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Highlights: 22 

• A multi-scale daily SPEI dataset was developed across the mainland China from 23 

1961 to 2018. 24 

• The daily SPEI dataset can be used to identify the start and end day of the drought 25 

event. 26 

• The developed daily SPEI dataset in this study is free, open and persistent publicly 27 

available. 28 

 29 
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Abstract:  45 

The monthly Standardized Precipitation Evapotranspiration Index (SPEI) can be used 46 

to monitor and assess drought characteristics with one month or longer drought 47 

duration. Based on data from 1961 to 2018 at 427 meteorological stations across the 48 

mainland China, we developed a daily SPEI dataset to overcome the shortcoming of 49 

coarse temporal scale of monthly SPEI. Our dataset not only can be used to identify 50 

the start and end dates of drought events, but also can be used to investigate the 51 

meteorological, agricultural, hydrological and socioeconomic droughts with different 52 

time scales. In the present study, the SPEI data with 3-month (about 90 days) scale 53 

were taken as a demonstration example to analyze spatial distribution and temporal 54 

changes in drought conditions for the mainland China. The SPEI data with 3-month 55 

(about 90 days) scale showed no obvious intensifying trends in terms of severity, 56 

duration, and frequency of drought events from 1961 to 2018. Our drought dataset 57 

serves as a unique resource with daily resolution to a variety of research communities 58 

including meteorology, geography, and natural hazard studies. The daily SPEI dataset 59 

developed is free, open and persistent publicly available from this study. The dataset 60 

with daily SPEI is publicly available via the figshare portal (Wang et al, 2020c), with 61 

https://doi.org/10.6084/m9.figshare.12568280. 62 
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1. Introduction  68 

Drought is one of the most destructive natural hazards worldwide. It can lead to 69 

adverse effects to the ecological system, industrial production, agricultural practices, 70 

drinking water availability, hydrological processes and water quality (Bussi and 71 

Whitehead, 2020; Lai et al., 2019; Vicente-Serrano et al., 2012; Wang et al., 2014; 72 

Wang et al., 2017). Drought has brought about ca. 221 billion dollars loss during 1960 73 

to 2016 reported by the International Disaster Database (EM-DAT), and the drought 74 

events in South Asia have influenced over 60 million residents from 1998 to 2001 75 

(Agrawala et al., 2001). Unfortunately, the drought is expected to increase in 76 

frequency and intensity due to the future warming air temperature (Trenberth et al., 77 

2014; Zambrano et al., 2018). The exacerbated drought conditions have promoted 78 

some national legislation (such as drought preparedness and plan) to carry out the risk 79 

management and adaptive strategy for drought disasters (Garrick et al., 2017).  80 

The various drought types result in the difficulty of drought characterizing and 81 

assessment. Drought definition is not unique. Some proposed defining drought 82 

according to the water deficit (Wilhite and Glantz, 1985), while others defined 83 

drought based on the period of abnormal arid conditions (Eslamian et al., 2017). The 84 

popular drought can be classified into four types including (1) meteorological, (2) 85 

agricultural, (3) hydrological, and (4) socioeconomic droughts (Mishra and Singh, 86 
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2010). The meteorological drought results from precipitation deficit or evaporation 87 

increases (McKee et al., 1993). The meteorological drought can propagate into the 88 

agricultural drought with the lower soil moisture availability, and it also can lead to 89 

hydrological drought with lower streamflow and socioeconomic drought with lower 90 

water availability (Barella-Ortiz and Quintana-Seguí, 2019; Gevaert et al., 2018). In 91 

general, drought indices are normally used to monitor and assess the condition or 92 

spatial-temporal characteristic of drought. 93 

Many drought indices have been developed for the drought characterizing and 94 

assessment, such as the Palmer drought severity index (PDSI) (Dai et al., 2004), 95 

standardized precipitation index (SPI) (McKee et al., 1993), vegetation water supply 96 

index (VWSI) (Carlson et al., 1994), vegetation health index (VHI) (Kogan, 2002), 97 

vegetation temperature condition index (VTCI) (Wan et al., 2004), and other drought 98 

indices (Men-xin and Hou-quan, 2016; Wang et al., 2015; Wang et al., 2017). PDSI 99 

and SPI are the most popular drought studies worldwide (Dai et al., 2004; McKee et 100 

al., 1993), however, they have some limitations. PDSI is only suitable to the 101 

agricultural drought through characterizing the soil water deficit, and it cannot 102 

identify the meteorological, hydrological, and socioeconomic droughts (Feng and Su, 103 

2019). In addition, PDSI limits the spatial comparability of drought due to the fact 104 

that it is heavily depending on data calibration (Sheffield et al., 2009; Yu et al., 2014). 105 

Although the SPI can be used to monitor and assess different drought types by 106 

multiple spatial scales at the monthly time step, it only considers the precipitation 107 

factor and neglects effects of evaporation stemmed from temperature and other 108 
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meteorological factors (Wang et al., 2014; Wang et al., 2017; Yang et al., 2018). To 109 

solve the above problems, the Standardized Precipitation Evapotranspiration Index 110 

(SPEI), which considers the advantage of both PDSI and SPI, was developed to 111 

monitor and assess droughts (Vicente-Serrano et al., 2010). It not only accounts for 112 

the effect of evaporation on drought, but also have the capability of spatial 113 

comparability and characterizing different drought types with multiple time scales 114 

(Feng and Su, 2019; Wang et al., 2015). SPEI can be used to delineate 115 

spatial-temporal evolution of drought, drought characteristics, and impacts of drought 116 

at the regional and global scales (Mallya et al., 2016; Wang et al., 2014). 117 

However, the commonly used SPEI fails to identify droughts with less than 118 

one-month duration (Van der Schrier et al., 2011; Vicente-Serrano et al., 2010). With 119 

the future climate change, flash droughts have been recently categorized as a type of 120 

extreme climate events. Flash droughts occur along with sudden onset, rapid 121 

aggravation, and sudden end of drought could lead to severe consequences 122 

(Pendergrass et al., 2020). It is imperative for characterizing the flash droughts with 123 

the short-term duration (e.g., several days). To use the sub-month resolution drought 124 

index, we have developed the daily SPEI for the first time, and our daily SPEI has 125 

been used to assess the drought and its impacts in previous studies (Wang et al., 2015; 126 

Wang et al., 2017). The new SPEI can not only identify the drought with one-month 127 

and more than one-month duration, but also monitor the drought with several days 128 

duration. In addition, our new daily SPEI has filled the gap in the capability to 129 

monitor the onset and duration of droughts. Our daily SPEI has similar principles with 130 
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the commonly used month SPEI in terms of time accumulation effects 131 

(Vicente-Serrano et al., 2010; Wang et al., 2015; Yu et al., 2014). The daily SPEI data 132 

with different time scales can also meet the requirement of characterizing and 133 

assessing of different drought types (meteorological drought, agricultural drought and 134 

hydrological drought) at multi-time scales (Wang et al., 2014). 135 

The SPEI can be calculated by the difference between daily precipitation and 136 

daily potential evapotranspiration (PET) (Vicente-Serrano et al., 2012). Precipitation 137 

general can be directly obtained by the meteorological observation stations (Wang et 138 

al., 2015). But PET can be only estimate by driver of meteorological data or remote 139 

sensing data (Wang et al., 2018; Wang et al., 2017). Although there are at least 50 140 

methods to calculate the PET potential evapotranspiration, the methods estimate the 141 

inconsistent and different values due to diverse assumptions, data inputs and climatic 142 

regions (Grismer et al., 2002; Lu et al., 2005). PET plays an important role in 143 

understanding fluxes of the heat and mass of atmospheric system at the local and 144 

global scale (Thomas, 2000). Thus, it is necessary to choose the suitable method to 145 

estimate PET. The choice of candidate probability distributions for SPEI calculation is 146 

also very important (Vicente-Serrano et al., 2010; Vicente-Serrano et al., 2012), the 147 

chosen distribution for SPEI generally need a location parameter because climatic 148 

water balance may have the negative values (when PET> precipitation in certain a 149 

periods) (Wang et al., 2015; Wang et al., 2017). Distributions for SPEI normalization 150 

have generalized logistic distribution, Pearson Type III distribution, normal 151 

distribution, generalized extreme value (GEV) distribution (Stagge et al., 2015). The 152 
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four candidate SPEI distributions have the best good-ness of fitting the accumulated 153 

climatic water balance (Stagge et al., 2015; Wang et al., 2015; Wang et al., 2017). 154 

However, The GEV distribution has the best performance among all four probability 155 

distributions across the whole Continental Europe, because of the lower rejection 156 

frequencies of GEV by using several tests (Kolmogorov–Smirnov (K–S), Anderson–157 

Darling (A–D), and Shapiro–Wilk (S–W)) (Stagge et al., 2015), therefore, we choose 158 

the GEV distribution fitting he accumulated climatic water balance to calculate SPEI. 159 

The SPEI are suited to investigate the effect of climate change and global warming on 160 

drought severity. SPEI has been widely used in diverse studies on drought variability 161 

and impact, and drought monitoring systems (Boroneant et al., 2011; Fuchs et al., 162 

2012; Potop et al., 2014; Sohn et al., 2013). 163 

The aim of this study, therefore, is to produce a long record (1961-2018) daily 164 

drought index dataset for the whole mainland China. Specifically, we used the new 165 

daily SPEI algorithm to produce the multi-time scale drought dataset at a daily time 166 

resolution. Meteorological data with 427 stations including multi-factor (daily 167 

precipitation, daily average air temperature, daily minimum air temperature, daily 168 

maximum air temperature and sunshine) are used. The developed drought dataset at 169 

the national scale has the potential to be used to monitor and assess droughts and their 170 

impacts for the sectors including agricultural sector, forest sector, hydrological sector, 171 

ecological sector, environmental sector and so on.  172 

2. Data Sources and Methods 173 
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2.1 Data Sources 174 

    Daily meteorological data from 1960 to 2018 were collected from the National 175 

Meteorological Science Data Sharing Service Platform (http://data.cma.cn/). The data, 176 

which have gone through quality controlling, have been used in many studies on 177 

drought (Li et al., 2019; Wang et al., 2019). In total, there are 839 stations with public 178 

data. To ensure continuous and complete data records, 427 meteorological stations are 179 

chose for our study by removing stations with missing data exceeding 30 days over 180 

the whole period. Meteorological variables include the minimum and maximum air 181 

temperature (°C), precipitation (mm) and sunshine duration (h). The sunshine duration 182 

was converted to solar radiation based on the Ångström function (Chen et al., 2010; 183 

Wang et al., 2015). The station location is shown in Figure 1. 184 

 185 
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Figure 1. The location of meteorological stations across the mainland China. 186 

2.2 Daily SPEI Calculation  187 

The daily SPEI can be calculated by the difference between daily precipitation 188 

and daily potential evapotranspiration. Because air temperature and solar radiation 189 

explained at least 80% of evapotranspiration variability (Martí et al., 2015; Priestley 190 

and Taylor, 1972), the Hargreaves model based on temperature and solar radiation can 191 

be used to estimate the daily potential evapotranspiration (Hargreaves and Samani, 192 

1982; Mendicino and Senatore, 2013; Wang et al., 2015). The daily potential 193 

evapotranspiration can be obtained by the following formula: 194 

max min0.0023*( 17.8)* ( ) *mean aPET T T T R= + −                             (1) 195 

where, meanT  is the daily average air temperature (o C); maxT and minT  are  the daily 196 

maximum and minimum air temperatures (o C), respectively; and aR  is the daily net 197 

radiation on the land surface (MJ m-2 d-1). 198 

SPEI calculation depends on the accumulating deficit or surplus ( iD ) of water 199 

balance at different time scales. iD can be determined based on precipitations (P) and 200 

PET formula given day i: 201 

i i iD P PET= −                                                       (2) 202 

The obtained iD values are summed at different time scales, following the same 203 

procedure as that for the commonly used SPEI. The ,
k

i jD in a given day j  and year 204 

i  depends on the chosen time scale k (days). For example, the accumulated difference 205 

for 1 day in a particular year i with a 30-day (or other time scales) time scale is 206 
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We also need to normalize the water balance into a probability distribution to get 209 

the SPEI index series. The best distribution for SPEI calculation is the generalized 210 

extreme value (GEV) distribution (Stagge et al., 2015), which can overcome the 211 

limitation of original SPEI through generalized logistic distribution for short 212 

accumulation (1–2 months) periods (Stagge et al., 2015; Vicente-Serrano et al., 2010). 213 

Therefore, we adopted the GEV distribution to standardize the D series into SPEI data 214 

series (Monish and Rehana, 2020). The GEV probability density function is: 215 
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where, ξ ,σ , and µ  are the shape, scale, and location parameters respectively. The 220 

cumulative distribution function ( )F x  of GEV can be calculated by the following 221 

equation: 
 

222 

 
223 

( ( ))( )= t xF x e−                                                         (6) 224 
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 225 
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Thus, the probability distribution function of the D series is given by: 227 

1( ) [1 ( ) ]F x βα
χ γ

−= +
−

                                              (8) 228 

With ( )F x , the SPEI can easily be obtained as the standardized values of ( )F x . 229 

Following the classical approximation of Abramowitz and Stegun (1965): 230 

2
0 1 2

2 3
1 2 31

C CW C W
SPEI W

dW d W d W

+ +
= −

+ + +
                                    (9) 231 

where, 2ln( )W P= −   for P ≤ 0.5 and P is the probability of exceeding a 232 

determined D value, P =1- ( )F x . If P > 0.5, then P is replaced by 1- P and the sign 233 

of the resultant SPEI is reversed. The constants are 0C = 2.515517, 1C =0.802853, 234 

2C =0.010328, 1d = 1.432788, 2d =0.189269, and 3d =0.001308. 235 

2.3 Drought Analysis Method 236 

The daily SPEI dataset were calculated in five accumulating periods (30 days, 90 237 

days, 180 days months, 360 days, 720 days) based on the water balance ( difference 238 

between precipitation and PET). The classifications for the SPEI drought classes are 239 

presented in Table 1. 240 

 241 

Table 1 Categorization of drought and wet grade according to the SPEI(Wang et al., 242 

2014). 243 

Categorization SPEI values 

Extremely Wet SPEI≥ 2 

Severe Wet 1.5 ≤SPEI< 2 

Moderate Wet 1 ≤SPEI< 1.5 
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Mild Wet 0.5 <SPEI< 1 

Normal -0.5 ≤SPEI≤ 0.5 

Mild Drought -1 <SPEI< -0.5 

Moderate Drought -1.5 <SPEI≤ -1 

Severe Drought -2 <SPEI≤ -1.5 

Extremely Drought SPEI≤ -2 

 244 

We used the method described by Yevjevich (1967) to define the drought 245 

characteristics (severity, duration, and intensity). A drought event can be firstly 246 

determined by drought start and end dates, and its duration and severity were then 247 

assigned. Thus, we accounted for the continuity of drought propagation. The 248 

continuous days with SPEI values less than the threshold (such as -0.5,-1.0,-1.5,-2) 249 

are defined as the duration of a drought event. The severity is the integral area 250 

between absolute value of the SPEI with value <-0.5 and the horizontal axis (SPEI = 0) 251 

from the drought start day to the drought end day. The drought frequency is the total 252 

number of drought events in a period. The drought event and its characteristics 253 

(severity, duration, and intensity) can be demonstrated in Figure 2. 254 

 255 
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 256 

Figure 2. Schematic diagram of drought and wet events (the red shaded area 257 

denotes the drought events; the blue shaded area denotes the wet events). 258 

 259 

The SPEI data based on 90-day (3-month) time scales can be used to identify soil 260 

moisture or agriculture droughts (Wang et al., 2014). Due to its important applications, 261 

we selected the SPEI data with the 90-day time scales as the example data for 262 

analyzing in the present study. To investigate the spatial-temporal characteristics of 263 

the example data, we defined three variables including Annual Total Drought Severity 264 

(ATDS), Annual Total Drought Duration (ATDD), and Annual Total Drought 265 

Frequency (ATDF). The three variables were obtained by summing the severity, 266 

duration, and frequency of all the drought events in each year at 427 stations. 267 

We also used the non-parametric Mann–Kendall (MK) test to detect monotonic 268 

trends (Kendall, 1948; Mann, 1945), because MK test does not require data normality 269 

(Mann, 1945; Wang et al., 2020a; Wang et al., 2020b). We computed slopes for ATDS, 270 

ATDD and ADF using the Sen’s method (Sen, 1968). These statistical methods are 271 
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commonly used in analyses of water resources, climate, and ecology data. For the MK 272 

test, the global trend for the entire series is significant when P-value < 0.05. 273 

3 Analysis Results  274 

3.1 Spatial Distribution of Drought Characteristics  275 

The ATDS can be used to identify hot spots with more severe drought conditions. 276 

Figure 3 shows the calculated ATDS values across the mainland China. We 277 

categorized ATDS values into two main groups with higher ATDS values indicated 278 

more severe drought conditions. The distribution of ATDS values shows that, in 279 

general, northeastern parts of China had more severe drought conditions than southern 280 

parts. However, our results also indicate that the humid climate zone in the south also 281 

experienced severe drought conditions, though not as much as for northern parts of 282 

China (Figure 3).  283 
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 284 

Figure 3. The spatial distribution of ATDS across the mainland China. 285 

 286 

Figure 4 shows that ATDD values ranged from 100 to 110 days for most stations 287 

across the mainland China. This indicates that there was near one-third of a year when 288 

most stations were experiencing drought conditions. More stations with ATDD values 289 

ranging from 100 to 110 were found compared with stations with ATDD values of 290 

120-130 (Fig. 4). For drought years, the duration days of drought events are expected 291 

to be were longer. The ATDD had similar spatial distribution characteristics with the 292 

ATDS, indicating that droughts also occurred in the humid climate zone.  293 
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 294 

Figure 4. The spatial distribution of ATDD across the mainland China. 295 

 296 

Figure 5 shows the spatial distribution of ATDF values across the mainland China. 297 

In general, most stations had 4-6 annual drought events. There were fewer stations 298 

with 6-8 annual drought events compared with stations with 2-4 annual drought 299 

events. We also detected that drought events could be occurring in both arid and 300 

humid regions based on spatial distributions of ATDF values (Figure 5). Since the 301 

ATDF indicated only the annual average drought events, we could expect that for the 302 

severer drought years the ATDF would have greater values for different stations.  303 
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 304 

Figure 5. The spatial distribution of ATDF across the mainland China. 305 

 306 

3.2 Trends in Drought Characteristics  307 

The changing trends of ATDS can be used to detect whether drought severity is 308 

weakening or intensifying with time, Figure 6 shows that the spatial distribution of 309 

changing trends of ATDS from 1961 to 2018 across the mainland China. In general, 310 

there were more stations with weakening trends in drought severity than those with 311 

intensifying trends across all stations (Figure 6). It seems that both weakening and 312 

intensifying absolute values were largest in the northeast, northwest, and central 313 

China compared with other parts. However, after scrutiny, we found that drought 314 

severity tended to weaken in the northeast, northwest, and center China with more 315 
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stations having significant weakening tends by statistical test (P-value<0.05; Figure 6). 316 

For southern China, most stations had no significant trends in either weakening or 317 

intensifying of drought severity (P-value>0.05; Figure 6). 318 

 319 

Figure 6. The spatial distribution of the changing trends of ATDS (the red and green 320 

triangular indicate increasing and decreasing trends, respectively. “***” denotes 321 

P-value < 0.001, “**” denotes P-value <0.01, and “*” denotes P-value < 0.05). 322 

 323 

The changing trends of ATDD can be used to detect whether drought duration is 324 

getting shorter or longer. Figure 7 shows the spatial distribution of changing trends for 325 

the ATDD across all stations. In general, stations in the southeast demonstrated 326 

downward trends with shortening drought duration, while stations in the northwest 327 
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had upward trends for the ATDD with increasing drought duration (Figure 7). Note 328 

that the increasing or decreasing trends for ATDD were significant (P value < 0.05) 329 

for stations across the central China indicating that the central China regions were 330 

suffering dramatic changes of drought conditions. 331 

 332 

 333 

Figure 7. The spatial distribution of the changing trends of ATDD (the red and green 334 

triangular indicate increasing and decreasing trends, respectively. “***” denotes 335 

P-value < 0.001, “**” denotes P-value <0.01, and “*” denotes P-value < 0.05). 336 

 337 

The changing trends of ATDF can be used to detect whether the frequency of 338 

drought events is increasing or decreasing with time. Figure 8 shows the spatial 339 
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distribution of changing trends of ATDF across all stations. Most stations 340 

demonstrated no significant trend in the frequency of drought events, except for 341 

dozens of stations in western China having significant upward trends (P-value < 0.05) 342 

with increasing frequency in drought events, and stations in northeastern China 343 

demonstrated significant downward trends (P-value < 0.05) with decreasing 344 

frequency of drought events. 345 

 346 

Figure 8. The spatial distribution of the changing trends of ATDF (the red and green 347 

triangular indicate increasing and decreasing trends, respectively. “***” denotes 348 

P-value < 0.001, “**” denotes P-value <0.01, and “*” denotes P-value < 0.05). 349 

 350 

 351 
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4. Discussion 352 

The reason for selecting 90 days (3-month) scale to assess spatial and temporal 353 

characteristics of drought conditions across the mainland China is because the SPEI 354 

with the  90 days (3-month) scale can indicate the agricultural drought (or soil 355 

moisture) (Van der Schrier et al., 2011; Wang et al., 2014; Wang et al., 2017), and its 356 

results are comparable with the PDSI (Dai et al., 2004; Van der Schrier et al., 2011) 357 

and other drought indices including Surface Water Supply Index (SWSI) and Moisture 358 

Adequacy Index (MAI) (Doesken and Garen, 1991; McGUIRE and Palmer, 1957). 359 

The commonly used monthly SPEI have been used to assess drought characteristics 360 

and their impacts worldwide from the regional scale to the global scale (Stagge et al., 361 

2015; Vicente-Serrano et al., 2010; Wang et al., 2014). The SPEI with different time 362 

scales is relevant for meteorological drought (1-month timescale), agricultural drought 363 

(3-6-month timescale about 90-180 days), hydrological drought (12-month timescale 364 

about 360 days), and socioeconomic drought (24-month timescale about 720 days), 365 

respectively (Homdee et al., 2016; Potop et al., 2014; Tirivarombo et al., 2018; 366 

Vicente-Serrano et al., 2010). 367 

Our new SPEI dataset with multi-time scales were developed and compiled using 368 

the daily SPEI algorithm in the previous study (Wang et al., 2015). The daily SPEI 369 

has been used in drought characterizing and assessment, and was validated by drought 370 

characterizing and assessment (Jevšenak, 2019; Jia et al., 2018; Salvador et al., 2019; 371 

Wang et al., 2015; Wang et al., 2017). The global SPEI database with monthly 372 
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temporal resolution and 0.5 degree spatial resolution is available 373 

(https://spei.csic.es/database.html). The database covers the period between January 1901 374 

and December 2018. Although the database can be used effectively for the 375 

meteorological, agricultural, hydrological, and socioeconomic droughts, it cannot 376 

identify and detect the flash drought with less than one-month duration. In addition, 377 

the monthly database can only detect the start month and end month of drought events, 378 

and therefore it fails to determine the start and end dates of a drought event, (Kassaye 379 

et al., 2020; Vicente-Serrano et al., 2010; Wang et al., 2014). Our newly developed 380 

daily SPEI can compensate the shortcomings of monthly SPEI in drought 381 

characterizing and assessment. In addition, we used the well-received GEV 382 

probability distribution for the SPEI calculation for our dataset (Stagge et al., 2015). 383 

Although the daily SPEI has better performance in drought characterizing and 384 

assessment (Jevšenak, 2019; Wang et al., 2017), the uncertainty of daily SPEI still 385 

needs to be evaluated in future works. Our daily SPEI dataset used the simple 386 

Hargreaves model based on temperature and solar radiation to estimate daily potential 387 

evapotranspiration (Hargreaves and Samani, 1982; Wang et al., 2017). We will further 388 

investigate effects of various evapotranspiration models (such as CRAE model, 389 

Penman algorithm, Thornthwait algorithm, Makkink algorithm, and Priestley–Taylor 390 

algorithm) on the calculation of SPEI (Makkink, 1957; Morton, 1983; Penman, 1948; 391 

Priestley and Taylor, 1972; Thornthwaite, 1944). We only chose SPEI based on the  392 

90 days (3-month timescale) as an example to analyze drought characteristics, and the 393 

results demonstrated that there was no obvious intensifying trends for drought across 394 
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the mainland China which is consistent with other studies (Han et al., 2020). 395 

Meanwhile, our newly developed daily SPEI will be further validated in other regions 396 

of the world. In addition, SPEI values at different time scales can be used as a proxy 397 

for other type of droughts but it lacks the complete picture (no soil moisture condition, 398 

streamflow, etc.) (Zargar et al., 2011). 399 

Our long-term daily SPEI dataset has contributed significantly to our 400 

understanding of drought evolution, especially flash drought. The dataset can be used 401 

to monitor and assess different drought types (meteorological drought, agricultural 402 

drought, and hydrological drought) through different timescale data. It also can 403 

identify the start and end dates for drought. The dataset is valuable to meteorological 404 

research and natural hazards communities for various purposes such as assessment of 405 

extreme climate or drought effect evaluation. 406 

5. Data Availability 407 

All daily SPEI dataset including data and their description at 427 observed 408 

meteorological stations, the data is also provided as open access via figshare (Wang et 409 

al, 2020c), available at doi.org/10.6084/m9.figshare.12568280. This depository includes 410 

the five files directory of the daily SPEI data with five scales (30 days about 1 month, 411 

90 days about 3 month, 180 days months about 6 month, 360 days about 12 month, 412 

720 days about 24 month) and station information for 427 meteorological stations. 413 

 414 

 415 
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6. Summary 416 

In the present study, we have produced a daily SPEI dataset from 1960 to 2018 at 417 

427 meteorological stations across the mainland China. Our open-access dataset is an 418 

important contribution to drought assessment, and it can overcome the disadvantages 419 

of the commonly used monthly SPEI database. Our daily dataset can help monitor and 420 

assess the spatial and temporal characteristics of droughts. It can be used to assess the 421 

impacts of droughts on ecological system, hydrological processes, and other natural 422 

resources. Our multi-time scale daily SPEI dataset can be widely used in studies on 423 

meteorological drought (1-month timescale), agricultural drought (3-6-month 424 

timescale), hydrological drought (360 days timescale), and socioeconomic drought 425 

(24-month timescale). The dataset will reduce the time spent on research and avoid 426 

the duplication of efforts, which will be highly attractive to meteorological, 427 

geographical, natural hazard researchers and searchers from other areas. 428 
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