that inappropriately sized 

validation sample could lead to limited and sometimes erroneous assessments of accuracy (Foody 

et al. 2009 and Olofsson et al. 2014), therefore, a stratified random sampling based on the 

proportion of the land-cover areas was adapted to determine the sample size of each land-cover 

type:  

𝒏𝒊 = 𝒏 ×
𝑾𝒊×𝒑𝒊(𝟏−𝒑𝒊)

∑ 𝑾𝒊×𝒑𝒊(𝟏−𝒑𝒊)
;       𝒏 =  

( ∑ 𝑾𝒊×√𝑺𝒊(𝟏−𝑺𝒊) )𝟐

[𝑺(�̂�]
𝟐

+∑ 𝑾𝒊×𝑺𝒊(𝟏−𝑺𝒊)/𝑵
≈ (

∑ 𝑾𝒊𝑺𝒊

𝑺(�̂�)
)

𝟐

     (1) 

where 𝑾𝒊 was the area proportion for class 𝒊 over the globe, 𝑺𝒊 is the standard deviation of class 𝒊, 

𝑺(�̂�) is the standard error of the estimated overall accuracy, 𝒑𝒊 is the expected accuracy of class 𝒊 

and 𝒏𝒊 represents the sample size of the class 𝒊.  

L170: Where did you get the high-resolution imagery? How many points did you check? Following what 

criteria?  

Great thanks for the comment. The high-resolution imagery came from the Google earth software. There 

are 22,823 cropland validation samples in the reference dataset have been checked. Lastly, to guarantee 

the confidence of validation samples, all validation samples were rechecked by three experts using Google 
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Earth software, if the rechecking results of three experts were in disagreement, the cropland point would 

be discarded. It has been revised as: 

There are 22,823 cropland validation samples in the reference dataset (Xiong et al., 2017). In addition, 

due to the possible temporal interval between the acquisition of the reference data and the GLC_FCS30 

products (2015), the reference samples were checked by three interpreters using the high-resolution 

imagery for 2015 in the Google Earth software, and were discarded if the judgements of three 

experts were in disagreement. After discarding wrong cropland points and resampling using the 

formula (1), a total of 6,917 cropland samples in 2015 were retained. 

L177: great -> big. 

Great thanks for the comment. It has been corrected. 

Section: 3.1: There are multiple steps. I suggest a flowchart to describe your process. Also, how many 

samples did you collect for the study and for each class? What were your criteria? 

Great thanks for the comment. According to your suggestion, the flowchart has been added, and the 

sample sizes of each land-cover type are calculated by the area proportion. Specifically, the part has been 

supplemented as: 

  

Figure 3. The flowchart of deriving training samples by using multi-source datasets. 

Similar to our previous works (Zhang et al., 2019; Zhang et al., 2018), four key steps were adopted to 

guarantee the confidence of each training point, as illustrated in the Figure 3. As in Zhang et al. (2019), 

the spectrally homogeneous MODIS–Landsat areas were firstly identified based on the variance of a 3×3 

local window using spectral thresholds of [0.03, 0.03, 0.03, 0.06, 0.03, and 0.03] for the six spectral bands 

(blue, green, red, NIR, SWIR1, and SWIR2) in the both MCD43A4 NBAR products and Landsat SR 

imagery (Feng et al., 2012). It should be noted that the year-composited Landsat SR data were 

downloaded from GEE platform with the sinusoidal projection. As the MCD43A4 NBAR is corrected for 
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view-angle effects and Landsat has a small view angle of ±7.5°, the view-angle difference between 

MCD43A4 and Landsat SR could be considered negligible.  

Before the process of refinement and labeling, the CCI_LC land-cover products, which had geographical 

projections, were reprojected to the sinusoidal projection of MCD43A4. The spatial resolution of 

MCD43A4 was 1.67 times that of the CCI_LC land-cover product and the spectrally homogeneous 

MODIS–Landsat areas had been identified in the 3×3 local windows. Also, Defourny et al. (2018) and 

Yang et al. (2017b) found that the CCI_LC performed better over homogeneous areas; therefore, a larger 

local 5×5 window was applied to the CCI_LC land-cover product to refine and label each spectrally 

homogeneous MODIS-Landsat pixel. Specifically, the land-cover heterogeneity in the local 5×5 window 

was calculated as being the percentages of land-cover types occurring within the window (Jokar Arsanjani 

et al., 2016a). Aware of the possibility of reprojection and classification errors in the CCI_LC products, 

the land-cover heterogeneity threshold was empirically selected as approximately 0.95; in other words, if 

the maximum frequency of dominant land-cover types was less than 22 in the 5×5 window, the point was 

excluded from GSPECLib. After a spatial–spectral filter had been applied to MCD43A4 and a 

heterogeneity filter to the CCI_LC product, the points that had homogeneous spectra and land-cover types 

were retained. In addition, to further remove the abnormal points contaminating by classification error in 

the CCI_LC, the homogeneous points were refined based on their spectral statistics distribution, in which 

the normal samples would form the peak of the distribution whereas the influenced samples were on the 

long tail (Zhang et al., 2018). It should be noted that the geographical coordinates of each homogeneous 

point were selected as being the center of the local window in the CCI_LC product because this had a 

higher spatial resolution than that of MCD43A4. 

Then, Zhu et al. (2016) and Jin et al. (2014) found that the distribution (proportional to area and equal 

allocation) and balance of training data had significant impact on classification results, and quantitatively 

demonstrated that the proportional approach usually achieve higher overall accuracy than the equal 

allocation distribution. In addition, Zhu et al. (2016) also suggested to extract a minimum of 600 training 

pixels and a maximum of 8000 training pixels per class for alleviating the problem of unbalancing training 

data. In this study, the proportional distribution and sample balancing parameters were used to resample 

these homogeneous points in each GSPECLib 158.85 km×158.85 km geographic grid cell. 

 

L214: land-covers -> land cover.  

Great thanks for the comment. It has been corrected. 

 

L303-304: I do not agree that "classification accuracy was insensitive to these parameters". Please see a 

review of RF in RS classification by Belgiu and Dragut (2016). 

Great thanks for the comment. The statement has been revised based on the work of Belgiu and Dragut 

(2016) as: 
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“Belgiu et al. (2016) also explained that the classification accuracy was less sensitive to Ntree than to the 

Mtry parameter, and Mtry was usually set to the square root of the number of input variables. Due to these 

advantages, the RF classifier is widely used in land-cover mapping” 

 

L320-322: It is vague how you balanced performance, efficiency, and sample volumes. What criteria did 

you use? 

Great thanks for the comment. The reason why we choose the 5°×5° geographical tiles as the mapping 

unit is because our experiments and the works of Zhang et al. (2017) found that if we chose the 170 

km×180 km (the Landsat size) as a spatial unit, there will be lacking of training samples for sparse land-

cover types. A good solution is to import some training samples from neighboring 3 by 3 tiles if the 

training samples are insuffient (Zhang and Roy, 2017; Zhang et al., 2019). Therefore, the 5°×5° 

geographical tiles, approximately 3×3 Landsat scenes, to avoid the under-fitting when training the local 

adaptive model. 2) As the GEE has some limitations for computation capability and memory, if we choose 

bigger spatial unit, the GEE platform would have some over-memory/over-time errors. The sentences 

have been added as: 

“Furthermore, as illustrated in the previous works, the training samples in a small spatial grid 

(Landsat scene) were not enough especially for sparse land-cover types, and the training samples 

from neighboring 3 by 3 tiles were also imported (Zhang and Roy, 2017; Zhang et al., 2019), as well 

as GEE platform had some limitations for computation capacity and memory. Therefore, after 

balancing the accuracy performance, computation efficiency and training sample volume, the local 

adaptive random forest models, which split the globe into approximately 948 5°×5° geographical tiles 

(approximately 3×3 Landsat scenes) similar to our previous work (Zhang et al., 2020), were applied to 

generate a lot of regional land-cover maps.” 

Zhang, H. K. and Roy, D. P.: Using the 500 m MODIS land cover product to derive a consistent 

continental scale 30 m Landsat land cover classification, Remote Sensing of Environment, 197, 15-34, 

https://doi.org/10.1016/j.rse.2017.05.024, 2017.  

Zhang, X., Liu, L., Chen, X., Xie, S., and Gao, Y.: Fine Land-Cover Mapping in China Using Landsat 

Datacube and an Operational SPECLib-Based Approach, Remote Sensing, 11, 1056, 

https://doi.org/10.3390/rs11091056, 2019. 

 

Section 5.1: “huge training samples”. Exactly how many samples were used? It is vague to use “exceeded 

20 million points”.  

Great thanks for the comment. The exact samples of 27,858,258 points has been added as: 

“In addition, in contrast to other studies that used manual interpretation of samples for global land-cover 

mapping (Friedl et al., 2010; Gong et al., 2013; Tateishi et al., 2014), the total number of training samples 

in this study reaching 27,858,258 points and so was tens to hundreds of times higher than that used in 

these global land-cover classifications.” 

file:///D:/全球中分辨率制图/论文/2019_GLC_FCS30/ESSD/审稿意见/essd-2020-182-manuscript.docx%23_ENREF_54
file:///D:/全球中分辨率制图/论文/2019_GLC_FCS30/ESSD/审稿意见/essd-2020-182-manuscript.docx%23_ENREF_54
file:///D:/全球中分辨率制图/论文/2019_GLC_FCS30/ESSD/审稿意见/essd-2020-182-manuscript.docx%23_ENREF_54
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Since building the training sample database is the most important contribution of the project, it is critical 

and would certainly benefit the users through discussing how the number of the training samples and how 

sample balance (across classes) have affected the results. The authors lightly touched on the outlier effect, 

but there is a lack of in-depth analysis and discussion using the data from the present project. 

Great thanks for the comment. The effects of training sample sizes and outlier effect have been added in 

the manuscript in the Discussion Section as: 

To demonstrate the importance of sample sizes, 200,000 points, approximately 1% of total training 

samples, were randomly selected to quantitatively analyse the relationship between overall accuracy and 

the corresponding sample size. Specifically, we used the 10-fold cross-validation method to split these 

points into training and validation samples, and then gradually increase the size of training samples with 

the step of 2% and repeat the process for 100 times. Figure 10a illustrated the overall accuracy (Level-0 

and LCCS level-1 classification systems) increased for the increased percentage of training samples. It 

was found that the overall accuracy rapidly increased when the percentage of training samples increased 

from 1% to 30%, while it remained relatively stable when the percentage of training samples was higher 

than 30%. Therefore, the appropriate sample size should be larger than the 60,000 (30% of the total input 

points), fortunately, the local training samples in this study almost all exceeded the 60,000 because the 

training samples from neighboring 3 × 3 tiles were used to train the random forest model and classify the 

central tile. Similarly, Foody (2009) also found that the sample size had a positive relationship with the 

classification accuracy up to the point where the sample size was saturated, and Zhu et al. (2016) 

suggested that the optimal size was a total of 20,000 training pixels to classify an area about the size of a 

Landsat scene.  

Secondly, many studies have demonstrated that the sample outliers had influence on the land-cover 

classification accuracy (Mellor et al. 2015, Pelletier et al. 2017). In this study, using previous 200,000 

training points, we further analyzed the relationship between overall classification accuracy and erroneous 

training sample by randomly changing the category of a certain percentage of these samples and using 

the “noisy” samples to train the random forest classifier. Similar to the previous quantitative analysis of 

sample size, we gradually increased the percentage of erroneous training samples with the step of 2% and 

then repeat the process for 100 times. Figure 10b showed that the overall accuracy of two classification 

systems (level-0 and LCCS level-1) generally decreased with the increasing of percentage of erroneous 

sample points. It remained relatively stable when the percentage of erroneous training sample was 

controlled within 30%, and decreased obviously after exceeding the threshold of 30%. Meanwhile, the 

overall accuracy of simple classification system was more susceptible to the erroneous samples than that 

of the LCCS classification system in the Figure 10b. Similarly, many scientists have also demonstrated 

that a small number of erroneous training data have little effect on the classification results (Gong et al., 

2019; Mellor et al., 2015; Pelletier et al., 2016; Zhu et al., 2016): for example, Mellor et al. (2015) found 

the error rate of the RF classifier was insensitive to mislabeled training data, and the overall accuracy 

decreased from 78.3% to 70.1% when the proportion of mislabeled training data increased from 0% to 
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25%. Similarly, Pelletier et al. (2016) found the RF classifier was little affected by low random noise 

levels up to 25%–30% but that the performance dropped at higher noise levels. 

 

Figure 10. Sensitivity analysis showing the relations between the overall classification accuracy and the 

percentage of total samples and erroneous sample points. 

Defourny et al. (2018) demonstrated that CCI_LC achieved an overall accuracy of 75.38% for 

homogeneous areas. In this study, some measures have been taken to guarantee the confidence of training 

samples. Some complicated land-cover types were then further optimized to improve the accuracy of the 

training data; for example, impervious surfaces were imported as an independent product and directly 

superimposed over the final global land-cover classifications, the three wetland types were merged into 

an overall wetland land-cover type, and four mosaicked land-cover types were removed (Table 2). After 

optimizing these complicated land-cover types, the overall accuracy of CCI_LC reached 77.36% for 

homogeneous areas based on the confusion matrix of Defourny et al. (2018). In addition, other measures, 

including the spectral filters applied to the MCD43A4 NBAR data, the land-cover homogeneity constraint 

for CCI_LC land-cover products, and the “metric centroid” algorithm for removing the resolution 

differences, were used to further improve confidence in the training data. Therefore, a part of training 

samples (exceeding 18000 points) in the previous analysis were randomly selected to quantitatively 

evaluate the confidence of the global training dataset, after pixel-by pixel interpretation and inspection, 

the validation results indicated that these samples had satisfactory performance with the overall accuracy 

of 91.7% for the Level-0 classification system and 82.6% for Level-1 LCCS classification system. 

Therefore, it can be assumed that the training data, derived by combining the MCD43A4 NBAR and 

CCI_LC land-cover products, were accurate and suitable for large-area land-cover mapping at 30 m. 

As for the issue of sample balance (across classes), our training samples have considered the factor in the 

Section 3.1 as: 

Then, Zhu et al. (2016) and Jin et al. (2014) found that the distribution (proportional to area and equal 

allocation) and balance of training data had significant impact on classification results, and quantitatively 

demonstrated that the proportional approach usually achieve higher overall accuracy than the equal 

allocation distribution. In addition, Zhu et al. (2016) also suggested to extract a minimum of 600 training 

pixels and a maximum of 8000 training pixels per class for alleviating the problem of unbalancing training 

data. In this study, the proportional distribution and sample balancing parameters were used to resample 

these homogeneous points in each GSPECLib 158.85 km×158.85 km geographic grid cell. 
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The issue of sample balance has also been discussed in the Discussion as: 

Lastly, the sample balance is also an important factor in land-cover classification especially for rare land-

cover types, because unbalanced training data would cause the under-fitting of classification model for 

rare land-cover types and further degrade the classification accuracy. In this study, we used the sample 

balancing parameters (a minimum of 600 training pixels and a maximum of 8000 training pixels per class), 

based on the work of Zhu et al. (2016), to alleviate the problem of unbalancing training data when deriving 

training samples from the GSPECLib in the Section 3.1, therefore, Figure 8 II and III illustrated that the 

water body, which was the rare land-cover type in the whole regions, have been accurately captured in 

the corresponding enlargement figures. 
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Abstract. Over past decades, a lot of global land-cover products have been released, however, these is still lack of a global 10 

land-cover map with fine classification system and spatial resolution simultaneously. In this study, a novel global 30-m land-

cover classification with a fine classification system for the year 2015 (GLC_FCS30-2015) was produced by combining time-

series of Landsat imagery and high-quality training data from the GSPECLib (Global Spatial Temporal Spectra Library) on 

the Google Earth Engine computing platform. First, the global training data from the GSPECLib were developed by applying 

a series of rigorous filters to the CCI_LC (Climate Change Initiative Global Land Cover) land-cover and MCD43A4 NBAR 15 

products (MODIS Nadir Bidirectional reflectance distribution function-adjusted Reflectance). Secondly, a local adaptive 

random forest model was built for each 5°×5° geographical tile by using the multi-temporal Landsat spectral and textures 

features of and the corresponding training data, and the GLC_FCS30-2015 land-cover product containing 30 land-cover types 

was generated for each tile. Lastly, the GLC_FCS30-2015 was validated using three different validation systems (containing 

different land-cover details) using 44,043 validation samples. The validation results indicated that the GLC_FCS30-2015 20 

achieved an overall accuracy of 82.5% and a kappa coefficient of 0.784 for the level-0 validation system (9 basic land-cover 

types), an overall accuracy of 71.4% and kappa coefficient of 0.686 for the UN-LCCS (United Nations Land Cover 

Classification System) level-1 system (16 LCCS land-cover types), and an overall accuracy of 68.7% and kappa coefficient of 

0.662 for the UN-LCCS level-2 system (24 fine land-cover types). The comparisons against other land-cover products 

(CCI_LC, MCD12Q1, FROM_GLC and GlobeLand30) indicated that GLC_FCS30-2015 provides more spatial details than 25 

CCI_LC-2015 and MCD12Q1-2015 and a greater diversity of land-cover types than FROM_GLC-2015 and GlobeLand30-

2010, and that GLC_FCS30-2015 achieved the best overall accuracy of 82.5% against FROM_GLC-2015 of 59.1% and 

GlobeLand30-2010 of 75.9%. Therefore, it is concluded that the GLC_FCS30-2015 product is the first global land-cover 

dataset that provides a fine classification system (containing 16 global LCCS land-cover types as well as 14 detailed and 

regional land-cover types) with high classification accuracy at 30 m. The GLC_FCS30-2015 global land-cover products 30 

produced in this paper is free access at https://doi.org/10.5281/zenodo.3986871 (Liu et al., 2020). 

file:///D:/全球中分辨率制图/论文/2019_GLC_FCS30/ESSD/审稿意见/essd-2020-182-manuscript_V0.docx%23_ENREF_72
file:///D:/全球中分辨率制图/论文/2019_GLC_FCS30/ESSD/审稿意见/essd-2020-182-manuscript_V0.docx%23_ENREF_72
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1 Introduction 

Global land-cover information, as used by the scientific community, governments and international organizations, is critical 

to the understanding of environmental changes, food security, conservation and the coordination of actions needed to mitigate 

and adapt to global change (Ban et al., 2015; Chen et al., 2015; Tsendbazar et al., 2015). These data also play an important 35 

role in improving the performance of models of the ecosystem, hydrology and atmosphere (Gong et al., 2013). Accurate and 

reliable information on global land cover is, therefore, urgently needed (Ban et al., 2015; Zhang et al., 2019). 

Due to the frequent and large-area coverage that it provides, more and more attention has been attached to using the remote 

sensing technology for global land-cover mapping. In past decades, several global land-cover products have been produced at 

various spatial resolutions ranging from 1 km to 300 m (Bontemps et al., 2010; Defourny et al., 2018; Friedl et al., 2010; 40 

Loveland et al., 2000; Tateishi et al., 2014). However, owing to differences in classification accuracy, thematic detail, 

classification schemes, and spatial resolution, the harmonization of these land-cover products is usually difficult (Ban et al., 

2015; Gómez et al., 2016; Giri et al., 2013; Grekousis et al., 2015) and their quality is also far from satisfactory for many fine 

applications (Giri et al., 2005; Grekousis et al., 2015; Yang et al., 2017b). Recently, thanks to free access to fine-resolution 

remote sensing imagery (Landsat and Sentinel-2), combined with rapidly increasing data-storage and computation capabilities, 45 

global land-cover products at fine spatial resolutions (10 m and 30 m) have been successfully developed (Chen et al., 2015; 

Gong et al., 2019; Gong et al., 2013). Specifically, Chen et al. (2015) used multi-temporal Landsat and similar image data 

along with the integration of pixel- and object-based methods to produce the GlobeLand30 land-cover product that has an 

overall classification accuracy of over 80%. Similarly, Gong et al. (2013) and Gong et al. (2019) produced the global 30-m 

and 10-m land-cover products (FROM_GLC30 and FROM_GLC10) using single-date Landsat imagery and multi-temporal 50 

Sentinel-2 imagery, respectively. Unlike FROM_GLC10 and GlobeLand30, which have only 10 land-cover types, 

FROM_GLC30 was classified using 28 detailed land-cover types. However, as the overall accuracy for the detailed land-cover 

types was only 52.76% and the patch effectsstamping effect was noticeable caused by the temporal differences among the 

Landsat scenes, FROM_GLC30 focused on the mapping results for just 10 major land-cover types (Gong et al., 2013). 

Although these products permit the detection of land information at the scale of most human activity and offer  increased 55 

flexibility for the environmental model parameterization needed for global land-cover studies (Ban et al., 2015), the simple 

classification system and large amount of manual work required (manual collection of training samples and knowledge-based 

interactive verification) limit their greater use in many specific and fine applications at regional or global scales. 

As Giri et al. (2013) and Ban et al. (2015) stated that there are a number of challenges to overcome in producing a fine-

resolution characterization of global land cover. These include the unavailability of timely, accurate and sufficient training 60 

data, the high cost of collectingthe unavailability of satellite data with consistent global coverage, difficulties in preparing 

image mosaics, as well as the need for high-performance computing facilities. 

Firstly, Foody and Arora (2010) stated that the training data had more impact on the classification results than the selection of 

the classifier: the collection of timely, accurate and sufficient training data are especially important for global or regional land-
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cover mapping. Generally, the collection of training data can be divided into two types of  method: interpretation-based 65 

methods, and the derivation of training samples from existing land-cover products. Specifically, the interpretation-based 

methods are widely used in regional land-cover classification because high confidence in the training data can be guaranteed 

(Xie et al., 2018; Zhu et al., 2016). However, for large-area land-cover mapping, the interpretation of sufficient and accurate 

training data usually involves a huge amount of manual work. For example, Gong et al. (2013) collected 91,433 training 

samples using 27 image analysts who were experienced in remote-sensing image interpretation. Similarly, Tateishi et al. (2014) 70 

selected 312,753 training points from 2,080 prior training polygons (Tateishi et al., 2011) and used a large amount of reference 

data, including Google Earth images from around 2008, existing regional land-cover maps, and MODIS NDVI phenological 

curves from 2008. Despite the total number of training samples apparently being large in the works of Gong et al. (2013) and 

Tateishi et al. (2014), in fact, in terms of global land-cover mapping, these training samples still provided only sparse coverage: 

Zhu et al. (2016) suggested that the optimal number of  training pixels needed to classify an area about the size of a Landsat 75 

scene was about 20,000. Furthermore, the land-cover diversity (the number of land-cover types in the final results) of training 

data is also constrained by the available expert knowledge: for example, Chen et al. (2015) produced a global land-cover 

product (GlobeLand30) containing only 10 land-cover types; Gong et al. (2019) developed the first global 10-m land-cover 

product (FROM_GLC10), which also contained 10 major land-cover types.  

Compared with the interpretation-based methods, the second type of data collection method – deriving training samples from 80 

existing land-cover products – has been demonstrated to have many significant advantages, including fully automated 

collection and refinement of training data, the production of a large and geographically distributed training dataset, and the 

possibility of using the same land-cover classes as existing land-cover products (Inglada et al., 2017; Jokar Arsanjani et al., 

2016b; Liu et al., 2017; Radoux et al., 2014; Wessels et al., 2016; Xian et al., 2009; Zhang and Roy, 2017; Zhang et al., 2019; 

Zhang et al., 2018). For these reasons, this type of data collection has recently attracted more attention in large-area land-cover 85 

mapping. For example, Radoux et al. (2014) used the coarse resolution land-cover products, Global Land Cover (GLC) 2000 

and Corine Land Cover (CLC) 2006, to develop 300-m land-cover results for South America and Eurasia respectively; Zhang 

and Roy (2017) used the MODIS land-cover product (MCD12Q1) to classify time-series of Landsat imagery and then produce 

a 30 m land-cover classification of north America, achieving an overall agreement of 95.44% and a kappa coefficient of 0.9443. 

Recently, Zhang et al. (2019) proposed simultaneously using the MODIS Nadir bidirectional reflectance distribution function-90 

adjusted reflectance (MCD43A4 NBAR) and the CCI_LC (European Space Agency Climate Change Initiative Global Land 

Cover) land-cover product from 2015 to generate a 30-m Landsat land-cover dataset for China. However, as well as these 

advantages, there is the problem that the derived training data might be affected by classification errors in the existing land-

cover products and by spatial resolution and temporal differences between the land-cover products and the satellite data that 

are to be classified. In recent years, many researchers have proposed various measures to ensure that only reliably defined 95 

training data are extracted: for example, Radoux et al. (2014) proposed the use of spatial and spectral filters to remove outliers, 

Zhang and Roy (2017) proposed that only MCD12Q1 pixels that had been stable for three consecutive years should be used 

and that these pixels should be refined using the “metric centroid” method developed by Roy and Kumar (2016). In summary, 
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if effective measures can be taken to control the confidence and reliability of the training data, the derivation of training 

samples from existing land-cover products has great potential for global land-cover mapping.  100 

Secondly, the high cost of collecting satellite data with consistent global coverage, the lack of global satellite data coverage, 

the high-performance computing requirements and the difficulties in preparing image mosaics also cause problems. However, 

because the Google Earth Engine (GEE) cloud-based platform consists of a multi-petabyte analysis-ready data catalog co-

located with a high-performance, intrinsically parallel computation service, and because the library’s image-based functions 

in the GEE are per-pixel algebraic operations (Gorelick et al., 2017), these difficulties can be easily solved by using the GEE 105 

cloud-computation platform. In recent years, many large-area land-cover classifications have been produced based on the GEE 

cloud computation platform: for example, Teluguntla et al. (2018) successfully derived 30-m cropland extent products for 

Australia and China, which had overall accuracies of 97.6% and 94%, on the GEE platform. Gong et al. (2019) produced the 

first global 10-m land-cover product using time-series of Sentinel-2 imagery also on the GEE platform.  

Overall, a high-precision global 30 m land-cover product with a fine land-cover system is still lacking. Also, due to the 110 

difficulties in collecting sufficient accurate training data with a fine classification system and the computing requirements 

involved, producing a global 30-m land-cover classification with a fine classification system is a challenging and labor-

intensive task. This paper presents an automatic classification strategy for producing a global land-cover product with a fine 

classification system at a spatial resolution of 30 m for 2015 (GLC_FCS30-2015) using the Google Earth Engine cloud 

computation platform. To achieve this goal, we first derived the global training data from the updated Global Spatial Temporal 115 

Spectra Library (GSPECLib), which was developed by combining the MCD43A4 NBAR surface reflectance product and the 

CCI_LC land-cover product for 2015. Secondly, time-series of Landsat imagery on the GEE platform were collected and then 

temporally composited into several temporal spectral and texture metrics using the metrics-composite method. Finally, by 

combining a multi-temporal random forest model, global training data and Landsat temporal features, a global annual land-

cover map with 30 land-cover types was produced. The validation results indicated that the GLC_FCS30-2015 is a promising 120 

land-cover product and could provide important support for numerous regional or global applications. 

2 Datasets 

2.1 Satellite datasets 

2.1.1 Landsat surface reflectance data 

Taking account of the frequent contamination of cloud in the remote sensing imagery, particularly in the tropics, all Landsat-125 

8 surface reflectance (SR) imagery from 2014–2016 archived on the GEE platform was collected for the nominal year 2015. 

Each Landsat-8 SR image on the GEE was atmospherically corrected by the Landsat Surface Reflectance Code (LaSRC) 

atmospheric correction method (Roy et al., 2014; Vermote et al., 2016), and bad pixels – including cloud, cloud shadow and 

saturated pixels – were identified by the CFMask algorithm (Zhu et al., 2015; Zhu and Woodcock, 2012). In this study, only 
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six optical bands – blue, green, red, NIR, SWIR1 and SWIR2 – were used for land-cover classification because the coastal 130 

band is easily effected by the atmosphere conditions (Wang et al., 2016).  

Fig. 1 illustrates the clear-sky Landsat-8 SR temporal frequency after the cloud, cloud shadow and saturated pixels have been 

masked out. The statistical results indicated that: 1) most land areas, except for tropical areas, had a high availability of clear-

sky Landsat imagery; 2) the across-track scene overlap for adjacent Landsat orbits increased significantly with latitude: the 

temporal frequency reached a maximum frequency over Greenland, and the areas where there was overlap had higher coverage 135 

than those without overlap; and 32) areas with a low frequency of clear-sky Landsat SR were mainly located in rainforest areas 

including the Amazon rainforest, African rainforests and Indian–Malay rainforests, which are areas mainly covered by 

evergreen broadleaved forests. 

 

Figure 1: The availability of clear-sky Landsat SR imagery for the years 2014–2016 on the GEE platform. 140 

2.1.2 Digital elevation model data 

Over the past few years, many studies have demonstrated that a digital elevation model (DEM) and variables derived from it 

(slope and aspect) are necessary and important auxiliary variables for land-cover mapping (Gomariz-Castillo et al., 2017; 

Zhang et al., 2019). In this study, the Shuttle Radar Topography Mission (SRTM) DEM, which has a spatial resolution of 30 

m and covers the area between 60° north and 56° south (Farr et al., 2007), and the slope and aspect variables, were used as the 145 

classification features. It should be noted that this dataset archived on the GEE platform has been optimized by a void-filling 

process that uses other open-source DEM data. Furthermore, to complement the missing SRTM data at high latitudes, the 

GDEM2 DEM dataset (Tachikawa et al., 2011) was collected. 
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2.2 Global 30-m impervious surface products 

Due to the spectral heterogeneity and complicated make-up of impervious surfaces, large-area impervious mapping is usually 150 

challenging and difficult (Chen et al., 2015; Gong et al., 2013; Zhang and Roy, 2017). For example, in our previous work 

Zhang et al. (2019), impervious surfaces had a low producer’s accuracy of 50.7% because fragmented impervious surfaces 

such as rural cottages, roads etc. were easily missed. Therefore, Chen et al. (2015)  split the impervious surface class into three 

independent sub-classes including ‘vegetated’, ‘low reflectance’ and ‘high reflectance’, and then used the classification method 

of integrating pixel- and object-based techniques and manual editing to produce accurate global impervious surface products. 155 

In this study, the global land-cover classification neglected the impervious surface land-cover type when building the 

classification model; instead, existing global 30-m impervious surface products for 2015 (MSMT_IS30-2015) were directly 

superimposed over the global land-cover classifications (Zhang et al., 2020). The MSMT_IS30-2015 dataset was produced in 

our previous work  and developed by combining 420,000 Landsat-8 SR and 83,500 Sentinel-1 SAR images from around the 

globe on the GEE platform. The validation results indicated that the GImpSMSMT_IS30-2015 product achieved an overall 160 

accuracy of 95.1% and a kappa coefficient of 0.898 using 11,942 validation samples from fifteen representative regions. The 

MSMT_IS30-2015 dataset is available at https://doi.org/10.5281/zenodo.3505079 (Zhang and Liu, 2019). 

2.3 Global validation datasets 

To guarantee the confidence in of the validation points, several existing prior datasets (see Table 1), high-resolution Google 

Earth imagery and time-series of NDVI values for each vegetated point were integrated to derive the global validation datasets. 165 

Many studies have demonstrated that inappropriately sized validation sample could lead to limited and sometimes erroneous 

assessments of accuracy (Foody et al. 2009 and Olofsson et al. 2014), therefore, a stratified random sampling based on the 

proportion of the land-cover areas was adapted to determine the sample size of each land-cover type:  

𝑛𝑖 = 𝑛 ×
𝑊𝑖×𝑝𝑖(1−𝑝𝑖)

∑ 𝑊𝑖×𝑝𝑖(1−𝑝𝑖)
;       𝑛 =  

( ∑ 𝑊𝑖×√𝑆𝑖(1−𝑆𝑖) )2

[𝑆(�̂�]2+∑ 𝑊𝑖×𝑆𝑖(1−𝑆𝑖)/𝑁
≈ (

∑ 𝑊𝑖𝑆𝑖

𝑆(�̂�)
)

2

     (1) 

where 𝑊𝑖 was the area proportion for class 𝑖 over the globe, 𝑆𝑖 is the standard deviation of class 𝑖, 𝑆(�̂�) is the standard error 170 

of the estimated overall accuracy, 𝑝
𝑖
 is the expected accuracy of class 𝑖 and 𝑛𝑖 represents the sample size of the class 𝑖. 

First, the cropland-related validation samples were directly inherited from the Global Cropland reference data, which were 

first collected by worldwide crowdsourcing using the ground data-collection mobile app and then reviewed using high-

resolution imagery in the online image-interpretation tool to ensure that the samples were centered on agricultural fields. There 

are 22,823 cropland validation samples in the reference dataset (Xiong et al., 2017). MoreoverIn addition, because ofdue to  175 

the possible temporal interval between the acquisition of the reference data and the GLC_FCS30 products (2015), the reference 

samples were checked by three interpreters using the high-resolution imagery for 2015 in the Google Earth software, and were 

discarded if the judgements of three experts were in disagreement. After discarding wrong cropland points and resampling 

using the formula (1), a total of 6,917 cropland samples in 2015 were retained they were wrongly labeled according to the 

high-resolution imagery. 180 

https://doi.org/10.5281/zenodo.3505079
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Secondly, the GOFC_GOLD datasets contained several reference datasets which included: the Global Land Cover National 

Mapping Organizations (GLCNMO) 2008 training dataset, the VIIRS land-cover product Visible Infrared Imaging Radiometer 

Suite (VIIRS) dataset, the MODIS Land Cover (MCD12Q1) product System for Terrestrial Ecosystem Parameterization 

(STEP) dataset, the GlobCover2005 validation database, and the GLC2000 database (Herold et al., 2010). In this study, the 

GlobCover2005 and GLC2000 datasets were removed because they were too sparse and also because the temporal difference 185 

between them and our GLC_FCS30-2015 products was too greatbig. The GLCNMO, VIIRS and STEP datasets all contained 

numerous validation polygons, so we first rechecked each validation polygon against the high resolution imagery for 2015 and 

then randomly selected several validation points within each refined polygon.  

Specifically, as the GLCNMO used the UN LCCS (United Nations Land Cover Classification System), similar to our study 

(Table 2), and the VIIRS and STEP datasets followed the IGBP (International Geosphere Biosphere Programme) classification 190 

system, and as the land-cover types had consistent definitions in both the UN LCCS and IGBP classification systems (including 

land-cover ids 50, 60, 70, 80, 90, 130 and 200: see Table 2), the corresponding validation points were randomly collected from 

each polygon for all three datasets. For other land-cover types, where there were slight differences according to the two 

classification systems (120 and 150), the validation points were selected from within the GLCNMO polygons only. 

Thirdly, the FROM_GLC validation dataset was only used to complement our validation datasets because of the discrepancy 195 

between the classification systems (Li et al., 2017a). The lichens and mosses land-cover type (140) was missing in the 

GOFC_GOLD datasets, the shrubland polygons (120) in the GLCNMO dataset were too sparse, and the impervious surface 

polygons (190) in GOFC_GOLD were not suitable for validation of the impervious surfaces at a resolution of 30 m because 

the impervious surfaces within the polygons were usually broken and heterogeneous. Therefore, the shrubland, tundra and 

impervious samples in the FROM_GLC validation dataset were collected and then refined using the high-resolution imagery 200 

for 2015.  

Afterwards, the GLWD dataset, which had a spatial resolution of 30 arcsec and contained 12 lake and wetland classes (Lehner 

and Döll, 2004; Tootchi et al., 2019), was used to derive the validation samples for the water body (210) and wetland (180) 

classes. To further ensure confidence in these validation samples, they were rechecked by the interpreters using high-resolution 

Google Earth imagery for the year 2015.  205 

The time series of NDVI (Normalized Difference Vegetation index) values for each validation point, derived from the Landsat 

SR imagery time series, were used to help distinguish between the vegetation-related land-cover types, for example, evergreen 

shrubland (121) and deciduous shrubland (122), evergreen broadleaved/needleleaved forests (50, 70), and deciduous 

broadleaved/needleleaved forests (60, 80).  

Lastly, as the ice and snow cover generally varied with time, the time-series of NDSI (Normalized Difference Snow Index) 210 

values and high-resolution imagery were combined to collect high-confidence permanent ice and snow (220) samples. Overall, 

after the combination of the auxiliary datasets from multiple sources and careful rechecking by several interpreters, a total of 

44,043 validation samples for 24 fine land-cover types were finally collected – see Fig. 2. The global validation dataset is 

publicly available at http://doi.org/10.5281/zenodo.3551994 (Liu et al., 2019). 

http://doi.org/10.5281/zenodo.3551994
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Table 1. Multi-source auxiliary datasets used for collecting the global validation samples 215 

Dataset name Target land-cover id  

Global Cropland reference data 

https://croplands.org/app/data/search?page=1&page_size=200 

10, 11, 12, 20 

Global Observation for Forest Cover and Land Dynamics 

(GOFC_GOLD) reference data 

http://www.gofcgold.wur.nl/sites/gofcgold_refdataportal.php 

50, 60, 70, 80, 90, 120, 121, 122, 130, 150, 152, 

153, 200, 201, 202 

FROM_GLC global validation sample set 

http://data.ess.tsinghua.edu.cn  

120, 121, 122, 140, 190 

Global Lakes and Wetlands Database (GLWD)  

https://www.worldwildlife.org/pages/global-lakes-and-wetlands-

database  

180, 210 

NDVI time-series datasets 50, 60, 70, 80, 120, 121, 122 

NDSI time-series datasets 220 

Note: For details of the land-cover ids refer to Table 2 

 

Figure 2. The spatial distribution of the global validation datasets 

https://croplands.org/app/data/search?page=1&page_size=200
http://www.gofcgold.wur.nl/sites/gofcgold_refdataportal.php
http://data.ess.tsinghua.edu.cn/
https://www.worldwildlife.org/pages/global-lakes-and-wetlands-database
https://www.worldwildlife.org/pages/global-lakes-and-wetlands-database
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3 Methods 

3.1 Deriving training samples from the GSPECLib 220 

As explained in our previous studies (Zhang et al., 2019; Zhang et al., 2018), the Global Spatial Temporal Spectral Library 

(GSPECLib) was developed to store the reflectance spectra of different land- covers types within each 158.85 km×158.85 km 

geographic grid cell at a temporal resolution of eight days using time-series of the MCD43A4 NBAR and ESA CCI_LC land-

cover products. The reasons for selecting the CCI_LC and MCD43A4 NBAR products were that: 1) MODIS has similar 

spectral bands to the Landsat OLI sensor, and MCD43A4 NBAR has better correction for view-angle effects than other SR 225 

products such as MOD09A1, meaning that there is more consistency between MCD43A4 NBAR and Landsat 8 SR (at small 

view angles, i.e. < 15°) (Feng et al., 2012); and 2) the CCI_LC land-cover product has a detailed classification scheme 

containing 34 36 land-cover types, achieves   the required classification accuracy over homogeneous areas (75.38% overall), 

and has a relatively high spatial resolution of 300 m as well as a stable transition between the different annual land-cover 

products (Defourny et al., 2018; Yang et al., 2017b). In contrast to the previous GSPECLib that was used to store the reflectance 230 

spectra, the current GSPECLib was developed to derive training samples using the CCI_LC and MCD43A4 NBAR products.  

The fine classification system used in this study (Table 2) inherited that of the CCI_LC products after the  removal of four 

mosaic land-cover types (including mosaic natural vegetation and cropland, and mosaic forest and grass or shrubland) because, 

in the 30-m Landsat imagery, it is possible to clearly identify the mosaic land-cover types in the coarse resolution imagery 

(Fisher et al., 2018; Mishra et al., 2015). The three wetland land-cover types (tree/shrub/herbaceous cover; flooded; and 235 

fresh/saline or brackish water) were further combined into one wetland land-cover type as their high spatial and spectral 

heterogeneity as well as temporal dynamics made it difficult to identify the wetlands using remote sensing imagery (Gong et 

al., 2013; Ludwig et al., 2019). It should be noted that the CCI_LC products provide detailed land-cover results only for certain 

regions and not for the whole world because these detailed land-cover types made  use of  more  accurate  and regional  

information  –  where available  – to  define more LCCS classifiers and so to reach a higher level of detail in the legend 240 

(Defourny et al., 2018); therefore, the fine classification system in this study simultaneously contained the 16 LCCS land-

cover types (‘multiple-of-ten’ values such as 10, 20, 50, 60, …) and the 14 detailed regional land-cover types (other ‘non-ten’ 

values such as: 11, 12, 61, …). 
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Figure 3. The flowchart of deriving training samples by using multi-source datasets. 245 

Similar to our previous works (Zhang et al., 2019; Zhang et al., 2018), two four key steps were adopted to guarantee the 

confidence of each training point, as illustrated in the Figure 3. These included identifying spectrally homogeneous areas in 

both MODIS and Landsat imagery (spectrally homogeneous MODIS–Landsat areas), and refining and labeling the candidate 

areas with CCI_LC land-cover products. As in Zhang et al. (2019), the spectrally homogeneous MODIS–Landsat areas were 

again firstly identified based on the variance of a 3×3 local window using spectral thresholds of [0.03, 0.03, 0.03, 0.06, 0.03, 250 

and 0.03] for the six spectral bands (blue, green, red, NIR, SWIR1, and SWIR2) in the both MCD43A4 NBAR products and 

Landsat SR imagery (Feng et al., 2012). It should be noted that the year-composited Landsat SR data were downloaded from 

GEE platform with the sinusoidal projection. As the MCD43A4 NBAR is corrected for view-angle effects and Landsat has a 

small view angle of ±7.5°, the view-angle difference between MCD43A4 and Landsat SR could be considered negligible.  

Before the process of refinement and labeling, the CCI_LC land-cover products, which had geographical projections, were 255 

reprojected to the sinusoidal projection of MCD43A4. The spatial resolution of MCD43A4 was 1.67 times that of the CCI_LC 

land-cover product and the spectrally homogeneous MODIS–Landsat areas had been identified in the 3×3 local windows. Also, 

Defourny et al. (2018) and Yang et al. (2017b) found that the CCI_LC performed better over homogeneous areas; therefore, a 

larger local 5×5 window was applied to the CCI_LC land-cover product to refine and label each spectrally homogeneous 

MODIS-Landsat pixel. Specifically, the land-cover heterogeneity in the local 5×5 window was calculated as being the 260 

percentages of land-cover types occurring within the window (Jokar Arsanjani et al., 2016a). Aware of the possibility of 

reprojection and classification errors in the CCI_LC products, the land-cover heterogeneity threshold was empirically selected 

as approximately 0.95; in other words, if the maximum frequency of dominant land-cover types was less than 22 in the 5×5 

window, the point was excluded from GSPECLib. After a spatial–spectral filter had been applied to MCD43A4 and a 

heterogeneity filter to the CCI_LC product, the points that had homogeneous spectra and land-cover types were selected for 265 

storage in the updated GSPECLibretained. In addition, to further remove the abnormal points contaminating by classification 
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error in the CCI_LC, the homogeneous points were refined based on their spectral statistics distribution, in which the normal 

samples would form the peak of the distribution whereas the influenced samples were on the long tail (Zhang et al., 2018). It 

should be noted that the geographical coordinates of each homogeneous point were selected as being the center of the local 

window in the CCI_LC product because this had a higher spatial resolution than that of MCD43A4. 270 

Then, Zhu et al. (2016) and Jin et al. (2014) found that the distribution (proportional to area and equal allocation) and balance 

of training data had significant impact on classification results, and quantitatively demonstrated that the proportional approach 

usually achieve higher overall accuracy than the equal allocation distribution. In addition, Zhu et al. (2016) also suggested to 

extract a minimum of 600 training pixels and a maximum of 8000 training pixels per class for alleviating the problem of 

unbalancing training data. In this study, the proportional distribution and sample balancing parameters were used to resample 275 

these homogeneous points in each GSPECLib 158.85 km×158.85 km geographic grid cell. 

Table 2. The fine classification system and its relationships with other classification systems (LCCS and GlobeLand30 Level 0) 

Level 0 classification system LCCS classification system Id Fine classification system Id 

Cropland 
Rain-fed cropland 10 

Rain-fed cropland 10 

Herbaceous cover 11 

Tree or shrub cover (Orchard) 12 

Irrigated cropland 20 Irrigated cropland 20 

Forest 

Evergreen broadleaved forest 50 Evergreen broadleaved forest 50 

Deciduous broadleaved forest 60 

Deciduous broadleaved forest 60 

Closed deciduous broadleaved forest  61 

Open deciduous broadleaved forest  62 

Evergreen needleaved forest 70 

Evergreen needleaved forest 70 

Closed evergreen needleaved forest  71 

Open evergreen needleaved forest  72 

Deciduous needleaved forest 80 

Deciduous needleaved forest 80 

Closed deciduous needleaved forest  81 

Open deciduous needleaved forest  82 

Mixed-leaf forest  90 Mixed-leaf forest  90 

Shrubland Shrubland 120 

Shrubland 120 

Evergreen shrubland 121 

Deciduous shrubland 122 

Grassland Grassland 130 Grassland 130 

Wetlands Wetlands 180 Wetlands 180 

Impervious surfaces Impervious surfaces 190 Impervious surfaces 190 
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Bare areas 

Lichens and mosses 140 Lichens and mosses 140 

Sparse vegetation  150 

Sparse vegetation 150 

Sparse shrubland 152 

Sparse herbaceous cover 153 

Bare areas 200 

Bare areas 200 

Consolidated bare areas 201 

Unconsolidated bare areas 202 

Water body Water body 210 Water body 210 

Permanent ice and snow Permanent ice and snow 220 Permanent ice and snow 220 

Lastly, different from the previous spectrally based classification using MCD43A4 reflectance spectra (Zhang et al., 2019), 

the current GSPECLib contains numerous points that are homogeneous in terms of spectra and land-cover at a spatial resolution 

of 300 min this study, we proposed to use the Landsat reflectance spectra, derived by combining the global training samples 280 

and time-series Landsat imagery, to produce the global 30 m land-cover mapping. However, as the spatial resolution difference 

between Landsat SR (30 m) and homogeneous training samples (300 m), Although  stated that the spatial-spectral filter for 

MCD43A4 could ensure spectral homogeneity in both Landsat and MODIS imagery, the spatial resolution difference between 

homogeneous points (300 m) and Landsat SR (30 m) needed to be further considered. Thereforetherefore, the “metric centroid” 

algorithm proposed by Zhang and Roy (2017) was used to find the optimal and corresponding training points at a resolution 285 

of 30 m. Specifically, as each homogeneous point corresponded to an area equivalent to 10×10 Landsat pixels, the normalized 

distances (Eq. (12)) between each Landsat pixel and the mean of all 10×10 pixel areas were calculated. The optimal and 

corresponding training points at 30 m were selected as the ones having the minimum normalized distance, 

𝐷𝑖 = (𝜌𝑖 −
1

𝑛
∑ 𝜌𝑗

𝑛
𝑗=1 )

2

, 𝑖 = 1,2, … , 𝑛                                                                                                                                    (12) 

where 𝜌𝑖 is a vector representing the annually composited Landsat SR for 2015 and 𝑛 is the number of Landsat pixels within 290 

a 10×10 local window (defined as 100). If several 30-m pixels had the same minimum 𝐷𝑖  value then one pixel was selected at 

random. 

3.2 Land-cover classification on the GEE platform 

Despite the long-term plans for periodic systematic acquisitions and the improved accessibility of Landsat data through global 

archive consolidation efforts, the availability of Landsat data for persistently cloud-contaminated areas (the rainforest areas in 295 

Fig. 1) is less than ideal. To overcome the limitations of scene-level data quality, pixel-based compositing of Landsat data has 

increased in popularity since the opening of the USGS Landsat archive in 2008 (Griffiths et al., 2013; Woodcock et al., 2008). 

In particular, the seasonal-composite and metrics-composite are two widely used methods in large-area land-cover 

classification (Hansen et al., 2014; Massey et al., 2018; Teluguntla et al., 2018; Zhang and Roy, 2017). Recently, Azzari and 
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Lobell (2017) quantitatively demonstrated that season- and metric-based approaches had nearly the same overall accuracies 300 

for land-cover classification containing multiple land-cover types or for single cropland mapping. Also, the metrics-composite 

method proposed by the Hansen et al. (2014) can capture the phenology and land-cover changes without the need for any 

explicit assumptions or prior knowledge regarding the timing of the season; therefore, its main advantage is that it is applicable 

globally without the need for location-specific modifications.  

In this study, the time-series of Landsat SR imagery and corresponding spectral indexes, including NDVI (Normalized 305 

Difference Vegetation index) (Tucker, 1979), NDWI (Normalized Difference Water Index) (Xu, 2006), EVI (Enhanced 

Vegetation index) (Huete et al., 1999) and NBR (Normalized Burnt Ratio) (Miller and Thode, 2007), were composited into 

the 25th, 50th and 75th percentiles for each spectral band using the metrics-composite method. It should be noted that the 25th 

and 75th percentiles were used instead of the minimum and maximum values to minimize the effects of residual haze, cloud 

and shadows caused by the errors in the CFMask method. In addition, many researchers have found that the texture variables 310 

can significantly improve the classification accuracy for land-cover mapping (Li et al., 2017b; Rodriguez-Galiano et al., 2012; 

Wang et al., 2015; Zhu et al., 2012), for example, Zhu et al. (2012) found that the import of Landsat-derived texture features 

improved the land-cover accuracy from 86.86% to 92.69%. Therefore, the NIR band texture variables of variance, homogeneity, 

contrast, dissimilarity, entropy, and correlation were also added using GLCM (Gray Level Co-occurrence Matrix)-based 

method. Due to the great similarity between the six Landsat optical bands (Rodriguez-Galiano et al., 2012), and because of the 315 

high data dimensionality and the presence of the Hughes phenomenon when the training data were fixed , only the texture 

variables of the NIR bands were considered. In total, there were 16 spectral–texture metrics (𝑀𝑆−𝑇) for each percentile and a 

total of 48 metrics for each Landsat pixel. Except for these Landsat-based metrics, the three topographical variables of elevation, 

slope and aspect, derived from the DEM datasets, were also added. 

𝑀𝑆−𝑇 = [[𝜌𝑏 , 𝜌𝑔, 𝜌𝑟 , 𝜌𝑁𝐼𝑅 , 𝜌𝑆𝑊𝐼𝑅1, 𝜌𝑆𝑊𝐼𝑅2, 𝑁𝐷𝑉𝐼, 𝑁𝐷𝑊𝐼, 𝐸𝑉𝐼, 𝑁𝐵𝑅], [𝑣𝑎𝑟𝑖, ℎ𝑜𝑚𝑜, 𝑐𝑜𝑛𝑡, 𝑑𝑖𝑠𝑠, 𝑒𝑛𝑡𝑟, 𝑐𝑜𝑟𝑟]𝑁𝐼𝑅]              (23) 320 

Afterwards, the random forest (RF) classifier, comprised of a decision-tree classification using the bagging strategy (Breiman, 

2001) and an internal algorithm on the GEE platform, was used to combine the training data and aforementioned composited 

metrics for land-cover mapping. Many studies have demonstrated that the RF performs better with high-dimensional data, 

gives a higher classification accuracy and is less sensitive to noise and feature selection than other widely used classifiers such 

as the support vector machine, artificial neural network, and the classification and regression tree (Belgiu and Drăguţ, 2016; 325 

Du et al., 2015; Pelletier et al., 2016). Moreover, the RF classifier has only two adjustable parameters: the number of selected 

prediction variables (Mtry) and the number of decision trees (Ntree). Belgiu and Drăguţ (2016) and  also found explained that 

the classification accuracy was less sensitive insensitive to Ntree than to the these Mtry parameters, and Mtry was usually set 

to the square root of the number of input variablesso, . because ofdue to these advantages, the RF classifier is widely used in 

land-cover mapping (Gong et al., 2019; Gong et al., 2013; Zhang and Roy, 2017; Zhang et al., 2019). In this study, the values 330 

of Ntree and Mtry were set to 100 and the default value (the square root of the total number of input features), respectively. 
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There were usually two options for large-area or global land-cover classification including: global classification modelling 

(Gong et al., 2013; Teluguntla et al., 2018) and local adaptive classification modelling (Gong et al., 2020; Phalke et al., 2020; 

Zhang et al., 2020). First, the global classification strategy meant using all training samples to train a single classifier which 

was suitable for land-cover mapping in any areas. For example, Buchhorn et al. (2020) used 141,000 unique 100×100 m 335 

training locations to train a single random forest classifier to generate the Copernicus Global Land Cover layers. Then, the 

local adaptive classification modelling was firstly divided the globe into a lot of regions and then trained the corresponding 

local classifiers using the regional training samples, and the global land-cover map was spatially mosaiced by a lot of regional 

land-cover classification results. For example, Zhang and Roy (2017) split the United States into 561 159×159 km tiles and 

then trained 561 corresponding local adaptive random forest models to generate the regional land-cover results, and found the 340 

land-cover maps derived from the local adaptive models achieved higher accuracy performance than that of the single global 

model. Similarly, Radoux et al. (2014) also found that the local adaptive modelling allowed regional tuning of classification 

parameters to consider regional characteristics and increased the sensitivity of the training samples. In this study,Therefore, as 

illustrated in the previous works, the training samples in a small spatial grid (Landsat scene) might be not enough especially 

for sparse land-cover types, and the training samples from neighboring 3 by 3 tiles were also imported (Zhang and Roy, 2017; 345 

Zhang et al., 2019), as well as GEE platform had some limitations for computation capacity and memory. Therefore, after 

balancing the accuracy performance, computation efficiency and training sample volume, the local adaptive random forest 

models, which split the globe into approximately 948 5°×5° geographical tiles (approximately 3×3 Landsat scenes) similar to 

our previous work (Zhang et al., 2020), were applied to generate a lot of regional land-cover maps. In addition, to guarantee 

the spatially continuous transition over adjacent regional land-cover maps, the training samples from neighboring 3 × 3 tiles 350 

were used to train the random forest model and classify the central tile.  
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Figure 34. Overview of the 5°×5°geographical tiles used for local adaptive modelling. Three blue rectangular tiles were used for 

comparing GLC_FCS30 with other land-cover products. The background imagery came from the National Aeronautics and Space 

Administration (https://visibleearth.nasa.gov). 355 

3.3 Accuracy assessment 

Assessing the accuracy of land-cover products is an essential step in describing the quality of the products before they are used 

in related applications (Olofsson et al., 2013). In the past, although there has been no standard method of assessing the accuracy 

of land-cover maps, the error or confusion matrix has been widely considered to be the best measure (Foody and Mathur, 2004; 

Gómez et al., 2016; Olofsson et al., 2014). This is because it not only describes the confusion between various land-cover 360 

types but also provides quantitative metrics, including the user’s accuracy (U.A.) (measuring the commission error), producer’s 

accuracy (P.A.) (measuring the omission error), overall accuracy (O.A.) and kappa coefficient, to measure the performance of 

the products.  

In this study, since the GLC_FCS30 products contained 30 fine land-cover types, including 16 LCCS level-1 types and 14 

detailed level-2 types (Table 2), for a more comprehensive validation of the GLC_FCS30 products, the confusion matrices 365 

were divided into three parts: 1) a Level-0 confusion matrix containing 9 major land-cover types, similar to the GlobaLand30 

and FROM_GLC classification systems; 2) a LCCS Level-1 validation matrix containing 16 level-1 land-cover types, and 3) 

a LCCS Level-2 validation matrix containing 24 fine land-cover types after the removal of 6 coverage-related level-2 types 

(closed or open deciduous or evergreen or broadleaved/needle-leaved forests) from the classification system. These 6 coverage-

related types were removed because it was difficult to guarantee the confidence for these detailed land-cover types in the 370 

validation datasets. It should be noted that the relationship between the Level-0 validation system and the classification system 

used in this study was related to the work of Defourny et al. (2018) and Yang et al. (2017b). 

4 Results 

4.1 The GLC_FCS30-2015 land-cover map 

Fig. 4 5 illustrates the global 30-m land-cover map for the nominal year of 2015 (GLC_FCS30-2015) containing 30 fine land-375 

cover types and produced using the time-series of Landsat SR imagery and the local random forest classification models. 

Intuitively, the GLC_FCS30-2015 land-cover map accurately delineates the spatial distributions of various land-cover types 

and is consistent with the actual spatial patterns of global land cover: for example, areas of evergreen broadleaved forest are 

mainly distributed in tropical areas, including the Amazon rainforest, Africa rainforests and India–Malay rainforests, whereas 

bare areas are found in the African Sahara, Arabian Desert, Australian deserts and China-Mongolia desert areas. In addition, 380 

owing to importing the multi-temporal Landsat features for land-cover classification and using the training samples from 

neighboring 3 × 3 tiles to train the random forest model and classify the central tile, therefore, the stamping problem that 

occurs in single-date land-cover classification (Gong et al., 2013; Zhang et al., 2018) has been largely solved in the case of 

this global map, and the spatial transitions between adjacent geographical tiles are continuous and natural. Similarly, Zhang 
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and Roy (2017) used the time-series Landsat imagery and imported the neighboring training samples to generate the spatially 385 

consistent land-cover classification over the United States. 

 

Figure 45. GLC_FCS30-2015 land-cover map containing 30 fine land-cover types for the nominal year 2015, and the legend colormap 

inherited from the CCI_LC land-cover product. The legend colormap inherited from the ESA CCI_LC land-cover products 

(Defourny et al., 2018).  390 

Using the validation datasets described earlier, three confusion matrices (Tables 3, 4 & 5) corresponding to different validation 

systems were generated. Table 3 summarizes the accuracy metrics for 9 major land-cover types: overall, the GLC_FCS30-

2015 map achieved an overall accuracy of 82.5% and a kappa coefficient of 0.784. From the perspective of the producer’s 

accuracy, the forest type had the highest accuracy, followed by cropland, permanent ice and snow, bare areas and water body; 

wetland, shrubland and grassland had low accuracies. These results indicate that land-cover types that had relatively pure 395 

spectral properties or occupied a large proportion of the Earth’s surface usually had a relatively high accuracy. In contrast, the 

complex land-cover types were often confused with other types: for example, the spectra of the wetlands were especially 

complicated and easily confused with water body and vegetation (Ludwig et al., 2019). As a result, 16.7% and 9.5% wetland 

validation points were wrongly identified as vegetation (including cropland, forest and shrubland) and water body, respectively, 
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in Table 3. As for the user’s accuracy metric, the accuracy rankings were similar to those for the producer’s accuracy; however, 400 

in this case, the permanent ice and snow class achieved the highest accuracy.  

Table 3. The accuracy matrix for the GLC_FCS30-2015 land-cover product according to the Level-0 validation scheme and 

containing 9 major land-cover types 

 CRP FST SHR GRS BaA  WET  IMP  Wat PIS Total P.A. 

CRP 6085 338 163 150 70 10 83 18 0 6917 0.880  

FST 201 12869 156 54 37 364 2 5 0 13688 0.940  

SHR 444 575 3088 645 576 88 17 6 2 5441 0.568  

GRS 197 176 430 3100 514 171 14 7 0 4609 0.673  

BaA 150 109 403 420 7125 90 3 18 28 8346 0.854  

WET 78 56 24 23 72 585 15 89 4 946 0.618  

IMP 52 8 9 12 12 5 384 2 0 484 0.793  

Wat 48 85 13 7 92 32 3 1455 1 1736 0.838  

PIS 0 16 8 66 89 2 0 47 1648 1876 0.878  

Total 7255 14232 4294 4477 8587 1347 521 1647 1683 44043 
 

U.A. 0.839  0.904  0.719  0.692  0.830  0.434  0.737  0.883  0.979  
  

O.A. 0.825 

Kappa 0.784 

Note: CRP: cropland, FST: forest, SHR: shrubland, GRS: grassland, WET: wetlands, IMP: impervious surfaces, BaA: bare areas, Wat: water 

body, PIS: permanent ice and snow 405 

Tables 4 & 5 describe the performance of the GLC_FCS30-2015 land-cover map under the LCCS level-1 & 2 validation 

schemes, respectively. Compared with the values of the accuracy metrics in Table 3, the values in these tables are clearly lower 

because similar fine land-cover types were easily confused under these conditions. According to Table 4, the GLC_FCS30-

2015 achieved an overall accuracy of 71.4% and a kappa coefficient of 0.686. From the perspectives of the user’s accuracy 

and producer’s accuracy, there was significant confusion between the forest-related and cropland-related cover types. In order 410 

to intuitively display the degree of confusion for the 16 LCCS level-1 land-cover types, the confusion proportions for each of 

the land-cover types in Table 4 were calculated; these are shown in Fig. 56. First, it can be seen that the complicated land-

cover types were more easily misclassified: for example, mixed forest (90) and lichens and mosses (140) had the highest 

confusion proportions, with more than 60% of the validation samples being misclassified as other types. Secondly, there was 

a great deal of misclassification between similar land-cover types: for example, more than 20% of irrigated cropland samples 415 

(20) were misclassified as rainfed cropland (10), approximately 30% of deciduous needle-leaved forest samples (80) were 

misclassified as evergreen needle-leaved forest (70), and the confusion between sparse vegetation (150) and bare areas (200) 

was also considerable.  
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Figure 56. The confusion proportions for each of the land-cover types in the LCCS level-1 validation scheme. 420 

In the Table 5, it can be seen that GLC_FCS30-2015 achieved an overall accuracy of 68.7% and kappa coefficient of 0.662. It 

should be noted that the yellow marks in Table 5 also represented they were correctly classified because GLC_FCS30-2015 

simultaneously consisted of 16 LCCS land-cover types (the ‘tens’ values such as 10, 20, 50 etc.) and 14 detailed regional land-

cover types (the ‘non-ten’ values such as: 11, 12, 61 etc.) which were only present in some regions (Defourny et al., 2018). 

Also, the 14 detailed land-cover types simultaneously belonged to the corresponding LCCS land-cover types according to the 425 

Table 2; similar operators for these detailed land-cover types can also be found in the works of Defourny et al. (2018) (see 

Table 3-7) and Bontemps et al. (2010). Under the LCCS level-2 fine validation system, the accuracy metrics were basically 

consistent with those found for the LCCS level-1 validation scheme. Fig. 6 7 illustrates the confusion proportions between 

each of the fine land-cover types. In contrast to the results discussed above, the degrees of confusion for these fine land-cover 

types is more significant: for example, most tree-covered cropland (12) samples are misclassified as herbaceous-covered 430 

cropland (11), and the confusion between the LCCS land-cover types (the ‘tens’ values) and the corresponding detailed land-

cover types (the ‘non-ten’ values) is more obvious. 
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Figure 67. The confusion proportions for each of the land-cover types in LCCS level-2 validation scheme. 
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Table 4. The accuracy matrix for the GLC_FCS30-2015 land-cover product according to the LCCS level-1 validation scheme. 435 

 10 20 50 60 70 80 90 120 130 140 150 180 190 200 210 220 Total P.A. 

10 5305 86 32 281 12 1 4 163 146 0 47 10 66 23 5 0 6181 0.858  

20 213 481 0 8 0 0 0 0 4 0 0 0 17 0 13 0 736 0.654  

50 65 0 2830 152 82 0 28 17 1 0 0 47 0 0 0 0 3222 0.878  

60 82 3 325 3010 175 58 189 99 28 0 10 44 1 1 2 0 4027 0.747  

70 10 0 12 136 2469 34 133 15 7 1 10 192 1 2 3 0 3025 0.816  

80 2 0 0 59 283 545 31 11 2 0 11 29 0 0 0 0 973 0.560  

90 31 8 67 840 604 24 783 14 16 0 1 52 0 1 0 0 2441 0.321  

120 402 42 64 395 57 39 20 3088 645 21 422 88 17 133 6 2 5441 0.568  

130 183 14 9 94 47 7 19 430 3100 311 128 171 14 75 7 0 4609 0.673  

140 0 0 0 1 13 12 0 35 39 93 83 5 0 12 0 0 293 0.317  

150 47 8 0 75 0 3 0 254 218 147 1540 13 0 692 4 26 3027 0.509  

180 64 14 12 12 22 8 2 24 23 12 17 585 15 43 89 4 946 0.618  

190 38 14 1 1 4 1 1 9 12 0 5 5 384 7 2 0 484 0.793  

200 94 1 0 2 3 0 0 114 163 14 415 72 3 4129 14 2 5026 0.822  

210 33 15 3 4 57 17 4 13 7 49 28 32 3 15 1455 1 1736 0.838  

220 0 0 2 6 6 0 2 8 66 2 13 2 0 74 47 1648 1876 0.878  

Total 6569 686 3357 5076 3834 749 1216 4294 4477 650 2730 1347 521 5207 1647 1683 44043  

U.A. 0.808  0.701  0.843  0.593  0.644  0.728  0.644  0.719  0.692  0.143  0.564  0.434  0.737  0.793  0.883  0.979    

O.A. 0.714  

Kappa 0.686  
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Table 5. The accuracy matrix for the GLC_FCS30-2015 land-cover product according to the LCCS level-2 validation scheme. 

  10 11 12 20 50 60 70 80 90 120 121 122 130 140 150 152 153 180 190 200 201 202 210 220 Total P.A. 

10 902 747 19 54 15 68 9 1 4 58 0 5 61 0 7 0 11 9 40 3 8 0 5 0 2026 0.823  

11 823 2654 5 17 14 212 2 0 0 93 0 0 85 0 5 0 4 0 17 1 0 0 0 0 3932 0.884  

12 91 48 16 15 3 1 1 0 0 3 0 4 0 0 2 0 18 1 9 2 9 0 0 0 223 0.480  

20 160 53 0 481 0 8 0 0 0 0 0 0 4 0 0 0 0 0 17 0 0 0 13 0 736 0.654  

50 29 22 14 0 2830 152 82 0 28 1 15 1 1 0 0 0 0 47 0 0 0 0 0 0 3222 0.878  

60 67 14 1 3 325 3010 175 58 189 71 3 25 28 0 10 0 0 44 1 0 1 0 2 0 4027 0.747  

70 4 6 0 0 12 136 2469 34 133 14 0 1 7 1 7 3 0 192 1 2 0 0 3 0 3025 0.816  

80 0 2 0 0 0 59 283 545 31 10 1 0 2 0 11 0 0 29 0 0 0 0 0 0 973 0.560  

90 14 14 3 8 67 840 604 24 783 14 0 0 16 0 1 0 0 52 0 1 0 0 0 0 2441 0.321  

120 240 131 21 41 28 359 54 22 20 2526 4 242 623 21 370 12 21 83 17 115 10 2 6 2 4970 0.558  

121 4 3 1 1 35 17 3 0 0 50 91 2 0 0 0 0 0 0 0 0 0 0 0 0 207 0.681  

122 0 2 0 0 1 19 0 17 0 51 3 119 22 0 18 1 0 5 0 6 0 0 0 0 264 0.644  

130 106 77 0 14 9 94 47 7 19 374 0 56 3100 311 94 5 29 171 14 65 1 9 7 0 4609 0.673  

140 0 0 0 0 0 1 13 12 0 24 0 11 39 93 82 1 0 5 0 10 2 0 0 0 293 0.317  

150 25 3 0 8 0 74 0 0 0 170 0 61 198 139 1325 0 8 2 0 653 0 1 3 26 2696 0.491  

152 5 2 0 0 0 1 0 3 0 12 0 11 15 8 22 60 3 11 0 13 16 0 1 0 183 0.328  

153 7 5 0 0 0 0 0 0 0 0 0 0 5 0 38 3 81 0 0 5 4 0 0 0 148 0.547  

180 31 33 0 14 12 12 22 8 2 18 1 5 23 12 13 4 0 585 15 42 1 0 89 4 946 0.618  

190 15 21 2 14 1 1 4 1 1 8 0 1 12 0 4 0 1 5 384 6 1 0 2 0 484 0.793  

200 42 49 2 1 0 1 3 0 0 69 0 40 162 10 345 12 52 68 3 3643 122 167 14 1 4806 0.818  

201 1 0 0 0 0 1 0 0 0 1 0 1 1 4 3 0 2 2 0 24 62 1 0 1 104 0.827  

202 0 0 0 0 0 0 0 0 0 2 0 1 0 0 1 0 0 2 0 11 2 97 0 0 116 0.931  

210 18 15 0 15 3 4 57 17 4 7 0 6 7 49 28 0 0 32 3 15 0 0 1455 1 1736 0.838  

220 0 0 0 0 2 6 6 0 2 8 0 0 66 2 13 0 0 2 0 72 2 0 47 1648 1876 0.878  

Total 2584 3901 84 686 3357 5076 3834 749 1216 3584 118 592 4477 650 2399 101 230 1347 521 4689 241 277 1647 1683 44043  

U.A. 0.703  0.872  0.417  0.701  0.843  0.593  0.644  0.728  0.644  0.733  0.805  0.610  0.692  0.143  0.577  0.594  0.387  0.434  0.737  0.784  0.763  0.953  0.883  0.979    

O.A. 0.687  

Kappa 0.662  
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4.2 Comparison between GLC_FCS30-2015 and other land-cover products 

4.2.1 Comparison between three global 30 m land-cover products 440 

Based on the global validation datasets and the Level-0 validation scheme, the classification accuracy of GLC_FCS30-2015 

was compared to other two global 30-m land-cover products (FROM_GLC-2015 and GlobeLand30-2010), as listed in the 

Table 6. Overall, the GLC_FCS30-2015 achieved the best accuracy performance of 82.5% against the FROM_GLC-2015 of 

59.1% and the GlobeLand30-2010 of 75.9%. Specifically, the GLC_FCS30-2015 gave better performance than GlobeLand30-

2010 in shrublands, grasslands and impervious surfaces, and achieved similar accuracies with the GlobeLand30 in most land-445 

cover types (cropland, forest, bare land, water body and permanent ice and snow). Compared to the FROM_GLC-2015 

products, the GLC_FCS30-2015 and GlobeLand30-2010 had higher accuracy for most land-cover types especially for the 

cropland and forest. 

Table 6. The accuracy metrics of three global 30 m land-cover products using the validation datasets. 

    CRP FST SHR GRS BaA  WET IMP  Wat PIS O.A. Kappa 

GLC_FCS30-2015 
P.A. 0.880  0.940  0.568  0.673  0.854  0.618  0.793  0.838  0.878  

0.825 0.784 
U.A. 0.839  0.904  0.719  0.692  0.830  0.434  0.737  0.883  0.979  

FROM_GLC-2015 
P.A. 0.477  0.749  0.294  0.484  0.696  0.033  0.459  0.781  0.647  

0.591 0.499 
U.A. 0.747  0.771  0.500  0.263  0.638  0.484  0.771  0.346  0.962  

GlobeLand30-2010 
P.A. 0.882  0.926  0.323  0.586  0.725  0.526  0.814  0.891  0.908  

0.759 0.704 
U.A. 0.887  0.905  0.617  0.367  0.776  0.384  0.889  0.908  0.992  

Note: CRP: cropland, FST: forest, SHR: shrubland, GRS: grassland, WET: wetlands, IMP: impervious surfaces, BaA: bare areas, Wat: water 450 

body, PIS: permanent ice and snow 

Similarly, Kang et al. (2020) also analysed the performance of three global land-cover products in the complicated tropical 

rainforest region (Indonesia) using exceeding 2000 verification points, and validation results indicated that the GLC_FCS-

2015 achieved the highest accuracy of 65.59%, followed by the GlobeLand30-2010 of 61.65% and FROM_GLC-2015 of 

57.71%, specifically, all the three land-cover products had greater performance for forests and impervious surfaces, and the 455 

cropland and wetland mapping accuracy of GLC_FCS30-2015 were higher than that of the other two products (Kang et al., 

2020).  

Except for the quantitative assessment, three 5°×5° typical regions (the blue rectangles in Fig. 4) and their local enlargements, 

covering various climate and landscape environment, were selected to directly illustrate the performance of each land-cover 

product in Fig. 78. Overall, there was higher spatial consistency between the GLC_FCS30-2015 and GlobeLand30-2010 460 

products, both of them accurately depicted the spatial distributions of different land-cover types. As for the FROM_GLC-2015 

products, it was different from other two products in spatial distribution, for example, the areas (in the Figure 7II8II), identified 

by FROM_GLC-2015 as grassland and shrubland, were labelled as cropland and forest in the GLC_FCS30-2015 and 

GlobeLand30-2010. In addition, from the perspective of land-cover diversity, it was obvious that the GLC_FCS30-2015 

products had significant advantages over other two products which made the regional land-cover maps of GLC_FCS30-2015 465 
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contain diverse colour legends. In more detail, as for the cropland-prevalent areas (Fig. 7I8I-a and III-c), the spatial distribution 

of GLC_FCS30-2015 was similar to the GlobeLand30-2010 products, however, the FROM_GLC-2015 had omission error for 

impervious surfaces (Fig. 7I8I-a) and misidentified some cropland pixels as grassland (Fig. 7I8I-a) and forest (Fig. 7III8III-c). 

Secondly, for the undulating agricultural and forestry areas (Fig. 7I8I-b, 7I8I-c, 7II8II-b, 7III8III-a), three land-cover products 

captured the spatial patterns of various land-cover types, for example, the cropland usually located in the flat areas, and the 470 

mountain areas mainly contained the forest and grassland.  Lastly, in the woodland areas where some forests are reclaimed as 

farmland (Fig. 7II8II-a), both the GLC_FCS30-2015 and GlobeLand30-2010 accurately delineated the tracks of human 

interference, and the GLC_FCS30-2015 had larger cropland areas than that of GlobeLand30-2010 which also demonstrated 

the increasing of reclamation over the 5-years interval. Different from other two products, the FROM_GLC-2015 identified 

these reclaimed areas as the grassland pixels and some forest pixels also labelled as grassland which made the FROM_GLC-475 

2015 had largest grassland area in the Fig. 78-IIa. 
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Figure 78. Comparison between GLC_FCS30-2015 and other land-cover products (CCI_LC-2015 products developed by (Defourny 480 
et al., 2018), the MCD12Q1-2015 developed by (Friedl et al., 2010), the FROM_GLC-2015 developed by (Gong et al., 2013) and the 

GlobeLand30 developed by (Chen et al., 2015)) in three 5°×5° regions. In each case, 2–3 local enlargements (a-c) with the size of 

40km×60 km were used to reveal further details of each land-cover product. 
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4.2.2 The comparisons between GLC_FCS30-2015 with CCI_LC and MCD12Q1 land-cover products 

Except for comparing with global 30-m land-cover products, two widely used global products (CCI_LC-2015 and MCD12Q1), 485 

which both contained diverse land-cover types, were also selected to comprehensively analyse performance of the 

GLC_FCS30-2015. It should be noted that the global validation dataset (section 2.3) was collected to validate the 30-m land-

cover products, so the quantitative assessment was skipped for the coarse resolution land-cover products of CCI_LC-2015 and 

MCD12Q1-2015. Fig. 7 8 intuitively compared the performances of GLC_FCS30-2015, CCI_LC-2015 and MCD12Q1-2015 

products over three 5°×5° typical regions and corresponding local enlargements. Overall, the spatial consistency of 490 

GLC_FCS30-2015 and CCI_LC-2015 was higher than that of MCD12Q1-2015 because the GLC_FCS30-2015 and CCI_LC-

2015 shared same classification system. For example, the savannas pixels (tree cover 10%-30%) (Friedl et al., 2010) in the 

MCD12Q1-2015 were labelled as broadleaved forest in the other two products (Fig. 7II8II).  

In addition, although CCI_LC-2015 was the most important auxiliary dataset used for developing GLC_FCS30-2015, 

intuitively, GLC_FCS30-2015 performed better than CCI_LC-2015 especially in the Fig. 7III. Specifically, the CCI_LC-2015 495 

obviously overestimated croplands over mountain areas whereas GLC_FCS30-2015 was largely consistent with other products 

(including MCD12Q1, FROM_GLC and GlobeLand30), and accurately depicted the land-cover and terrain patterns in Fig.7 

III. Similarly,  used the MCD12Q1 500-m land-cover product to produce a 30-m land-cover product, and the results also 

demonstrated that the derived 30-m land-cover product had a higher accuracy than the MCD12Q1 500-m coarse resolution 

products. 500 

Lastly, it can be found that the GLC_FCS30-2015 had a great advantage in spatial details compared to the CCI_LC-2015 and 

MCD12Q1-2015 products over these local enlargements in Fig. 78. For example, the river boundary in the Fig. 7I8I-a, the 

fragmented impervious surfaces in the Fig. 7I8I-a, 7I8I-b and 7II8II-b, and the terrain changes in Fig. 7I8I-c, II-b and III-a, 

were more accurately captured in the GLC_FCS30-2015, while two coarse land-cover products (CCI_LC-2015 and 

MCD12Q1-2015) usually lost these details. Therefore, compared with CCI_LC-2015 and MCD12Q1-2015 land-cover 505 

products, the GLC_FCS30-2015 not only had obvious advantages in spatial details, but also achieved a higher accuracy and 

corrected a lot of misclassification in the CCI_LC-2015 land-cover products. 

5 Discussion 

5.1 Advantages of GLC_FCS30 using huge training samples 

Global land-cover classification is a challenging and labor-intensive task because of the large-volume of data pre-processing 510 

involved, the high-performance computing requirements, and the difficulty of collecting training data that allows the 

classification models to be both locally reliable and globally consistent (Friedl et al., 2010; Giri et al., 2013; Zhang and Roy, 

2017). Thanks to the parallel computing ability and efficient and free access to multi-petabyte, analysis-ready remote-sensing 

data that is available on the GEE platform (Gorelick et al., 2017), the main challenge lies in collecting sufficient reliable 
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training data. In this study, we proposed to extend our previous work on SPECLib-based classifications (Zhang et al., 2019; 515 

Zhang et al., 2018) and to derive global high-quality training data from the updated GSPECLib for global land-cover mapping 

(Section 3.1). Figure 8 9 illustrates the number of global training samples in each 1°×1° geographical grid cell. The statistics 

are generally consistent with the land-cover patterns shown in Fig. 45: for example, in Greenland, the Sahara Desert and the 

Amazon, where there are relatively uniform land-cover types, there are fewer training samples; in regions of land-cover type 

transition such as central Africa, southeast Asia and central America, the number of training samples is higher. In addition, in 520 

contrast to other studies that used manual interpretation of samples for global land-cover mapping (Friedl et al., 2010; Gong 

et al., 2013; Tateishi et al., 2014), the total number of training samples in this study reaching 27,858,258exceeded 20 million 

points and so was tens to hundreds of times higher than that used in these global land-cover classifications.  

To demonstrate the importance of sample sizes, 200,000 points, approximately 1% of total training samples, were randomly 

selected to quantitatively analyse the relationship between overall accuracy and the corresponding sample size. Specifically, 525 

we used the 10-fold cross-validation method to split these points into training and validation samples, and then gradually 

increase the size of training samples with the step of 2% and repeat the process for 100 times. Figure 10a illustrated the overall 

accuracy (Level-0 and LCCS level-1 classification systems) increased for the increased percentage of training samples. It was 

found that the overall accuracy rapidly increased when the percentage of training samples increased from 1% to 30%, while it 

remained relatively stable when the percentage of training samples was higher than 30%. Therefore, the appropriate sample 530 

size should be larger than the 60,000 (30% of the total input points), fortunately, the local training samples in this study almost 

all exceeded the 60,000 because the training samples from neighboring 3 × 3 tiles were used to train the random forest model 

and classify the central tile. Similarly, Foody (2009) also found that the sample size had a positive relationship with the 

classification accuracy up to the point where the sample size was saturated, and Zhu et al. (2016) suggested that the optimal 

size was a total of 20,000 training pixels to classify an area about the size of a Landsat scene. 535 
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Figure 89. The number of global training samples in each 1°×1° geographical grid cell. 

Secondly, many studies have demonstrated that the sample outliers had influence on the land-cover classification accuracy 

(Mellor et al. 2015, Pelletier et al. 2017). In this study, using previous 200,000 training points, we further analyzed the 

relationship between overall classification accuracy and erroneous training sample by randomly changing the category of a 540 

certain percentage of these samples and using the “noisy” samples to train the random forest classifier. Similar to the previous 

quantitative analysis of sample size, we gradually increased the percentage of erroneous training samples with the step of 2% 

and then repeat the process for 100 times. Figure 10b showed that the overall accuracy of two classification systems (level-0 

and LCCS level-1) generally decreased with the increasing of percentage of erroneous sample points. It remained relatively 

stable when the percentage of erroneous training sample was controlled within 30%, and decreased obviously after exceeding 545 

the threshold of 30%. Meanwhile, the overall accuracy of simple classification system was more susceptible to the erroneous 

samples than that of the LCCS classification system in the Figure 10b. Similarly, many scientists have also demonstrated that 

a small number of erroneous training data have little effect on the classification results (Gong et al., 2019; Mellor et al., 2015; 

Pelletier et al., 2016; Zhu et al., 2016): for example, Mellor et al. (2015) found the error rate of the RF classifier was insensitive 

to mislabeled training data, and the overall accuracy decreased from 78.3% to 70.1% when the proportion of mislabeled 550 

training data increased from 0% to 25%. Similarly, Pelletier et al. (2016) found the RF classifier was little affected by low 

random noise levels up to 25%–30% but that the performance dropped at higher noise levels.  
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Figure 10. Sensitivity analysis showing the relations between the overall classification accuracy and the percentage of total samples 

and erroneous sample points. 555 

Defourny et al. (2018) demonstrated that CCI_LC achieved an overall accuracy of 75.38% for homogeneous areas. In this 

study, some measures have been taken to guarantee the confidence of training samples. Some complicated land-cover types 

were then further optimized to improve the accuracy of the training data; for example, impervious surfaces were imported as 

an independent product and directly superimposed over the final global land-cover classifications, the three wetland types were 

merged into an overall wetland land-cover type, and four mosaicked land-cover types were removed (Table 2). After 560 

optimizing these complicated land-cover types, the overall accuracy of CCI_LC reached 77.36% for homogeneous areas based 

on the confusion matrix of Defourny et al. (2018). In addition, other measures, including the spectral filters applied to the 

MCD43A4 NBAR data, the land-cover homogeneity constraint for CCI_LC land-cover products, and the “metric centroid” 

algorithm for removing the resolution differences, were used to further improve confidence in the training data. Therefore, a 

part of training samples (exceeding 18000 points) in the Section 3.1previous analysis were randomly selected to quantitatively 565 

evaluate the confidence of the global training dataset, after pixel-by pixel interpretation and inspection,  the validation results 

indicated that these samples had satisfactory performance with the overall accuracy of 91.7% for the Level-0 classification 

system and 82.6% for Level-1 LCCS classification system. In addition, the performances of the GLC_FCS30-2015 land-cover 

products shown in Fig. 4-7 also partly demonstrated the reliability of the global training data. In addition, concerning the 

potential outliers in the derived training data, many scientists have demonstrated that a small number of training data have 570 

little effect on the classification results : for example,  found the error rate of the RF classifier was insensitive to mislabeled 

training data, and the overall accuracy decreased from 78.3% to 70.1% when the proportion of mislabeled training data 

increased from 0% to 25%. Similarly, affected by low random noise levels up to 25%–30% but that the performance dropped 

at higher noise leveTherefore, it can be assumed that the training data, derived by combining the MCD43A4 NBAR and 

CCI_LC land-cover products,from the updated GSPECLib were accurate and suitable for large-area land-cover mapping at 30 575 

m. 

Lastly, the sample balance is also an important factor in land-cover classification especially for rare land-cover types, because 

unbalanced training data would cause the under-fitting of classification model for rare land-cover types and further degrade 
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the classification accuracy. In this study, we used the sample balancing parameters (a minimum of 600 training pixels and a 

maximum of 8000 training pixels per class), based on the work of Zhu et al. (2016), to alleviate the problem of unbalancing 580 

training data when deriving training samples from the GSPECLib in the Section 3.1, therefore, Figure 8 II and III illustrated 

that the water body, which was the rare land-cover type in the whole regions, have been accurately captured in the 

corresponding enlargement figures. 

5.2 Uncertainty and Limitations limitations of the GLC_FCS30-2015 land-cover map 

Except for the training sample uncertainties (including sample size, outliers) in the section 5.1, the land-cover heterogeneity 585 

also had a significant effect on the classification accuracy (Calderón-Loor et al., 2021; Wang and Liu, 2014). To clarify the 

relationship between land-cover heterogeneity and overall accuracy of the GLC_FCS30-2015 land-cover map, we firstly used 

the Shannon entropy to calculate the spatial heterogeneity using the GLC_FCS30_2015 at spatial resolution of 0.05°×0.05° 

(Eq. 4). Figure 11a illustrated the land-cover heterogeneity of GLC_FCS30 land-cover map. Intuitively, the highly 

heterogeneous regions mainly corresponded to the climatic transition zone especially for the sparse vegetation areas. Then, we 590 

combined the land-cover heterogeneity and global validation datasets (in the Section 2.3) to calculate the mean accuracy at 

different heterogeneity illustrated in Figure 11b. It could be found that the classification accuracy had negative relationship 

with land-cover heterogeneity with the slope of -0.3347, namely, the GLC_FCS30 had better performance in the homogeneous 

areas than that of the heterogeneous areas. Similarly, Defourny et al. (2018) also demonstrated that the CCI_LC land-cover 

products achieved the higher accuracy of 77.36% in the homogeneous areas than that of 75.38% in the all areas.   595 

𝐻 = − ∑ (𝑃𝑖 × 𝑙𝑜𝑔2𝑃𝑖)𝑛
𝑖=1   (4) 

 

Figure 11. The land-cover heterogeneity of GLC_FCS30 land-cover map at a spatial resolution of 0.05°, and the relationship between 

land-cover heterogeneity and overall accuracy using the global validation datasets.  

The CCI_LC map used fine classification system in some region but used coarse classification system in other regions 600 

(Defourny et al. 2018). Because the training samples were derived from the CCI_LC land-cover product, our GLC_FCS30 

product inherited these characteristics. Therefore, aAlthough the GLC_FCS30-2015 provided a global 30-m land-cover 

product with 30 land-cover types (Table 2), the 14 LCCS level-2 detailed land-cover types were applied only for certain regions, 

rather than globallyglobe, illustrated in the Figure 12. In future work, quantitative retrieval models and multi-source datasets 
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should be combined to improve the diversity of global land-cover types in GLC_FCS30-2015 and further avoid the existence 605 

of global LCCS classification system and detailed regional land-cover classification system. This could be done, for example, 

by using the Fractional Vegetation Cover (FVC) estimation models (Yang et al., 2017a) to retrieve the annual maximum FVC 

and then distinguish between open and closed broadleaved or needleleaved forests, combining the time-series NDVI to split 

the evergreen and deciduous shrublands, as well as integrating the GLCNMO training dataset to further distinguish 

consolidated from unconsolidated bare areas (Tateishi et al., 2014; Tateishi et al., 2011).  610 

 

Figure 12. The spatial distributions of 14 detailed regional land-cover types in the GLC_FCS30-2015 products. 

Due to the differences in classification system, spatial resolution and mapping year, the comparisons between GLC_FCS30-

2015 and other land-cover products described in Section 4.2 focused on a qualitative analysis over three regions only. The 

comparisons illustrated that GLC_FCS30-2015 had great advantages compared to CCI_LC-2015 and MCD12Q1-2015 in 615 

terms of spatial detail and had a greater diversity of land-cover types than FROM_GLC-2015 and GlobeLand30-2010; however, 

quantitative metrics for measuring the advantages and disadvantages of GLC_FCS30-2015 compared to other land-cover types 

was missing. Therefore, our future work will aim to further optimize the global validation datasets and combine more prior 

validation datasets so that the performance of these land-cover products can be assessed using common validation data. For 

example, Yang et al. (2017b) used common validation data to quantitatively assess the accuracy of seven global land-cover 620 

datasets over China, and Tsendbazar et al. (2015) analyzed metadata information from 12 existing GLC reference datasets and 

assessed their characteristics and potential uses in the context of 4 GLC user groups.  

6 Data availability 

The GLC_FCS30-2015 product generated in this paper is available at https://doi.org/10.5281/zenodo.3986871 (Liu et al., 

2020). The global land-cover products are grouped by 948 5°×5° regional tiles in the GEOTIFF format, which are named 625 
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“GLCFCS30_E/W**N/S**.tif”, where ‘E/W**N/S**’ explains the longitude and latitude information of upper left corner of 

each regional land-cover map. Further, each image contains a land-cover label band ranging from 00-255, and the projection 

relationship between label values and corresponding land-cover types have been explained in the Table 2 (Section 3.1) and the 

invalid fill value is labeled as 0 and 250.  

The corresponding validation dataset, producing by integrating existing prior datasets, high-resolution Google Earth imagery, 630 

time-series of NDVI values for each vegetated point and visual checking by several interpreters, is available at 

http://doi.org/10.5281/zenodo.3551994 (Liu et al., 2019). 

7 Conclusion 

In this study, a global land-cover product for 2015 that had a fine classification system (containing 16 global LCCS land-cover 

types as well as 14 detailed and regional land-cover types) and 30-m spatial resolution (GLC_FCS30-2015) was developed by 635 

combining time-series of Landsat imagery and global training data derived from multi-source datasetsGSPECLib. Specifically, 

by combining MCD43A4 NBAR, CCI_LC land-cover products and Landsat imageryusing GSPECLib, the difficulties of 

collecting sufficient reliable training data were easily solved and the GSPECLib fine classification system was also made use 

of. Local adaptive random forest models, which allow regional tuning of classification parameters to consider regional 

characteristics, were applied to combine the time-series of Landsat SR imagery and corresponding training data to produce 640 

numerous, accurate regional land-cover maps.  

The GLC_FCS30-2015 product was validated using 44,043 validation samples which were generated by combining many 

prior validation datasets and visual interpretation of high-resolution imagery. The validation results indicated that 

GLC_FCS30-2015 achieved an overall accuracy of 82.5% and a kappa coefficient of 0.774 for the Level-0 validation system 

(similar to that of GlobeLand30, which contains 9 major land-cover types), as well as overall accuracies of 71.4% and 68.7% 645 

and kappa coefficients of 0.686 and 0.662 for the LCCS level-1 (containing 16 land-cover types) and LCCS level-2 (containing 

24 land-cover types) validation systems, respectively. The qualitative comparisons between GLC_FCS30-2015 and other land-

cover products (CCI_LC, MCD12Q1, FROM_GLC and GlobeLand30) indicated that GLC_FCS30-2015 had great advantages 

over CCI_LC-2015 and MCD12Q1-2015 in terms of spatial detail and had a greater diversity of land-cover types than 

FROM_GLC-2015 and GlobeLand30-2010. The quantitative comparisons against other two 30-m land-cover products 650 

(FROM_GLC and GlobeLand30) indicated that GLC_FCS30-2015 achieved the best overall accuracy of 82.5% against 

FROM_GLC-2015 of 59.1% and GlobeLand30-2010 of 75.9%.Therefore, it was concluded that GLC_FCS30-2015 is a 

promising accurate land-cover product with a fine classification system and can provide important support for numerous 

regional or global applications. 
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