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Reviewer #1:

General comment:

Comment 1: Overall, | believe this is an excellent work, and will be a highly cited
paper. The Upper Brahmaputra River Basin is a very important region to both China
and South Asia, and is also an important region for studying the Tibetan Plateau,
which is considered as ‘“The Water Tower of Asia’. The sparse gauge observation data
in this region have caused troubles to many scientific studies. The academic
community has been expecting a study to integrate various sources of data to develop
a better datasets with high spatial and temporal resolutions. This paper fulfils this
expectation. The authors used in situ gauge data and hydrological model simulation
to evaluate the developed data. The approaches used are rigorous, and the results
show the dataset is promising in water related studies. The presentation and literature
review are also very good. This paper should be accepted.

Response: Many thanks for your valuable time and efforts in reviewing our

manuscript. We do appreciate your positive and encouraging comments.



Review #2:

General comment:

Comment 1: In the paper, the authors integrated five satellite/reanalysis data to
generate a new precipitation dataset set in the Yarlung Tsangpo basin in South
Tibetan Plateau (TP). Actually, the issue is important for the hydrological studies in
TP including this study area, but it is also a difficult issue, as there lacks enough
observed data. The authors did a good try to generate this precipitation dataset, and
it would be useful for the relevant studies in the basin. Overall, | suggest the authors
consider more the following issues before its acceptance.

Response: Many thanks for your constructive comments. We have revised the

manuscript accordingly following your kind suggestions.

Detailed Comments:

Comment 1: The authors assumed that daily precipitation conforms to a normal
distribution. However, precipitation data generally follow skew distribution. The
reasonability of this assumption should be discussed more.

Response: Of course, the assumption of a normal distribution may lead to uncertainty
when analyzing extremely high daily precipitation. Generally, the non-normal
(skewed) distribution of precipitation is caused by the zero rainfall events at single
observational site (Kumar et al., 2009; Semenov, 2008; Sloughter et al., 2007). We
calculated the average values of the observed precipitation from 166 rain gauges to
reduce the zero rainfall values. Another associated problem is the quantity and
reliability of the data that are used to fit the distribution. If we use different
probability distributions to describe the observed time series of daily precipitation,
different extreme values may be obtained (Angelidis et al., 2012). This study provides
a foundation from which further studies can be carried out to explore these aspects in
more detail.

Change: We have added discussions and references in the revised manuscript

(L360-L366).
Angelidis, P., Maris, F., Kotsovinos, N., and Hrissanthou, V.: Computation of Drought Index SPI
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Semenov, M.A.: Simulation of extreme weather events by a stochastic weather generator. Clim.
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Sloughter, J.M., Raftery, A.E., Gneiting, T., and Fraley, C.: Probabilistic Quantitative
Precipitation Forecasting Using Bayesian Model Averaging. Mon. Weather Rev., 135(9),
3209-3220, 2007.

Comment 2: Some contents can be added to discuss more about the altitude effects
on the quality of the new precipitation data, especially on the IDW practices, although
some discussions have been given in Conclusions.
Response: Thank you for the comments. Generally, these rain gauges were installed
at relatively plain area, which may lead to large uncertainty in estimating precipitation
(rain or snow) at high mountains, especially in the daily or finer time scales (Ahrens,
2006; Haiden and Pistotnik, 2009). This limitation can be even more severe, due to
the orographic effect on precipitation rates, in mountainous regions and transition
zones between the low and high altitudes, which will results in the underestimates of
the actual basin-wide precipitation (Anders et al., 2006; Hashemi et al., 2020).
Regarding the IDW practices, on the one hand, most of the studied operational
precipitation products have already dealt with the altitude effects during data
production, and thereby we didn’t repeatedly consider the altitude effects when
interpolating and integrating these products into 5 km grids with the IDW method. On
the other hand, the available gauges (number and distribution) are still far from
enough to derive a reasonable spatial distribution of basin-wide altitude gradient for
precipitation, due to the complex topography in the study area.
Change: We have added discussions and references in the revised manuscript

(L347-L356).

Ahrens, B.: Distance in spatial interpolation of daily rain gauge data. Hydrol. Earth Syst. Sci., 10,
197-208, 2006.

Anders, A.M., Roe, G.H., Hallet, B., Montgomery, D.R., and Putkonen, J.: Spatial patterns of
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Hashemi, H., Fayne, J.V., Lakshmi, V., and Huffman, G.J.: Very high resolution,
altitude-corrected, TMPA-based monthly satellite precipitation product over the CONUS. Sci.
Data, 7(1), 2020.

Comment 3: In lines 252-253, it is interesting to find that the weights become smaller
with time periods, why? Is it due more reliable quality of the five datasets in recently
years? or due to more observed data used? Some contents can be added to simply
explain this.

Response: We finally adopted the same weight of each product through the
trial-and-error method. Table 1 lists the time ranges of different precipitation products,
which are very different and lead to different weights during different periods. As a
result, during 1981-1997 (only GLDAS, ITP-Forcing, MERRAZ2 are available), the
weight of each product is 1/3. Similarly, during 1998-2007 and 2008-2016, the
weights of each product are 1/4 and 1/5 respectively.

Table 1. The precipitation products used in this study.

Precipitation products Time range Temporal resolution Spatial resolution
CMA gridded data 2008-2016 hourly 0.1°x0.1°
GLDAS 1981-2016 3-hour 0.25°x0.25°
ITP-Forcing 1981-2016 3-hour 0.1°x0.1°
MERRAZ2 1981-2016 hourly 0.5°x0.625°
TRMM 1998-2016 3-hour 0.25°x0.25°

Change: We add some description to explain the weight (L252-L257) in the revised

manuscript.

Comment 4: In Figure 6, does the P_int have similar PDF as the CMA? Why?
Response: Yes, the PDF of the P_int is the closest to that of CMA. Parameters of the
normal distribution for the P_int and the CMA data are also very similar, with a mean
value of 77.0 and 75.3 mm, a standard deviation of 62.3 and 62.6 mm, respectively.

The advantage of the CMA product is that it has incorporated more gauge
observations (including many unpublished ones of CMA). The short time duration
may be the demerit of this product, since it is only available from 2008.

For our newly integrated data, we have incorporated valuable observational gauge



data from Ministry of Water Resources (MWR), China. This greatly helps us to
calibrate and validate the P_int.

Therefore, both of two data products have utilized lots of observational
information (that provides the ground truth), which leads to the similar PDF.

Change: There is no change about this in the manuscript.

Comment 5: This study area should be called “Yarlung Tsangpo™ or *““Yarlung
Zangbo™? please check it.

Response: This area can be called as “Yarlung Zangbo” or “Yarlung Tsangpo”, both
of which are acceptable since they are transliterated from Tibetan language (also
mentioned in Abstract).

Changes: There is no change about this in the manuscript.
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Abstract: As the largest river basin of the Tibetan Plateau, the Upper Brahmaputra
River Basin (also called “Yarlung Zangbo” in Chinese) has profound impacts on the
water security of local and downstream inhabitants. Precipitation in the basin is
mainly controlled by the Indian Summer Monsoon and Westerly, and is the key to
understand the water resources available in the basin; however, due to sparse
observational data constrained by a harsh environment and complex topography, there
remains a lack of reliable information on basin-wide precipitation (there are only nine
national meteorological stations with continuous observations). To improve the
accuracy of basin-wide precipitation data, we integrate various gauge, satellite and
reanalysis precipitation datasets, including GLDAS, ITP-Forcing, MERRA2, TRMM
and CMA datasets, to develop a new precipitation product for the 1981-2016 period
over the Upper Brahmaputra River Basin, at 3-hour and 5-km resolution. The new
product has been rigorously validated at different temporal scales (e.g. extreme events,
daily to monthly variability, and long-term trends) and spatial scales (point- and
basin-scale) with gauge precipitation observations, showing much improved
accuracies compared to previous products. An improved hydrological simulation has
been achieved (low relative bias: -5.94%; highest NSE: 0.643) with the new
precipitation inputs, showing reliability and potential for multi-disciplinary studies.

This new precipitation product is openly accessible at

https://doi.org/10.5281/zenodo.3711155 (Wang et al., 2020) and, additionally at the

National Tibetan Plateau Data Center (https://data.tpdc.ac.cn, login required).
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1. Introduction

Precipitation plays a very important role in the research of hydrology, meteorology,
ecology, and even social economics, as it is a critical input factor for various models
(e.g. hydrological and land surface models) (Qi et al., 2016; Wang et al., 2017a; Fang
et al., 2019; Miri et al., 2019; Wang et al., 2019a). Specifically, precipitation is a key
part of the water balance and energy cycle and will directly impact runoff generation
and soil moisture movement (Su et al., 2008). As a result, water resource management
tasks such as flood forecasting and drought monitoring, ecological environment
restoration (e.g. vegetation growth and protection), and many other scientific and
social applications are closely linked with precipitation patterns (Funk et al., 2015).

The Tibetan Plateau (TP), known as the highest plateau in the world, is covered by
massive glaciers, snow and permafrost, which significantly affect the hydrological
processes of all the large rivers that are fed by it; the Brahmaputra, the Salween, and
the Mekong, among others. Therefore, it is necessary to explore the hydrological
variations over the TP to achieve efficient utilization and protection of its water
resources and a better understanding of the effects of climate change on the
surrounding region. However, due to the irregular and sparse distribution of national
meteorological stations, particularly in the Upper Brahmaputra (precipitation data
from only nine stations are available, and are sparsely distributed; see Sang et al.,
2016; Cuo et al., 2019), there are large data constraints on research on these
hydrological processes and their responses to climate change. Although there are

many more rain gauges managed by the Ministry of Water Resources (MWR), most
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of them are located in middle-stream regions and rainfall datasets are only recorded
over short time periods. Simply using the linear mean of these station observations to
calculate variations in precipitation for the entire basin is impractical and prone to
problems (Lu et al., 2015). Accurate spatial distributions of precipitation are
unavailable. This influences the generation of historical runoff data (Mazzoleni et al.,
2019), meaning that the specific contributions of glaciers, snow cover, permafrost and
vegetation to hydrological processes in this area cannot be analyzed and quantified,
posing a threat to regional sustainable development and living conditions (Shen et al.,
2010; Guo et al., 2016; Kidd et al., 2017; Shi et al., 2017; Ruhi et al., 2018; Sun et al.,
2018).

A longer time series of spatially consistent and temporally continuous
precipitation products could be used to improve our understanding of feedback
mechanisms between different meteorological and hydrological components,
especially under the background signal of climate change. Various satellite rainfall
products have been widely used in previous studies, such as the National Oceanic and
Atmospheric Administration/Climate Prediction Centre (NOAA/CPC) morphing
technique (CMORPH) (Ferraro et al., 2000; Joyce et al., 2004), and the Tropical
Rainfall Measuring Mission (TRMM) (Huffman et al., 2007). However, there are still
problems in estimating daily (Meng et al., 2014; Bai and Liu, 2018) and extreme
precipitation (Funk et al., 2015; Zhou et al., 2015b; Fang et al., 2019), especially in
mountainous regions with high elevations and fewer ground measurements, such as

the Upper Brahmaputra (Xia et al., 2015; Xu et al., 2017; Qi et al., 2018). Additionally,
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there are several reanalysis datasets that have been widely used by researchers, such
as the Global Land Data Assimilation System (GLDAS) (Rodell et al., 2004; Zaitchik
et al., 2010; Wang et al., 2011) and the Modern-Era Retrospective analysis for
Research and Applications, Version 2 (MERRAZ2) dataset (Gelaro et al., 2017; Reichle
et al., 2017a, 2017b). Evaluation of GLDAS data has generally been limited to the
United States and other regions with adequate ground observations (Kato et al., 2007;
Qi et al., 2016). Most studies have focused on evapotranspiration, soil moisture and
groundwater products derived from GLDAS or MERRAZ2 (Bibi et al., 2019; Deng et
al., 2019; Li et al., 2019a); meanwhile, to the best of our knowledge, there has been
less focus on the evaluation of methods of precipitation estimation and little work on
the corresponding river discharge simulations within the Upper Brahmaputra River
Basin. These precipitation products generally have the advantage of wide and
consistent coverage and have shown great potential in many applications (Li et al.,
2015; Zhang et al., 2017; Fang et al., 2019), but also suffer from large uncertainties
over the Upper Brahmaputra River Basin due to indirect observations, insufficient
gauge calibration, and complex topography (Tong et al., 2014; Yong et al., 2015; Xu
etal., 2017).

In this study, we focus on integrating gauge, satellite and reanalysis precipitation
datasets to generate a new dataset over the Upper Brahmaputra, suitable for use in
hydrological simulations and other scientific researches related to climate change. The
remainder of this study is structured as follows. Section 2 briefly describes the study

area, datasets, and methodology used. Section 3 presents and discusses the evaluation
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results of different products and validates the accuracy and reliability of our integrated
dataset. Then Section 4 is the data availability. Finally, conclusions are given in
Section 5.
2. Materials and Methods
2.1. Study Area

This study is conducted in Upper Brahmaputra River Basin (27°-32°N, 81°-98°E)
located in the south of the Tibetan Plateau (Figure 1). The Brahmaputra River is an
important part of the whole GBM basin (Ganges, Brahmaputra, Meghna) which
significant influences the natural resources and social development of the Tibetan
Plateau and South Asia. The river is approximately 2,057 km long with a drainage
area of 240,000 km?. The climatic conditions are complicated by the extremely high
altitude and highly varying topography (Wang et al., 2018; Wang et al., 2019b);
elevation varies by up to 6,500 m throughout the study region. Generally, the
intra-annual distribution of precipitation is extremely uneven, with more precipitation
distributed in the warm seasons (Wang et al., 2019a). Since the Indian and East Asian
monsoons bring more water vapor in summer and the westerlies dominate in winter
(Yietal., 2013; Wang et al., 2018; Li et al., 2019a, 2019b), there is a declining trend
of precipitation from the humid southeast to the arid northwest, on average. In recent
decades, the TP has been experiencing a significant warming trend exceeding that in
the Northern Hemisphere (Liu and Chen, 2000; Yang et al., 2014), which will affect
the generation and distribution of precipitation and influence hydrological processes

throughout the Upper Brahmaputra.
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2.2. Datasets

Monthly precipitation data (1981-2016) from nine meteorological stations were
obtained from the China Meteorological Administration (CMA), and daily
precipitation data (May to October in 2014 and 2016) from166 rain gauges were
accessed through the Ministry of Water Resources (MWR), China (Figure 1). Both of
these are regarded as observed precipitation data. Daily river discharge data at Nuxia
station (Figure 1) are used to assess the simulation performance when forced by
different precipitation products.

In this study, we chose five types of satellite and reanalysis precipitation products
(Table 1). We, first, evaluated their performance at detecting precipitation, and second,
integrated them to generate a better product, designed to enhance the strengths of each
product.

The three satellite and reanalysis data products, GLDAS, MERRA2 and TRMM,
were acquired from the National Aeronautics and Space Administration (NASA)

website (https://disc.gsfc.nasa.gov/). GLDAS ingests satellite- and ground-based

observational data products and applies advanced land surface modeling and data
assimilation techniques (Rodell et al., 2004; Zaitchik et al., 2010; Xia et al., 2019); it
has been widely used for river discharge simulations, groundwater monitoring and
many other fields (Wang et al., 2011; Chen et al., 2013; Qi et al., 2018; Verma and
Katpatal, 2019). MERRAZ2 is the first long-term global reanalysis dataset to assimilate
space-based observations of aerosols and represent their interactions alongside other

physical processes in the climate system (Marquardt Collow et al., 2016; Reichle et al.,
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2017a, 2017b), and TRMM s a joint mission between the NASA and the Japan
Aerospace Exploration Agency (JAXA) to study rainfall for weather and climate
research (Xu et al., 2017; Ali et al., 2019; Wang et al., 2019a). The ITP-Forcing
dataset has been developed by the hydrometeorological research group at the Institute
of Tibetan Plateau Research, Chinese Academy of Sciences (He, 2010), and has been
shown to perform well on the TP (Yang et al., 2010; Chen et al., 2011). These data
were downloaded from the Cold and Arid Regions Science Data Center

(http://westdc.westgis.ac.cn/).

2.3. Methods

In this study, because of the different spatial resolutions of different products, we
extracted the precipitation values from each product according to the locations of the
gauges to generate product-gauge data pairings for evaluation. Where there are at least
two gauges in the pixel of one product, we used the average value of the gauges to
evaluate the performance of the corresponding precipitation product data.

To ensure the consistency of different products, we interpolated all the products
into the same 5 km spatial resolution grid using the inverse distance weighted (IDW)
method (Ma et al., 2019; Qiao et al., 2019; Sangani et al., 2019) and calculated them
at 3-hourly resolution. Due to its good performance on the TP, we then used the
ITP-Forcing data (1981-2016) to derive the multi-year mean 3-hour data as
background climatological precipitation. Then, the precipitation anomalies between
CMA, GLDAS, ITP-Forcing, MERRA2, TRMM and the background were calculated

3-hourly, using:
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where Pg, Pc, Pg, Pi, Pu, Pt represent the background precipitation and different
products, respectively, and ¢ denotes the corresponding precipitation anomalies.
Considering different weights for these anomalies, we combined the background
precipitation with these anomalies,

P_int=P, +We, +W,e, + W& +W,&, +We, (2)
where w represents the weight for each anomaly and P_int refers to the new integrated
precipitation at 5 km and 3-hourly resolution.

After P_int was acquired, we corrected its probability distribution function (PDF)
based on the rain gauges, and undertook several validation steps for spatial
distribution and at different time scales (e.g. extreme events, seasonal to inter-annual
variability, and long-term trends). At the same time, we also analyzed the changing
trend over the 36 years, and the extremely high precipitation events during the warm
months in 2014 and 2016. In order to identify the extreme events, we first assumed
that daily precipitation conforms to a normal distribution. From this we calculated a
threshold, above which the probability of precipitation values occurring is less than
0.05 (e.g. Fang et al., 2019 use 0.1). We considered events with precipitation values
above this threshold as extreme events.

P ( precipitation > threshold ) < 0.05 (3)

where P denotes the probability. Finally, based on the observed discharge data at
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Nuxia Station, we compared the simulated daily discharges (normalized) from 2008 to
2016 using a water and energy budget-based distributed hydrological model
(WEB-DHM) to check the accuracy and reliability of our integrated precipitation.
Evaluation criteria used in the discharge error assessment include relative bias (RB)

and the Nash-Sutcliffe coefficient of efficiency (NSE).

—min
Qnormalized = Q Q.obs (4)
max Q,,, —mIin Q.
Z Qsim - Z Qobs
RB = L L %100% (5)

i Qobs

n

Z(Qobs _Qsim )2
NSE =1--2 »
Qe ~Qu )

Quss Qg represent the normalized discharge, observed discharge,

(6)

Z( obs Qobs

=
Where Q. maiised »
and simulated discharge, respectively. The perfect value of RB is 0 and that of NSE is
1. More information about this model can be found in many studies (Wang et al., 2009;
Wang and Koike, 2009; Xue et al., 2013; Zhou et al., 2015a; Wang et al., 2016; Wang
et al., 2017a). Figure 2 shows the flowchart of this study and Figure 3 presents the
final spatial distribution of our integrated product.

3. Results and Discussion

3.1. Evaluation of precipitation products at the basin and grid scale

Figures 4 and 5 analyze the overall regime of different precipitation products at

the basin scale. Figure 4 is the spatial distribution in warm (May to Oct.) and cold
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236

(Nov. to Apr.) months, and Figure 5 presents the time series of basin-averaged annual
and monthly precipitation values. The spatial pattern indicates that more precipitation
occurs in warm seasons and less in cold seasons. During the warm months, GLDAS
and TRMM present obvious regional differences between upstream and downstream,
while CMA gridded data show the lesser values in the upstream source region. In the
cold seasons, all products present almost the same pattern, among which MERRA2
gives the lowest precipitation values.

For annual precipitation, CMA, ITP-Forcing and MERRA2 show similar
characteristics (annual mean value: 615 mm, 550 mm and 506 mm, respectively),
while GLDAS and TRMM are 789 mm and 757 mm, respectively. There are also
significant (p < 0.01) increasing trends in annual precipitation of GLDAS,
ITP-Forcing, and MERRAZ2 (6.42, 3.28, 4.68 mm/year, respectively) over the 36 years
of the data. For monthly precipitation, GLDAS and TRMM greatly overestimate
summer precipitation compared to the others, which explains why these two products
give anomalously high annual values (nearly 200 mm greater than the other three data
products). On the other hand, the monthly variations indicate that the intra-annual
distribution of precipitation is extremely uneven.

Figures 6 and 7 compare the accuracy of monthly rainfall from different products
at the grid scale. Due to the coarse spatial resolution of MERRAZ2 (0.5°%0.625°), there
are fewer product-gauge data pairings available for evaluation. All the products show
similar correlation relationships with the observations, with most rain gauges

overestimating monthly precipitation (Figure 7). The highest correlation coefficient is
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0.63 (MERRAZ2) and the lowest is 0.51 (GLDAS). The PDFs, however, show
different characteristics (Figure 6). The CMA data are more consistent with the gauge
data, while GLDAS and TRMM exhibit clear overestimations. As for ITP-Forcing, its
precipitation is more concentrated on the average value, as indicated by the narrow
curve.
3.2. Integration of precipitation products and validation of P_int
3.2.1. Integration of precipitation products and validation against different time
series

Figure 3 presents the spatial distribution of annual and seasonal precipitation
estimated by our integrated dataset, which shows a declining trend from the southeast
to northwest. Figure 5 then compares the monthly and annual precipitation calculated
from our integrated dataset with the satellite and reanalysis products. As discussed in
Section 2.3, we interpolated all the products into a spatial resolution of 5 km using the
IDW method, and calculated them at a temporal resolution of 3 hours. Comparing
different weights for the anomalies mentioned in Equation 2, we finally adopted the
same weight for each product and the sum of the weights is 1 (w = 1/3 from 1981 to
1997; w = 0.25 from 1998 to 2007; w = 0.2 from 2008 to 2016) to develop the new
product. We made the integrated precipitation data using equal weights essentially
according to the number of available precipitation products at different time periods
(Table 1). Then we corrected the PDF of the newly integrated data based on the rain
gauge observations (Figure 6).

After P_int was derived, we first validated its performance against short time
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series (Figure 8). P_int shows optimal performance at detecting daily precipitation
with the correlation coefficients of 0.43 in 2014 and 0.55 in 2016. In 2014, the
average bias is 0.20 mm and the root mean square error (RMSE) is 4.18 mm. P_int
successfully captures the daily variation of precipitation except for late September and
early October. For 2016, the average bias and RMSE are -0.006 mm and 2.62 mm,
respectively, much better than those for 2014.

We then check the spatial distribution of P_int from May to October in 2014 and
2016 (Figure 9). Every rain gauge is compared with its corresponding grid in P_int to
explore the spatial heterogeneity. P_int well reproduces the precipitation pattern
described by less rain in the upstream (western) regions and more rain in the
downstream (eastern) regions. Meanwhile, abundant rainfall occurs in summer,
particularly for July.

Building on this, further validation was undertaken against a long time series. We
chose the average monthly precipitation from the nine meteorological stations as the
evaluation standard against which to assess P_int (Figure 10). The PDF of P_int is
consistent with that of the station data, which indicates that the mean value and
standard deviation of P_int are much closer to the observed value (Figure 10a).
Similar to the short time series, the average bias (-4.50 mm) and the RMSE (13.6 mm),
especially with respect to the correlation coefficient (0.96), prove that the P_int is
applicable and reliable.

3.2.2. Trend and extreme events analysis compared across different precipitation

products
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The trend analysis (Figure 11) over 36 years indicates that there are different
patterns of precipitation in different seasons and different regions. In summer, there
are more complicated trends, as the variations between up and down stream differ
greatly. On the contrary, trends of winter precipitation values over most of the study
region vary by merely £2 mm/year, illustrating that precipitation in winter generally
remains unchanged or experiences minimal change. To find if P_int is able to reflect
the true varying trend, we added a comparison between meteorological stations
(triangles in Figure 11 and their direction represent the true trend) and precipitation
products. For observed annual precipitation, all the stations give an insignificant
increasing trend, except for Bomi station, which is located in the easternmost part of
the study region. For seasonal precipitation, different stations present different
patterns. As a result, P_int appears to reflect the changing pattern of more stations
than any other product, with the exception of the ITP-Forcing dataset on an annual
timescale or over autumn (Figure 12).

We notice that there is increasing trend in annual precipitation almost in the
whole basin for P_int; only precipitation in the midstream area near the Himalaya
mountains and small part of the upstream region are decreasing. Moreover, the
majority of the increased precipitation in the downstream regions occurs over spring
and summer, with only slight changes found in autumn and winter.

After the volume, the spatial distribution, and the trend of P_int at different time
scales were completely verified, we continued to inspect if P_int could capture the

extreme events from May to October in 2014 and 2016 according to the rain gauge
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data (Figure 13). There are 27 days in total (19 days in 2014 and 8 days in 2016)
when extremely high daily precipitation occurred. All the products are comparable
with each other in underestimating the frequency of extreme events. Nine days are
identified out of the P_int data, lesser only to the number of days detected by
ITP-Forcing (11 days).
3.2.3. Evaluation of daily discharges simulated by different precipitation
products

All the comparison and validation steps undertaken above support the accuracy
and reliability of our integrated dataset. Furthermore, Figure 14 indicates the superior
suitability and application of P_int in hydrological simulation and investigation, with
an RB of -5.94% and an NSE of 0.643 (the highest). We simulate the daily discharge
of Nuxia station using the various precipitation datasets as the input with the same
initial conditions and physical parameters. All products overestimate the daily
discharge, except for P_int (-5.94%) and MERRA2 (-2.24%). In terms of NSE, P_int
(0.643), ITP-Forcing (0.543) and MERRAZ2 (0.544) are higher than others, explaining
their better simulation performance. GLDAS and TRMM offer the worst performance
in discharge simulation, which is consistent with their overestimation of precipitation
in summer (Figure 5). This indicates that these datasets should be corrected when
undertaking hydrological research over the Upper Brahmaputra.
4. Data availability

This high spatiotemporal resolution (5km, 3h) precipitation dataset over the

Upper Brahmaputra River Basin from 1981 to 2016 is freely available at
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https://doi.org/10.5281/zenodo.3711155 (Wang et al., 2020), which can be

downloaded in TXT format.
5. Conclusion

In order to acquire suitable and accurate precipitation datasets which are helpful
in hydrology, meteorology and other scientific research over the Upper Brahmaputra,
we produced a new precipitation product by integrating gauge, satellite and reanalysis
precipitation datasets to reduce the uncertainties associated with a single product and
limitation of few observation stations. Our integrated dataset performs better than the
input datasets in estimating daily and monthly precipitation, describing the spatial
heterogeneity, capturing variation trends and extreme events and simulating river
discharges. Furthermore, it is successful in reproducing daily precipitation variation,
with smaller average biases (0.2 mm in 2014 and -0.006 mm in 2016) and RMSE
values (4.18 mm in 2014 and 2.62 mm in 2016). Monthly precipitation shows higher
correlation coefficients with the in-situ data for various time series (0.69 for all the
rain gauges in the warm months of 2014 and 2016; 0.86 for the nine meteorological
stations over 1981-2016). This high spatio-temporal resolution assures us that we can
use this new dataset to explore more detailed physical processes and further
understand the impacts of climate change on the water resources of the Upper
Brahmaputra River Basin, and we are confident that our precipitation dataset will
greatly assist future research in this basin.

With this in mind, we note some aspects of this study that deserve further

consideration. The effect of altitude on precipitation has not been taken into account
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in the development of this dataset. The 166 rain gauges used in this paper, are all
located at the elevations above 3500 m, except for several eastern gauges. Generally,
these gauges were installed at relatively plain area, which may lead to large
uncertainty in estimating precipitation (rain or snow) at high mountains, especially in
the daily or finer time scales (Ahrens, 2006; Haiden and Pistotnik, 2009). This
limitation can be even more severe, due to the orographic effect on precipitation rates,
in mountainous regions and transition zones between the low and high altitudes,
which will result in the underestimates of the actual basin-wide precipitation (Anders
et al., 2006; Hashemi et al., 2020). Increasing the density and the distribution area of
observational stations can directly weaken this altitude effects. We also note
uncertainties that may arise from the re-gridding of the remotely sensed datasets in
order to pair with the in-situ gauge data. In addition, the assumption of normal
distribution when analyzing extremely high daily precipitation can also lead to
uncertainty. Generally, the non-normal (skewed) distribution of precipitation is caused
by the zero rainfall events at single site (Kumar et al., 2009; Semenov, 2008;
Sloughter et al., 2007). An associated problem is the quantity and reliability of the
data used to fit the distribution. Different probability distributions are used to describe
the observed time series of daily precipitation, then different extreme values may be
obtained (Angelidis et al., 2012). This study provides a foundation from which further
studies can be carried out to explore these aspects in more detail.

In the future, more studies are needed to validate the method and data in regions

with complex topography and climatic conditions, and to further improve the retrieval
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algorithm. This will greatly benefit hydrological applications, especially in areas with
sparse and irregular observation networks. Furthermore, no products used in this
study accurately represent extreme precipitation events, thus, it is necessary to
improve the ability of all of these products to capture extreme events.
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Table and figure captions

Table 1. The precipitation products used in this study.

Figure 1. The Upper Brahmaputra River Basin originates from the Tibetan Plateau
(TP) with the spatial distribution of nine meteorological stations from the China
Meteorological Administration (CMA) and 166 rain gauges from Ministry of Water
Resources (MWR), China. The green arrow indicates the direction of the westerlies,
the Indian monsoon and the East Asian monsoon. The elevation data was obtained
from the SRTM DEM datasets (www.earthexplorer.usgs.gov).

Figure 2. The flowchart used to produce the spatio-temporal continuous precipitation
dataset (P_int).

Figure 3. The spatial distribution of P_int (mm) averaged from 1981 to 2016 (a.
annual; b. seasonal).

Figure 4. The spatial distribution of different precipitation products during the warm
season (May to October) and the cold season (November to April) averaged from
2008 to 2016.

Figure 5. Variations in basin-averaged precipitation from multi-year monthly mean
values (top), annual values (middle) and monthly values (bottom) for the different
products.

Figure 6. A comparison of the probability distribution function (PDF) between all the
monthly observations and different precipitation products in the warm seasons (May
to October in 2014 and 2016).

Figure 7. As for Figure 6 but with scatter plots.
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Figure 8. A validation of P_int against short time series by comparing with daily
gauge-averaged precipitation from May to October in 2014 and 2016.

Figure 9. A validation of P_int (mm) against short time series: spatial distribution of
the observations and corresponding grids in P_int from May to October in 2014 and
2016.

Figure 10. A validation of P_int against a long time series: (a). PDF and scatter plots
for monthly precipitation at nine CMA stations, (b). station-averaged monthly
precipitation from 1981 to 2016.

Figure 11. A trend analysis of the annual and seasonal precipitation (a: annual; b:
spring; ¢: summer; d: autumn; e: winter) over 36 years (1981-2016) between P_int,
GLDAS, ITP-Forcing and MERRAZ2. The triangles represent the observed trend of
the corresponding meteorological stations.

Figure 12. The number of meteorological stations (total of nine) which present the
same trends as the different precipitation products, according to Figure 11.

Figure 13. A comparison of extreme events, as captured by different precipitation
products.

Figure 14. An evaluation of simulated daily discharge at Nuxia station from 2008 to
2016 forced by different precipitation products. All the discharge values have been

normalized.
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Table 1. The precipitation products used in this study.

Precipitation products Time range Temporal resolution | Spatial resolution
CMA gridded data 2008-2016 hourly 0.1°x0.1°
GLDAS 1981-2016 3-hour 0.25°x0.25°
ITP-Forcing 1981-2016 3-hour 0.1°x0.1°
MERRAZ2 1981-2016 hourly 0.5°%0.625°
TRMM 1998-2016 3-hour 0.25°x0.25°
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Figure 1. The Upper Brahmaputra River Basin originates from the Tibetan Plateau

(TP) with the spatial distribution of nine meteorological stations from the China

Meteorological Administration (CMA) and 166 rain gauges from Ministry of Water

Resources (MWR), China. The green arrow indicates the direction of the westerlies,

the Indian monsoon and the East Asian monsoon. The elevation data was obtained

from the SRTM DEM datasets (www.earthexplorer.usgs.gov).

35



710
711

712

713

CMA
gridded data

EEO

Background precipitation:
one year, every 3 hours

Evaluation
i Anomalies:
Integzatlon 36 years, every 3 hours
Calibration | Probability distribution function
I

Short time:

May to Oct. in 2014 and 2016

Long time:

Validation [+ 1981-2016

Extreme
events

Trend
analysis

Spatial
distribution

Hydrological simulation

I

Integrated precipitation datasets

Figure 2. The flowchart used to produce the spatio-temporal continuous precipitation

dataset (P_int).
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Figure 14. An evaluation of simulated daily discharge at Nuxia station from 2008 to

2016 forced by different precipitation products. All the discharge values have been
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