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Abstract: As the largest river basin of the Tibetan Plateau, the Upper Brahmaputra 23 

River Basin (also called “Yarlung Zangbo” in Chinese) has profound impacts on the 24 

water security of local and downstream inhabitants. Precipitation in the basin is 25 

mainly controlled by the Indian Summer Monsoon and Westerly, and is the key to 26 

understand the water resources available in the basin; however, due to sparse 27 

observational data constrained by a harsh environment and complex topography, there 28 

remains a lack of reliable information on basin-wide precipitation (there are only nine 29 

national meteorological stations with continuous observations). To improve the 30 

accuracy of basin-wide precipitation data, we integrate various gauge, satellite and 31 

reanalysis precipitation datasets, including GLDAS, ITP-Forcing, MERRA2, TRMM 32 

and CMA datasets, to develop a new precipitation product for the 1981-2016 period 33 

over the Upper Brahmaputra River Basin, at 3-hour and 5-km resolution. The new 34 

product has been rigorously validated at different temporal scales (e.g. extreme events, 35 

daily to monthly variability, and long-term trends) and spatial scales (point- and 36 

basin-scale) with gauge precipitation observations, showing much improved 37 

accuracies compared to previous products. An improved hydrological simulation has 38 

been achieved (low relative bias: -5.94%; highest NSE: 0.643) with the new 39 

precipitation inputs, showing reliability and potential for multi-disciplinary studies. 40 

This new precipitation product is openly accessible at 41 

https://doi.org/10.5281/zenodo.3711155 (Wang et al., 2020) and, additionally at the 42 

National Tibetan Plateau Data Center (https://data.tpdc.ac.cn, login required). 43 
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1. Introduction 45 

Precipitation plays a very important role in the research of hydrology, meteorology, 46 

ecology, and even social economics, as it is a critical input factor for various models 47 

(e.g. hydrological and land surface models) (Qi et al., 2016; Wang et al., 2017a; Fang 48 

et al., 2019; Miri et al., 2019; Wang et al., 2019a). Specifically, precipitation is a key 49 

part of the water balance and energy cycle and will directly impact runoff generation 50 

and soil moisture movement (Su et al., 2008). As a result, water resource management 51 

tasks such as flood forecasting and drought monitoring, ecological environment 52 

restoration (e.g. vegetation growth and protection), and many other scientific and 53 

social applications are closely linked with precipitation patterns (Funk et al., 2015).  54 

The Tibetan Plateau (TP), known as the highest plateau in the world, is covered by 55 

massive glaciers, snow and permafrost, which significantly affect the hydrological 56 

processes of all the large rivers that are fed by it; the Brahmaputra, the Salween, and 57 

the Mekong, among others. Therefore, it is necessary to explore the hydrological 58 

variations over the TP to achieve efficient utilization and protection of its water 59 

resources and a better understanding of the effects of climate change on the 60 

surrounding region. However, due to the irregular and sparse distribution of national 61 

meteorological stations, particularly in the Upper Brahmaputra (precipitation data 62 

from only nine stations are available, and are sparsely distributed; see Sang et al., 63 

2016; Cuo et al., 2019), there are large data constraints on research on these 64 

hydrological processes and their responses to climate change. Although there are 65 

many more rain gauges managed by the Ministry of Water Resources (MWR), most 66 
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of them are located in middle-stream regions and rainfall datasets are only recorded 67 

over short time periods. Simply using the linear mean of these station observations to 68 

calculate variations in precipitation for the entire basin is impractical and prone to 69 

problems (Lu et al., 2015). Accurate spatial distributions of precipitation are 70 

unavailable. This influences the generation of historical runoff data (Mazzoleni et al., 71 

2019), meaning that the specific contributions of glaciers, snow cover, permafrost and 72 

vegetation to hydrological processes in this area cannot be analyzed and quantified, 73 

posing a threat to regional sustainable development and living conditions (Shen et al., 74 

2010; Guo et al., 2016; Kidd et al., 2017; Shi et al., 2017; Ruhi et al., 2018; Sun et al., 75 

2018). 76 

A longer time series of spatially consistent and temporally continuous 77 

precipitation products could be used to improve our understanding of feedback 78 

mechanisms between different meteorological and hydrological components, 79 

especially under the background signal of climate change. Various satellite rainfall 80 

products have been widely used in previous studies, such as the National Oceanic and 81 

Atmospheric Administration/Climate Prediction Centre (NOAA/CPC) morphing 82 

technique (CMORPH) (Ferraro et al., 2000; Joyce et al., 2004), and the Tropical 83 

Rainfall Measuring Mission (TRMM) (Huffman et al., 2007). However, there are still 84 

problems in estimating daily (Meng et al., 2014; Bai and Liu, 2018) and extreme 85 

precipitation (Funk et al., 2015; Zhou et al., 2015b; Fang et al., 2019), especially in 86 

mountainous regions with high elevations and fewer ground measurements, such as 87 

the Upper Brahmaputra (Xia et al., 2015; Xu et al., 2017; Qi et al., 2018). Additionally, 88 
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there are several reanalysis datasets that have been widely used by researchers, such 89 

as the Global Land Data Assimilation System (GLDAS) (Rodell et al., 2004; Zaitchik 90 

et al., 2010; Wang et al., 2011) and the Modern-Era Retrospective analysis for 91 

Research and Applications, Version 2 (MERRA2) dataset (Gelaro et al., 2017; Reichle 92 

et al., 2017a, 2017b). Evaluation of GLDAS data has generally been limited to the 93 

United States and other regions with adequate ground observations (Kato et al., 2007; 94 

Qi et al., 2016). Most studies have focused on evapotranspiration, soil moisture and 95 

groundwater products derived from GLDAS or MERRA2 (Bibi et al., 2019; Deng et 96 

al., 2019; Li et al., 2019a); meanwhile, to the best of our knowledge, there has been 97 

less focus on the evaluation of methods of precipitation estimation and little work on 98 

the corresponding river discharge simulations within the Upper Brahmaputra River 99 

Basin. These precipitation products generally have the advantage of wide and 100 

consistent coverage and have shown great potential in many applications (Li et al., 101 

2015; Zhang et al., 2017; Fang et al., 2019), but also suffer from large uncertainties 102 

over the Upper Brahmaputra River Basin due to indirect observations, insufficient 103 

gauge calibration, and complex topography (Tong et al., 2014; Yong et al., 2015; Xu 104 

et al., 2017). 105 

In this study, we focus on integrating gauge, satellite and reanalysis precipitation 106 

datasets to generate a new dataset over the Upper Brahmaputra, suitable for use in 107 

hydrological simulations and other scientific researches related to climate change. The 108 

remainder of this study is structured as follows. Section 2 briefly describes the study 109 

area, datasets, and methodology used. Section 3 presents and discusses the evaluation 110 
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results of different products and validates the accuracy and reliability of our integrated 111 

dataset. Then Section 4 is the data availability. Finally, conclusions are given in 112 

Section 5. 113 

2. Materials and Methods 114 

2.1. Study Area 115 

This study is conducted in Upper Brahmaputra River Basin (27°-32°N, 81°-98°E) 116 

located in the south of the Tibetan Plateau (Figure 1). The Brahmaputra River is an 117 

important part of the whole GBM basin (Ganges, Brahmaputra, Meghna) which 118 

significant influences the natural resources and social development of the Tibetan 119 

Plateau and South Asia. The river is approximately 2,057 km long with a drainage 120 

area of 240,000 km2. The climatic conditions are complicated by the extremely high 121 

altitude and highly varying topography (Wang et al., 2018; Wang et al., 2019b); 122 

elevation varies by up to 6,500 m throughout the study region. Generally, the 123 

intra-annual distribution of precipitation is extremely uneven, with more precipitation 124 

distributed in the warm seasons (Wang et al., 2019a). Since the Indian and East Asian 125 

monsoons bring more water vapor in summer and the westerlies dominate in winter 126 

(Yi et al., 2013; Wang et al., 2018; Li et al., 2019a, 2019b), there is a declining trend 127 

of precipitation from the humid southeast to the arid northwest, on average. In recent 128 

decades, the TP has been experiencing a significant warming trend exceeding that in 129 

the Northern Hemisphere (Liu and Chen, 2000; Yang et al., 2014), which will affect 130 

the generation and distribution of precipitation and influence hydrological processes 131 

throughout the Upper Brahmaputra. 132 
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2.2. Datasets 133 

Monthly precipitation data (1981-2016) from nine meteorological stations were 134 

obtained from the China Meteorological Administration (CMA), and daily 135 

precipitation data (May to October in 2014 and 2016) from166 rain gauges were 136 

accessed through the Ministry of Water Resources (MWR), China (Figure 1). Both of 137 

these are regarded as observed precipitation data. Daily river discharge data at Nuxia 138 

station (Figure 1) are used to assess the simulation performance when forced by 139 

different precipitation products. 140 

In this study, we chose five types of satellite and reanalysis precipitation products 141 

(Table 1). We, first, evaluated their performance at detecting precipitation, and second, 142 

integrated them to generate a better product, designed to enhance the strengths of each 143 

product. 144 

The three satellite and reanalysis data products, GLDAS, MERRA2 and TRMM, 145 

were acquired from the National Aeronautics and Space Administration (NASA) 146 

website (https://disc.gsfc.nasa.gov/). GLDAS ingests satellite- and ground-based 147 

observational data products and applies advanced land surface modeling and data 148 

assimilation techniques (Rodell et al., 2004; Zaitchik et al., 2010; Xia et al., 2019); it 149 

has been widely used for river discharge simulations, groundwater monitoring and 150 

many other fields (Wang et al., 2011; Chen et al., 2013; Qi et al., 2018; Verma and 151 

Katpatal, 2019). MERRA2 is the first long-term global reanalysis dataset to assimilate 152 

space-based observations of aerosols and represent their interactions alongside other 153 

physical processes in the climate system (Marquardt Collow et al., 2016; Reichle et al., 154 

https://disc.gsfc.nasa.gov/
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2017a, 2017b), and TRMM is a joint mission between the NASA and the Japan 155 

Aerospace Exploration Agency (JAXA) to study rainfall for weather and climate 156 

research (Xu et al., 2017; Ali et al., 2019; Wang et al., 2019a). The ITP-Forcing 157 

dataset has been developed by the hydrometeorological research group at the Institute 158 

of Tibetan Plateau Research, Chinese Academy of Sciences (He, 2010), and has been 159 

shown to perform well on the TP (Yang et al., 2010; Chen et al., 2011). These data 160 

were downloaded from the Cold and Arid Regions Science Data Center 161 

(http://westdc.westgis.ac.cn/). 162 

2.3. Methods 163 

In this study, because of the different spatial resolutions of different products, we 164 

extracted the precipitation values from each product according to the locations of the 165 

gauges to generate product-gauge data pairings for evaluation. Where there are at least 166 

two gauges in the pixel of one product, we used the average value of the gauges to 167 

evaluate the performance of the corresponding precipitation product data.  168 

To ensure the consistency of different products, we interpolated all the products 169 

into the same 5 km spatial resolution grid using the inverse distance weighted (IDW) 170 

method (Ma et al., 2019; Qiao et al., 2019; Sangani et al., 2019) and calculated them 171 

at 3-hourly resolution. Due to its good performance on the TP, we then used the 172 

ITP-Forcing data (1981-2016) to derive the multi-year mean 3-hour data as 173 

background climatological precipitation. Then, the precipitation anomalies between 174 

CMA, GLDAS, ITP-Forcing, MERRA2, TRMM and the background were calculated 175 

3-hourly, using: 176 

http://westdc.westgis.ac.cn/
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where PB, PC, PG, PI, PM, PT represent the background precipitation and different 178 

products, respectively, and ε denotes the corresponding precipitation anomalies. 179 

Considering different weights for these anomalies, we combined the background 180 

precipitation with these anomalies, 181 

1 2 3 4 5_ B c g i m tP int P w w w w w    = + + + + +                      (2) 182 

where w represents the weight for each anomaly and P_int refers to the new integrated 183 

precipitation at 5 km and 3-hourly resolution.  184 

After P_int was acquired, we corrected its probability distribution function (PDF) 185 

based on the rain gauges, and undertook several validation steps for spatial 186 

distribution and at different time scales (e.g. extreme events, seasonal to inter-annual 187 

variability, and long-term trends). At the same time, we also analyzed the changing 188 

trend over the 36 years, and the extremely high precipitation events during the warm 189 

months in 2014 and 2016. In order to identify the extreme events, we first assumed 190 

that daily precipitation conforms to a normal distribution. From this we calculated a 191 

threshold, above which the probability of precipitation values occurring is less than 192 

0.05 (e.g. Fang et al., 2019 use 0.1). We considered events with precipitation values 193 

above this threshold as extreme events. 194 

( ) 0.05P precipitation threshold                       (3) 195 

where P denotes the probability. Finally, based on the observed discharge data at 196 
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Nuxia Station, we compared the simulated daily discharges (normalized) from 2008 to 197 

2016 using a water and energy budget-based distributed hydrological model 198 

(WEB-DHM) to check the accuracy and reliability of our integrated precipitation. 199 

Evaluation criteria used in the discharge error assessment include relative bias (RB) 200 

and the Nash-Sutcliffe coefficient of efficiency (NSE). 201 
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Where normalizedQ , obsQ , simQ  represent the normalized discharge, observed discharge, 205 

and simulated discharge, respectively. The perfect value of RB is 0 and that of NSE is 206 

1. More information about this model can be found in many studies (Wang et al., 2009; 207 

Wang and Koike, 2009; Xue et al., 2013; Zhou et al., 2015a; Wang et al., 2016; Wang 208 

et al., 2017a). Figure 2 shows the flowchart of this study and Figure 3 presents the 209 

final spatial distribution of our integrated product. 210 

3. Results and Discussion 211 

3.1. Evaluation of precipitation products at the basin and grid scale 212 

Figures 4 and 5 analyze the overall regime of different precipitation products at 213 

the basin scale. Figure 4 is the spatial distribution in warm (May to Oct.) and cold 214 

(Nov. to Apr.) months, and Figure 5 presents the time series of basin-averaged annual 215 
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and monthly precipitation values. The spatial pattern indicates that more precipitation 216 

occurs in warm seasons and less in cold seasons. During the warm months, GLDAS 217 

and TRMM present obvious regional differences between upstream and downstream, 218 

while CMA gridded data show the lesser values in the upstream source region. In the 219 

cold seasons, all products present almost the same pattern, among which MERRA2 220 

gives the lowest precipitation values.  221 

For annual precipitation, CMA, ITP-Forcing and MERRA2 show similar 222 

characteristics (annual mean value: 615 mm, 550 mm and 506 mm, respectively), 223 

while GLDAS and TRMM are 789 mm and 757 mm, respectively. There are also 224 

significant (p < 0.01) increasing trends in annual precipitation of GLDAS, 225 

ITP-Forcing, and MERRA2 (6.42, 3.28, 4.68 mm/year, respectively) over the 36 years 226 

of the data. For monthly precipitation, GLDAS and TRMM greatly overestimate 227 

summer precipitation compared to the others, which explains why these two products 228 

give anomalously high annual values (nearly 200 mm greater than the other three data 229 

products). On the other hand, the monthly variations indicate that the intra-annual 230 

distribution of precipitation is extremely uneven. 231 

Figures 6 and 7 compare the accuracy of monthly rainfall from different products 232 

at the grid scale. Due to the coarse spatial resolution of MERRA2 (0.5°×0.625°), there 233 

are fewer product-gauge data pairings available for evaluation. All the products show 234 

similar correlation relationships with the observations, with most rain gauges 235 

overestimating monthly precipitation (Figure 7). The highest correlation coefficient is 236 

0.63 (MERRA2) and the lowest is 0.51 (GLDAS). The PDFs, however, show 237 
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different characteristics (Figure 6). The CMA data are more consistent with the gauge 238 

data, while GLDAS and TRMM exhibit clear overestimations. As for ITP-Forcing, its 239 

precipitation is more concentrated on the average value, as indicated by the narrow 240 

curve. 241 

3.2. Integration of precipitation products and validation of P_int 242 

3.2.1. Integration of precipitation products and validation against different time 243 

series 244 

Figure 3 presents the spatial distribution of annual and seasonal precipitation 245 

estimated by our integrated dataset, which shows a declining trend from the southeast 246 

to northwest. Figure 5 then compares the monthly and annual precipitation calculated 247 

from our integrated dataset with the satellite and reanalysis products. As discussed in 248 

Section 2.3, we interpolated all the products into a spatial resolution of 5 km using the 249 

IDW method, and calculated them at a temporal resolution of 3 hours. Comparing 250 

different weights for the anomalies mentioned in Equation 2, we finally adopted the 251 

same weight for each product and the sum of the weights is 1 (w = 1/3 from 1981 to 252 

1997; w = 0.25 from 1998 to 2007; w = 0.2 from 2008 to 2016) to develop the new 253 

product. We made the integrated precipitation data using equal weights essentially 254 

according to the number of available precipitation products at different time periods 255 

(Table 1). Then we corrected the PDF of the newly integrated data based on the rain 256 

gauge observations (Figure 6). 257 

After P_int was derived, we first validated its performance against short time 258 

series (Figure 8). P_int shows optimal performance at detecting daily precipitation 259 
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with the correlation coefficients of 0.43 in 2014 and 0.55 in 2016. In 2014, the 260 

average bias is 0.20 mm and the root mean square error (RMSE) is 4.18 mm. P_int 261 

successfully captures the daily variation of precipitation except for late September and 262 

early October. For 2016, the average bias and RMSE are -0.006 mm and 2.62 mm, 263 

respectively, much better than those for 2014. 264 

We then check the spatial distribution of P_int from May to October in 2014 and 265 

2016 (Figure 9). Every rain gauge is compared with its corresponding grid in P_int to 266 

explore the spatial heterogeneity. P_int well reproduces the precipitation pattern  267 

described by less rain in the upstream (western) regions and more rain in the 268 

downstream (eastern) regions. Meanwhile, abundant rainfall occurs in summer, 269 

particularly for July. 270 

Building on this, further validation was undertaken against a long time series. We 271 

chose the average monthly precipitation from the nine meteorological stations as the 272 

evaluation standard against which to assess P_int (Figure 10). The PDF of P_int is 273 

consistent with that of the station data, which indicates that the mean value and 274 

standard deviation of P_int are much closer to the observed value (Figure 10a). 275 

Similar to the short time series, the average bias (-4.50 mm) and the RMSE (13.6 mm), 276 

especially with respect to the correlation coefficient (0.96), prove that the P_int is 277 

applicable and reliable.  278 

3.2.2. Trend and extreme events analysis compared across different precipitation 279 

products 280 

The trend analysis (Figure 11) over 36 years indicates that there are different 281 



14 

 

patterns of precipitation in different seasons and different regions. In summer, there 282 

are more complicated trends, as the variations between up and down stream differ 283 

greatly. On the contrary, trends of winter precipitation values over most of the study 284 

region vary by merely 2 mm/year, illustrating that precipitation in winter generally 285 

remains unchanged or experiences minimal change. To find if P_int is able to reflect 286 

the true varying trend, we added a comparison between meteorological stations 287 

(triangles in Figure 11 and their direction represent the true trend) and precipitation 288 

products. For observed annual precipitation, all the stations give an insignificant 289 

increasing trend, except for Bomi station, which is located in the easternmost part of 290 

the study region. For seasonal precipitation, different stations present different 291 

patterns. As a result, P_int appears to reflect the changing pattern of more stations 292 

than any other product, with the exception of the ITP-Forcing dataset on an annual 293 

timescale or over autumn (Figure 12). 294 

We notice that there is increasing trend in annual precipitation almost in the 295 

whole basin for P_int; only precipitation in the midstream area near the Himalaya 296 

mountains and small part of the upstream region are decreasing. Moreover, the 297 

majority of the increased precipitation in the downstream regions occurs over spring 298 

and summer, with only slight changes found in autumn and winter. 299 

After the volume, the spatial distribution, and the trend of P_int at different time 300 

scales were completely verified, we continued to inspect if P_int could capture the 301 

extreme events from May to October in 2014 and 2016 according to the rain gauge 302 

data (Figure 13). There are 27 days in total (19 days in 2014 and 8 days in 2016) 303 
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when extremely high daily precipitation occurred. All the products are comparable 304 

with each other in underestimating the frequency of extreme events. Nine days are 305 

identified out of the P_int data, lesser only to the number of days detected by 306 

ITP-Forcing (11 days). 307 

3.2.3. Evaluation of daily discharges simulated by different precipitation 308 

products 309 

All the comparison and validation steps undertaken above support the accuracy 310 

and reliability of our integrated dataset. Furthermore, Figure 14 indicates the superior 311 

suitability and application of P_int in hydrological simulation and investigation, with 312 

an RB of -5.94% and an NSE of 0.643 (the highest). We simulate the daily discharge 313 

of Nuxia station using the various precipitation datasets as the input with the same 314 

initial conditions and physical parameters. All products overestimate the daily 315 

discharge, except for P_int (-5.94%) and MERRA2 (-2.24%). In terms of NSE, P_int 316 

(0.643), ITP-Forcing (0.543) and MERRA2 (0.544) are higher than others, explaining 317 

their better simulation performance. GLDAS and TRMM offer the worst performance 318 

in discharge simulation, which is consistent with their overestimation of precipitation 319 

in summer (Figure 5). This indicates that these datasets should be corrected when 320 

undertaking hydrological research over the Upper Brahmaputra. 321 

4. Data availability 322 

This high spatiotemporal resolution (5km, 3h) precipitation dataset over the 323 

Upper Brahmaputra River Basin from 1981 to 2016 is freely available at 324 

https://doi.org/10.5281/zenodo.3711155 (Wang et al., 2020), which can be 325 

https://doi.org/10.5281/zenodo.3711155
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downloaded in TXT format. 326 

5. Conclusion 327 

In order to acquire suitable and accurate precipitation datasets which are helpful 328 

in hydrology, meteorology and other scientific research over the Upper Brahmaputra, 329 

we produced a new precipitation product by integrating gauge, satellite and reanalysis 330 

precipitation datasets to reduce the uncertainties associated with a single product and 331 

limitation of few observation stations. Our integrated dataset performs better than the 332 

input datasets in estimating daily and monthly precipitation, describing the spatial 333 

heterogeneity, capturing variation trends and extreme events and simulating river 334 

discharges. Furthermore, it is successful in reproducing daily precipitation variation, 335 

with smaller average biases (0.2 mm in 2014 and -0.006 mm in 2016) and RMSE 336 

values (4.18 mm in 2014 and 2.62 mm in 2016). Monthly precipitation shows higher 337 

correlation coefficients with the in-situ data for various time series (0.69 for all the 338 

rain gauges in the warm months of 2014 and 2016; 0.86 for the nine meteorological 339 

stations over 1981-2016). This high spatio-temporal resolution assures us that we can 340 

use this new dataset to explore more detailed physical processes and further 341 

understand the impacts of climate change on the water resources of the Upper 342 

Brahmaputra River Basin, and we are confident that our precipitation dataset will 343 

greatly assist future research in this basin. 344 

With this in mind, we note some aspects of this study that deserve further 345 

consideration. The effect of altitude on precipitation has not been taken into account 346 

in the development of this dataset. The 166 rain gauges used in this paper, are all 347 
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located at the elevations above 3500 m, except for several eastern gauges. Generally, 348 

these gauges were installed at relatively plain area, which may lead to large 349 

uncertainty in estimating precipitation (rain or snow) at high mountains, especially in 350 

the daily or finer time scales (Ahrens, 2006; Haiden and Pistotnik, 2009). This 351 

limitation can be even more severe, due to the orographic effect on precipitation rates, 352 

in mountainous regions and transition zones between the low and high altitudes, 353 

which will result in the underestimates of the actual basin-wide precipitation (Anders 354 

et al., 2006; Hashemi et al., 2020). Increasing the density and the distribution area of 355 

observational stations can directly weaken this altitude effects. We also note 356 

uncertainties that may arise from the re-gridding of the remotely sensed datasets in 357 

order to pair with the in-situ gauge data. In addition, the assumption of normal 358 

distribution when analyzing extremely high daily precipitation can also lead to 359 

uncertainty. Generally, the non-normal (skewed) distribution of precipitation is caused 360 

by the zero rainfall events at single site (Kumar et al., 2009; Semenov, 2008; 361 

Sloughter et al., 2007). An associated problem is the quantity and reliability of the 362 

data used to fit the distribution. Different probability distributions are used to describe 363 

the observed time series of daily precipitation, then different extreme values may be 364 

obtained (Angelidis et al., 2012). This study provides a foundation from which further 365 

studies can be carried out to explore these aspects in more detail. 366 

In the future, more studies are needed to validate the method and data in regions 367 

with complex topography and climatic conditions, and to further improve the retrieval 368 

algorithm. This will greatly benefit hydrological applications, especially in areas with 369 
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sparse and irregular observation networks. Furthermore, no products used in this 370 

study accurately represent extreme precipitation events, thus, it is necessary to 371 

improve the ability of all of these products to capture extreme events. 372 
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Table and figure captions 657 

Table 1. The precipitation products used in this study. 658 

Figure 1. The Upper Brahmaputra River Basin originates from the Tibetan Plateau 659 

(TP) with the spatial distribution of nine meteorological stations from the China 660 

Meteorological Administration (CMA) and 166 rain gauges from Ministry of Water 661 

Resources (MWR), China. The green arrow indicates the direction of the westerlies, 662 

the Indian monsoon and the East Asian monsoon. The elevation data was obtained 663 

from the SRTM DEM datasets (www.earthexplorer.usgs.gov). 664 

Figure 2. The flowchart used to produce the spatio-temporal continuous precipitation 665 

dataset (P_int). 666 

Figure 3. The spatial distribution of P_int (mm) averaged from 1981 to 2016 (a. 667 

annual; b. seasonal). 668 

Figure 4. The spatial distribution of different precipitation products during the warm 669 

season (May to October) and the cold season (November to April) averaged from 670 

2008 to 2016. 671 

Figure 5. Variations in basin-averaged precipitation from multi-year monthly mean 672 

values (top), annual values (middle) and monthly values (bottom) for the different 673 

products. 674 

Figure 6. A comparison of the probability distribution function (PDF) between all the 675 

monthly observations and different precipitation products in the warm seasons (May 676 

to October in 2014 and 2016). 677 

Figure 7. As for Figure 6 but with scatter plots. 678 
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Figure 8. A validation of P_int against short time series by comparing with daily 679 

gauge-averaged precipitation from May to October in 2014 and 2016. 680 

Figure 9. A validation of P_int (mm) against short time series: spatial distribution of 681 

the observations and corresponding grids in P_int from May to October in 2014 and 682 

2016. 683 

Figure 10. A validation of P_int against a long time series: (a). PDF and scatter plots 684 

for monthly precipitation at nine CMA stations, (b). station-averaged monthly 685 

precipitation from 1981 to 2016. 686 

Figure 11. A trend analysis of the annual and seasonal precipitation (a: annual; b: 687 

spring; c: summer; d: autumn; e: winter) over 36 years (1981-2016) between P_int, 688 

GLDAS, ITP-Forcing and MERRA2. The triangles represent the observed trend of 689 

the corresponding meteorological stations. 690 

Figure 12. The number of meteorological stations (total of nine) which present the 691 

same trends as the different precipitation products, according to Figure 11. 692 

Figure 13. A comparison of extreme events, as captured by different precipitation 693 

products. 694 

Figure 14. An evaluation of simulated daily discharge at Nuxia station from 2008 to 695 

2016 forced by different precipitation products. All the discharge values have been 696 

normalized. 697 

  698 
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Table 1. The precipitation products used in this study. 699 

Precipitation products Time range Temporal resolution Spatial resolution 

CMA gridded data 2008-2016 hourly 0.1°×0.1° 

GLDAS 1981-2016 3-hour 0.25°×0.25° 

ITP-Forcing 1981-2016 3-hour 0.1°×0.1° 

MERRA2 1981-2016 hourly 0.5°×0.625° 

TRMM 1998-2016 3-hour 0.25°×0.25° 

 700 

  701 
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 702 

Figure 1. The Upper Brahmaputra River Basin originates from the Tibetan Plateau 703 

(TP) with the spatial distribution of nine meteorological stations from the China 704 

Meteorological Administration (CMA) and 166 rain gauges from Ministry of Water 705 

Resources (MWR), China. The green arrow indicates the direction of the westerlies, 706 

the Indian monsoon and the East Asian monsoon. The elevation data was obtained 707 

from the SRTM DEM datasets (www.earthexplorer.usgs.gov). 708 

709 
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 710 

Figure 2. The flowchart used to produce the spatio-temporal continuous precipitation 711 

dataset (P_int). 712 
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 714 

Figure 3. The spatial distribution of P_int (mm) averaged from 1981 to 2016 (a. 715 

annual; b. seasonal). 716 
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 718 

Figure 4. The spatial distribution of different precipitation products during the warm 719 

season (May to October) and the cold season (November to April) averaged from 720 

2008 to 2016. 721 
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 723 

Figure 5. Variations in basin-averaged precipitation from multi-year monthly mean 724 

values (top), annual values (middle) and monthly values (bottom) for the different 725 

products. 726 
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 728 

Figure 6. A comparison of the probability distribution function (PDF) between all the 729 

monthly observations and different precipitation products in the warm seasons (May 730 

to October in 2014 and 2016). 731 
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 732 

 733 

Figure 7. As for Figure 6 but with scatter plots. 734 
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 735 

Figure 8. A validation of P_int against short time series by comparing with daily 736 

gauge-averaged precipitation from May to October in 2014 and 2016. 737 
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 739 

 740 

Figure 9. A validation of P_int (mm) against short time series: spatial distribution of 741 

the observations and corresponding grids in P_int from May to October in 2014 and 742 

2016. 743 
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 744 

 745 

Figure 10. A validation of P_int against a long time series: (a). PDF and scatter plots 746 

for monthly precipitation at nine CMA stations, (b). station-averaged monthly 747 

precipitation from 1981 to 2016. 748 
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 750 

 751 

 752 

Figure 11. A trend analysis of the annual and seasonal precipitation (a: annual; b: 753 

spring; c: summer; d: autumn; e: winter) over 36 years (1981-2016) between P_int, 754 

GLDAS, ITP-Forcing and MERRA2. The triangles represent the observed trend of 755 

the corresponding meteorological stations. 756 
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 757 

Figure 12. The number of meteorological stations (total of nine) which present the 758 

same trends as the different precipitation products, according to Figure 11. 759 
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 761 

 762 

Figure 13. A comparison of extreme events, as captured by different precipitation 763 

products. 764 
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 766 

 767 

 768 

Figure 14. An evaluation of simulated daily discharge at Nuxia station from 2008 to 769 

2016 forced by different precipitation products. All the discharge values have been 770 

normalized. 771 
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