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Abstract. Sea surface partial pressure of CO2 (pCO2) data with a high spatial-temporal resolution are important in studying 

the global carbon cycle and assessing the oceanic carbon uptake. However, the observed sea surface pCO2 data are usually 15 

limited in spatial and temporal coverage, especially in marginal seas. This study provides an approach to reconstruct the 

complete sea surface pCO2 field in the South China Sea (SCS) with a grid resolution of 0.5º×0.5º over the period of 2000–

2017 using both remote-sensing derived pCO2 and observed underway pCO2, among which the gridded underway pCO2 data 

in 2004, 2005, and 2006 are presented for the first time. Empirical orthogonal functions (EOFs) were computed from the 

remote sensing derived pCO2. Then, a multilinear regression was applied to the observed pCO2 as the response variable with 20 

the EOFs as the explanatory variables. EOF1 explains the general spatial pattern of pCO2 in the SCS. EOF2 shows the pattern 

influenced by the Pearl River plume on the northern shelf and slope. EOF3 is consistent with the pattern influenced by coastal 

upwelling along the north coast of the SCS. When pCO2 observations cover a sufficiently large area, the reconstructed fields 

successfully display a pattern of relatively high pCO2 in the mid-and-southern basin. The rate of sea surface pCO2 increase in 

the SCS is 2.4±0.8 atm per year based on the spatial average of the reconstructed pCO2 over the period of 2000–2017. This 25 

is consistent with the temporal trends at Station SEATS (18º N, 116º E) in the northern basin of the SCS and at Station HOT 

(22º45  ́N, 158º W) in the North Pacific. We validated our reconstruction with a leave-one-out cross-validation approach, 

which yields the root-mean-square error (RMSE) in the range of 2.4–5.2 atm, smaller than the spatial standard deviation of 

our reconstructed data and much smaller than the spatial standard deviation of the observed underway data. The RMSE between 

the reconstructed summer pCO2 and the observed underway pCO2 is no larger than 31.7 atm, in contrast to (a) the RMSE 30 

from 12.8–89.0 atm between the remote-sensing derived pCO2 and the underway data, and (b) the RMSE from 32.6–44.5 

atm between the neural network produced pCO2 and the underway data. The difference between the reconstructed pCO2 and 
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those calculated from observations at Station SEATS is in the range from -7 to 10 atm. These comparison results indicate the 

reliability of our reconstruction method and output. All the data for this paper are openly and freely available at PANGAEA 

under the link https://doi.pangaea.de/10.1594/PANGAEA.921210 (Wang et al., 2020). 35 

1 Introduction 

The ocean plays an important role in absorbing atmospheric CO2 and consequently helps slow down the Earth’s global 

warming (Le Quere et al., 2018a). Over the last half-century the ocean has taken up approximately 24 % of the total emitted 

CO2 at an increasing rate from 1.0±0.5 Gt C yr-1 in the 1960s to 2.6±0.6 Gt C yr-1 in 2019 (Friedlingstein et al., 2020; Le Quere 

et al., 2018b). The ocean has been found to be responsible for up to 40 % of the decadal variability of CO2 accumulation in the 40 

atmosphere (DeVries et al., 2019). However, the regional and global patterns of the oceanic carbon sink vary both spatially 

and temporally (Doney et al., 2009; Fay and McKinley, 2013; Landschutzer et al., 2014; Le Quere et al., 2010; Rodenbeck et 

al., 2015; Turi et al., 2014). Thus, it is necessary to improve the spatial-temporal coverage and accuracy of the data in the 

evaluation of oceanic carbon uptake capacity in order to better understand the global carbon cycle and to better project the 

future climate.  45 

The sea–air CO2 flux is primarily determined by the difference in the atmospheric and sea surface partial pressure of CO2 

(pCO2). The measurement values of sea surface fugacity of CO2 (fCO2, which is equal to pCO2 corrected for the non-ideal 

behavior of the gas (Pfeil et al., 2013)) have increased to 28.2 million and are presently available in almost all ocean basins 

based on the Surface Ocean CO2 Atlas Version 2020 (Bakker et al., 2020). However, for a given year the observations of sea 

surface pCO2 may still have sparse spatial coverage. Thus, interpolation and/or extrapolation methods are needed to obtain a 50 

complete pCO2 field in space and time over the concerned oceanic areas. Various methods have been applied for this purpose 

in the past two decades, including statistical interpolation (Chou et al., 2005) and empirical formulas between pCO2 and proxies 

such as sea surface temperature, salinity, chlorophyll a, sea surface height, and mixed layer depth (Boutin et al., 1999; Denvil-

Sommer et al., 2019; Jo et al., 2012; Laruelle et al., 2017; Lefevre and Taylor, 2002; Ono et al., 2004; Zhai et al., 2005a). 

These studies usually present their pCO2 fields in a monthly time scale and at a 1º×1ºor even coarser grid. In marginal seas a 55 

finer grid resolution is needed to discern influences posed by local forces such as plumes and upwelling. 

The South China Sea (SCS) is the largest marginal sea in the western Pacific. Measurements of sea surface pCO2 in the SCS 

have started as early as 2000 (Zhai et al., 2005b). Seasonal and spatial variations are present in different domains of the SCS 

(Li et al., 2020; Zhai et al., 2013). However, the data coverage is still so sparse each year that on global compilation maps the 

SCS is mostly blank (Bakker et al., 2016; Fay and McKinley, 2013; Takahashi et al., 2009). For example, the summer 60 

observations of 2017 cover 7 % of the SCS, and those of 2001 cover only 1 %. Consequently, the observational data themselves 

cannot quantitatively depict the pCO2 field over the entire SCS basin. Thus, it is necessary to reconstruct a space-time complete 

pCO2 field in the SCS in order to better assess the CO2 source and sink features in the SCS and to supplement the global pCO2 

map. 

https://doi.pangaea.de/10.1594/PANGAEA.921210
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The purpose of this paper is to demonstrate the feasibility of reconstructing the pCO2 field over the SCS basin from the sparse 65 

in situ observations in the SCS with a grid resolution of 0.5º×0.5º, using a method illustrated in the flowchart of Fig. 1. This 

paper focuses on the pCO2 reconstruction for the summer season. As indicated in Fig. 1, we need to use an auxiliary dataset, 

the remote-sensing derived pCO2 estimates, e.g., from Bai et al. (2015), to calculate empirical orthogonal functions (EOFs) for 

spatial patterns of pCO2. The remote sensing pCO2 estimates are relatively complete in the space-time grid but less accurate, 

compared with in situ observations. The singular value decomposition (SVD) method is applied to the remote sensing estimates 70 

to compute the EOFs. These EOFs form an orthogonal basis for the spectral optimal gridding (SOG) method (Shen et al., 2014, 

2017; Gao et al., 2015; Lammlein and Shen, 2018). The method uses a multilinear regression to blend the in situ data (treated 

as the data of the response variable in the regression) and the EOFs (treated as the explanatory variables) together to reconstruct 

the complete summer pCO2 field at 0.5º×0.5º over the SCS. 

Section 2 will describe the datasets and methods, Section 3 includes results and discussion, and the conclusions are in Section 75 

4. 

 

Figure 1: Reconstruction procedure of the sea surface pCO2 in the SCS. Here, RS pCO2 means the original remote-sensing derived 

pCO2, Obs. pCO2 represents the original observed in situ pCO2, RS estimates are the grid-aggregated remote-sensing derived pCO2, 

and Obs. data are the grid-aggregated observed pCO2. The standard deviations are the temporal standard deviation of the RS pCO2 80 
estimates on each grid box. 
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2 Datasets and methods 

2.1 Observed data in the SCS 

In the SCS, the underway sea surface pCO2 data are hardly available for every month of each year, so we decided to compile 

the data seasonally. This study focuses on the summer data since the greatest temporal coverage of the sampling occurs in 85 

summer. The available underway summer pCO2 data from 2000 to 2017 are compiled in this study and shown in Table 1, in 

which the pCO2 data in August 2004, July 2005 and June 2006 are new, obtained continuously with a non-dispersive infrared 

gas analyzer (Li-Cor 7000). The summer data are the June-August mean for each year in this period excluding 2002, 2003, 

2010, 2011 and 2013 (Li et al., 2020; Zhai et al., 2005a). Thus, we have observed underway pCO2 data for 13 summers during 

2000–2017.  Figure 2 shows that these data are distributed mainly on the northern shelf and slope, and in the northern-and-90 

mid basin of the SCS with a different frequency of summer observations on different grid boxes. The observational data were 

aggregated onto 0.5º×0.5º grid boxes in the (5–25º N, 109–122º E) region of the SCS. The aggregation used a simple space-

time average of the data in a grid box. The aggregated data for the 13 summers are shown in Fig. 3, which shows the distribution 

pattern of the observed underway pCO2 data of each year. The aggregated pCO2 in general falls in the range of 160–480 atm 

with relatively larger spatial variation nearshore and smaller spatial variability in the basin. In addition, the large differences 95 

are apparent in the spatial coverage from year to year. For example, in the summer of 2007 the observed underway pCO2 data 

cover a spatial range of 12º in latitude and 13º in longitude, 231 grid boxes with data that cover 22 % of SCS. The data fall in 

the range of 281–480 atm. In the summer of 2017 the observed data cover a spatial range of 13º in latitude and 6º in longitude, 

77 grid boxes with data that cover 7 % of SCS. The data are in the range of 279–440 atm. The summer of 2000 has only 5 

grid boxes (covering 0.5 % SCS) with data in the range of 400–425 atm. The lowest observational pCO2 values appear on 100 

the northern SCS shelf due to the influence of the Pearl River plume (See Fig. 2), where nutrient-stimulated phytoplankton 

uptake consumes CO2. The relatively high sea surface pCO2 values occur mainly in the basin, which are often higher than the 

atmospheric pCO2 (Li et al., 2020; Zhai et al., 2013). The high pCO2 values off the northeastern coast of SCS and the southern 

coast of Hainan Island in the summer of 2007 are consistent with local upwelling occurrences, which bring CO2-enriched water 

from the subsurface (Li et al., 2020). In the summer of 2012, the spatial coverage is 7º in latitude and 9.5º in longitude. The 105 

pCO2 data are in the range of 191–480 atm with the lowest value appearing on the northwestern shelf of SCS due to the 

Jianjiang River plume and the highest values occurring on the northeast shelf and off the eastern coast of the Hainan Island 

due to upwelling (Gan et al., 2015; Jing et al., 2015). Some other data, for example, in the summer of 2000, however, are 

relatively localized so that no certain spatial pattern is shown before the reconstruction. Our reconstruction results will help 

display the spatial patterns of the complete sea surface pCO2 field.  110 
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Figure 2: The number of summers with underway sea surface pCO2 observations in the SCS in years 2000–2017. HI represents 

Hainan Island, Jian. R. is the Jianjiang River, and Pearl R. represents the Pearl River. 

Table 1. Underway sea surface pCO2 data in summer in the SCS compiled in this study. 

Year Cruise time Data source 

2000 July 2000 Zhai et al., 2005a 

2001 June 2001 Zhai et al., 2005a 

2004 July–Aug. 2004 Zhai et al., 2013; This study 

2005 July 2005 This study 

2006 June 2006 This study 

2007 July–Aug. 2007 Zhai et al., 2013 

2008 July–Aug. 2008 Li et al., 2020 

2009 Aug. 2009 Li et al., 2020 

2012 July–Aug. 2012 Li et al., 2020 

2014 June 2014 Li et al., 2020 

2015 July–Aug. 2015 Li et al., 2020 

2016 June 2016 Li et al., 2020 

2017 June 2017 Li et al., 2020 

 115 



6 

 

 

Figure 3: The aggregated in situ observational pCO2 data in 0.5º×0.5º grid boxes in the SCS in the 13 summers during years 2000–

2017. 

As a dataset for our reconstruction validation, we calculated the sea surface pCO2 from the observed temperature, salinity, 

total alkalinity, dissolved inorganic carbon, phosphate, and silicate at Station SEATS (18º N, 116º E) in the northern basin of 120 

the SCS in the summer of 2007, 2009, 2012, 2014, and 2017. The nutrient sample collection and measurement are described 

in Du et al. (2013, 2017). The samples of total alkalinity and dissolved inorganic carbon were collected and measured following 

the same procedure in Guo et al. (2015). The calculation of pCO2 was made using the program of Lewis and Wallace (1998), 

in which the apparent dissociation constants for carbonic acid of Mehrbach et al. (1973) refit by Dickson and Millero (1987) 

and the dissociation constant for bisulfate ion from Dickson (1990) were employed. Another sea surface pCO2 dataset 125 
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calculated in the same way at Station SEATS in the summer of 2000, 2001, 2004, and 2006 was compiled from Lui et al. 

(2020). 

2.2 Remote-sensing derived sea surface pCO2 data 

The satellite remote-sensing derived sea surface pCO2 in the SCS were estimated for the years of 2000–2014 using a “mechanic 

semi-analytical algorithm” (MeSAA) developed by Bai et al. (2015a). In the summer of SCS, the thermodynamic, mixing and 130 

biological effects on the sea surface pCO2 were parameterized in the MeSAA algorithm as a function of major controlling 

factors derived from multiple satellite-derived sea surface temperature, colored dissolved organic matter, and chlorophyll. The 

spatial resolution of the remote-sensing derived pCO2 estimates is 1 ×́1 .́ These estimates were aggregated into 0.5º×0.5º grid 

boxes in our study region (5–25º N, 109–122º E). As shown in Fig. 4, the gridded remote-sensing derived pCO2 data cover 

almost all the areas of the SCS (See the boxes of RS pCO2 and RS estimates full coverage in Fig. 1). We made a validation 135 

study for the remote-sensing derived pCO2 by comparison with the observed underway pCO2 (Fig. 5). In general, most of the 

remote-sensing derived pCO2 overestimate the sea surface pCO2, but not more than 50 atm. The root-mean-square-error 

(RMSE) falls in the range from 12.8–89.0 atm with a median of 33.8 atm (Table 2). The RMSE values are high in the years 

when the underway data covered only the shelf regions. With the MeSAA algorithm, the derived pCO2 dataset represents the 

major CO2 variation in large scales. However, variations shown by these remote-sensing derived pCO2 are much less than 140 

those shown by the observed pCO2 data because the current MeSSA algorithm does not consider some local processes, such 

as eddies and potentially different carbonate system patterns in coastal areas. Larger spatial variations are expected especially 

in areas influenced by river plumes. This makes it necessary to reconstruct a pCO2 field not only from the remote-sensing 

derived pCO2, but also constrained by the observed in situ pCO2 data from cruises. 
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Figure 4: Remote-sensing derived sea surface pCO2 in summer in selected years from 2000 to 2014. 
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Figure 5: The difference between the remote-sensing derived summer pCO2 estimates and the observed underway pCO2 (unit: atm) 

in 2000, 2001, 2004–2009, 2012, and 2014. 

2.3 Reconstruction method 150 

Figure 1 is a flowchart of our method. We used the remote-sensing derived data to compute the EOFs for the SOG 

reconstruction. The grid with 0.5º×0.5º resolution covered from 5° to 25° N and from 109° to 122° E with 1040 grid boxes in 

total. The land area data were marked with NaN. The data were arranged in a 1040×15 space-time matrix with rows for grid 

boxes and columns for time. Then, we removed the 143 land grid boxes from the data, and computed the climatology and 

standard deviation for the remaining 897 non-NaN grid boxes from the 15 years of remote-sensing derived data from 2000 to 155 

2014. The standardized anomalies were computed for each grid box using the remote-sensing derived data minus the 

climatology and subsequently dividing the difference by the standard deviation. The singular value decomposition (SVD) 
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method was applied to the standardized anomalies in the space–time matrix to compute the EOFs. The results are shown in 

Section 3. The climatology and standard deviation calculated from the remote-sensing derived data were also used to compute 

the standardized anomalies of the observed data, which were used as the response variable in the SOG regression reconstruction. 160 

Following the reconstruction of the standardized anomalies, the remote-sensing derived climatology and standard deviation 

were then used to produce the full field as the final reconstruction result. 

The SOG reconstruction method is basically a multilinear regression model for the space-time field at grid box x and time t, 

expressed as follows: 

𝑃(𝑥, 𝑡) = 𝛽0(𝑡) +  ∑ 𝛽𝑚(𝑡)𝐸𝑚(𝑥)/√𝑎(𝑥)𝑚∈𝓜 + 𝑒(𝑥, 𝑡),       (1) 165 

Here, 𝑃(𝑥, 𝑡) is the response variable whose data are the standardized anomalies of the observed data, 𝛽0(𝑡) is the regression 

intercept, 𝛽𝑚(𝑡) is the regression coefficient for the mth EOF 𝐸𝑚(𝑥), the least square estimator of 𝛽𝑚(𝑡) is denoted by 𝑏𝑚(𝑡), 

𝑎(𝑥) = cos (𝜙𝑥) is the area-factor, 𝜙𝑥  is the centroid’s latitude, expressed in radian, of the grid box x, and 𝑒(𝑥, 𝑡) is the 

regression error. The error is assumed to be normally distributed with zero mean and has an independent error variance    

𝜀2(𝑥, 𝑡) = 𝐸[𝑒2(𝑥, 𝑡)] ,            (2) 170 

where 𝐸 denotes the mathematical operation of expected value. The explanatory variables in the above multilinear regression 

are 𝐸𝑚(𝑥), computed from the area-weighted standardized anomalies of the remote-sensing derived data. The anomalies were 

written as an 897×15 space–time data matrix. The SVD method was applied to this matrix to compute the spatial patterns, 

which are EOFs, the temporal patterns, which are principal components (PCs), and their corresponding variances. 𝓜 is the 

set of EOFs selected for our regression reconstruction. It contained eight EOFs for every year except 2000, which had only 175 

four EOFs because the year had only five grid boxes with observed underway data.  

For a given year, the grid boxes with observed data are known. Then, the linear regression model can be computed based on 

the observed data 𝑃(𝑥𝑑 , 𝑡) and the EOFs in the grid boxes 𝑥𝑑 with the observed data  𝐸𝑚(𝑥𝑑). For example, the year 2002 had 

only 17 grid boxes with the observational data: 𝑥1, 𝑥2, …, 𝑥17. The data in these 17 boxes were used to estimate the intercept 

𝛽0(𝑡) and coefficients 𝛽𝑚(𝑡) of the regression. With the estimates 𝑏0(𝑡) and 𝑏𝑚(𝑡), 𝑚 ∈ 𝓜, the reconstructed standardized 180 

anomalies are expressed as 

�̂�(𝑥, 𝑡) = 𝑏0(𝑡) +  ∑ 𝑏𝑚(𝑡)𝐸𝑚(𝑥)/√𝑎(𝑥)𝑚∈𝓜  ,         (3) 

where 𝑥 runs through the entire 893 grid boxes over our study region in the SCS. These anomalies were converted to the full 

field by adding the climatology and multiplying the standard deviation computed from the remote-sensing derived data for 

each of the 893 grid boxes. In this way, the full reconstructed field was produced and is presented in Section 3.  185 

 Many computer software packages are available to compute the EOFs using SVD and to compute multilinear regressions. 

This paper chose to use R, a computer program language that has become a popular data science tool in the last few years for 

this purpose. The R computer codes and their required files for this paper are freely available at  

https://github.com/Hqin2019/pCO2-reconstruction 

https://github.com/Hqin2019/pCO2-reconstruction
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SOG usually uses the first few EOFs, or the first M EOFs that account for more than 80 % of the total variance, or determined 190 

by response data via a correlation test (Smith et al., 1998). Here, M is the size of set 𝓜. The current paper used eight EOFs 

that explain 87 % of the total variances (Fig. 6).  

 

Figure 6: The percentage variances and cumulative variances based on the summer remote-sensing derived pCO2 data for the period 

of years 2000–2014. 195 

3 Results and discussion 

3.1 EOFs and PCs 

EOF1 demonstrates the mode of an average level of pCO2 with lower or higher values near the coastal regions of China 

mainland (Fig. 7a). This mode accounts for 49 % of the variance, which indicates the dominance of the average field and hence 

a small overall spatial variation, except in the coastal regions. The remote-sensing derived pCO2 data support this mode well. 200 

EOF2 shows a north-south dipole (Fig. 7b), which is supported by the observed data shown in Fig. 3, particularly in the summer 

of 2017, showing lower values in the north on the shelf and slope and higher values in the south in the ocean basin. The 

minimum values in the north occur where the Pearl River plume dominates (Li et al., 2020; Zhai et al., 2013). EOF3 shows an 

east–west pattern (Fig. 7c), in addition to the north-south dipole in EOF2. EOF3 thus reflects a spatial variation of a smaller 

scale. This pattern is consistent with that influenced by coastal upwelling along the northeast China coast and off eastern 205 

Hainan Island (Gan et al., 2015; Jing et al., 2015).  

The PCs are temporal stamp of the occurrence of the spatial patterns. PC1 basically shows the temporal trend (Fig. 8d). It has 

been concluded that surface SCS pCO2 has an increasing trend with time (Tseng et al., 2007). PC2 indicates the strength of 

the north-south dipole. This strength seems to be related to the strength and extent of the Pearl River plume on the northern 

shelf and slope (Bai et al., 2015b; Li et al., 2020; Zhai et al., 2013). PC3 shows the temporal variation corresponding to the 210 

east-west spatial pattern of EOF3. 
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Figure 7: EOFs and PCs of the remote-sensing derived pCO2 estimates. (a)–(c) EOFs, and (d) PCs. 

3.2 Reconstruction results in the SCS 

Figure 8 shows that the reconstructed pCO2 fields in the SCS have successfully displayed the spatial patterns of the observed 215 

pCO2 and in general are consistent with previous studies (Li et al., 2020; Zhai et al., 2013). Relatively low values appear in 

the northern coastal region where the Pearl River plume is dominant in summer and generally high values occur in the mid 

and southern basins.  

The reconstructions have taken the advantages of both the observed underway data for retaining spatial and temporal variations 

and the remote-sensing derived data for EOF patterns. By default, the reconstructed field has fidelity to the in situ data, because 220 

the SOG reconstruction method is a fit of EOFs to the in situ data. The reconstruction is, thus, consistent with the in situ 

observations. When the in situ data cover a sufficiently large area and hence provide a proper constraint to the EOF fitting 

through the SOG procedure, the reconstruction result is more faithful to the reality. For example, the reconstructions of the 

summers of 2004, 2007, 2009, 2012, 2014–2017 nicely demonstrate the spatial pCO2 patterns (Figs. 8c, f, h, i–m) that are 

consistent with observations (Li et al., 2020; Zhai et al., 2013) and ocean dynamics (Gan et al., 2015; Jing et al., 2015).  225 
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When the observational data are scarce, as long as the in situ data provide a proper constraint to the EOFs, the reconstruction 

can still yield reasonable results. For example, the summer of 2001 has few in situ data, but its reconstruction, with an RMSE 

of 7.3 atm between the reconstructed data and the observed data, appears reasonable (Fig. 8b).  

 

Figure 8: Reconstructed summer pCO2 fields for the years 2000–2017 in the SCS. 230 

In cases of extreme data scarcity, the reconstruction may not be reliable. For example, the reconstructed data in the summer of 

2000 appear to be of poor quality (Fig. 8a) since the relatively low values in the mid SCS basin may not be realistic. These 

poorly reconstructed data may be due to the poor spatial coverage of the in situ pCO2 data in the summer of 2000, which had 

only 5 grid boxes with data (Fig. 3a). These 5 boxes are all located together and cover only 0.5 % of the SCS. Similarly, the 

reconstructed pCO2 data for the summers of 2005, 2006, and 2008 are not well constrained by the in situ pCO2 data that cover 235 

only the northern shelf and slope of the SCS so that the reconstructed pCO2 in the mid basin are less than 350 atm (Figs. 8d, 

e, g). These small values are unlikely since the sea surface pCO2 in the basin is generally higher than the atmospheric pCO2 
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(380–420 atm) (Li et al., 2020; Zhai et al., 2013). Another cause of the less ideal reconstruction results for the summers of 

2005, 2006, and 2008 may be the large spatial variations in the in situ data. These variations, such as those for the summer of 

2008 (Fig. 3g), in the in situ data can cause a large deviation of the regression coefficients because the linear regression is not 240 

robust.  

The reconstruction results have demonstrated the feasibility of the SOG reconstruction of the sea surface pCO2 over the SCS, 

as long as the in situ data provide a proper constraint to the EOFs. The percentage of the in situ data coverage needs not 

necessarily be large. However, large spatial variations in the situ data can distort the reconstruction and lower the quality of 

reconstruction, because the linear regression method is not robust.  245 

3.3 Reconstruction validation and uncertainty quantification 

To quantitatively validate our reconstruction, we conducted a leave-one-out cross-validation study: Withholding a grid box 

datum, making the reconstruction using the remaining in situ data, and computing the difference between the withheld datum 

and the reconstructed datum at the same grid box. This was repeated for every grid box with in situ data for each year. The 

final cross-validation result is output as RMSE (Table 2). The maximum RMSE is 5.2 atm, which occurred in 2006 when 250 

there were only 25 grid boxes with in situ pCO2 data and the in situ data had the largest spatial standard deviation, 49.4 atm, 

among the 13 years under consideration. The minimum RMSE is 2.4 atm, which occurred in 2017 with 77 in situ data grid 

boxes and a spatial standard deviation of 17.6 atm for the in situ data. This accuracy is very good compared to the spatial 

standard deviation of the in situ data in the same year. Compared to the 2006 data, a more accurate reconstruction for 2017 is 

expected because of more grid boxes with in situ data and smaller spatial variability. This is supported by the cross-validation 255 

result. The spatial standard deviation of the reconstructed data is in the range of 2.1–6.6 atm. The cross-validation RMSEs 

are in the range of 2.4–5.2 atm. We thus conclude that the reliability of our reconstruction is well supported by the leave-

one-out cross-validation result.  

We have also considered other types of cross-validations, such as leaving out data in half of the study region. A numerical test 

was made for the following situation: Leaving out the western or eastern half of the data in a year, making the reconstruction 260 

using the remaining half of data, and computing the RMSE between the removed data and the reconstructed data. The analysis 

was done for the years with better spatial coverage: 2007, 2009, and 2012. When the western halves (longitude < 115.5º E) of 

data in these years were removed, the resulted RMSEs were 2.77, 4.46, and 3.82 atm for 2007, 2009, and 2012, respectively. 

When the eastern halves (longitude >115.5º E) of data were removed, the RMSEs were 4.32, 3.66, and 3.55 atm in 2007, 

2009, and 2012, respectively. These RMSEs fall within the range of the RMSEs of the leave-one-out cross validation. These 265 

numerical results are another confirmation of the reliability of our reconstruction.  

 



15 

 

Table 2: The RMSE between the remote-sensing derived pCO2 estimates and the observed underway pCO2 data (RMSERS), of the 

cross-validation (RMSECV), and between the reconstructed pCO2 and the observed underway pCO2 data (RMSERC) (unit: atm). 

 270 

 

 

 

The uncertainty in our reconstruction was quantified by grid-by-grid comparisons of the reconstructed pCO2 with the observed 

pCO2 in two ways. One is the comparison with the observed underway data (Fig. 9). The difference between the reconstructed 275 

data and the observed underway data mostly falls within the range from -30 to 30 atm (Fig. 9). The greatest deviation from 

the underway data appears near the coast, likely due to the lack of some typical patterns in coastal areas transferred via EOFs 

from the remote-sensing estimates. The RMSE between the reconstructed data and the observed underway data is no larger 

than 31.7 atm with a median of 16.5 atm, which is smaller than the RMSE between the remote-sensing derived pCO2 and 

the underway data with the relative difference between the two RMSEs (Rows 1 and 3 in Table 2) at least 29 %. When 280 

comparing the pCO2 data produced by Jo et al. (2012) in the northern SCS by a neural network approach in the summer of 

years 2004–2007 with the underway pCO2, the resultant RMSE falls in the range from 32.6–44.5 atm and is twice as much 

as the median RMSE between our reconstructed pCO2 and the underway pCO2 (Table 2). Another uncertainty quantification 

for our reconstruction is to compare with the pCO2 calculated from long-term observations at Station SEATS (Fig. 10). The 

difference between the reconstructed pCO2 and the observed data at Station SEATS ranges from -7 to 10 atm with the relative 285 

difference from -1.5 to 2.1 %. Both comparisons confirm that our reconstruction results are reliable. 

Year 2000 2001 2004 2005 2006 2007 2008 2009 2012 2014 2015 2016 2017 

RMSERS 12.8 20.2 47.9 65.7 89.0 25.1 43. 8 36.8 30.7 24.2 NaN NaN NaN 

RMSECV NaN 2.8 3.1 4.9 5.2 2.9 4.2 2.9 2.8 4.2 4.3 3.2 2.4 

RMSERC 0.01 7.3 19.7 16.3 31.7 16.5 26.1 20.4 15.5 18.8 27.8 13.0 12.8 
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Figure 9: The difference between the reconstructed summer pCO2 and the observed underway pCO2 (unit: atm) in 2000, 2001, 

2004–2009, 2012, and 2014–2017. 
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 290 

Figure 10: The comparison between the summer sea surface pCO2 calculated from the observations and those from our 

reconstruction at Station SEATS (18º N, 116º E). The pCO2 data calculated from the observations in years of 2000, 2001, 2004, and 

2006 are from Hui et al. (2020). 

 

As an application of our reconstruction and a validation, we examine the temporal trend of sea surface pCO2 over the SCS. 295 

The rate based on the linear temporal trend of the spatial average of the reconstructed sea surface pCO2 over the SCS from 

2000 to 2017 is 2.4±0.8 atm per year (See Fig. 11a). It is lower than the rate of fCO2 increase (4 atm per year) for the period 

of 1999–2003 (Tseng et al., 2007), while higher than the rate of pCO2 increase for the period of 1998–2006 (0.8 atm per year) 

at Station SEATS (Lui et al., 2020). The differences between their rates and ours exist because (a) our rate is a spatial average 

in summer and their rates are based on data collected in spring, summer, fall, and winter at a basin station, and (b) the period 300 

to derive our rate is much longer than theirs. Using the summer data in Lui et al. (2020), the rate we estimated from the year 

of 2000, which is the beginning year of our data, to the year of 2006 at Station SEATS is 2.5±1.0 atm per year. Although the 

period of 2000–2006 is much shorter than our period of 2000–2017, the summer rate at Station SEATS is almost the same as 

our rate based on the reconstructed data over the SCS. When compared with the summer rate of observed pCO2 at the Hawaii 

Ocean Time-Series Station (Station HOT) (22º45  ́N, 158º W) in the North Pacific, which is 2.0±0.2 atm per year over 2000–305 

2017 (Dore et al., 2009) (See Fig. 11b), our rate is consistent with the rate in the North Pacific. The consistency of the trend in 

our reconstructed sea surface pCO2 over the SCS with the local trend at Station SEATS and the North Pacific trend at Station 

HOT confirms that our reconstruction is reasonable. 
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Figure 11: (a) Time series and linear trend of the spatial averages of the reconstructed summer pCO2 data in the SCS in the period 310 
of years 2000–2017; (b) Summer sea surface pCO2 at Station HOT in years 2000–2017 adapted from Dore et al. (2009). 

3.4 Outliers of the observed data in the reconstruction 

The SOG method is basically a linear regression method, which is known to be sensitive to the outliers of the response data. 

Some outliers, whether due to observational biases or extreme events, can cause a large change in the regression coefficients, 

and hence the regression results, and can even make the regression results outside the physically valid domain, such as negative 315 

pCO2 values in the reconstructed data. Although we cannot conclude that the outliers of 3𝜎 away from the mean in the observed 

data are due to data biases, we have decided not to use them in our reconstruction to avoid the unphysical reconstruction results. 

Table 3 shows the 14 outlier entries excluded from our response data for regression. These outliers are located in the region of 

(21.25–23.25° N, 113.25–116.75° E). This region is near the Pearl River Estuary. Thus, these extremely low pCO2 values may 

result from the Pearl River plume where the observed pCO2 can be very low. These very low values, such as at least 3𝜎 away 320 

from the mean, may cause a very large gradient in the observed pCO2. Our reconstruction has excluded these extremely low 

values influenced by the river plumes. Our reconstructed data may therefore overestimate the pCO2 values in the Pearl River 

Estuary and its nearby region.  
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Table 3. Outliers excluded from the SOG reconstruction.  325 

Year Grid  Latitude  Longitude   pCO2 

ID        (N)            (E)        (atm) 

2006 

2006 

926     22.75°    116.75°      208 

952     23.25°    116.75°      197 

2009 

2009 

896     22.25°    114.75°      212 

923     22.75°    115.25°      217 

2012 836     21.25°    110.75°      248 

2014 

2014 

873     21.75°    116.25°      191 

874     21.75°    116.75°      219 

2016 

2016 

2016 

2016 

2016 

2016 

2016 

841     21.25°    113.25°      265 

842     21.25°    113.75°      272 

868     21.75°    113.75°      239 

869     21.75°    114.25°      205 

870     21.75°    114.75°      216 

896    22.25°    114.75°     210 

897     22.25°    115.25°      274 

4 Data availability 

The gridded underway sea surface pCO2 data, the remote-sensing derived sea surface pCO2 estimates, and the reconstruction 

result data are openly and freely available at PANGAEA under the link https://doi.pangaea.de/10.1594/PANGAEA.921210 

(Wang et al., 2020). 

5 Conclusions 330 

This study has demonstrated the feasibility of using the SOG method to reconstruct the sea surface pCO2 data into regular grid 

boxes. We compiled the observed underway and remote-sensing derived sea surface pCO2 data in the SCS in summer over the 

period of 2000–2017 and aggregated these data with a grid resolution of 0.5º×0.5º for reconstruction. The SOG method based 

on the multilinear regression was applied to reconstruct the space-time complete pCO2 field in the SCS. The method took the 

EOFs calculated from the remote-sensing derived pCO2 as the explanatory variables and treated the observed pCO2 as the 335 

response variable. The EOFs reflect reasonably well the general spatial pattern of the sea surface pCO2 in the SCS and reveal 

features affected by regional physical forcing such as the river plume and coastal upwelling in the northern SCS. As long as 

the in situ data provide a proper constraint to the EOFs, the reconstructed pCO2 fields are, in general, consistent with the 

patterns of the observed pCO2 and demonstrate relatively low values along the north coast affected by the Pearl River plume 

and consistently high values in the ocean basin of the SCS. The leave-one-out cross-validation result validates our 340 

reconstruction with an RMSE smaller than the spatial standard deviation of the observed underway data in the same year. The 

grid-by-grid comparison of the reconstructed summer pCO2 with the observed underway pCO2 has an RMSE smaller than that 

of the remote-sensing derived pCO2, as well as that of the neural network produced pCO2 in the same year. Moreover, our 

https://doi.pangaea.de/10.1594/PANGAEA.921210
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reconstructed pCO2 compares well with the pCO2 calculated from observations around Station SEATS in the northern basin 

of the SCS. These comparisons confirm that our reconstruction is reliable. The temporal rate of our reconstructed sea surface 345 

pCO2 over the SCS is consistent with the local rate at Station SEATS and the North Pacific rate at Station HOT, which further 

validates our reconstruction. These reconstructed pCO2 fields provide full spatial coverage of the sea surface pCO2 of the SCS 

in summer over a temporal scale of almost two decades and therefore help fill the long-lasting blanks on the global sea surface 

pCO2 map. Thus, the reconstruction products will help improve the accuracy of the estimate of the oceanic CO2 flux of the 

largest marginal sea of the western Pacific so as to better constrain the global oceanic carbon uptake capacity.  350 

Although the SOG method can optimize the information from both the in situ data and the remote-sensing derived data, the 

reliability of the reconstructed results is still limited by the observed data. When the observed data are limited to only a few 

grid boxes in a small region, the reconstruction results may not be realistic. Additional constraints have to be considered. 
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