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Abstract. Strontium isotope ratios (¥Sr/%6Sr) of biogenic material such as bones and teeth reflect the local sources of
strontium ingested as food and drink during their formation. This has led to the use of strontium isotope ratios as a
geochemical tracer in a wide range of fields including archaeology, ecology, food studies and forensic sciences. In order to
utilise strontium as a geochemical tracer, baseline data of bioavailable 87Sr/®Sr in the region of interest is required, and a
growing number of studies have developed reference maps for this purpose in various geographic regions, and over varying
scales. This study presents a new data set of bioavailable strontium isotope ratios from rock and soil samples across Israel, ,
as well as from sediment layers from seven key archaeological sites. This data set may be viewed and accessed both in an
Open Science Framework repository (doi:10.17605/0OSF.I0/XKJ5Y (Moffat et al., 2020)) or via the IRHUM (Isotopic

Reconstruction of Human Migration) database.

1 Introduction

Strontium (Sr) isotope geochemistry has applications in many fields of research including archaeology (Bentley, 2006;
Slovak and Paytan, 2012), ecology (Barnett-Johnson et al., 2008; Hobson et al., 2010), food traceability (Voerkelius et al.,
2010) and forensic sciences (Beard and Johnson, 2000). Strontium is widely distributed within geological and biological
materials, and the strontium isotope ratios (87Sr /%6Sr) of these materials reflect the sources of strontium in the environment
during their formation (Dasch, 1969). The use of traditional isotope systems such as hydrogen and oxygen systems in
provenance studies is limited by their broad gradients across the Earth’s surface, whereas 8/Sr/®Sr ratios show predictable
geographic variability determined by lithology, with some limited temporal variability (Aggarwal et al., 2008; Willmes et al.,
2018). To utilise the potential of strontium isotopes as a geochemical tracer, prior knowledge of baseline data in the region of
interest is required. Bedrock strontium isotope ratios are a product of the age, mineralogy, and origin of source material
(Capo et al., 1998; Faure and Mensing, 2005). The amount of &Sr within a geological unit typically increases over time

through the radioactive decay of &Rb to 8Sr, while the amounts of 8Sr, 8Sr and %Sr remain constant (Capo et al., 1998). In
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general, older rocks such as granite in continental crust have higher &Sr /2°Sr ratios than younger rocks with a lower Rb/Sr
ratio, such as oceanic basalt (Capo et al., 1998). The 8Sr /%6Sr ratios of carbonates reflect the water from which they
precipitated, either seawater for marine carbonates or a local water body for non-marine carbonates (Faure, 1986; Neat et al.,
1979). Clastic sedimentary rocks typically have &Sr /%Sr ratios which reflect the lithology of their source material, tempered
by the relative ease with which minerals containing strontium are removed by weathering (McDermott and Hawkesworth,
1990). The 8Sr /8Sr ratios observed for geological units of varying compositions and ages are discussed further by Capo et
al. (1998), Faure and Mensing (2005), Faure and Powell (1972), and others.

The strontium isotope composition of regolith is principally derived from local weathering of bedrock (Capo et al., 1998),
but may be augmented by windblown marine, mineral and anthropogenic aerosols, different mineral weathering rates,
transportation of regolith and pore water chemistry (Frumkin and Stein, 2004; Goede et al., 1998). Bioavailable strontium is
the component of strontium present in an environment which is available for incorporation into biological systems. Regolith,
in combination with water, is the principal source of bioavailable strontium, although processes including precipitation, sea
spray and fertiliser use may also affect the isotopic composition of bioavailable strontium (Bentley, 2006; Frei and Frei,
2011; Price et al., 2002; Slovak and Paytan, 2012).

1.1 Strontium isotope mapping

There are range of approaches to mapping bioavailable strontium, as summarised below and in greater detail in Bentley
(2006), Maurer et al. (2012), Slovak and Paytan (2012) and Bataille et al. (2020). Archaeological human or faunal samples
are considered to be one of the best indicators of the local bioavailable range, although their geographic origin may be
uncertain (Maurer et al., 2012; Price et al., 2002). Modern faunal samples from known localities may also be used, although
non-local food sources and fertiliser use need to be considered (Bentley, 2006; Maurer et al., 2012). Soils, plants, and water
may also be measured for local bioavailable strontium isotope ratios (Evans et al., 2010; Maurer et al., 2012; Price et al.,
2002). While soils and plants average strontium over a smaller area, ground water and surface waters may provide an
estimate of bioavailable strontium over a wider area, depending on catchment size (Evans et al., 2010; Willmes et al., 2014).
As discussed previously, the strontium isotope ratios of plants, soils and water may be affected by numerous factors
including precipitation, sea spray and fertiliser use, which may vary over seasonal and annual timescales (Bentley, 2006;
Hoogewerff et al., 2019; Price et al., 2002). Local bioavailable strontium isotope ratios may also be modelled from bedrock,
considering age, mineralogy and weathering rates (Bataille et al., 2012; Bataille and Bowen, 2012). In the case of soil and
rock samples, an ammonium acetate or ammonium chloride digestion method, which removes cations from electrostatically
bound pore water in addition to exchange sites on minerals and organic matter, can be used as a means of extracting the
bioavailable component of these samples (Stewart et al., 1998). This approach has been found to extract between 0.1 and
62% of whole soil strontium (Chadwick et al. 2009).

At a country scale, strontium isoscapes have been developed for Mesoamerica (Hodell et al., 2004), the United Kingdom
(Evans et al., 2010), France (Willmes et al., 2014, 2018) and Denmark (Frei and Frei, 2011) from a combination of bedrock,
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soil, plant and water samples. Isoscapes of bioavailable strontium have also been modelled for the contiguous USA (Bataille
and Bowen, 2012), Western Europe (Bataille et al., 2018; Hoogewerff et al., 2019) and the Caribbean region (Bataille et al.,
2012). At a larger scale, Voerkelius et al. (2010) sampled mineral waters across Western Europe to predict bedrock 87Sr/®Sr
but found local processes to result in unexpected values.

1.2 Strontium isotope studies and mapping in Israel

Previous studies in Israel and across the Levant region have utilised strontium isotope analyses in a variety of applications in
addition to undertaking small scale mapping of bioavailable strontium. Herut et al. (1993) measured the &7Sr/éSr ratios of
rainwater samples across Israel and used these results in conjunction with the chemical composition of the sample to
determine the sources of Sr and soluble salts. Shewan (2004) developed a map of bioavailable strontium throughout Israel
using modern faunal bones and grass samples, for comparison to bones from archaeological sites in the region. The work of
Shewan (2004) and Perry et al. (2008), who measured 87Sr/®Sr from archaeological faunal dental samples in western Jordan,
was collated to create a bioavailable strontium map for Israel and Jordan, combining modern flora and fauna with material
from archaeological sites (Perry et al., 2009). These studies highlight several distinct provinces in the region, with samples
along the Jordan Valley distinguished from those in the Eastern highlands of Israel and the Western Highlands in Jordan, as
well as several smaller areas with varying isotopic signatures in the north of the study area (Perry et al., 2009). Rosenthal et
al. (1989) report the strontium isotope composition of gastropod shells to reconstruct water sources in the Dead Sea Rift area
of the Jordan Valley. Spiro et al. (2011) measured 87Sr/Sr ratios of water and mollusc shells in the Hula catchment in the
Upper Jordan Valley, adjacent to the Golan Heights, and found distinct water sources and aquifers. Stein et al. (1997)
sampled water and sediments around the Dead Sea to determine water sources and the evolution of the Dead Sea and its
precursor, Lake Lisan, identifying two distinct periods of lake evolution. Hartman and Richards (2014) sampled plants and
invertebrates in Northern Israel and the Golan Heights to produce a map of modern bioavailable strontium isotope ratios, and
to investigate potential sources of variability, including inter-site variability and the influence of precipitation. Arnold et al.
(2016) sampled plants in the vicinity of Tell es-Safi/Gath to create a local bioavailable strontium map as a baseline for use in
interpreting the mobility of domestic animals from archaeological sites in the region. Moffat et al. (2012) undertook spatially
resolved strontium isotope analysis using laser ablation techniques to demonstrate annual migration using a bovid tooth from
the archaeological site of Skhul. These studies have highlighted the value and potential of bioavailable strontium mapping in

this region, and the data presented in this study aims to add to this growing knowledge base.

2 Methods
2.1 Sample collection

Soil and rock samples were collected throughout Israel in September and October 2008. Sample locations were chosen

opportunistically, with reference to a digital 1:200000 geological map of Israel using the Old Israel Grid co-ordinate system
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(Sneh et al., 1998), to provide the greatest representation of the stratigraphic units present in Israel that were accessible via
road. A single rock and soil sample was taken at each site, with no replicates. Soil samples were collected from the surface,
at a single point, with no attempt made to samples multiple soil horizons where present. Rock samples were taken for the
principal geological unit present at each site and a brief description of the lithology made in the field, which can be viewed
in the data file. Sediments from stratigraphic layers in seven archaeological sites, Amud, the Atlit Railway Bridge site, Neve
David, Qafzeh, Sefunim Cave, Skhul and Tabun, were also sampled for analysis via fieldwork or from archival collections.
Where possible, sediments from archaeological sites were collected for multiple stratigraphic units. Sample locations and

archaeological sites are illustrated in Figure 1.

2.2 Analytical methods
2.2.1 Sample treatment

Rock and soil samples were heated to 60°C for a minimum of 24 hours prior to sample preparation to comply with Australian
quarantine procedures. After heating, rock samples were crushed to a powder using a hand piston. Rock and soil samples
were passed through a 2 mm sieve, and 1 g aliquot of the sieved sample was leached by adding 2.5 ml of 1M ammonium
nitrate (NH4NQO3), following DIN (German Industrial Standard) 1SO (International Organization for Standardization) 197310
(2009). Samples were shaken for 24 h and subsequently centrifuged at 3000 rpm for 5-10 min. 1 ml of supernatant was
extracted and evaporated until dry, before being dissolved in 2 ml of 2 M high purity nitric acid (HNO3).

The concentration of strontium was determined by ICP-AES (inductively coupled plasma atomic emission spectrometry).
lon exchange chromatography was then used to isolate strontium from other elements, particularly 8’Rb to prevent isobaric
interference with 8Sr (Dickin, 2000), using two columns filled with Eichrom strontium specific resin (prefilter resin and
strontium specific resin). The strontium concentration determined by ICP-AES was used to determine the amount of sample
added to the ion exchange column. Samples were diluted prior to MC-ICP-MS (multi-collector inductively coupled plasma

mass spectrometer) analysis to allow for reanalysis if necessary.

2.2.2 Neptune MC-ICP-MS analysis

A Neptune MC-ICP-MS was used to measure strontium isotope ratios in the Environmental Geochemistry and
Geochronology Laboratory at the Research School of Earth Sciences, Australian National University (ANU). The isotopes
measured and Faraday cup configuration used for the analysis are shown in Table 1. Data reduction was performed offline
and includes a blank, 8’Rb isobar and an exponential mass bias correction.

To ensure precision, accuracy and reproducibility in the data produced, the samples were run in a sequence, which included
blank and standard samples. The strontium carbonate reference material SRM987 (National Institute of Standards and

Technology) was measured on the Neptune MC-ICP-MS during the sample sequence to quantify instrument drift. During the
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analysis period, measurements of SRM987 ranged from 0.71012 + 0.00001 to 0.71028 + 0.00001, with a mean of 0.71022 +

0.00003 (n=32). The soil and rock results were not calibrated based on these SRM987 measurements.

3 Results

60 soil samples and 48 rock samples were analysed for 87Sr/%Sr. The 8Sr/®%Sr ratios of the soil samples range from 0.70577
+ 0.00001 to 0.71020 * 0.00003. The &Sr/®Sr ratios of the rock samples range from 0.70529 + 0.00001 to 0.74072 +
0.00001. These results are illustrated on satellite images of Israel in Figure 2 (rock samples) and Figure 3 (soil samples).
Gross lithologies, defined by observations in the field and geological maps of the region (Sneh et al., 1998), are used to
group the results of Sr isotope analysis. The soil and rock samples analysed show some differences in &Sr/®Sr ratios
between the different lithologies sampled, as illustrated in Figure 4, although there is some overlap between most lithologies.
Figure 4a displays all samples analysed, while 4b displays an inset removing a high &Sr/%Sr granite sample (site 1S044) and
a high &Sr/%Sr rhyolite sample (site 1S047), to display the rest of the data set more clearly. Basalt samples are generally less
radiogenic in 8Sr/%Sr ratio than the other lithologies sampled for both soil and rock samples. Soil samples from carbonate
(limestone, dolostone, chalk and marl), granite, kurkar (aeolian quartz sandstone with carbonate cement), rhyolite,
siliciclastic lithologies and areas with no bedrock have comparable &7Sr/%Sr ratios (Figure 4b). The median 8Sr/®%Sr ratios
from rock samples are slightly lower than those from soils for basalt, carbonate and kurkar samples (Figure 4b). The &7Sr/8¢Sr
ratios measured from granite rock samples (two samples), and the rhyolite rock sample, are substantially elevated compared
to other units, and compared to the soil samples from the same lithologies.

At 43 of the sample locations, both soil and rock samples were collected, and the 87Sr/%Sr ratios of these samples are
compared in Figure 5. As with Figure 4, Figure 5a illustrates the entire data set, while Figure 5b has a granite rock sample
(site 1S044) and a rhyolite sample (site 1S047) removed to better display the variation in the rest of the data set. The variation
between soil and rock 7Sr/88Sr ratios for samples collected from the same site ranges from 0.00001 to 0.03130. This offset
between rock and soil samples is also visualised in Figure 6, in which the reference line indicates where rock and soil
samples have the same 8Sr/%Sr ratios for both rock and soil samples (y=x). Points which lie above this reference line have
higher &Sr/8Sr ratios for soil samples than for rock samples, which in this study is the case for most basalt, carbonate,
siliciclastic and kurkar samples. Points which lie below the y=x reference line have higher & Sr/%Sr ratios for rock samples
compared to soil samples, in this study this is the case for granite and rhyolite samples. The mean offsets from rock to soil
87Sr/%8Sr ratios of samples collected from the same sites are shown in Table 2 grouped by lithology.

Sediments from seven archaeological sites were also analysed for & Sr/®Sr; four from Amud; one from the Atlit Railway
Bridge site; two from Neve David; five from Qafzeh; three from Sefunim Cave, three from Skhul; and 16 from Tabun. These
results are illustrated in Figure 7, with samples R_1024 and R_1026 from Amud highly elevated compared to the rest of the
dataset (Figure 7a). Figure 7b displays a subset of the data excluding these elevated samples to better display the variability
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in the rest of the samples. For the sites other than Amud, the samples from Qafzeh show the largest range in 8 Sr/®Sr ratios

between layers, while for Neve David, Sefunim Cave, Skhul and Tabun, most samples have similar 8’Sr/Sr ratios.

4 Discussion
4.1 Comparison between rock and soil 8’Sr/®Sr ratios

The difference between the &Sr/®Sr ratios of soil and rock sampled from the same site is in most cases greater than the
analytical uncertainty (Figure 5), which may be due to inputs to the soil from sources other than bedrock, such as sea spray,
irrigation or Saharan aeolian dust, or alternately due to differences in the weathering rates of minerals. Rainwater collected
across Israel has been found to contain strontium associated with sea spray, marine minerals and dust from carbonate
minerals, the relative proportions of which affect the &Sr/%Sr ratio (Herut et al., 1993).

The input of aeolian dust is expected to be particularly important to the &Sr/%Sr ratios of these soil samples, as it has been
reported that aeolian material may make up to 50% of soils formed on hard limestone rocks in Israel (Yaalon, 1997). The
87Sr/88Sr isotope ratio of dust in the region is known to have varied over time, which is an important consideration in the use
of modern isoscapes for the interpretation of archaeological studies. &7Sr/Sr ratios of dust in this region varied from 0.711—
0.712 during MIS 2 and 4, and 0.709-0.710 during MIS 1, 3 and 5 (Haliva-Cohen et al., 2012). The delivery of aeolian dust
is also affected by climate variations (Frumkin et al., 2011), with Sr isotope ratios found to increase at major climate
transitions that correspond to sapropel formation in the Mediterranean (Stein et al., 2007). Speleothem analyses have shown
that colder and drier conditions are associated with higher Sr isotope ratios due to an increase in sea spray and aeolian dust
(Ayalon et al., 1999; Frumkin and Stein, 2004).

4.2 Sediment &Sr/®Sr ratios from archaeological sites

The sediments analysed from archaeological sites in this study are mostly in carbonate units (limestone, dolostone, marl,
chalk, chert) which are Mid-Eocene to Albian-Cenomanian in age, while the Atlit Railway Bridge site is located in natural
caves formed in Quaternary kurkar (aeolian quartz sandstone with carbonate cement) on the coastal plain (Porat et al., 2018).
The single sample analysed from the Atlit Railway Bridge site has a 8Sr/®Sr ratio of 0.70952 + 0.00001, which is slightly
elevated compared to the other kurkar soils analysed in this study, which range from 0.70894 + 0.00001 to 0.70934 +
0.00013 (n=4). Soils associated from carbonate units in this study have 8Sr/%Sr ratios which range from 0.70851 + 0.00011
to 0.70925 + 0.00001 (n=35), although not all of the sediments from archaeological sites in this study from carbonate units
fall within this range. Sediment samples from Tabun and Qafzeh in particular have variable 8Sr/%Sr ratios. Samples from
stratigraphic unit B1 at Amud are the most varied; samples R_1024 and R_1026 have highly elevated ®Sr/®Sr ratios
compared to samples R_1025 and R_1027. Unit B at Amud is composed of interbedded calcareous silt, calcareous
concretions and ash derived from anthropogenic activity (Madella et al., 2002). These elevated 8’Sr/%Sr ratios are likely due

to the ash component in these sediments, and the variable nature of the interbedded sediments at this site.
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4.3 Comparison with regional datasets

Several previous studies analysing strontium isotopes have been undertaken in Israel, particularly in Northern Israel and the
Golan Heights region. The results obtained in this study of soils derived from basalts in the Golan Heights region have
87Sr/88Sr ratios in the range of 0.70577 to 0.70681 for samples (sample numbers: 175, 203, 204, 205 and 216) with robust
geological provenance. Basalt rock samples (sample numbers: 119, 143, 144, 147 and 278) in this study from the Golan
Heights region have 8Sr/®Sr ratios ranging from 0.70529 to 0.70681. For the same region, Shewan (2004) report 8Sr/8Sy
ratios ranging from 0.70529 to 0.70571 (n=4), while the results of Spiro et al. (2011) of &Sr/®Sr measured from water
samples in the Hula Valley and Golan Heights region range from 0.70467 to 0.70790 (n=37). The small difference between
the results of this study and those of Shewan (2004) may reflect the limited number of samples analysed, as the larger data
set of Spiro et al. (2011) encompasses the results of both this study and Shewan (2004). Weinstein (2006) measured bedrock
87Sr/88Sr from basalt units in the region, ranging from 0.7031 to 0.7034, lower than those measured in this study. Hartman
and Richards (2014) measured 8Sr/®Sr ratios from plants and invertebrates, and for samples taken from areas with basalt
bedrock, ligneous (woody) plants were found to have 87Sr/%Sr ratios ranging from 0.70456 to 0.70851, non-ligneous plants
ranging from 0.70473 to 0.70872, and invertebrates from 0.70494 to 0.70868. Rosenthal et al. (1989) summarise 8 Sr/8Sr
isotope sampling of basalt derived groundwater in the Jordan Valley, with 8Sr/%Sr ratios of 0.7045 to 0.705. Rainwater in
the Golan Heights region was found to have a 8’Sr/Sr isotope composition in the range of 0.70804 to 0.70923 (Herut et al.,
1993). The wide range of 8 Sr/®Sr isotope results in the Golan Heights region may be explained by the rapid depletion of Sr
from rocks and soil in this region due to weathering and the large contribution of aeolian dust to soil profiles (Singer, 2007:
202-206).

Carbonate units were the most sampled lithology in this study, due to their widespread distribution across the country. This
lithology groups a range of carbonate units (limestones, dolostones, chalk and marl), and the 8Sr/®Sr ratios of rock samples
range from 0.70733 to 0.70911, while soil &7Sr/%®Sr ratios range from 0.70803 to 0.71020. Hartman and Richards (2014)
report bedrock 8Sr/®Sr ratios from Northern Israel for carbonate units to range from 0.7073 to 0.7078, comparable to the
lower range of rock samples measured in this study. Ligneous plant samples have 8Sr/®Sr ratios ranging from 0.70789 to
0.70910, non-ligneous plants from 0.70791 to 0.70919 and invertebrates from 0.70807 to 0.70876 (Hartman and Richards,
2014), comparable to the results of this study from rock and soil samples. Rosenthal et al. (1989) summarise 8"Sr/%Sr
isotopes from carbonate derived water sources in the Jordan Valley as having & Sr/%Sr ratios ranging from 0.7070 to 0.7080.
Arnold et al. (2016) sampled plants in the vicinity of Tell es-Safi/Gath to create a local bioavailable strontium map as a
baseline for use in interpreting the mobility of domestic animals from archaeological sites in the region. Of the 10 plant
samples collected, four were from kurkar soils, with 8Sr/®Sr ratios ranging from 0.70863 to 0.70881. The kurkar soil
87Sr/88Sr ratios reported in this study are slightly more elevated, ranging from 0.70894 to 0.70934. Hartman and Richards
(2014) also measured 8Sr/®Sr ratios from plants and invertebrates from kurkar units, ligneous plants ranged from 0.70899

to 0.70903, non-ligneous plants ranged from 0.70900 to 0.70903, and two mollusc shells were measured with & Sr/2Sr ratios
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of 0.70897 and 0.70904, comparable to the kurkar soil samples reported in this study. Coastal plain grasses were analysed by
Shewan (2004) in the region of EI Wad cave, south of Haifa. These 8Sr/®Sr ratios ranged from 0.70886 to 0.70965, with an
outlying 8Sr/®Sr ratio of 0.71003 attributed to influence from the road base (Shewan, 2004). The results from the kurkar
samples in this study are comparable to those of coastal plain grasses as reported by Shewan (2004).

Samples from granite, rhyolite and siliciclastic lithologies, as well as samples from regions with no bedrock, are also
reported in this study. Hartman and Richards measured 8Sr/®Sr ratios from plants growing in alluvium, with a range of
0.70712 to 0.70830 for combined ligneous and non-ligneous (n=4) plants. From this study, samples sites where no bedrock
was found had &Sr/#Sr ratios ranging from 0.70783 to 0.70952, comparable to the results of Hartman and Richards (2014).
There are no comparable studies which sample hioavailable 8Sr/®Sr for the granite and rhyolite samples included in this

study.

5 Conclusion

This data set represents a substantial contribution of bioavailable soil and rock 8Sr/%Sr ratios for Israel, to complement and
build on previous research. The &Sr/®Sr results are shown to be principally controlled by lithology and are in broad
agreement with previous, smaller scale, studies in the region. Soil and rock &7Sr/%Sr ratios from the same site are generally

offset, and determining the mechanisms behind this offset could be the focus of future research to supplement this study.

6 Data availability

The data set can be viewed and downloaded on the IRHUM (Isotopic Reconstruction of Human Migration) database

(http://www.irhumdatabase.com). The IRHUM database architecture and functionality are described by Willmes et al.

(2014). The data is also available at the Open Science Framework data repository “Data Associated with Bioavailable Soil
and Rock Strontium isotope data from Israel” https://doi.org/10.17605/0OSF.IO/XKJ5Y.
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Table 1: Standard cup configuration and analysed masses (amu or isotope mass) employed for solution strontium isotope analysis
on the Neptune MC-ICP-MS at RSES.

L4 L3 L2 L1 C H1 H2 H3 H4
82.5 8BKr 83.5 84Sr ®Rb 8Sr 86.5 87sr 8gr

385

14



25 50

Kilometers

Legend

87Sr/86Sr
0.70529 - 0.70572
0.70573 - 0.70614
0.70615 - 0.70657
0.70658 - 0.70700
0.70701 - 0.70742
0.70743 - 0.70785
0.70786 - 0.70827
0.70828 - 0.70870
0.70871 - 0.70913
0.70914 - 0.70955

r?g'eographtcs. CNES/Airbu
GIS User Community,

390

15



25 50

Kilometers

Legend

87Sr/86Sr
0.70577 - 0.70621
0.70622 - 0.70666
0.70667 - 0.70710
0.70711 - 0.70754
0.70755 - 0.70799
0.70800 - 0.70843
0.70844 - 0.70887
0.70888 - 0.70931
0.70932 - 0.70976
0.70977 - 0.71020

Figure 3: Bioavailable 87Sr/%Sr of soil samples

16



0.7401 *
0.7301
—
m(D
R (1) rock
w
5~ 0.7201 ¢ soi
(0]
0.710 ©
10T (e © o%e
% & Qa 8 8 ° &
balsalt carbclmate gralnite kurlkar rhyélite silicicllastic no beldrock
b
0.7124
(o]
0.7104 ©
_ o © o] o] %
) ® @
8 o® ¢
E% ° o) © g rock
i 0.7081 o ¢ soi
o
o}
°8
(o}
07061 8 o
&
basalt carbonate granite kurkar rhyolite siliciclastic no bedrock

Litholo
395 ! 9y
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and rhyolite (site 1S047) lithologies, removed to better display variability between other samples.
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Table 2: Mean offset by lithology from rock to soil 8Sr/®Sr ratios collected from the same sample locations.

Litholo
v ] Basalt (6) Carbonate (31)  Granite (2) Kurkar (2) Rhyolite (1)  Siliciclastic (1)
(no. of sample sites)

Mean offset in rock

vs. soil 87Sr/%Sr

0.00073 0.00061 -0.01709 0.00036 -0.00517 0.00017
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