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 Abstract. Intertidal habitats are unique because they spend alternating periods of 6 
submergence (at high tide) and emergence (at low tide) every day. Thus, intertidal temperature 7 
is mainly driven by sea surface temperature (SST) during high tides and by air temperature 8 
during low tides. Because of that, the switch from high to low tides and viceversa can determine 9 
rapid changes in intertidal thermal conditions. On cold-temperate shores, which are 10 
characterized by cold winters and warm summers, intertidal thermal conditions can also change 11 
considerably with seasons. Despite this uniqueness, knowledge on intertidal temperature 12 
dynamics is more limited than for open seas. This is especially true for wave-exposed intertidal 13 
habitats, which, in addition to the unique properties described above, are also characterized by 14 
wave splash being able to moderate intertidal thermal extremes during low tides. To address this 15 
knowledge gap, we measured temperature every half hour during a period of 5.5 years (2014-16 
2019) at nine wave-exposed rocky intertidal locations spanning 415 km of the Atlantic coast of 17 
Nova Scotia, Canada. This data set is freely available from the figshare online repository 18 
(Scrosati and Ellrich, 2020a; https://doi.org/10.6084/m9.figshare.12462065.v1). We summarize 19 
the main properties of this data set by focusing on location-wise values of daily maximum and 20 
minimum temperature and daily SST, which we make freely available as a separate data set in 21 
figshare (Scrosati et al., 2020; https://doi.org/10.6084/m9.figshare.12453374.v1). Overall, this 22 
cold-temperate coast exhibited a wide annual SST range, from a lowest overall value of -1.8 °C 23 
in winter to a highest overall value of 22.8 °C in summer. In addition, the latitudinal SST trend 24 
along this coast experienced a reversal from winter (when SST increased southwards) to 25 
summer (when SST decreased southwards), seemingly driven by alongshore differences in 26 
summer coastal upwelling. Daily temperature maxima and minima were more extreme, as 27 
expected from their occurrence during low tides, ranging from a lowest overall value of -16.3 °C 28 
in winter to a highest overall value of 41.2 °C in summer. Daily maximum temperature in 29 
summer varied little along the coast, while daily minimum temperature in winter increased 30 
southwards. This data set is the first of its kind for the Atlantic Canadian coast and exemplifies 31 
in detail how intertidal temperature varies in wave-exposed environments on a cold-temperate 32 
coast. 33 

 1 Introduction 34 
 Rocky intertidal habitats are those occurring on marine rocky shores between the highest 35 
and lowest elevations reached by tides. These environments are unique because they spend 36 
alternating periods of submergence (during high tides) and emergence (during low tides) every 37 
day (Raffaelli and Hawkins, 1999; Menge and Branch, 2001). Thus, on the one hand, intertidal 38 
conditions are influenced by the seasonal changes in sea surface temperature (SST), which can 39 
be pronounced on temperate shores, which display warm waters in summer and cold waters in 40 
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winter. On the other hand, an even greater degree of thermal variation can occur at hourly scales 41 
once intertidal habitats become exposed to the air at low tide, especially on hot days in spring 42 
and summer (Watt and Scrosati, 2013; Lathlean et al., 2014; Umanzor et al., 2017) and cold 43 
days in winter (Scrosati and Ellrich, 2018a). 44 

 Temperature is a major factor influencing the distribution and abundance of species 45 
(Pörtner, 2002; Körner et al., 2016; Lancaster and Humphreys, 2020). Thus, SST plays an 46 
important ecological role in intertidal habitats during high tides (Sanford, 2014), while high 47 
(Somero, 2007) and low (Braby, 2007) air temperatures are ecologically relevant during low 48 
tides. In addition, not only average temperature is ecologically important, but its temporal 49 
variability as well (Bennedetti-Cecchi et al., 2006). Overall, then, having detailed temperature 50 
data across periods of low and high tide is important for intertidal ecology and to make 51 
biogeographic predictions based on climate change expectations (Wethey et al., 2011). 52 

 Temperature data are available for surface ocean waters worldwide (Fay and McKinley, 53 
2014; Banzon et al., 2016; Freeman and Lovenduski, 2016; Aulicino et al., 2018; Yun et al., 54 
2019). However, data on intertidal temperature are considerably less common, both in terms of 55 
spatial and temporal coverage (Lathlean et al., 2014; Umanzor et al., 2017; Scrosati and Ellrich, 56 
2018a). This is especially true for wave-exposed intertidal habitats, as remote sensing methods 57 
that are commonly used for open waters (e.g., satellites) cannot capture the quick, localized 58 
temperature changes caused by tides and waves. Waves can also damage equipment deployed 59 
in-situ to measure intertidal temperature. For wave-exposed intertidal habitats, temperature data 60 
between consecutive low and high tides can also be used to infer physical aspects of the 61 
environment such as wave action itself (Harley and Helmuth, 2003). 62 

 Wave-exposed rocky intertidal habitats are common along the Canadian coast in Nova 63 
Scotia, as this coast faces the open Atlantic Ocean. Several studies have investigated the ecology 64 
of these environments (Minchinton and Scheibling, 1991; Hunt and Scheibling, 1998, 2001; 65 
Scrosati and Heaven, 2007; Arribas et al., 2014; Molis et al., 2015; Ellrich and Scrosati, 2016; 66 
Scrosati and Ellrich, 2018b, 2019; Scrosati, 2020a,b). However, because of their research goals, 67 
intertidal temperature was either not measured or analyzed for a few locations or for limited 68 
time periods. Therefore, there is a knowledge gap on broad spatio-temporal patterns in intertidal 69 
temperature for wave-exposed environments along this coast. To address this gap, this paper 70 
discusses a data set consisting of intertidal temperature values measured every half hour at nine 71 
wave-exposed locations along the Atlantic coast of Nova Scotia spanning a period of 5.5 years. 72 

 2 Methods 73 
 We monitored intertidal temperature at nine locations that span the full extent of the open 74 
Atlantic coast of mainland Nova Scotia, nearly 415 km (Fig. 1). For simplicity, these locations 75 
are hereafter referred to as L1 to L9, from north to south. Their names and coordinates are 76 
provided in Table 1. The substrate of these intertidal locations is stable bedrock. All of them 77 
face the open Atlantic Ocean without physical obstructions, so they are wave-exposed. Values 78 
of daily maximum water velocity (an indication of wave exposure) measured with 79 
dynamometers (see design in Bell and Denny, 1994) in wave-exposed intertidal habitats from 80 
this coast range between 6-12 m s-1 (Hunt and Scheibling, 2001; Scrosati and Heaven, 2007; 81 
Ellrich and Scrosati, 2017). This coast is washed by the Nova Scotia Current, which is a 82 
nearshore cool current that flows southwestward from the Cabot Strait to the Gulf of Maine 83 
(Fig. 1) and is more prevalent in winter than in summer (Han et al., 1997). 84 
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 We started to monitor intertidal temperature in April-May 2014 at L2-L9 and in April 2015 85 
at L1 (see the precise dates in Scrosati and Ellrich, 2020a). We measured temperature with 86 
submersible loggers (HOBO Pendant logger, Onset Computer, Bourne, MA, USA) that were 87 
kept attached to the intertidal substrate with plastic cable ties secured to eye screws drilled into 88 
the substrate, allowing almost no contact between the loggers and the substrate. We kept the 89 
substrate around the loggers always free of macroalgal canopies and sessile invertebrates. To 90 
have a continuous temperature record during the 5.5 years of this study, we replaced the loggers 91 
periodically. At each location, we installed replicate loggers several meters apart from one 92 
another at the same elevation (just above the mid-intertidal zone). As tidal amplitude increases 93 
by 33 % from 1.8 m at L1 to 2.4 m at L9 (Tide-Forecast, 2020) and as wave exposure could 94 
change along the coast (and thus wave splash up the shore at low tides) even though all 95 
locations face the open ocean, we had to carefully determine the elevation of installation of the 96 
loggers at each location to have all loggers installed at the same relative elevation along the 97 
coast in terms of exposure to aerial conditions during low tides. To achieve this, for each 98 
location we considered the intertidal range to be the vertical distance between chart datum (0 m 99 
in elevation, or lowest normal tide in Canada) and the highest elevation where sessile perennial 100 
organisms (the barnacle Semibalanus balanoides) occurred on the substrate outside of crevices, 101 
as such a high boundary summarizes differences in tidal amplitude and wave exposure along the 102 
coast (Scrosati and Heaven, 2007). Then, we divided the resulting intertidal range for each 103 
location by three and installed the loggers just above the bottom boundary of the upper third of 104 
the intertidal range. Following this method, loggers were installed at an elevation (in m above 105 
chart datum, with the high barnacle boundary stated in parenthesis) of 1.17 m at L1 (1.75 m), 106 
1.13 m at L2 (1.69 m), 1.30 m at L3 (1.95 m), 1.57 m at L4 (2.36 m), 1.08 m at L5 (1.62 m), 107 
1.49 m at L6 (2.24 m), 1.49 m at L7 (2.24 m), 1.41 m at L8 (2.11 m), and 1.63 m at L9 (2.44 m). 108 
We set all loggers to record temperature every 30 min. We stopped recording temperature in 109 
November 2018 at L1 and L3 and in August-October 2019 at L2 and L4-L9 (see the precise 110 
dates in Scrosati and Ellrich, 2020a). For each location, temperature was highly correlated 111 
between the replicate loggers during the study period (mean r = 0.97). Thus, we averaged the 112 
corresponding half-hourly values to generate one time series of half-hourly temperature data for 113 
each location for the studied period, which is the data set discussed in this paper, being publicly 114 
available from the figshare online repository (Scrosati and Ellrich, 2020a). 115 
 Due to its high temporal resolution, this data set could be used in the future for a variety of 116 
purposes. To summarize its main properties here, we extracted values that are commonly used in 117 
intertidal ecology and coastal oceanography and that therefore could be of immediate interest: 118 
daily maximum and minimum temperature (MaxT and MinT, respectively) and daily SST. As 119 
the Nova Scotia coast is cold-temperate, we expected SST to be often considerably lower than 120 
MaxT in spring and summer, as MaxT is then reached during low tides when intertidal 121 
environments are usually exposed to high air temperatures. Conversely, we expected SST and 122 
MaxT to be more similar or even the same in winter, as low tides then often expose intertidal 123 
habitats to negative air temperatures below the freezing point of seawater. For these same 124 
reasons, we also expected SST to be typically higher than MinT in winter, as MinT is then 125 
generally reached during low tides, but more similar to MinT in spring and summer. For each 126 
location, we extracted the values of daily MaxT, MinT, and SST from the corresponding set of 127 
half-hourly data on intertidal temperature (Scrosati and Ellrich, 2020a). We considered daily 128 
SST as the temperature recorded closest to the time of the highest tide of each day, as the 129 
loggers were then fully submerged in seawater. We determined the time of such tides using 130 
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information (Tide and Current Predictor, 2020) for the tide reference stations that are closest to 131 
our intertidal locations (Table 1). 132 

 3 Main patterns in the data and relevance to future research 133 
 We obtained half-hourly temperature data during the monitoring period specified above for 134 
each location with just two exceptions: the period between 20 March and 12 April 2017 for L1 135 
(because of logger removal by drift sea ice coming from the Gulf of St. Lawrence) and the 136 
period between 30 September 2014 and 26 April 2015 for L9 (because of logger loss caused by 137 
wave action). Continued monitoring after both such periods was possible after installing new 138 
loggers. This data set is available online (Scrosati and Ellrich, 2020a). 139 
 The temporal changes in daily MaxT, MinT, and SST during the studied period at each 140 
location are shown in Fig. 2. For convenience, all of these daily values are also available from 141 
the figshare online repository (Scrosati et al., 2020). The highest and lowest values of SST for 142 
each location (Table 2) reveal that this cold-temperate coast has a wide seasonal range of SST 143 
(see worldwide SST ranges in figure 6.3 in Stewart, 2008). The highest location-wise values of 144 
SST occurred in summer and ranged between 20 °C and 22.8 °C, while the lowest location-wise 145 
SST values occurred in winter and were near the freezing point of seawater, between -0.9 °C 146 
and -1.8 °C (Table 2, Fig. 2). We note that, unlike the nearby Gulf of St. Lawrence (Fig. 1; 147 
Saucier et al., 2003) or wave-sheltered coves along the Atlantic coast of Nova Scotia, open 148 
waters washing wave-exposed habitats along the Atlantic coast of Nova Scotia do not freeze in 149 
winter (Canadian Ice Service, 2020). Overall, for the studied period, the location-wise difference 150 
between the highest and lowest SST values ranged between 21.1 °C and 24.6 °C. Although there 151 
was some patchiness in this seasonal SST range along the coast, it was lowest in two southern 152 
locations (L7 and L9) driven by lower values of maximum summer SST there (Table 2). 153 
 The occurrence of the lowest location-wise values of maximum summer SST at two 154 
southern locations (L7 and L9) is related to a broader alongshore pattern. Based on the data for 155 
the summer months (for convenience, July, August, and September) for the years when SST was 156 
measured at all locations in those months (2015, 2016, 2017, and 2018), mean location-wise 157 
SST in summer decreased from north to south, from 17.5 °C at L1 to 13.2 °C at L9 (Table 2). In 158 
contrast, an equivalent analysis done for winter months (for convenience, January, February, 159 
and March) for the years when SST was measured at all locations in those months (2016, 2017, 160 
and 2018) revealed that mean location-wise SST in winter actually increased from north to 161 
south, from 0.8 °C at L1 to 3.0 °C at L9 (Table 2). In other words, a summer-to-winter reversal 162 
in the latitudinal trend in intertidal SST takes place on this coast, as waters are warmer in 163 
summer and colder in winter in northern locations than in southern locations. 164 

 The southward decrease of intertidal SST in summer is likely influenced by alongshore 165 
differences in coastal upwelling. On the Atlantic coast of Nova Scotia, upwelling-favourable 166 
winds are more common in summer than in winter (Garrett and Loucks, 1976; Dever et al., 167 
2018). Although possible alongshore differences in upwelling have not been studied in detail, 168 
they seem to exist. For example, Petrie et al. (1987) reported that seawater temperature at 6-20 169 
m of depth decreased from June to July 1984 near L6–L7 because of wind-driven upwelling, 170 
while temperature at those depths increased north of that coastal range during that period. More 171 
recently, Shan et al. (2016) have also referred to wind-driven upwelling on the southeastern 172 
Nova Scotia coast. A detailed analysis of daily changes in intertidal SST is beyond the 173 
objectives of this paper. However, Fig. 2 reveals basic differences in summer cooling between 174 
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northern and southern locations. Summer cooling events were generally marked in southern 175 
locations, especially at L6 and L7, where SST could drop by 10 °C in 5-10 days, in some cases 176 
reaching values below 5 °C (Fig. 2). An analysis of coastal winds at L6 and L7 indicated that 177 
wind-driven upwelling explained the cooling observed at those locations in July 2014 (Scrosati 178 
and Ellrich, 2020b). Although persistent, the summer cooling signal that was often pronounced 179 
at L6 and L7 (Fig. 2) weakened progressively towards northern locations, especially at L1 and 180 
L2. In fact, at L1, SST never dropped below 10 °C in summer months (Fig. 2). These 181 
considerations could orient future research to unravel the drivers of the latitudinal changes in 182 
summer SST revealed by this study. 183 
 The southward increase of intertidal SST observed in winter could be a result of latitudinal 184 
changes in heat flux from the atmosphere (Stewart, 2008; Deser et al., 2010; Shan et al., 2016), 185 
although other processes are also generally at play in coastal environments (Hebert et al., 2016; 186 
Larouche and Galbraith, 2016). For example, for the studied coast, the abundant sea ice formed 187 
across the Gulf of St. Lawrence (Fig. 1) every winter (Saucier et al., 2003) may contribute to 188 
keep intertidal SST low at our northern locations, as the waters that leave this gulf flow 189 
southwards following the coast of mainland Nova Scotia (Han et al., 1997; Hebert et al., 2016; 190 
Dever et al., 2018), reaching our northern locations first before they warm up on their way 191 
south. 192 

 As expected from the warm summers and cold winters that characterize eastern Canada 193 
(Government of Canada, 2020), MaxT was often considerably higher than SST in spring and 194 
summer and MinT was often lower than SST in fall and winter (Fig. 2), as MaxT and MinT 195 
typically take place at low tide during those respective seasons. The highest location-wise values 196 
of MaxT almost doubled those of SST, as they ranged between 36.1°C and 41.2 °C. The lowest 197 
location-wise values of MinT ranged between -9.1 °C and -16.3 °C. Therefore, the location-wise 198 
difference between the highest and lowest daily temperatures, which ranged between 46.1 °C 199 
and 54.4 °C, generally more than doubled the location-wise difference between the highest and 200 
lowest daily SST values (Table 2). 201 
 The highest value of MaxT differed little among locations (Table 2). Based on the data for 202 
the summer months (for convenience, July, August, and September) for the years when MaxT 203 
was measured at all locations in those months (2015, 2016, 2017, and 2018), mean location-wise 204 
MaxT in summer exhibited patchiness along the coast without any clear latitudinal trend (Table 205 
2). As MaxT in summer generally occurs during aerial exposure at low tides, both climatic and 206 
oceanographic influences may interact to determine its alongshore pattern. For instance, summer 207 
values of MaxT might simply be expected to increase southwards following warmer air 208 
temperatures on land (Government of Canada, 2020). However, the SST drops in southern 209 
locations in summer due to coastal upwelling might actually temper air temperatures right on the 210 
coast, thus limiting MaxT. In the end, climate and oceanography might together be responsible 211 
for the patchy alongshore MaxT pattern, which seems dependent on local conditions. 212 
Researching these possibilities could thus be of interest. In contrast, the data for winter months 213 
(for convenience, January, February, and March) for the years when MinT was measured at all 214 
locations in those months (2016, 2017, and 2018) revealed that mean location-wise MinT in 215 
winter generally increased from north to south, the lowest such average (-2.7 °C) registered at 216 
L1 and the highest one (0.2 °C) at L9 (Table 2). Thus, the alongshore pattern of winter MinT 217 
may more clearly respond to typical latitudinal changes in winter air temperatures and perhaps 218 
also to influences of Gulf of St. Lawrence sea ice (see above) on northern locations. 219 
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 Another salient property of our data is that the daily changes in MaxT in spring and 220 
summer and MinT in fall and winter were much larger than the corresponding daily changes in 221 
SST (Fig. 2). Such a high day-to-day variability in MaxT and MinT likely reflects daily changes 222 
in weather conditions, which affect intertidal habitats at low tides, as well as wave exposure, as 223 
wave-generated splash during low tides on wavy days keep intertidal habitats wet and, thus, 224 
often cooler than the air in summer and warmer than the air in winter. Thus, the interaction 225 
between weather and wave action as a determinant of intertidal thermal extremes is another 226 
research area deserving attention in the future. Ultimately, given the prominent role of extreme 227 
abiotic events in ecology (Denny et al., 2009; Smith, 2011; Nowicki et al., 2019), the marked 228 
daily changes in MaxT and MinT during those seasons highlight the potentially critical role of 229 
low tides for the survival of intertidal organisms in these environmentally variable habitats. 230 
 Another interesting characteristic of our data set is that the daily average between MaxT 231 
and MinT was generally higher than SST in spring and summer but generally lower than SST in 232 
fall and winter (Fig. 2). In other words, the average intertidal temperature measured during low 233 
tides increased faster from winter to summer and decreased faster from summer to winter than 234 
SST. This difference likely reflects the difference in heat capacity between air and water, which 235 
makes SST follow air temperatures throughout seasons with a delay (Stewart, 2008). 236 
 Our data set could also be useful to investigate climatic drivers of interannual differences in 237 
intertidal temperature. For example, a marked difference in upwelling-driven coastal cooling at 238 
L6 and L7 between July 2014 (strong) and July 2015 (weak) was related to a normal (2014) 239 
versus El Niño (2015) conditions (Scrosati and Ellrich, 2020b). Although El Niño (ENSO) is 240 
predominantly a Pacific phenomenon (Timmermann et al., 2018), it is also related to interannual 241 
weather changes in North America through climatic teleconnections (George and Wolfe 2009; 242 
Wu and Lin 2012; Whan and Zwiers 2017; Dai and Tan, 2019). Another large-scale climate 243 
phenomenon, the North Atlantic Oscillation (NAO), influences weather patterns mainly in the 244 
North Atlantic basin (Hanna and Cropper, 2017). It would thus be interesting to study whether 245 
NAO and ENSO might interact (Wu and Lin, 2012; Nalley et al., 2019) to affect winds, 246 
upwelling, and ultimately intertidal temperature along the Nova Scotia coast. 247 

 4 Conclusions 248 
 This is a unique data set because it describes intertidal temperature with a high temporal 249 
resolution during a period of 5.5 years at nine wave-exposed locations spanning the full extent 250 
of the Atlantic coast of mainland Nova Scotia. The main patterns described above have revealed 251 
previously unknown latitudinal and seasonal trends in intertidal temperature on this coast. The 252 
above considerations on the possible mechanisms underlying these patterns should help orient 253 
future research on the drivers of thermal variation in these intertidal environments. Because of 254 
the temporal and spatial scales of this data set, future research using these data could lead to 255 
theoretical advances in coastal oceanography and intertidal thermal ecology. Ultimately, this 256 
data set represents a detailed baseline on which to study the influence of climatic and 257 
oceanographic change on intertidal temperature variation on this cold-temperate coast. 258 

 Data availability 259 

 The full data set on half-hourly temperature measured at the nine intertidal locations 260 
between 2014 and 2019 is available from the figshare online repository (Scrosati and Ellrich, 261 
2020a; https://doi.org/10.6084/m9.figshare.12462065.v1). The daily values of MaxT, MinT, and 262 
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SST for these locations during this time period are also available from the figshare online 263 
repository (Scrosati et al., 2020; https://doi.org/10.6084/m9.figshare.12453374.v1). 264 
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Table 1. Basic information about the nine wave-exposed intertidal locations surveyed for this 437 
study. 438 
 439 
Location 
code 

Name of studied intertidal location 
(geographic coordinates) 

Closest tide reference station 
(geographic coordinates) 

L1 Glasgow Head 
(45.3203° N, 60.9592° W) 

Canso 
(45.3500° N, 61.0000° W) 

L2 Deming Island 
(45.2121° N, 61.1738° W) 

Whitehead 
(45.2333° N, 61.1833° W) 

L3 Tor Bay Provincial Park 
(45.1823° N, 61.3553° W) 

Larry's River 
(45.2167° N, 61.3833° W) 

L4 Barachois Head 
(45.0890° N, 61.6933° W) 

Port Bickerton 
(45.1000° N, 61.7333° W) 

L5 Sober Island 
(44.8223° N, 62.4573° W) 

Port Bickerton 
(45.1000° N, 61.7333° W) 

L6 Duck Reef 
(44.4913° N, 63.5270° W) 

Sambro 
(44.4833° N, 63.6000° W) 

L7 Western Head 
(43.9896° N, 64.6607° W) 

Liverpool 
(44.0500° N, 64.7167° W) 

L8 West Point 
(43.6533° N, 65.1309° W) 

Lockport 
(43.7000° N, 65.1167° W) 

L9 Baccaro Point 
(43.4496° N, 65.4697° W) 

Ingomar 
(43.5667° N, 65.3333° W) 

440 
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Table 2. Summary values of daily MaxT, MinT, and SST (°C) for the nine wave-exposed 441 
intertidal locations (L1 to L9, from north to south) surveyed between 2014 and 2019 along the 442 
Atlantic Canadian coast (see Methods for details on how each row of values was determined). 443 
 444 

 L1 L2 L3 L4 L5 L6 L7 L8 L9 

Highest 
daily MaxT 

38.1 38.3 37.9 36.1 41.2 36.5 37.1 37.2 38.5 

Lowest 
daily MinT 

-16.3 -10.8 -11.0 -10.0 -12.2 -15.5 -13.0 -9.1 -11.6 

Highest 
temperature 
range 

54.4 49.1 48.9 46.1 53.4 52.0 50.1 46.3 50.1 

Summer 
mean MaxT 

25.1 22.9 22.6 20.7 25.5 23.5 22.8 23.2 21.8 

Winter 
mean MinT 

-2.7 -1.4 -1.3 -0.4 -2.2 -1.2 -0.3 0.02 0.2 

Highest 
daily SST 

22.5 21.5 21.8 22.8 22.2 21.9 20.3 22.1 20.0 

Lowest 
daily SST 

-1.7 -1.7 -1.4 -1.8 -1.8 -1.8 -0.9 -1.7 -1.7 

Highest SST 
range 

24.2 23.2 23.2 24.6 24.0 23.7 21.1 23.7 21.7 

Summer 
mean SST 

17.5 16.4 16.1 16.1 15.8 15.2 13.3 14.2 13.2 

Winter 
mean SST 

0.8 1.0 1.3 1.3 1.6 2.2 2.7 2.8 3.0 

445 
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Figure legends 446 
Figure 1. Map indicating the position of the nine wave-exposed intertidal locations surveyed 447 
along the Atlantic coast of mainland Nova Scotia, Canada. 448 
Figure 2. Daily MaxT (red line), MinT (blue line), and SST (black line) at the nine intertidal 449 
locations (L1 to L9, from north to south) surveyed between April 2014 and October 2019. 450 


