A standardized database of MIS 5e sea-level proxies in southern Africa (Angola, Namibia and South Africa)

J. Andrew G. Cooper¹,²; Andrew N. Green²,¹.

1. Geography and Environmental Science, Ulster University, Coleraine BT52 1SA, Northern Ireland, UK
2. Discipline of Geology, University of KwaZulu-Natal, South Africa

Correspondence to: Andrew Cooper (jag.cooper@ulster.ac.uk)

Abstract.
Evidence for sea-level change during and around Marine Isotopic Stage (MIS) 5e (ca. 125 ka) in southern Africa derives from a wide variety of geomorphic and sedimentological sea-level indicators, supported in the past 2 decades by absolute chronological control, particularly on littoral deposits, some of which have a quantifiable relationship to former sea level. In addition to these proxies, data provided by both terrestrial (dune sediments and archaeological remains) and marine (lagoonal and nearshore littoral sediments) limiting points provide broad constraints on sea level. Here, we review publications describing such data points. Using the framework of the World Atlas of Last Interglacial Shorelines, we insert in a standardized database (DOI: 10.5281/zenodo.4302228) all the elements available to assess former paleo relative sea level, and the chronological constraints associated with them (including uncertainties). Overall, we reviewed 71 studies, from which we extracted 39 sea-level indicators and 26 limiting points. As far as age attribution is concerned, early analysis of molluscs and whole-rock beachrock samples using U-Series allowed dating of several sea-level indicators during the 1980s but the more widespread application of Optically Stimulated Luminescence (OSL) dating since 2004 has yielded many more (and more accurate) sea-level indicators from several sites. This has helped resolve the nature and timing of MIS5e shorelines and has the potential to further elucidate the apparent presence of two or more sea-level peaks at several South African sites.
during this interval. The standardized sea-level database presented in this paper is the first of its kind for this region. Future research should be directed to improve the stratigraphic description of Last Interglacial shorelines and to obtain better dating, high-accuracy elevation measurements with better palaeo-RSL interpretation.

1 Introduction

This paper aims to describe in detail the background information contained in the southern Africa MIS 5e sea-level database, that was compiled as a contribution to the World Atlas of Last Interglacial Shorelines (WALIS) ESSD Special Issue. The database was created using the WALIS interface, available at this link: https://warmcoasts.eu/world-atlas.html. The WALIS interface has been built following the lessons learned from the PALSEA (a PAGES/INQUA working group) in terms of sea-level databases, summarized in a recent paper by Düsterhus et al. (2016). In brief, the WALIS interface allows a large range of data and metadata on Last Interglacial relative sea-level indicators and associated ages to be inserted into a mySQL database. An export tool allows users to download their datasets as a multi-sheet .xls file. The database for southern Africa described in this study represents the output of the export tool mentioned above, it is open access and is available at this link: https://zenodo.org/record/4302228#.X8etyLOny70. Each field in our database is described at the following link: https://doi.org/10.5281/zenodo.3961544. The open access database will facilitate research on the global and regional patterns of sea-level change by the sea-level research community including geophysical modellers, oceanographers, geologists and archaeologists.

To describe our database, and help the reader navigate through our choices in standardizing other author’s works, we first give an overview of the published literature in the region of interest (See Section 2). While not all the studies cited in this section contain enough data to be included in the database, they represent the historical background upon which new data were collected and include sites that provide the potential for further investigation with modern dating techniques. Then, we describe the types of sea level indicators and elevation measurement techniques we encountered while compiling the database (see Sections 3 and 4). In Section 5, we
report details for each administrative province/region within the area of interest, where
sea level data was reviewed. In the final two sections, we discuss further details on
other metadata on paleo sea-level indicators that are not included in our database, but
that might be useful as research on Quaternary shorelines progresses in southern
Africa. We discuss future research directions that may stem from this data compilation
in Section 6.

2. Literature overview

Multiple elevated shorelines (some exceeding 100 m above sea level) occur around
the coast of Southern African (Angola, Namibia and South Africa). Many of these
extend over large distances and they have long been recognised and described in
varying levels of detail (e.g. Krige, 1927; Haughton, 1931, Soares do Carvalho, 1961;
Davies, 1970, 1972, 1973, 1980). These and other studies have enabled a compilation
of South African sea-level data for the Plio-Pleistocene (Hearty et al., 2020). Many
early descriptions of sedimentary evidence of former sea level are rather vague, with
imprecise levelling, positioning and a lack of absolute (and even relative) dating
control, but they drew attention to the presence and nature of many potential MIS5e
deposits. Geomorphological and occasional sedimentological description of these
raised coastal deposits was often scarce or incomplete and their relationship to former
sea level was imprecisely defined. The issues regarding levelling are discussed below
(Section 4), but in this overview, unless otherwise stated, elevations are expressed in
relation to MSL.

Previous dating of higher than present shorelines in southern Africa came from the
study of archaeological material with no fixed relationship to sea level. It could,
however, be used to constrain the minimum age of coastal deposits. The presence of
Acheulean (approx. 1.5 Ma- 150 ka yrs) tools in littoral deposits or on elevated marine
terraces was frequently used to differentiate pre-Last Interglacial shorelines. Davies
(1980) for example, maintained that all elevated beach deposits above 4 m in Namibia
were pre-MIS5 because they contained Acheulean tools. The presence of stone tools
of only the Sangoan culture (130-10 ka yr BP) was regarded as indicative of Last
Interglacial shorelines: for example, on this basis Davies (1970) assigned a probable
Last Interglacial age to a shoreline at ca. +9 m in KwaZulu-Natal, on the east coast of South Africa (Fig. 1). Archaeological investigations (e.g. Fisher et al., 2013) continue to identify sites that may hold evidence of former sea levels during former highstands. The presence of early Pleistocene and Tertiary animal macrofossils (e.g. Hendey, 1970, Kensley and Pether 1986; Pether 1986; Le Roux, 1990) established the first absolute controls on some elevated shorelines, particularly in the western Cape. These studies demonstrated that shorelines higher than ca. 10 m were Early Pleistocene or older (several high shorelines date to the Miocene and Pliocene). Le Roux (1990) used these macrofossils to correlate Neogene units (including shoreline deposits) around the entire Cape coast of South Africa.

Dating and identification of the relationship of potential Last Interglacial shorelines to former sea levels remained problematic and contentious through the 1970s to the 1990s. Tankard (1975a,b) noted the presence of shoreline deposits (open coast and lagoonal) associated with higher than present sea levels in the western Cape (St Helena Bay area) (Fig. 1). By comparison with modern open coast and estuarine deposits, the former sea level was calculated at +6.25 m (Tankard, 1975a) and by comparison with global occurrences of shorelines at this elevation, was assigned a probable MIS 5e age. These deposits contained sub-fossil mollusc shells (in life position and transported) that included a cool water open coast assemblage and a lagoonal assemblage that included species currently confined to the tropics. These thermally anomalous molluscs (Tankard, 1975b) were taken as indicative of warmer waters during the Last Interglacial. Tankard (1975b) noted several sites between St Helena Bay and Knysna where these assemblages occurred in sediments associated with a former sea level of ca. + 6 m (Fig. 1). In a regional review of “Pleistocene” shorelines Davies (1970, 1971, 1972,1980) presented a gazette of several potential Last Interglacial sites, both estuarine and open coast, in South African and Namibia where molluscs occur that are currently restricted to warmer waters of west and east Africa. These he termed the Swartkops fauna. Davies (1980) stated (p154) “In estuaries of the South Cape between Coega and Mossel Bay and apparently as far west as Arniston, beds occur with warm water fauna at peak altitudes of +4 to +9 m. Some have probably been eroded, and all would have been laid down under water, so M.S.L. would have been over +9 m”. A warm water estuarine fauna from a +6-8 m
estuarine terrace at Kosi Bay (Fig. 1) was also assigned to the Last Interglacial (Cooper et al., 1989). Subsequently, Le Roux (1990) reported that these warm water mollusc species, from estuarine/lagoonal facies were associated with the 6-8 m shoreline and are probably coincident with “the well-documented period of higher temperatures at c. 120 000 B.P. (Kilburn & Tankard, 1975).”

Several sedimentological and geomorphological observations suggested the presence of more than one Last Interglacial stillstand of sea level at South African sites. Hobday (1976) recognized three “Last Interglacial shorelines” from Lake St. Lucia (+8 m, +3.4-5.3 m, and +4.5 m) and Tankard (1976) found three “Last Interglacial” shorelines around Saldanha Bay (+ 6.3 m, +2-3.5 m, and 0 m) (Fig. 1). At least the lowest of these three in each case may now be tentatively assigned a late Holocene Age (Cooper et al., 2018). Davies (1971, 1972, 1980) noted the repeated occurrence around the entire South African coast of a +6 m terrace incised into a +9 m terrace, implying two highstands separated by a regression. Barwis and Tankard (1983) also recorded two shorelines separated by a regression at Swartklip near Cape Town (Fig. 1). Cooper and Flores (1991) described the sedimentary facies of an outcrop at Isipingo near Durban (Fig. 1) and demonstrated that sediments from two former high sea levels were preserved between +5 and +6 m. Sedimentological work at Nahoon near East London (Jacobs and Roberts 2009) (Fig. 1) also pointed to two sea level highstands during the 5e interglacial, separated by a period of regression and dune building.

From the 1970s until early 2000s, in the absence of direct dating, it was widely accepted that the MIS 5e shoreline/s in South Africa were associated with sea level in the approximate +6-8 m range (e.g. Hobday, 1976; Hobday and Jackson, 1979; Barwis and Tankard, 1983; Cooper and Flores, 1991). The lack of dating control beyond old (contaminated) C14 dates, prohibited further comment on the time of deposition of these units.

Hendey and Cooke (1985) and Hendey and Volman (1986) mounted a challenge to this view after they found (on the basis of vertebrate fossil evidence) that deposits at Saldanha Bay associated with a +6-8 m shoreline (that had previously been correlated with MIS5e), were actually of early Pleistocene (1-1.5 Ma) age. Building on this, they
then challenged the admittedly tenuous reported links between sea level and human occupation of important archaeological deposits in a cave at Klasies River mouth (Fig. 1). This evidence, they maintained, supported an early Pleistocene age for formation of the +6-8 m erosional terrace in the cave. They asserted that occupation of the cave (supported by U/Th dates of 98 and 110 ka) was contemporaneous with formation of a lower (supposed MIS5e erosional terrace) associated with a +4 m sea-level. Based on observations at this and two other cave sites (at De Kelders and Herolds Bay—Fig. 1), they contended that the +6-8 m shoreline in South Africa was early Pleistocene and the MIS5e sea level did not exceed +4 m. Subsequent OSL dating (see below) shows that their contention, based on universal extrapolation from a few sites, was incorrect.

Barwis and Tankard (1983) reported undated observations of shoreline deposits related to two closely spaced highstands at Swartklip, near Cape Town. The sedimentary deposits were interpreted as beachrock capped by calcrete, topped by estuarine sediments and washover fans. These in turn were overlain by aeolian dunes. The washover deposits were tentatively linked to a 135 ka sea-level high and have been widely cited as examples of last interglacial shorelines. Subsequent sedimentological and fossil analysis (Pether, pers. comm., 2020), however, reveals that the ‘estuarine” and “washover” deposits represent inter-dune wetlands and aeolian deposits, respectively, and that both from part of a major MIS 7 aeolian dune deposit (Roberts et al., 2009). MIS5 shorelines are, however, represented in the immediate surroundings by marine erosional surfaces and littoral deposits that require further study (Pether, pers comm, 2020).

Apart from several old and contaminated radiocarbon dates, no absolute dates existed for supposed MIS5e shoreline deposits in South Africa until Davies (1980, p162) reported the results of Amino Acid Racemization dating of molluscs from three sites near Port Elizabeth (Fig. 1). The results, although inconclusive, suggested that two shells from a deposit at +6.5 m but “contemporary with the +8 m beds upstream” in the Swartkops Estuary “may be 130 000 B.P. or perhaps in the range 160 000 - 220 000”. The first published compilation of late Quaternary to recent sea level data (Ramsay and Cooper, 2002) included only 4 dates from the late Quaternary, all of them based on Uranium Series dating. Since then, detailed studies in the Wilderness
and Mossel Bay areas of the Western Cape (Fig. 1) (Carr et al., 2010; Bateman et al., 2008, 2011) and the Maputaland coastal plain in KwaZulu-Natal (Porat and Botha, 2008) applied OSL-dating to aeolianite and occasional littoral facies to investigate the timing of major coastal barrier and dune-building episodes. These were subsequently extended by offshore investigations that applied Optically Stimulated Luminescence (OSL and, in one instance, paired OSL and U-Series) dating to submerged deposits (Bosman, 2012; Cawthra et al., 2018). Data from these studies are reported below in a regional report of data availability.

In southern Namibia, diamond mining provided the impetus for investigation of former shoreline deposits both onshore and offshore (e.g. Spaggiari et al., 2006; Spaggiari, 2011; Runds, 2017; Runds et al., 2019; Kirkpatrick et al., 2019). The several higher than present “beaches” of the Sperrgebiet or forbidden zone (Fig. 1), rest on erosional terraces and were labelled A-F (with increasing elevation) by Corvinus (1983) (Fig. 2). This terminology has since been widely applied. Shorelines D, E and F range in bedrock platform height from +10 to +30 msl (Fig. 2). They contain a warm-water marine zone fossil Donax rogersi and are Tertiary in age (SACS, 1980; Apollus, 1995; Jacob, 2001; Roberts and Brink, 2002). Shorelines A, B and C are characterised by modern cold-water faunas, particularly the infaunal bivalve Donax serra (Pickford and Senut, 2000; Pether, 2000; Jacob, 2001; Miller, 2008). These littoral deposits truncate calcreted sandstones and underlying sands bearing the fossil Equus capensis and Acheulean artefacts, and are therefore younger than Middle Pleistocene (Pickford and Senut, 2000). Fossil and Middle Stone Age archaeological remains suggest that these lower shorelines (A-C) are younger than 200,000 years. The supposed Mid Pleistocene (‘C beach’) is located at +8m and the Late Pleistocene (MIS5e) (‘B beach’) is at +4m (Hallam, 1964; Corvinus, 1983; Pether, 1986; Schneider and Miller, 1992; Ward, 2000; Pether et al., 2000). The A beach at +2-3 m is likely of Holocene age but no absolute dating control has been established on shorelines A, B or C.

In Angola, Soares do Carvalho, (1961) first identified several marine terraces at various elevations above present sea level. These had littoral deposits resting upon them and as in Namibia, terraces and overlying deposits were considered to be broadly coeval. Giresse et al. (1984) reported U-Series dates on a number of these terraces at elevations between 0 and 55 m near Benguela and Lobito (Fig. 1). Of
these, three dates, deemed by the authors to be acceptable, were in the MIS 5 range. Mollusc samples from a +10-12 m terrace dated to 91 and 136 ka, and from a +20 m terrace to 103 ka. These provided little additional insight into the chronology of the Angolan shorelines which remained enigmatic. Walker et al. (2016) identified a widespread terrace at +25 m elevation that dated to 45 ka (based on 8 OSL dates). This demonstrated late Pleistocene dynamic uplift of the Angolan coast by ca. 300 m (ca. 2 mm/yr) via a mantle done with diameter of ca. 1000 km, centred on Benguela. This finding of substantial tectonic deformation along the Angolan coast, effectively requires a reappraisal of the ages and elevations of all shorelines in Angola, that has yet to be undertaken.

We note that our database contains information on paleo relative sea levels. The “relative” term highlights the fact that every paleo sea level we report is uncorrected for potential post-depositional uplift or subsidence due to, for example, tectonics or glacial isostatic adjustment. Although the South African coast is regarded as tectonically stable during the Quaternary, the potential impact of neotectonics on raised shoreline elevation has also been raised in northwestern South Africa (Namaqualand) and Namibia. Roberts and Brink (2002) reported deformation of Miocene and Pliocene shorelines on the NW coast of South Africa involving ca. 50 m vertical displacement. Raised beaches in the southern Sperrgebiet (southern Namibia, Fig.1) said to be of Plio-Pleistocene age appear to diminish in altitude from south to north (Stocken, 1978; Dingle et al., 1983) and may imply recent deformation. Pickford and Senut (2000) note, however, that some of the Sperrgebiet shorelines may be as old as Miocene and the appearance of tilting could be an artifact.

3 Sea level indicators

In reviewing existing studies, we identified several types of Last Interglacial sea-level indicators in the region (Table 1). All are sedimentological (based on distinctive sedimentary facies that are diagnostic of particular marine, coastal and terrestrial environments) while one (beachrock) has an additional diagenetic component. Their indicative meaning (i.e. the relationship between the elevation of the indicator and the paleo relative sea level it represents) can be inferred by comparison with modern equivalents within certain error limits (Shennan et al., 2015; Rovere et al., 2016), but
this was not always undertaken in the original study. In such instances, in the
database we have sought to retrofit this interpretation to the reported observations.
Several other datapoints are simply limiting dates. These occur an unquantifiable
distance above (terrestrial limiting) or below (marine limiting) sea level. Most of these
included in the dataset are derived from aeolianite that accumulated above MHW.

The most widespread sea-level indicators in southern Africa are marine terraces or
shore platforms (Kennedy, 2015; Rovere, 2016) that sometimes have associated
littoral deposits resting upon them. Although they can be related to former sea levels
by comparison with modern regional equivalents (Smith et al., 2010; Dixon et al., 2014;
Cooper and Green, 2016), few of these documented occurrences have been dated.
Notable exceptions are the raised beaches overlying shore platforms in Angola
(Walker et al., 2016) that proved not to be of MIS5 age, but which establish the utility
of this sea-level indicator.

Contemporary tidal inlet (Cooper, 1990; 2002) and foreshore facies (Smith et al., 2010)
extend over a vertical range of a few metres on the microtidal (ca. 2m) and high energy
coast of southern Africa and no systematic report of their relationship to contemporary
sea-level datums exists. Swash zone deposits Consequently, the former sea-level
associated with these deposits can only be constrained to within a few metres through
comparison with their modern equivalents (Carr et al., 2010; Cawthra et al., 2018).
Identification of swash zone sediments can potentially provide somewhat better
constraint on former sea level (Cooper, 2014) as the swash zone typically extends
from the low water mark to the beach berm. However, wave runup on beaches
depends on many factors including the beach slope and grain size and can be
significantly higher during storms. Wave runup on South African beaches ranged from
2 to 9 m during a storm in 2007 (Mather et al., 2010).

Following Hearty et al. (2007), the contact between shoreface and foreshore
sediments was used as a sea-level indicator in South Africa by Roberts et al., (2012)
and Cawthra et al. (2018). This occurs in outcrop as a planar, conformable contact
between cross-bedded gravelly sands (shoreface) and planar bedded, gently dipping
sands (foreshore) and is correlated with mean low tide.
Beachrock is defined by a unique combination of sedimentary texture and cement (Vousdoukas et al. 2007; Mauz et al. 2016). The distinctive bedding (near-horizontal plane-lamination, symmetrical ripples, and/or planar and trough cross-beds) derives from deposition on the lower intertidal beach and the cement is diagnostic of cementation in the intertidal zone. Several generations of cement can be present and these may reflect changes in porewater chemistry that result from changes in sea level and beach morphology (Kelly et al., 2014; Wiles et al., 2018). Careful identification of particular beachrock sub-facies can provide sub-metre constraints on former sea level (Mauz et al., 2016).

Many South African estuaries and lagoons contain brackish water back-barrier sediments with distinctive molluscan faunas of which several are known to exist in a quantifiable relationship to sea level (Kilburn and Rippey, 1982). No indicators of this type, have, however, been reported for MIS5 in the study area. Sediments in contemporary back-barrier locations extend from MHW to a maximum of -3m, although during fluvial floods, water levels can extend to 3-4 m higher (Cooper et al., 1990). In South African perched lagoons (Cooper, 2002), that lack a surface connection to the ocean for extended periods, the enclosed water level and associated sediments may reach higher levels (seldom > 1 m above MHW). No systematic morphological measurements are available for southern African back-barrier systems (Harrison et al., 2000).

The database also includes some broad indicators that simply record whether sea level was higher or lower than the dated sample. These include terrestrial limiting dates set by aeolianites (now-cemented aeolian dunes that formed by wind action on dry land) or marine limiting dates set by undifferentiated shoreface sediments that formed at an unknown depth below mean low water in the marine environment.

4 Elevation measurements

The reviewed studies report elevations measured by either barometric altimeter (limited to early studies), levelling, echo-sounding (multibeam echo-sounding in more recent studies), or do not report the elevation measurement method. As a consequence, the sea level datum to which the data is referred is usually not reported
but has been assumed to be Mean Sea Level. Spring tidal range around southern Africa is generally less than 2 m but more precise recording and reporting of the relationship of former littoral deposits to contemporary sea-level (and preferably a fixed datum with a known relationship to modern sea level) is desirable in future studies in order to reduce vertical uncertainties. Roberts et al. (2012) present a model for future investigations in which all elevations are reported to orthometric zero, that is linked in turn to land levelling datum and the WGS84 horizontal and vertical datums. Measurements were undertaken using total station and/or Differential GPS with a reported vertical measurement error of +/- 1.5 cm.

5 Overview of datapoints inserted in the database

The sea level information reviewed for South Africa was extracted from sources that are described hereafter, with details reported in the Supplementary file annexed to this paper, as exported from the WALIS data insertion interface (DOI: 10.5281/zenodo.3961544). All site names are the same as those reported in the database.

The database includes 60 datapoints, of which 35 are sea-level indicators (i.e. they exist in a quantifiable relationship to the sea level at which they formed) and 25 are limiting points (they show that sea level was some (unquantifiable) elevation above (terrestrial limiting) or below (marine limiting) the material sampled). Chronological control is based on luminescence dating (43 datapoints), luminescence dating (13 datapoints), Amino Acid Racemization (AAR) (1 datapoint) and 3 datapoints rely on stratigraphic control. The highest reported accuracy is associated with the luminescence dates and the AAR datapoint is extremely uncertain. Elevations cited in the following text are stated in relation to MSL unless there is explicit information to relate them to another datum.

5.1 Western Cape

In the Western Cape, important work on Last Interglacial shorelines has been conducted by Carr et al. (2010) who provided a detailed analysis from sites at three locations (Swartvlei, Groot Brak Estuary and Cape Agulhas) on the south coast (Fig.
1). This involved several OSL dates for sea-level indicators (tidal inlet, beach berm and foreshore) and several terrestrial limiting data from overlying terrestrial dune (aeolianite) deposits. Collectively, these define a sequence of sea-level indicators recording transgression to a peak of ca. + 8.5 m at ca. 127 ka followed by regression. At Swartvlei and Groot Brak tidal inlet facies overlain by shoreface or aeolian facies indicate a highstand 6.0–8.5 m above modern sea level. At Cape Agulhas, a gravel beach (ca. 3.8 m amsl) and an overlying sandy shoreface facies (up to 7.5 m amsl) were deposited between 138±7 ka and 118±7 ka. The highstand was followed by accumulation of aeolian dunes (dating to 122±7 ka and 113±6 ka).

Cawthra et al. (2018) broadly confirmed these observations but identified a second sea-level peak from the Great Brak River sequence based on a lower foreshore deposit overlain by aeolianite in a regressive succession, which is in turn overlain by a higher foreshore deposit heralding renewed transgression. The two foreshore units separated by aeolianite suggests two sea-level highstands separated by regression. The second sea-level peak is represented by an ~2 m-thick coarse sandy tabular deposit with an orthometric height of 6.8 m amsl. It was not dated but is younger than the underlying foreshore sediments (111.2 ± 7 ka).

In a study primarily of MIS11 deposits at Dana Bay, Roberts et al. (2012) also described and dated a regressive MIS5 sequence comprising shoreface, foreshore and aeolian units. The shoreface/foreshore contact, marked by a transition from cross bedded gravelly sand to gently seaward dipping planar bedded sands, was invoked as a palaeoshoreline indicator as this contact occurs in contemporary beaches at mean low water. Using this approach in conjunction with detailed and accurate levelling tied to fixed absolute levels, Roberts et al. (2012) established the former low tide level at +5.2 m. MSL is 1 m higher. Sea level index points were derived by OSL dating of the foreshore sands (125+/−9 and 116+/−9 ka) and a limiting date (125 +/−9 ka) was set by the overlying aeolianite.

At Langebaan several dated samples yielded a largely concordant series of TL, IRSL and U-series ages. The hominid footprints horizon was dated to ∼108 ka, (corrected to ∼117 ka based on global sea level curves and the conformable contact with the underlying strata) (Roberts, 2008). A discordant (older) TL date was attributed to
incomplete bleaching of quartz grains (Roberts and Berger, 1997). The Langebaan footprints were interpreted to date from initial regression from the younger of two MIS 5e highstands identified at Nahoon (see below) at ~120 ka (Roberts, 2008).

5.2. Eastern Cape

Jacobs and Roberts (2009) undertook a detailed study to clarify apparently conflicting ages of hominid footprint-bearing aeolianite at Nahoon (Fig. 3). They dated aeolianite and associated beach facies, reporting limiting ages for the aeolianite and an index point for the beach facies. The analysis also revealed the presence of two MIS5e beaches, only the younger of which was OSL dated (117 +/- 6 ka). Roberts (2008) noted “already fully lithified footprint-bearing [a]eolianites of the Nahoon Formation in the area had been planed off and gullied by a later sea level which rose to ~6 m amsl. This suggested a Marine Isotope Stage 5e (MIS 5e) event. The Nahoon Formation [a]eolianites rest on shallow marine deposits at ~1 m amsl, representing an older sea level highstand. Thus the geological evidence from Nahoon points to two highstands, an older event at ~2 m amsl and a younger counterpart at ~6 m amsl”. Subsequent sedimentary analysis (Morrissey et al. 2020 p.1.) delivered an alternative interpretation in which two phases of aeolianite deposition were separated by “a single stepped sea-level transgression phase up to +7.82 ± 0.82 m asl, evidenced by intraformational beachrock facies and marine benches”. No further dates were provided.

At Blind River, East London, Wang et al. (2008) provide two OSL dates on “estuarine calcarenite” that is conformably overlain by a “storm beach gravel” between +8 and +10 m MSL. The stratigraphically conformable dates from the estuarine deposit (119+/− 9 ka and 118+/−7ka) were from +5 m and + 6.5 m, respectively.

Although many potential MIS 5 deposits have been reported from the open coast and estuaries of the Eastern Cape, the only other dated evidence comes from sites at Coffee Bay (Fig. 1), where an oyster shell from a beach whose base is at +4.5 m yielded a U/Th age of 104.9 +/- 9 ka (Ramsay and Cooper, 2002)
5.3 KwaZulu-Natal

Porat and Botha (2008), in a comprehensive study of dune development on the Maputaland coastal plain, established a chronology for the many aeolian depositional units. This enabled a reappraisal of the regional stratigraphy (Botha, 2018). They, however, recorded only one MIS5e date, (132710 ka, MP-22) from the crest of a 50 m-high coastal dune at Cape Vidal (Fig. 1), that gave no clear indication of the associated sea level. A cluster of U/Th ages from 95.7 to 117 ka (Ramsay et al., 1993), however, derived from marine shells, beachrock and an elephant tusk associated with a solution pothole on an erosional terrace cut into aeolianite near Durban, identify a sea-level at about +6 m. This was correlated with the second of two supposed (but undated) MIS5 shorelines described at adjacent sites at Isipingo by Cooper and Flores (1991). Similarly, supposed last interglacial shoreline deposit were described from adjacent sites at Durban (Cawthra et al., 2012). At Phinda Game Reserve (Fig.1), an oyster shell in a palaeoshoreline yielded a U/Th age of 95+/- 4 ka (Ramsay and Cooper, 2002). Several beachrock and aeolianite outcrops on the continental shelf (Ramsay, 1994; Bosman, 2012) have yielded sea-level index points and limiting dates either side of MIS 5e (Table 1).

5.4. Namibia

The geological and sedimentological literature on the Namibian coastal deposits is quite extensive, but none of the literature surveyed meets the minimum database standards for MIS 5e sea-level quantification. The potential 5e sites reported in the literature lack absolute dating control; to our knowledge, and despite the extent of diamond mining from raised shorelines north (downdrift) of the Orange River, no MIS 5e dates have been presented for raised shorelines in Namibia. It has been supposed on molluscan fossil evidence that a shoreline complex at + 8 m (the C Beach of Corvinus, 1983) is mid-Pleistocene and a + 4m (B beach) is of Last Interglacial age. These deposits require further investigation, especially to establish their ages.

5.5. Angola
Early U-Series dates presented by Giresse et al. (1984) included three potential MS5e ages for raised shorelines at + 12 and + 20 m. These require reappraisal, however, in the light of the subsequent presentation of multiple OSL dates for a +25 m shoreline dating to 45 ka (Walker et al., 2016), that implies large scale Quaternary uplift along the Angolan coast. The Giresse et al. (1984) data are included in the database, but their reliability and actual significance is uncertain.

6 Further details

6.1 Last Interglacial sea level fluctuations

The collated data from South Africa for the period 140-80 ka yr BP are shown in Figure 4 superimposed on a continuous record from the Red Sea to provide temporal context. Data from 90 to 140 ka are shown in detail in Figure 5. The record is largely internally consistent, although some OSL dates on submerged aeolianites plot well under the sea level inferred by emergent sea-level indicators. These may be the result of ex-situ sampling of loose boulders on the seabed. Carr et al., (2010) presented the earliest dated point for sea level above present ca. 138 ka. Data from Cawthra et al. (2018) suggest a subsequent period of lower than present sea levels around 130 ka. Carr et al. (2010) provide several datapoints for an MIS 5e sea-level highstand of ca. +8 m centred on ca. 125 ka and there is a cluster of dates for a highstand between 115 and 120 ka. Taken together, however, the collated regional data are inconclusive regarding the presence of more than one sea level peak during MIS5e (Fig. 5); the paucity of data points and overlaps in the age ranges preclude a definitive statement. In the lack of full dating control it is not possible to argue for the presence (Hearty et al.)or absence (Mauz et al. 2018) of two sea-level peaks in MIS 5e. - it would be worth referring to Mauz, et al. "No evidence from the eastern Mediterranean for a MIS 5e double peak sea-level highstand." Quaternary Research 89.2 (2018): 505-510.

6.2 Other interglacials
Tertiary and Early Pleistocene shoreline deposits are widely developed on east and west coasts of South Africa, Namibia and Angola. These were recently reviewed by Hearty et al. (2020) in the context of global climate change.

Well-preserved littoral deposits of the prolonged MIS 11 highstand containing diagnostic sea-level information were described by Roberts et al. (2012) from near Mossel Bay in the Western Cape. These dated to ~390 ka and yielded a precise maximum elevation of +14 m (correction for minor crustal uplift and GIA indicated eustatic sea level of +13 m ±2 m). The sequence also revealed sea level fluctuations during MIS11 including an early highstand close to present sea level.

In both the Western Cape and KwaZulu-Natal, coastal dunes of MIS 7 have been dated, but no sea-level indicators have been reported. Ramsay and Cooper (2002) reported a U/Th age of 182+/−18 ka (Pta-U430) from aeolianite from Reunion Rocks near Durban, which overlaps with an OSL date of 203+/−13 ka (MP-33) from the same location reported by Porat and Botha (2008). Bateman et al. (2004) similarly recorded three OSL dates in the range of 176-283 ka from a landward dune ridge at Wilderness (Shfd02132, 02133 and 02134). The widespread occurrence of aeolianites that yield MIS 7 OSL dates in the Western Cape has been highlighted by Roberts et al. (2009, 2014).

6.3 Holocene sea level indicators

Shorelines associated with a Holocene sea-level highstand are well-developed around the coast of South Africa (Ramsay, 1996; Compton, 2001) and Namibia (Compton, 2006). A recent regional review (Cooper et al., 2018) identified a mid-Holocene highstand of +2 to +4 m between 7.3 and 6 ka BP, with potential Late Holocene oscillations of <1 m amplitude around the present sea level in the subsequent interval.

6.4 Controversies

The past controversy around the age of the +6-8 m shoreline, created by Hendey and Volman (1986) was an artefact of limited chronological control and a lack of detailed
sedimentological analysis and reporting. OSL dating has since proved that Last
Interglacial shorelines do extend between +6 and +8 m. Their work, does, however,
point to the need for caution in making broad generalisations about the age of
shorelines at specific elevations and it is clear that shoreline deposits of various ages
can occur at similar levels if the right conditions exist for preservation. The widely-
cited Swartklip section (Barwis and Tankard, 1983) does not contain MIS 5 sea-level
indicators and is now established as dating to MIS7 (Roberts et al., 2014). The
question of potential tectonism in Angola and Namibia is a relatively recent one. The
evidence of uplift of Quaternary shorelines presented by Walker et al. (2016) from
central Angola is persuasive, but the spatial and temporal extent of tectonic influence
on raised shorelines on the coast of Angola, Namibia and possibly Namaqualand in
NW South Africa requires further investigation. De Beer (2012), for example, provided
evidence of Plio-Pleistocene reactivation of Mesozoic faults in Namaqualand, possibly
as recently as the latest Pleistocene. This was attributed to local seismogenic activity
rather than regional uplift.

6.5 Uncertainties and data quality

The data reported are subject to a variety of uncertainties related to the original
elevation and associated datum. In few studies are these described adequately. In
addition, regional data are lacking on the relationship of contemporary sedimentary
facies and geomorphic units to any tidal datum. This adds to the uncertainty in
determining the indicative meaning of the sedimentary facies.

Elevation and datum uncertainties in the sampled material must be considered,
especially in pre-2004 studies (the advent of OSL dating). Very many studies do not
explicitly report the elevation measurement technique nor the measurement error. In
the database, these errors have been estimated via the authors’ own experience. In
most instances, elevation measurements are not reported to a specified datum,
whether Chart Datum (marine) or Ordnance Datum (terrestrial), or a tidal level. This
reduces the vertical resolution of most datapoints, which have been referred to MSL
in the database.
Paleo RSL calculations from modern analogues rely on detailed knowledge of contemporary coastal environments and associated sedimentary facies. Southern Africa has a high energy, wave-dominated coast within which distinctive sedimentary facies have a large vertical range. Our quantification of modern analogues is based on a combined analysis of the global literature on sea-level indicators (Rovere et al., 2015), especially on high-energy coasts (e.g. Cooper 2013; Mauz et al., 2015), descriptions of the contemporary South African littoral geomorphology and sedimentology (Smith et al., 2010; Bond et al., 2013; Kelly et al., 2014; Dixon et al., 2015; Cooper and Green, 2016; Wiles et al., 2018; Green et al., 2019) and our own experience. More direct measurement (especially in relation to a fixed datum and reporting of the distribution and variability of ranges of open coast sedimentary facies in the region would help constrain comparisons with modern analogues. Tidal inlet-associated units are particularly difficult to constrain because of the marked variability in geomorphology of estuaries and their inlets around the South African Coast (Cooper, 2001) and the paucity of direct measurements of inlet depth. The ranges listed in the database are based on the authors’ own experience.

Uncertainties related to dating refer mainly to U-Series dates. These are sometimes at odds with other dating methods and suggest issues with the source material (not from closed systems, for example). OSL dating in contrast, seems to have given more consistent results, although even here, there are some inconsistencies between aeolianite and other dates. The OSL dates, are, however, on sandy sediments from the high energy coast where vertical uncertainties (see above) are comparatively high. Many of the U-Series dates are from estuarine sediments where vertical uncertainties on sea-level indicators could potentially be better constrained due to the lower energy conditions in which they accumulate and the specific vertical ranges of certain organisms.

A mandatory evaluation of data quality is included with each RSL datapoint. This was undertaken following the WALIS guidelines. (https://walis-help.readthedocs.io/en/latest/Relative%20Sea%20Level/#quality)

7 Future research directions
Our newly compiled database provides a means to investigate the record of sea-level variability around southern Africa and to identify data gaps and precise questions for further investigation. In this regard, and in light of recent developments in dating, several sites that were reported in earlier studies as likely MIS5e shorelines merit further investigation as they may help refine the detailed pattern of sea-level change during that interval. Sites with particularly well preserved littoral sedimentary facies that record sea-level variability merit fresh investigation. Particularly high-priority sites (Fig. 6) include the poorly age-constrained sites at Isipingo and Reunion (KwaZulu-Natal) (Cooper and Flores, 1991) and Nahoon Point (Eastern Cape) where two contrasting interpretations have been presented (Jacobs and Roberts, 2008; Morrissey et al., 2020). (Fig. 3). The added potential to date submerged littoral sediments, as has been carried out at several sites in South Africa, holds the possibility of elucidating the timing and magnitude of sea-level fluctuations between sea-level highstands.

In addition, the widespread palaeo-lagoonal/estuarine deposits that occur in many estuaries from KwaZulu-Natal to the Western Cape that have been noted (Davies, 1970, 1971, 1972, 1980; Cooper, 1996, 1999) but little investigated, remain a valuable resource for detailed sea-level reconstruction around the MIS 5e interglacial. In particular, the Listers Point outcrop in Lake St Lucia (KwaZulu-Natal) (Fig. 1), which has been the subject of controversy due to poorly resolved stratigraphy, is worthy of further detailed investigation. Part of the confusion (and unnecessarily strongly-held opinions) that surrounds the site arises from poorly detailed stratigraphical investigations. Cooper et al. (2013) established that at least 5 highstand deposits are preserved, including two separate coral-bearing units, the uppermost of which is probably from the Last Interglacial. The site is also adjacent to other deposits that have yielded U/Th ages suggestive of MIS5e, although they are somewhat younger (Ramsay and Cooper, 2002).

8 Data availability
The southern Africa database is available open access, and kept updated as necessary, at the following link: https://zenodo.org/record/4302228#.X8etyLOny70. The files at this link were exported from the WALIS database interface on 02/12/2020. Description of each field in the database is contained at this link: https://doi.org/10.5281/zenodo.4302228, that is readily accessible and searchable here: https://walis-help.readthedocs.io/en/latest/. More information on the World Atlas of Last Interglacial Shorelines can be found here: https://warmcoasts.eu/world-atlas.html. Users of our database are encouraged to cite the original sources alongside with our database and this article.

Acknowledgments

The data used in this study were compiled in WALIS, a sea-level database interface developed by the ERC Starting Grant "WARMCOASTS" (ERC-StG-802414), in collaboration with PALSEA (PAGES / INQUA) working group. The database structure was designed by A. Rovere, D. Ryan, T. Lorscheid, A. Dutton, P. Chutcharavan, D. Brill, N. Jankowski, D. Mueller, M. Bartz. The data points used in this study were compiled and contributed to WALIS by Andrew Cooper and Andrew Green. We are grateful to Alessio Rovere for guidance and assistance in the preparation of this manuscript. Reviews by Hayley Cawthra and Natasha Barlow and comments by Barbara Mauz greatly helped in preparation of the final paper. John Pether kindly provided comments and unpublished observations on the Swartklip and adjacent sections.

Author Contribution.

Both authors contributed equally to manuscript preparation.

Competing Interests.

None

References

Runds, M.J., Bordy, E.M. and Pether, J., 2019. Late Quaternary sedimentological
history of a submerged gravel barrier beach complex, southern Namibia. Geo-Marine
Letters, 39, 469-491.

Soares do Carvalho, G. 1961. Alguna problemas dos terracos quaternaries de littoral

John Wiley & Sons.

Spaggiari, R.I., 2011. Sedimentology of Plio-Pleistocene Gravel Barrier Deposits in
the Palaeo-Orange River Mouth, Namibia: Depositional History and Diamond

Plio-Pleistocene littoral deposits within the palaeo-Orange River mouth, Namibia. Ore
Geology Reviews, 28, 475-492.

Sperrgebiet. COM Geological Department internal report. Namdeb Diamond
Corporation (Pty) Ltd., Oranjemund, Namibia, 33pp.

Tankard, A.J.T. 1975a Late Cenozoic history and palaeoenvironments of the south-
wester Cape province, South Africa. Unpubl. PhD thesis, Rhodes University,
Grahamstown.

Figure Captions

Figure 1. (Inset) Locality Map of the Angolan, Namibian and South African coasts showing sites mentioned in the text. Main map shows details of sites in South Africa (KZN= KwaZulu-Natal Province; LP = Listers Point). Co-ordinates for each site are provided in the database.

Figure 2. Schematic east-west cross-section through the raised beach deposits of southern Namibia (modified from Runds, 2017). Subtidal to +10 m elevations represent the A, B and C beaches, and the +30 m package represents the D, E and F beaches). Data compiled originally from Hallam (1964) and Jacob (2001). Beach ‘B” is commonly ascribed to MIS5e, but has not been dated definitively.

Fig 3. Diagrammatic sequence of depositional events and sea-level change associated with recorded hominid footprints on a fossil dune surface at Nahoon, East London. Two interpretations of the sequence are compared. In each, the starting point (a) is the same, but in the interpretation of Jacobs and Roberts (2008) (b-d), the footprints are buried by further aeolian sedimentation and the (undated) but supposed early MIS5e dune/beach succession is lithified (b) indicating that sea level had fallen by an unknown magnitude below the present level. In (c) a later (higher) MIS 5e highstand (to about +/-6 m) partly erodes the earlier MIS 5e marine and aeolian deposits and in (d) further erosion of the MIS 5e dune/beach succession occurs during the Holocene highstand resulting in the development of an overhang, the underside of which bears the (natural) casts of the footprints. In the interpretation (x-z) of Morrissey et al (2020), littoral sedimentation deposits an onlapping and conformable littoral unit during a continuously rising MIS5e sea level.

Figure 4. Sea level index points, together with seaward and landward limiting points for all available data from the Angolan, Namibian and South African coasts. Plotted data span MIS 5a to e. To provide temporal context, the Red Sea sea-level curve of Grant et al. (2014) is superimposed.
Figure 5. Collated sea level index points, together with seaward and terrestrial limiting points for the South African coast surrounding the last interglacial of MIS5e (Table 1). Y-axis records inferred MIS 5e sea level relative to present.

Figure 6. Key sites in South Africa with sedimentary, but not fully dated records of sea-level variability during MIS5e. Locations on Fig. 1. a). Sequence at Nahoon (after Jacobs and Roberts, 2008). A similar lowermost beach facies represents a possible early MIS5e highstand at ~ +1 m, with a regression represented by the aeolian facies, followed by a second transgression. B) alternative interpretation of the Nahoon sequence (from Morrissey et al., 2020), in which the two beach units are regarded as co-eval. c). An undated sequence of littoral sediments overlying an aeolianite at Reunion, Durban, adjacent to the site at Isipingo described by Cooper and Flores (1991), The lowermost beach facie overlies the platform from which Ramsay et al. (1993) described an elephant tusk found in a solution pothole. The holds the potential to investigate the relationship between platform formation and beach deposition in relation to former sea levels. the first forming the erosional platform, the second depositing the overlying beachrocks.
Fig. 1.

Fig. 2.
Fig. 3.
Fig. 4.

Fig. 5.
Table 1 (Picture)

<table>
<thead>
<tr>
<th>Name of RSL Indicator</th>
<th>Description of RSL Indicator</th>
<th>Description of relative water level</th>
<th>Description of indicative range</th>
<th>Indicator Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beach deposit or beachrock</td>
<td>From Mauz et al., 2015: “Fossil beach deposits may be composed of loose sediments, sometimes slightly cemented. Beachrocks are lithified coastal deposits that are organized in sequences of sands with seaward inclination generally between 5° and 15°.” Definition of indicative meaning from Rovere et al., 2016.</td>
<td>Ordinary berm + breaking depth/2</td>
<td>Ordinary berm - breaking depth</td>
<td>Mauz et al., 2015; Rovere et al., 2016</td>
</tr>
<tr>
<td>Beach swash deposit</td>
<td>Beach face between mean sea level and foredune</td>
<td>Upper limit = spring tidal range / 2 or mean higher high water</td>
<td>Lower limit = mean sea level</td>
<td>Cooper, 2013</td>
</tr>
<tr>
<td>Foreshore deposits</td>
<td>Beach deposits characterized by a horizontal or gentle seaward-dipping lamination.</td>
<td>(MHHW to MLLW)/2</td>
<td>MHHW to MLLW</td>
<td>Cawthra et al., 2018</td>
</tr>
<tr>
<td>Lagoonal deposit</td>
<td>Lagoonal deposits consist of silty and clayey sediments, frequently characterized by the presence of brackish or marine water fauna (Rovere et al., 2015). Usually, lagoon sediments are horizontally laminated (Dechesn et al., 2004). Definition of indicative meaning from Rovere et al., 2016.</td>
<td>Mean Lower Low Water + modern Lagoon depth/2</td>
<td>Mean Lower Low Water - modern Lagoon depth</td>
<td>Rovere et al., 2016; Zecchin et al., 2004</td>
</tr>
<tr>
<td>Shore platform</td>
<td>Kennedy, 2015 defines shore platforms as “sub-horizontal rocky surfaces that interrupt vertical cliffs at or near sea level”. Definition of indicative meaning adapted by Rovere et al., 2014 from Kennedy, 2013.</td>
<td>Mean higher high water + (breaking depth - MLLW)/2</td>
<td>Mean higher high water - (breaking depth - MLLW)/2</td>
<td>Kennedy, 2015; Rovere et al., 2016</td>
</tr>
<tr>
<td>Tidal inlet faces</td>
<td>Coarse-grained, slightly bedded, trough cross bedding, herringbone cross bedding, multiple cusum, Ophiomorpha and Skolithos trace fossils.</td>
<td>-0.5 MSL to -3.5 MSL</td>
<td>-0.5 MSL to -3.5 MSL</td>
<td>Carr et al., 2010</td>
</tr>
<tr>
<td>Foreshore/shoreface contact</td>
<td>Highest elevations of contact between cross-bedded gravelly shoreface sands and planar bedded, gently seaward-dipping, foreshore sands. Occurs at MSL.</td>
<td>MSL</td>
<td>MSL</td>
<td>Roberts et al., 2012; Huyar et al., 2007</td>
</tr>
</tbody>
</table>

Table 1 (Text)

<table>
<thead>
<tr>
<th>Name of RSL Indicator</th>
<th>Description of RSL Indicator</th>
<th>Description of relative water level</th>
<th>Description of indicative range</th>
<th>Indicator Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beach deposit or beachrock</td>
<td>From Mauz et al., 2015: “Fossil beach deposits may be composed of loose sediments, sometimes slightly cemented. Beachrocks are lithified coastal deposits that are organized in sequences of sands with seaward inclination generally between 5° and 15°.” Definition of indicative meaning from Rovere et al., 2016.</td>
<td>(Ordinary berm + breaking depth)/2</td>
<td>Ordinary berm - breaking depth</td>
<td>Mauz et al., 2015; Rovere et al., 2016</td>
</tr>
<tr>
<td>Beach swash deposit</td>
<td>Beach face between mean sea level and foredune</td>
<td>$= \frac{\text{upper limit} - \text{lower limit}}{2}$</td>
<td>Cooper, 2013</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
<td>--</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\text{Upper limit} = \frac{\text{spring tidal range}}{2}$ or,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\text{mean higher high water}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\text{Lower limit} = \text{mean sea level}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foreshore deposits</td>
<td>Beach deposits characterized by a horizontal or gentle seaward-dipping lamination.</td>
<td>(MHHW to MLLW)/2</td>
<td>MHHW to MLLW</td>
<td>Cawthra et al. 2018</td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
<td>------------------</td>
<td>--------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Lagoonal deposit</td>
<td>Lagoonal deposits consist of silty and clayey sediments, frequently characterized by the presence of brackish or marine water fauna (Rovere et al., 2016). Usually, lagoon sediments are horizontally laminated (Zecchin et al., 2004). Definition of indicative meaning from Rovere et al., 2016.</td>
<td>(Mean Lower Low Water + modern Lagoon depth)/2</td>
<td>Mean Lower Low Water - modern Lagoon depth</td>
<td>Rovere et al., 2016 Zecchin et al., 2004</td>
</tr>
<tr>
<td>Shore platform</td>
<td>Kennedy, 2015 defines shore platforms as "sub-horizontal rocky surfaces that interrupt vertical cliffs at or near sea-level". Definition of indicative meaning adapted by Rovere et al., 2016 from Kennedy, 2015.</td>
<td>[Mean Higher High Water + (Breaking depth-MLLW)/2]/2</td>
<td>Mean Higher High Water - (Breaking depth-MLLW)/2</td>
<td>Kennedy, 2015 Rovere et al., 2016</td>
</tr>
<tr>
<td>----------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Tidal inlet facies</td>
<td>Coarse-grained, thickly bedded, trough cross bedding, herringbone cross bedding, multiple scours, Ophiomorpha and Skolithos trace fossils.</td>
<td>-0.5 MSL to -3.5 MSL</td>
<td>-0.5 MSL to -3.5 MSL</td>
<td>Carr et al., 2010</td>
</tr>
<tr>
<td>Foreshore/shoreface contact</td>
<td>Highest elevation of contact between cross-bedded gravelly</td>
<td>MLW</td>
<td>MLW</td>
<td>Roberts et al., 2012, Hearty et al., 2007</td>
</tr>
<tr>
<td>shoreface sands and planar bedded, gently seaward dipping, foreshore sands. Occurs at MLW.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>