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Abstract. Sea surface partial pressure of CO2 (pCO2) data with high spatial-temporal resolution are important in studying the 

global carbon cycle and assessing the oceanic carbon uptake capacity. However, the observed sea surface pCO2 data are usually 15 

limited in spatial and temporal coverage, especially in marginal seas. This study provides an approach to reconstruct the 

complete sea surface pCO2 field in the South China Sea (SCS) with a grid resolution of 0.5º×0.5º over the period of 2000–

2017 using both remote-sensing derived pCO2 and observed pCO2. Empirical orthogonal functions (EOFs) were computed 

from the remote sensing derived pCO2. Then, a multilinear regression was applied to the observed pCO2 as the response 

variable with the EOFs as the explanatory variables. EOF1 explains the general spatial pattern of pCO2 in the SCS. EOF2 20 

shows the pattern influenced by the Pearl River plume on the northern shelf and slope. EOF3 is consistent with the pattern 

influenced by coastal upwelling along the north coast of the SCS. The reconstructions always agree with observations. When 

pCO2 observations cover a sufficiently large area, the reconstructed fields successfully display a pattern of relatively high pCO2 

in the mid-and-southern basin. The rate of sea surface pCO2 increase in the SCS is 2.383 atm per year based on the spatial 

average of the reconstructed pCO2 over the period of 2000–2017. All the data for this paper are openly and freely available at 25 

PANGAEA under the link https://doi.pangaea.de/10.1594/PANGAEA.921210 (Wang et al., 2020). 

1 Introduction 

Ocean plays an important role in absorbing atmospheric CO2 and consequently helps slow down the Earth’s global warming 

(Le Quere et al., 2018a). Over the last half-century the ocean has taken up approximately 24 % of the total emitted CO2 at an 

increasing rate from 1.0±0.5 Gt C yr-1 in the 1960s to 2.4±0.5 Gt C yr-1 during 2008–2017 (Le Quere et al., 2018b). The ocean 30 

has been found to be responsible for up to 40 % of the decadal variability of CO2 accumulation in the atmosphere (DeVries et 
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al., 2019). However, the regional and global patterns of the oceanic carbon sink vary both spatially and temporally (Doney et 

al., 2009; Fay and McKinley, 2013; Landschutzer et al., 2014; Le Quere et al., 2010; Rodenbeck et al., 2015; Turi et al., 2014). 

Thus, it is necessary to improve the spatial-temporal resolution and accuracy of the data in the evaluation of oceanic carbon 

uptake capacity to better understand the global carbon cycle and to better project the future climate.  35 

The sea–air CO2 flux helps quantify the oceanic carbon uptake capacity and is primarily determined by the difference in the 

atmospheric and sea surface partial pressure of CO2 (pCO2). Although the measurement records of sea surface pCO2 have been 

increasing to 14.7 million, are available in almost all ocean basins in 2014, and continue to receive more data for compilation 

(Rodenbeck et al., 2015; Sheu et al., 2010), the observations are still severely limited in the spatial and temporal pCO2 field of 

the global ocean surface, especially in marginal seas. Thus, interpolation and/or extrapolation methods are needed to obtain a 40 

complete pCO2 field in space and time over the concerned oceanic areas. Various methods have been applied for this purpose 

in the past two decades, including statistical interpolation (Chou et al., 2005) and empirical formulas between pCO2 and proxies 

such as sea surface temperature, salinity, chlorophyll a, sea surface height, and mixed layer depth (Boutin et al., 1999; Denvil-

Sommer et al., 2019; Jo et al., 2012; Laruelle et al., 2017; Lefevre and Taylor, 2002; Ono et al., 2004; Zhai et al., 2005a). 

These studies usually present their pCO2 fields in a monthly time scale and at a 1º×1ºor even coarser grid. In marginal seas a 45 

finer grid resolution is needed to discern influences posed by local forces such as plumes and upwelling. 

The South China Sea (SCS) is the largest marginal sea in the western Pacific. Measurements of sea surface pCO2 in the SCS 

have started as early as 2000 (Zhai et al., 2005b). Seasonal and spatial variations are present in different domains of the SCS 

(Li et al., 2020; Zhai et al., 2013). However, the data coverage is still so sparse each year that on global compilation maps the 

SCS is mostly blank (Fay and McKinley, 2013; Takahashi et al., 2009). For example, the summer observations of 2017 cover 50 

7 % of the SCS, and those of 2001 cover only 1 %. Consequently, the observational data themselves cannot quantitatively 

depict the pCO2 field over the entire SCS basin. Thus, it is necessary to reconstruct a space-time complete pCO2 field in the 

SCS in order to better assess the CO2 source and sink features in the SCS and to supplement the global pCO2 map. 

The purpose of this paper is to demonstrate the feasibility of reconstructing the pCO2 field over the SCS basin from the sparse 

in situ observations in the SCS with a grid resolution of 0.5º×0.5º, using a method illustrated in the flowchart of Fig. 1. This 55 

paper focuses on the pCO2 reconstruction for the summer season. As indicated in Fig. 1, we need to use an auxiliary dataset, 

the remote-sensing derived pCO2 data to calculate empirical orthogonal functions (EOFs) for spatial patterns of pCO2. The 

remote sensing data are complete in the space-time grid but less accurate, compared with in situ observations. The singular 

value decomposition (SVD) method is applied to the remote sensing data to compute the EOFs. These EOFs form an 

orthogonal basis for the spectral optimal gridding (SOG) method (Shen et al., 2014, 2017; Gao et al., 2015; Lammlein and 60 

Shen, 2018). The method uses a multilinear regression to blend the in situ data (treated as the data of the response variable in 

the regression) and the EOFs (treated as the explanatory variables) together to reconstruct the complete summer pCO2 field at 

0.5º×0.5º over the SCS. 

Section 2 will describe the datasets and methods, Section 3 includes results and discussion, and the conclusions are in Section 

4. 65 
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Figure 1: Reconstruction procedure of the sea surface pCO2 in the SCS. Here, RS pCO2 means the original remote-sensing derived 

pCO2, Obs. pCO2 represents the original observed in situ pCO2, RS data are the grid-aggregated remote-sensing derived pCO2, and 

Obs. data are the grid-aggregated observed pCO2. 

2 Datasets and methods 70 

2.1 Observed data in the SCS 

In the SCS, the underway sea surface pCO2 data are hardly available for every month of each year, so we decided to compile 

the data seasonally. This study focuses on the summer data since the greatest temporal coverage of the sampling occurs in 

summer. The available observed summer pCO2 data from 2000 to 2017 are compiled in this study and shown in Table 1. The 

summer data are the June-August mean for each year in this period excluding 2002, 2003, 2010, 2011 and 2013 (Li et al., 2020; 75 

Zhai et al., 2005a). Thus, we have observed pCO2 data for 13 summers during 2000–2017. The blue cruise tracks of Fig. 2 

indicate all the sea surface pCO2 observations in the 13 summers. The tracks indicate that these data are distributed mainly on 

the northern shelf and slope, and in the northern-and-mid basin of the SCS. The coverage of an individual summer is only a 

subset of the blue tracks. See Fig. 3 for the subset of each year. These observational data were aggregated onto 0.5º×0.5º grid 

boxes in the (5–25º N, 109–122º E) region that covers most of the SCS. The aggregation used a simple space-time average of 80 

the data in a grid box. The aggregated data for 13 summers are shown in Fig. 3. The aggregated pCO2 in general falls in the 

range of 160–480 atm with relatively larger spatial variation nearshore and smaller spatial variability in the basin. In addition, 

the large differences are apparent in the spatial coverage from year to year. For example, in the summer of 2007 the observed 
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pCO2 data cover a spatial range of 12º in latitude and 13º in longitude, 231 grid boxes with data that cover 22 % of SCS. The 

data fall in the range of 281–480 atm. In the summer of 2017 the observed data cover a spatial range of 13º in latitude and 6º 85 

in longitude, 77 grid boxes with data that cover 7 % of SCS. The data are in the range of 279–440 atm. The summer of 2000 

has only 5 grid boxes (covering 0.5 % SCS) with data in the range of 400–425 atm. The lowest observational pCO2 values 

appear on the northern SCS shelf due to the influence of the Pearl River plume (See Fig. 2), where nutrient-stimulated 

phytoplankton uptake consumes CO2. The relatively high sea surface pCO2 values occur mainly in the basin, which are often 

higher than the atmospheric pCO2 (Li et al., 2020; Zhai et al., 2013). The high pCO2 values off the northeastern coast of SCS 90 

and the southern coast of Hainan Island in the summer of 2007 are consistent with local upwelling occurrences, which bring 

CO2-enriched water from the subsurface (Li et al., 2020). In the summer of 2012, the spatial coverage is 7º in latitude and 9.5º 

in longitude. The pCO2 data are in the range of 191–480 atm with the lowest value appearing on the northwestern shelf of 

the SCS due to the Jianjiang River plume and the highest values occurring on the northeast shelf and off the eastern coast of 

the Hainan Island due to upwelling (Gan et al., 2015; Jing et al., 2015). Some other data, for example, in the summer of 2000, 95 

however, are relatively localized so that no certain spatial pattern is shown before the reconstruction. Our reconstruction results 

will help display the spatial patterns of the complete sea surface pCO2 field.  

 

Figure 2: Cruise tracks of sea surface pCO2 observations in the SCS in the summers from 2000-2017. HI represents Hainan Island, 

Jian. R. is the Jianjiang River, and Pearl R. represents the Pearl River. 100 
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Table 1. Underway sea surface pCO2 data in summer in the SCS compiled in this study. 

Year Cruise time Data source 

2000 July 2000 Zhai et al., 2005a 

2001 June 2001 Zhai et al., 2005a 

2004 July–Aug. 2004 Zhai et al., 2013; This study 

2005 July 2005 This study 

2006 June 2006 This study 

2007 July–Aug. 2007 Zhai et al., 2013 

2008 July–Aug. 2008 Li et al., 2020 

2009 Aug. 2009 Li et al., 2020 

2012 July–Aug. 2012 Li et al., 2020 

2014 June 2014 Li et al., 2020 

2015 July–Aug. 2015 Li et al., 2020 

2016 June 2016 Li et al., 2020 

2017 June 2017 Li et al., 2020 

 

 

Figure 3: The aggregated in situ observational pCO2 data in 0.5º×0.5º grid boxes in the SCS in the 13 summers during 2000–2017. 
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2.2 Remote-sensing derived sea surface pCO2 data 105 

The satellite remote-sensing derived sea surface pCO2 in the SCS were estimated for the years of 2000–2014 using a semi-

analytical algorithm developed by Bai et al. (2015a). The algorithm treats pCO2 as a function of major controlling factors 

derived from multiple satellite remote sensing products, including sea surface temperature, chlorophyll a, and salinity. The 

spatial resolution of the remote-sensing derived pCO2 data is 1 ×́1 .́ These data were aggregated into 0.5º×0.5º grid boxes in 

our study region (5–25º N, 109–122º E). As shown in Fig. 4, the gridded remote-sensing derived pCO2 data cover almost all 110 

the areas of the SCS (See the boxes of RS pCO2 and RS data full coverage in Fig. 1). However, variations shown by these 

remote-sensing derived pCO2 are much less than those shown by the observed pCO2 data. Larger spatial variations are expected 

especially in areas influenced by river plumes. This makes it necessary to reconstruct a pCO2 field not only from the remote-

sensing derived pCO2, but also constrained by the observed in situ pCO2 data from the cruise samplings. 

 115 

Figure 4: Remote-sensing derived sea surface pCO2 in summer in selected years from 2000 to 2014. 

2.3 Reconstruction method 

Figure 1 is a flowchart of our method. We used the remote-sensing derived data to compute the EOFs for the SOG 

reconstruction. The grid with 0.5º×0.5º resolution covered from 5° to 25° N and from 109° to 122° E with 1040 grid boxes in 

total. The land area data were marked with NaN. The data were arranged in a 1040×15 space–time matrix with rows for grid 120 

boxes and columns for time. Then, we removed the 143 land grid boxes from the data, and computed the climatology and 
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standard deviation for the remaining 897 non-NaN grid boxes from the 15 years of remote-sensing derived data from 2000 to 

2014. The standardized anomalies were computed for each grid box using the remote-sensing derived data minus the 

climatology and subsequently dividing the difference by the standard deviation. The singular value decomposition (SVD) 

method was applied to the standardized anomalies in the space–time matrix to compute the EOFs. The results are shown in 125 

Section 3. The climatology and standard deviation calculated from the remote-sensing derived data were also used to compute 

the standardized anomalies of the observed data, which were used as the response variable in the SOG regression reconstruction. 

Following the reconstruction of the standardized anomalies, the remote-sensing derived climatology and standard deviation 

were then used to produce the full field as the final reconstruction result. 

The SOG reconstruction method is basically a multivariate regression model for the space-time field at grid box x and time t, 130 

expressed as follows: 

𝑃(𝑥, 𝑡) = 𝛽0(𝑡) +  ∑ 𝛽𝑚(𝑡)𝐸𝑚(𝑥)/√𝑎(𝑥)𝑚∈𝓜 + 𝑒(𝑥, 𝑡),       (1) 

Here, 𝑃(𝑥, 𝑡) is the response variable whose data are the standardized anomalies of the observed data, 𝛽0(𝑡) is the regression 

intercept, 𝛽𝑚(𝑡) is the regression coefficient for the mth EOF 𝐸𝑚(𝑥), the least square estimator of 𝛽𝑚(𝑡) is denoted by 𝑏𝑚(𝑡), 

𝑎(𝑥) = cos (𝜙𝑥) is the area-factor, 𝜙𝑥  is the centroid’s latitude, expressed in radian, of the grid box x, and 𝑒(𝑥, 𝑡) is the 135 

regression error. The error is assumed to be normally distributed with zero mean and has an independent error variance    

𝜀2(𝑥, 𝑡) = 〈𝑒2(𝑥, 𝑡)〉 ,            (2) 

where 〈∙〉 denotes the mathematical operation of expected value. The explanatory variables in the above multivariate regression 

are 𝐸𝑚(𝑥), computed from the area-weighted standardized anomalies of the remote-sensing derived data. The anomalies were 

written as an 897×15 space–time data matrix. The SVD method was applied to this matrix to compute the spatial patterns, 140 

which are EOFs, the temporal patterns, which are principal components (PCs), and their corresponding variances. 𝓜 is the 

set of EOFs selected for our regression reconstruction.  

For a given year, the grid boxes with observed data are known. Then, the linear regression model can be computed based on 

the observed data 𝑃(𝑥𝑑 , 𝑡) and the EOFs in the grid boxes 𝑥𝑑 with the observed data  𝐸𝑚(𝑥𝑑). For example, the year 2002 had 

only 17 grid boxes with the observational data: 𝑥1, 𝑥2, …, 𝑥17. The data in these 17 boxes were used to estimate the intercept 145 

𝛽0(𝑡) and coefficients 𝛽𝑚(𝑡) of the regression. With the estimates 𝑏0(𝑡) and 𝑏𝑚(𝑡), 𝑚 ∈ 𝓜, the reconstructed standardized 

anomalies are expressed as 

𝑃̂(𝑥, 𝑡) = 𝑏0(𝑡) +  ∑ 𝑏𝑚(𝑡)𝐸𝑚(𝑥)/√𝑎(𝑥)𝑚∈𝓜  ,         (3) 

where 𝑥 runs through the entire 893 grid boxes over our study region in the SCS. These anomalies were converted to the full 

field by adding the climatology and multiplying the standard deviation computed from the remote-sensing derived data for 150 

each of the 893 grid boxes. In this way, the full reconstructed field was produced and is presented in Section 3.  

 Many computer software packages are available to compute the EOFs using SVD and to compute multilinear regressions. 

This paper chose to use R, a computer program language that has become a popular data science tool in the last few years for 
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this purpose. The R computer codes and their required files for this paper are freely available at  

https://github.com/Hqin2019/pCO2-reconstruction 155 

SOG usually uses the first few EOFs, or the first M EOFs that account for more than 80 % of the total variance, or determined 

by response data via a correlation test (Smith et al., 1998). The current paper used eight EOFs that explain 87 % of the total 

variances (Fig. 5). However, the year 2000 was an exception and used only four EOFs, because the year has only five grid 

boxes with the observed data.  

 160 

Figure 5: The percentage variances and cumulative variances based on the summer remote-sensing derived pCO2 data for the period 

of 2000–2014. 

3 Results and discussion 

3.1 EOFs and PCs 

EOF1 demonstrates the mode of average level of pCO2 with lower or higher values near the coastal regions of China mainland 165 

(Fig. 6a). This mode accounts for 49 % of the variance, which indicates the dominance of the average field and hence a small 

overall spatial variation, except in the coastal regions. The remote-sensing derived pCO2 data support this mode well. EOF2 

shows a north-south dipole (Fig. 6b), which is supported by the observed data shown in Fig. 3, particularly in the summer of 

2017, showing lower values in the north on the shelf and slope and higher values in the south in the ocean basin. The minimum 

values in the north occur where the Pearl River plume dominates (Li et al., 2020; Zhai et al., 2013). EOF3 shows an east–west 170 

pattern (Fig. 6c), in addition to the north-south dipole in EOF2. EOF3 thus reflects a spatial variation of a smaller scale. This 

pattern is consistent with that influenced by coastal upwelling along the northeast China coast and off eastern Hainan Island 

(Gan et al., 2015; Jing et al., 2015).  

The PCs are temporal stamp of the occurrence of the spatial patterns. PC1 basically shows the temporal trend (Fig. 6d). It has 

been concluded that surface SCS pCO2 has an increasing trend with time (Tseng et al., 2007). PC2 indicates the strength of 175 
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the north-south dipole. This strength seems to be related with the strength and extent of the Pearl River plume on the northern 

shelf and slope (Bai et al., 2015b; Li et al., 2020; Zhai et al., 2013). PC3 shows the temporal variation corresponding to the 

east-west spatial pattern of EOF3. 

 

Figure 6: EOFs and PCs of the remote-sensing derived pCO2 data. (a)–(c) EOFs, and (d) PCs. 180 

3.2 Reconstruction results in the SCS 

Figure 7 shows that the reconstructed pCO2 fields in the SCS have successfully displayed the spatial patterns of the observed 

pCO2 and in general are consistent with previous studies (Li et al., 2020; Zhai et al., 2013). Relatively low values appear in 

the northern coastal region where the Pearl River plume is dominant in summer and generally high values occur in the mid 

and southern basin.  185 

The reconstructions have taken the advantages of both the in situ data for retaining spatial and temporal variations and the 

remote-sensing derived data for EOF patterns. By default, the reconstructed field has fidelity to the in situ data, because the 

SOG reconstruction method is a fit of EOFs to the in situ data. The reconstruction is, thus, consistent with the in situ 

observations. When the in situ data cover a sufficiently large area and hence provide a proper constraint to the EOF fitting 

through the SOG procedure, the reconstruction result is more faithful to the reality. For example, the reconstructions of the 190 
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summers of 2004, 2007, 2009, 2012, 2014–2017 nicely demonstrate the spatial pCO2 patterns (Figs. 7c, f, h, i–m) that are 

consistent with observations (Li et al., 2020; Zhai et al., 2013) and ocean dynamics (Gan et al., 2015; Jing et al., 2015).  

When the observational data are scarce, as long as the in situ data provide a proper constraint to the EOFs, the reconstruction 

can still yield reasonable results. For example, the summer of 2001 has few in situ data, but its reconstruction appears 

reasonable (Fig. 7b).  195 

 

Figure 7: Reconstructed summer pCO2 fields for the years of 2000–2017 in the SCS. 

In cases of extreme data scarcity, the reconstruction may not be reliable. For example, the reconstructed data in the summer of 

2000 appear to be in poor quality (Fig. 7a) since the relatively low values in the mid SCS basin may not be realistic. These 

poorly reconstructed data may be due to the poor spatial coverage of the in situ pCO2 data in the summer of 2000, which had 200 

only 5 grid boxes with data (Fig. 3a). These 5 boxes are all located together and cover only 0.5 % of the SCS. Similarly, the 

reconstructed pCO2 data for the summers of 2005, 2006, and 2008 are not well constrained by the in situ pCO2 data that cover 

only the northern shelf and slope of the SCS so that the reconstructed pCO2 in the mid basin are less than 350 atm (Figs. 7d, 

e, g). These small values are unlikely since the sea surface pCO2 in the basin is generally higher than the atmospheric pCO2 
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(380–420 atm) (Li et al., 2020; Zhai et al., 2013). Another cause of the less ideal reconstruction results for the summers of 205 

2005, 2006, and 2008 may be the large spatial gradient of in situ data. These gradients, such as those for the summer of 2008 

(Fig. 3g), in the in situ data can cause a large deviation of the regression coefficients because the linear regression is not robust.  

The reconstruction results have demonstrated the feasibility of the SOG reconstruction of the sea surface pCO2 over the SCS, 

as long as the in situ data provide a proper constraint to the EOFs. The percentage of the in situ data coverage needs not 

necessarily be large. However, large spatial gradients of the situ data can distort the reconstruction and lower the quality of 210 

reconstruction, because the linear regression method is not robust.  

As an application of our reconstruction and a validation, we examine the temporal trend of sea surface pCO2 over the SCS. 

The rate based on the linear temporal trend of the spatial average of the reconstructed sea surface pCO2 over the SCS from 

2000 to 2017 is 2.383 atm per year (See Fig. 8a). It is lower than the rate of increase with time in the fugacity of CO2 

calculated for the mixed layer for the period of 1999-2003 at the South East Asia Time-Series Station (Station SEATS) (18º 215 

N, 116º E) in the northern basin of the SCS, which is 4 atm per year (Tseng et al., 2007). This makes sense since our rate is 

a spatial average in summer. When compared with the summer rate at the Hawaii Ocean Time-Series Station (Station HOT) 

(22º45  ́N, 158º W) in the North Pacific, which is 1.976 atm per year over 2000–2017 (Dore et al., 2009) (See Fig. 8b), our 

rate is about 0.4 atm per year higher. This is reasonable for a marginal sea where a higher rate of increase in pCO2 would be 

expected.  220 

 

Figure 8: (a) Time series and linear trend of the spatial averages of the reconstructed summer pCO2 data in the period of 2000–2017; 

(b) Summer sea surface pCO2 at Station HOT in 2000–2017 adapted from Dore et al. (2009). 
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3.3 Outliers of the observed data in the reconstruction 

The SOG method is basically a linear regression method, which is known to be sensitive to the outliers of the response data. 225 

Some outliers, whether due to observational biases or extreme events, can cause a large change in the regression coefficients, 

and hence the regression results, and can even make the regression results outside the physically valid domain, such as negative 

pCO2 values in the reconstructed data. Although we cannot conclude that the outliers of 3𝜎 away from the mean in the observed 

data are due to data biases, we have decided not to use them in our reconstruction to avoid the unphysical reconstruction results. 

Table 2 shows the 14 outlier entries excluded from our response data for regression. These outliers are located in the region of 230 

(21.25–23.25° N, 113.25–116.75° E). This region is near the Pearl River Estuary. Thus, these extremely low pCO2 values may 

result from the Pearl River plume where the observed pCO2 can be very low. These very low values, such as at least 3𝜎 away 

from the mean, may cause a very large gradient in the observed pCO2. Our reconstruction has excluded these extremely low 

values influenced by the river plumes. Our reconstructed data may therefore overestimate the pCO2 values in the Pearl River 

Estuary and its nearby region.  235 

 

Table 2. Outliers excluded from the SOG reconstruction.  

Year Grid  Latitude  Longitude   pCO2 

ID       (N)           (E)        (atm) 

2006 926     22.75°    116.75°      208 

952     23.25°    116.75°      197 

2009 896     22.25°    114.75°      212 

923     22.75°    115.25°      217 

2012 836     21.25°    110.75°      248 

2014 873     21.75°    116.25°      191 

874     21.75°    116.75°      219 

2016 841     21.25°    113.25°      265 

842     21.25°    113.75°      272 

868     21.75°    113.75°      239 

869     21.75°    114.25°      205 

870     21.75°    114.75°      216 

896     22.25°    114.75°      210 

897     22.25°    115.25°      274 

4 Data availability 

The gridded in situ data, the remote-sensing derived sea surface pCO2 data, and the reconstruction result data are openly and 

freely available at PANGAEA under the link https://doi.pangaea.de/10.1594/PANGAEA.921210 (Wang et al., 2020). 240 
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5 Conclusions 

This study has demonstrated the feasibility of using the SOG method to reconstruct the sea surface pCO2 data into regular grid 

boxes. We compiled the observed and remote-sensing derived sea surface pCO2 data in the SCS in summer over the period of 

2000–2017 and aggregated these data with a grid resolution of 0.5º×0.5º for reconstruction. The SOG method based on the 

multilinear regression was applied to reconstruct the space–time complete pCO2 field in the SCS. The method took the EOFs 245 

calculated from the remote-sensing derived pCO2 as the explanatory variables and treated the observed pCO2 as the response 

variable. The EOFs reflect reasonably well the general spatial pattern of the sea surface pCO2 in the SCS and reveal features 

affected by regional physical forcing such as the river plume and coastal upwelling in the northern SCS. As long as the in situ 

data provide a proper constraint to the EOFs, the reconstructed pCO2 fields are, in general, consistent with the patterns of the 

observed pCO2 and demonstrate relatively low values along the north coast affected by the Pearl River plume and consistently 250 

high values in the ocean basin of the SCS. These reconstructed pCO2 fields provide full spatial coverage of the sea surface 

pCO2 of the SCS in summer over a temporal scale of almost two decades and therefore fill the long-lasting blanks in the global 

sea surface pCO2 mapping. Thus, the reconstruction products will help improve the accuracy of the estimate of the oceanic 

CO2 flux of the largest marginal sea of the western Pacific so as to better constrain the global oceanic carbon uptake capacity.  

Although the SOG method can optimize the information from both the in situ data and the remote-sensing derived data, the 255 

reliability of the reconstructed results is still limited by the observed data. When the observed data are limited to only a few 

grid boxes in a small region, the reconstruction results may not be realistic. Additional constraints have to be considered. 
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