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Abstract. Oil seed crops, especially oil palm, are among the most rapidly expanding agricultural land uses, and their 

expansion is known to cause significant environmental damage. Accordingly, these crops often feature in public and policy 

debates, which are hampered or biased by a lack of accurate information on environmental impacts. In particular, the lack of 20 

accurate global crop maps remains a concern. Recent advances in deep learning and remotely-sensed data access make it 

possible to address this gap. We present a map of closed-canopy oil palm (Elaeis guineensis) plantations by typology 

(industrial vs. smallholder plantations) at the global scale and with unprecedented detail (10-meter resolution) for the year 

2019. The DeepLabv3+ model, a convolutional neural network (CNN) for semantic segmentation, was trained to classify 

Sentinel-1 and Sentinel-2 images into an oil palm land cover map. The characteristic backscatter response of closed-canopy 25 

oil palm stands in Sentinel-1 and the ability of CNN to learn spatial patterns, such as the harvest road networks, allowed the 

distinction between industrial and smallholder plantations globally (overall accuracy = 98.52 ± 0.20%), outperforming the 

accuracy of existing regional oil palm datasets that used conventional machine learning algorithms. The user’s accuracy, 

reflecting commission error, in industrial and smallholders was 88.22 ± 2.73% and 76.56 ± 4.53%, and the producer's, 

reflecting omission error, accuracy was 75.78 ± 3.55% and 86.92 ± 5.12% respectively. The global oil palm layer reveals 30 

that closed-canopy oil palm plantations are found in 49 countries, covering a mapped area of 19.60 Mha; area estimate was 

21.00 ± 0.42 Mha (72.7% industrial and 27.3% smallholder plantations). Southeast Asia ranks as the main producing region 

with an oil palm area estimate of 18.69 ± 0.33 Mha, or 89% of global closed-canopy plantations. Our analysis confirms 

significant regional variation in the ratio of industrial versus smallholder growers, but also that, from a typical land 

development perspective, large areas of legally defined smallholder oil palm resemble industrial-scale plantings. Since our 35 
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study identified only closed-canopy oil palm stands, our area estimate was lower than the harvested area reported by FAO, 

particularly in Western Africa, due to the omission of young and sparse oil palm stands, oil palm in non-homogeneous 

settings, and semi-wild oil palm plantations. An accurate global map of planted oil palm can help to shape the ongoing 

debate about the environmental impacts of oil seed crop expansion, especially if other crops can be mapped to the same level 

of accuracy. As our model can be regularly rerun as new images become available, it can be used to monitor the expansion 40 

of the crop in monocultural settings. The global oil palm layer for the second half of the year 2019 at a spatial resolution of 

10 meters can be found at https://doi.org/10.5281/zenodo.4473715 (Descals et al., 2021). 

1 Introduction 

Crops that produce vegetable oils, such as soy, rapeseed, oil palm, and sunflower, take up ca. 6% of all agricultural land and 

ca. 2.3% of the total global land area, and are among the world's most rapidly expanding crop types (OECD, 2018). Demand 45 

for vegetable oils is increasing, with one estimate foreseeing an increase from 205 Mt in 2019 (OECD, 2018) to 310 Mt in 

2050 (Byerlee et al., 2017). This has created a need to optimize land use for vegetable oil production in order to minimize 

environmental impacts and maximize socio-economic benefits. One of the requirements for this is accurate global maps for 

all oil-producing crops. The most comprehensive maps available (IFPRI, 2019) map these crops by disaggregating crop 

statistics identified at national and sub-national units for the year 2005 to 5 arc-minute grid cells, which is a relatively coarse 50 

spatial resolution. Direct identification of crops from satellite imagery is likely to result in more accurate maps that delineate 

where different crops have been planted. One of the most extensively mapped crops is oil palm (Elaeis guineensis) because 

of societal concerns about the associated environmental impacts on tropical forests and social disruption. However, only the 

global extent of industrial plantations is reasonably well known, while the more heterogeneous plantings at smallholder 

scales remain largely unmapped (Meijaard et al., 2018). 55 

A global map of oil palm at each production scale provides critical insights into the current debate about the social and 

environmental sustainability of the crop (Meijaard et al., 2018; Meijaard et al., 2020). It would allow for a more accurate 

determination of the environmental impacts from oil palm expansion, for example, by assessing the deforestation that 

preceded oil palm development, the related carbon emissions as well as the impacts on species’ distributions, key 

biodiversity areas, and socio-economic impacts. As total and local production volumes of palm oil are reasonably well 60 

known, a comparison to the total planted area would allow more accurate average yield estimates and regional variations in 

yield. Similarly, accurate maps of planted oil palm can determine the extent to which oil palm development has displaced 

other food crops, an important element in the policy debate in the European Union regarding the use of palm oil in biofuels 

(Meijaard & Sheil, 2019). Such information is important for comparing oil palm to other vegetable oil crops, such as soy, 

rapeseed, sunflower, groundnut, and coconut, once global maps for these crops become available. The challenge is thus to 65 

develop a method to accurately map large industrial plantations as well as smallholder oil palm areas.  

https://doi.org/10.5281/zenodo.4473715
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Previous studies have demonstrated the usefulness of radar imagery for the detection of closed-canopy oil palm stands. 

Palm-like trees have a characteristic backscatter response which consists of a low vertical transmit and vertical receive (VV) 

and high vertical transmit and horizontal receive (VH) in Sentinel-1, or a high horizontal transmit and vertical receive (HV) 

and low horizontal transmit and horizontal receive (HH) in PALSAR imagery (Miettinen & Liew, 2011). This characteristic 70 

backscatter response is a consequence of the canopy structure of palm-like trees and allows the detection of closed-canopy 

palm plantations, particularly oil palm. Several studies have taken advantage of this characteristic backscatter response for 

mapping oil palm at the local and the regional scale (Koh et al., 2011; Lee et al., 2016; Nomura et al., 2019; Oon et al., 

2019), and similarly using supervised classification models (Descals et al., 2019; Shaharum et al., 2020; Xu et al., 2020). 

The mapping of oil palm plantations by typology (smallholder versus industrial) with remotely-sensed data presents a more 75 

challenging classification problem than the detection of only closed-canopy oil palm. In addition to the backscatter response 

of radar data, texture analysis also offers a complementary method to distinguish between smallholders and industrial-scale 

plantations (Descals et al., 2019). Contextual information, such as the presence and shape of harvesting road network and 

drainage structures, can be included as predictive variables for the classification of industrial and smallholder plantations. 

Deep learning, in particular semantic segmentation, is a subfield of machine learning with characteristics suitable for the 80 

distinction of smallholder and industrial oil palm plantations. Deep learning employs a series of models for computer vision 

that excel in very complex classification scenarios (LeCun et al., 2015) and, in particular, convolutional neural networks 

(CNN) have recently been embraced by the remote sensing community due to the ability to recognize intricate patterns in the 

images (Ma et al., 2019). To date, there are no studies that consider CNN for the land use classification of oil palm 

plantations at regional or global scales. One study used deep learning for object detection, focusing on the identification of 85 

single palm trees (Li et al., 2017).  

The aim of this study is i) present an up-to-date map of oil palm plantations by typology (industrial vs. smallholder 

plantations) at the global scale and with unprecedented detail (10-meter resolution) for the year 2019 and ii) show the 

suitability of deep learning in remote sensing for complex classification scenarios in which contextual information may be 

useful. 90 



4 
 

2 Methods 

2.1 Overview 

 
Figure 1: Diagram of the algorithm used to generate the global oil palm layer. The input images, Sentinel-1 and Sentinel-2 half-
year composites, were obtained from Google Earth Engine in a grid of 100 x 100 km. The Sentinel-1 and Sentinel-2 tiles were 95 
classified with a convolutional neural network (CNN). The CNN model was trained with labeled images with constant size (1000 x 
1000 pixels). The output classification layer was validated with 13,495 points that were randomly distributed.  

 

The classification model for oil palm plantations used the Sentinel-1 and Sentinel-2 half-yearly composites as input images 

(Figure 1). The maps presented in this study correspond to the second half-year of 2019. We used a deep learning model that 100 

was trained with 296 images of 1000 x 1000 pixels distributed throughout the main oil palm producing regions and applied 

over Sentinel-1 and Sentinel-2 composites in the potential area (Figure 2) where oil palm can grow. Table 1 shows the 

geospatial data used in the study. The links to the datasets appear in section 6. Data availability. The processing steps 

depicted in figure 1 were implemented in different computing environments (Supplementary figure 1) depending on the 

convenience of the processing. The annual compositing of Sentinel-1 and Sentinel-2 images was done in Google Earth 105 

Engine (GEE) (Gorelick et al., 2017) since a cloud-processing platform was suited for this task considering the high amount 

of satellite data required in the compositing. The visual interpretation of training and validation data was also done in GEE. 

The training of the CNN and the classification of images, however, was performed with a local computer using Matlab 

2019a since the implementation of the CNN model was less feasible in GEE. The CNN model can be also trained and used 

for the prediction of images with Python (Code accessible through section 5. Code availability). The Sentinel-1 and Sentinel-110 

2 images taken in 2019 are the only data necessary to reproduce the results of the global oil palm map. The rest is auxiliary 

data used for the identification of the oil palm distribution, the visual interpretation of oil palm plantation, and the 

comparison with other oil palm maps. 

 

Table 1. Data sources used in the study. 115 

Source Band/Input Spatial 
resolution  Usage* Reference 

Sentinel-1 GRD VV and VH 10 m 1, 3 (Torres et al., 2012) 
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Sentinel-2 Level-2A B4 10 m 1, 3 (Drusch et al., 2012) 

IUCN industrial layer Land Cover (Oil palm map) 30 m 2, 4 (Meijaard et al., 2018) 

Oil palm layer Sumatra Land Cover (Oil palm map) 10 m 2 (Descals et al., 2019) 

Oil palm layer Indonesia Land Cover (Oil palm map) 30 m 2 (Gaveau et al., 2021) 

Oil palm layer in SE Asia Land Cover (Oil palm map) 100 m 2 (Xu et al., 2020) 

WorldClim V1 Bioclim 19 bioclimatic variables 30 arcsec 4 (Hijmans et al., 2005) 

DigitalGlobe imagery RGB orthoimages < 1 m 3 (Google Earth Engine, 2020) 

FAOSTAT Oil palm harvested area 
country-level 

statistics 
2 (FAO, 2020) 

* The column describes how the data was used in the study: (1) input of the convolutional neural network (CNN), (2) used for comparison 
with the results of the CNN, (3) base layers for the visual interpretation of oil palm plantations, and (4) used for the identification of the 
potential distribution of oil palm. 
 

2.2 Potential distribution of oil palm 120 

The classification of oil palm plantations was restricted to those areas where the climatic conditions were favorable for oil 

palm growth. In order to delimit the potential distribution of oil palm, we used climate data and an existing global oil palm 

dataset. The climate dataset was obtained from WorldClim V1 Bioclim (Hijmans et al., 2005), which provides nineteen 

gridded variables at a spatial resolution of 30 arc seconds that are generated from monthly temperature and precipitation. 

This study’s existing oil palm layer was obtained from the IUCN (Meijaard et al., 2018) and shows the industrial oil palm 125 

plantations at the global scale (link to the IUCN layer is available in Section 6. Data Availability). This map was derived 

from a compilation of all published spatial data on oil palm combined with manual digitizing of characteristics spatial 

signatures of industrial-scale oil palm using cloud-free Landsat mosaics acquired in 2017 and created in GEE. 

The potential area where oil palm can grow was estimated with the climate variable range in the IUCN layer. We estimated 

the histogram of the nineteen bioclimatic variables in the areas that were classified as industrial oil palm plantations in the 130 

IUCN layer. Supplementary Table 1 shows the minimum and maximum of each bioclimatic variable for the industrial 

plantations. A pixel in the WorldClim dataset was considered favorable for oil palm growth when at least seventeen out of 

the nineteen bioclimatic variables fell within the climate range observed in the IUCN layer (Supplementary figure 2). The 

resulting potential oil palm distribution map encompasses similar areas as used in previous studies (Pirker et al., 2016; 

Strona et al., 2018; Wich et al., 2014). The classification of oil palm plantations was processed in a grid of 100 x 100 135 

kilometers that covers the area with favorable conditions for oil palm growth (Figure 2). 
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Figure 2: Localization map of the grid cells where the convolutional neural network (CNN) was applied for the classification of 

industrial and smallholder plantations. The grid cells cover a potential distribution area (blue line) over 7 tropical regions of the 

world where oil palm can grow: Central and South America, Central and Western Africa, South and Southeast Asia, and the 140 
Pacific. Cells in red depict the areas where there is presence of industrial oil palm plantations in the IUCN layer. Cells filled with 

green signify areas where closed-canopy oil palm was detected by the CNN. 

2.3 Sentinel-1 and Sentinel-2 pre-processing 

The CNN classifies radar and optical images collected by Sentinel-1 (C-band) (Torres et al., 2012) and Sentinel-2 

(multispectral) (Drusch et al., 2012) satellites, respectively, both missions launched by the European Space Agency and part 145 

of the Copernicus Programme (www.copernicus.eu). The images were pre-processed and downloaded from GEE (code is 

available in section 5. Code availability). We used the Sentinel-1 SAR Ground Range Detected (GRD), which has a 

temporal resolution of 12 days, in both ascending and descending orbits. We used the Interferometric Wide Swath images 

processed at a spatial resolution of 10 meters. The scenes were processed with the local incident angle (LIA) correction and 
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then the median value was computed over the second half-year of 2019 for the ascending and descending scenes separately. 150 

The final composite is the average of the two orbit composites. 

We also used Band 4 (red band; central wavelength = 665 nm) of Sentinel-2 Level 2A (surface reflectance). Different feature 

selection algorithms highlighted the relevance of Band 4 for predicting industrial and oil palm plantations in a previous study 

(Descals et al., 2019). Band 4 is the 10-meter resolution band that best shows the roads in industrial plantations because of 

the high contrast in terms of reflectance between the road and the surrounding oil palm. The high light scattering of 155 

vegetation in the near-infrared spectrum makes the recognition of roads less feasible in the 10-meter near-infrared band 

(Band 8). The Sentinel-2 images were masked with the quality flag provided in Level 2A, which is produced by the ATCOR 

algorithm and provides information about the clouds, cloud shadows, and other non-valid observations (Drusch et al., 2012). 

The images were aggregated for the second half-year of 2019 using the normalized difference vegetation index as the quality 

mosaic. The 5-day revisit time of Sentinel-2 allowed the generation of cloud-free composites over the study area. 160 

2.4 Image labeling 

Semantic segmentation models require input images with a constant size for both training and prediction. The size of the 

input images in this study was set to 1000 x 1000 pixels, which corresponds to an area of 10 x 10 km in a 10-meter-

resolution image. We set an input size of 10 km because it captures the contextual spatial information necessary for 

identifying smallholders and industrial plantations (e.g., harvesting road network). Consequently, the model was trained with 165 

Sentinel-1 and Sentinel-2 half-yearly annual composites of 10 x 10 km. The oil palm plantations that were present within the 

Sentinel composites were labeled by visual interpretation. We digitized the oil palm plantations also by interpreting the very-

high-resolution DigitalGlobe images that are displayed as the base layer in GEE. The DigitalGlobe images have a sub-meter 

spatial resolution and are displayed as true-color composites in GEE. These images are updated regularly and the date 

depends on the location, but usually, the images are taken during the past one to two years. The DigitalGlobe images were 170 

used as complementary data to the Sentinel-1 and 2 composites in the visual interpretation. We used the geometry editing 

tool in GEE for labeling smallholder and industrial plantations. Once the training areas were labelled, we downloaded the 

truth images from GEE along with the Sentinel-1 and Sentinel-2 composites for the second half-year of 2019. The image 

labeling was carried out in 84 different regions of the world where oil palm is cultivated (Supplementary figure 3) and 

resulted in 200 training images. 175 

Deep learning algorithms require large amounts of data to ensure good performance and data augmentation is a technique 

used to improve the performance of the models when the size of the training data is small (Shorten & Khoshgoftaar, 2019). 

Data augmentation aims to generate a more diverse training dataset with certain affine transformations applied to the original 

training data. Data augmentation techniques have been used in remote sensing studies (Yu et al., 2017), in which affine 

transformations such as flips, translations, and rotations have improved the accuracy results of deep learning models. We 180 
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used the rotation of images (90 degrees clockwise) as the data augmentation technique for this study (Supplementary figure 

4). The rotation was applied only to the training images that presented more than 10% of the pixels labeled as smallholders 

in order to reduce the class imbalance between industrial and smallholder plantations. We also clipped the central area of 4x4 

blocks of labeled images and rotated them with an angle of 45°. This process resulted in 96 additional images that were 

added to the 200 original training images. 185 

2.5 Definition of industrial and smallholder plantations 

Definitions of smallholders and industrial plantations differ per country, and many variations within each of these classes 

exist (Bronkhorst et al., 2017; Glenday & Gary, 2015; Meijaard & Sheil, 2019). For the current study, we used the following 

generalized classifications. An industrial oil palm plantation typically covers several thousand hectares of land and is very 

well structured and homogeneous in tree age. It consists of an area bounded by long linear, sometimes rectangular 190 

boundaries. It has a dense trail and a road/canal network. Roads in industrial plantations are developed at the start of 

plantation development and, therefore, equidistantly placed for optimal harvesting. In flat surface plantations, the harvesting 

trails are usually built in straight lines and thus form a rectilinear grid (Figure 3a). In contrast, the industrial plantations that 

are constructed over steep terrain usually present curvy trails (Figure 3b). A smallholder oil palm plantation must be 

typically smaller than 25 ha to be recognized as ‘small’ by the Indonesian government. These definitions vary by country 195 

with Malaysia using a 4 ha cut-off, while in Cameroon this varies from 8 to 40 ha (for an overview, see (Meijaard et al., 

2018), Table 2). Compared to an industrial plantation, smallholder plantation tends to be less structured in shape and more 

heterogeneous in tree age. Smallholder plantations tend to form a landscape mosaic, composed of small plantations of 

varying shape and size, mixed with other types of land cover (e.g., idle land or other plantation types) (Figure 3d). When 

smallholder plantations form a large homogenous cluster, this cluster has a less dense trail network than industrial 200 

plantations (Figure 3a, c).  

 
Figure 3. Examples of industrial and smallholder oil palm plantations seen by a 10-meter resolution Sentinel-1 and Sentinel-2 

composite (R: VV, G: VH, and B: Band 4). The VV and VH bands were transformed and stretched so that the closed-canopy oil 

palm appears in green. a) An industrial plantation on a flat surface in Brazil, with harvesting trails built in straight lines and thus 205 
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forming rectilinear grids. b) An industrial plantation on hilly terrain in Indonesia, with curvy harvesting trails. c) Smallholder 

plantations forming a large homogeneous cluster in Indonesia. d) Smallholder plantations of varying shape, size, and tree age in 

Côte d’Ivoire. 

2.6 Semantic segmentation 

Image segmentation is the subfield of deep learning that aims to link each pixel of an image to a class label. Thus, semantic 210 

segmentation is the analog of the standard pixel-wise machine learning algorithms that are used in remote sensing for image 

classification (Ma et al., 2019). The difference is that semantic segmentation, as any model based on CNN, automatically 

learns and exploits the spatial patterns within the image by tuning the parameters of different convolutional operations.  

This study employed the classification model DeepLabv3+ (Chen et al., 2017, 2018) with the MobileNetV2 (Sandler et al., 

2018) as a backbone network. DeepLab has a series of versions for semantic segmentation. DeepLabv3+ is the latest version 215 

(link to the code in section 5. Code availability). The model uses an encoder-decoder architecture, in which the image is 

downsampled with max-pooling layers during the encoder part and spatial information is retrieved during the decoder part. A 

characteristic of DeepLabv3+ is that the CNN uses atrous convolutions, which enhances the field of view of filters to 

incorporate a larger spatial and informational context. The second-last layer of the CNN shows the probability that a pixel 

belongs to a certain class and the last operation of the CNN assigns the class with the maximum value in the probability 220 

layers, resulting in the final classification layer. 

2.7 Validation 

The accuracy of the global oil palm classification layer was evaluated with 10,816 reference points; 544 points were 

industrial plantations, 305 were smallholders, and 9,967 were other types of land uses. The points were randomly distributed 

using a simple random sampling, which means that each pixel in the map had an equal chance of being selected, and were 225 

distributed in the 100 x 100 km cells where the IUCN oil palm layer showed the presence of industrial plantations (cells 

outlined in red in Figure 2). This sample method led to a high imbalance between the points labeled as ‘Other land uses’ and 

the points labeled as oil palm, both industrial and smallholder, since oil palm plantations present a rare occurrence in the 

study area. The rare occurrence of oil palm implied that the probability of randomly selecting an oil palm plantation was also 

low. This low representation of oil palm plantations in the simple random sampling resulted in a high uncertainty in the oil 230 

palm area estimates at the regional and country level. For this reason, we included 2,679 points that were distributed with a 

stratified random sampling in order to achieve a minimum sample size in the industrial and smallholder oil palm classes. The 

size of each strata was 977 points in the class industrial oil palm, 802 in the class smallholder oil palm, and 900 were other 

types of land uses. The 2,679 stratified points were merged with the 10,816 simple random points, making a total of 13,495 

points that were used to calculate the oil palm area estimates. 235 
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Since the study aims to classify closed-canopy oil palm against other land uses, we included young oil palm and plantations 

that have not reached the full canopy coverage in the class “Other land uses”. The points were visually interpreted using the 

Sentinel-1 and 2 annual composites of the year 2019 (See Subsection 2.3. Sentinel-1 and Sentinel-2 pre-processing) and the 

DigitalGlobe orthoimages (< 1-meter spatial resolution) that are displayed as the base layer in the GEE code editor. 

The accuracy metrics that we reported were the Overall Accuracy (OA), the user’s accuracy (UA), and the producer’s 240 

accuracy (PA) (Olofsson et al., 2014). The OA is the proportion of reference points that have been correctly classified and is 

calculated by summing the number of correctly classified points and dividing by the total number of points. The OA 

represents the probability that a randomly sampled pixel is correctly classified. The PA results from dividing the number of 

correctly classified points in each class by the number of visually interpreted points for each class. The PA is the 

complement of the omission error; PA = 100% - omission error. Thus, the PA for the classes “industrial” and “smallholder” 245 

is a relevant accuracy metric that shows the rate at which the oil palm plantations were missed in the classification image. On 

the other hand, the UA results from dividing the number of correctly classified points in each class by the number of points 

classified in each class. The UA is complement of the commission error; UA = 100% - commission error). The UA for the 

classes “industrial” and “smallholder” indicates the rate at which land uses have been incorrectly classified as oil palm 

plantations.  250 

The accuracy metrics were evaluated following the good practices for estimating area and assessing accuracy reported by 

Olofsson et al., 2014. The practices explain the post-stratified estimation of the OA, PA, and UA, with a confidence interval. 

Olofsson et al., 2014 also describes the formulation for the area estimation for the classes that are present in the land cover 

map. The area estimates are also calculated with a confidence interval (here, we used a 95% confidence interval for both 

accuracy metrics and area estimates). Here, we used the term area mapped for the total area classified as a given class, and 255 

the term area estimate for the estimation of the actual area and the associated uncertainty following the practices in Olofsson 

et al., 2014. The area mapped is subject to the good accuracy of the classification; for instance, a high omission rate in the 

class ‘industrial closed-canopy oil palm’ would potentially lead to a low area mapped, which would represent an 

underestimate of the actual industrial oil palm area. The area estimate and its confidence interval, however, cover the actual 

area with a given confidence level. 260 

Owing to the high imbalance in the validation dataset, we tested whether the overall accuracy of the CNN was higher than 

the no-information rate. The no-information rate was computed as the overall accuracy obtained if all pixels were classified 

as the major class, which is the class “Other land uses” in our study. The hypothesis test evaluates whether the overall 

accuracy obtained in the CNN classification is significantly higher than the no-information rate, with a 95% confidence 

level. If the null hypothesis is rejected (OA > no-information rate), we can assure that the CNN did better than predicting 265 

indiscriminately all pixels with the class “Other land uses”. 
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2.7 Comparison with other oil palm datasets 

The accuracy of the CNN classification was compared with existing oil palm maps of Sumatra for the year 2019 (Descals et 

al., 2019) and Southeast Asia for the year 2016 (Xu et al., 2020). Also, we compared our oil palm area estimates with the oil 

palm harvested area included in FAOSTATS at the country level, and with the area estimates obtained from an oil palm map 270 

developed in (Gaveau et al., 2021) over Indonesia for the year 2019. The oil palm maps in Descals et al., 2019 and Xu et al., 

2020 were generated with a Random Forest Classification, while the map developed by (Gaveau et al., 2021) was generated 

by digitizing the oil palm plantations in Landsat and SPOT6 images. 

In order to compare the current results with our previous study in Descals et al., 2019, we reclassified the young oil palm 

classes in this existing dataset to the class ‘Other land uses’. We also kept only the validation points that cover Sumatra; this 275 

resulted in 2,463 points out of the 13,495 total points. For the comparison with Xu et al., 2020, we used our CNN model to 

classify Sentinel-1 and Sentinel-2 composites for the second half-year of 2016. Besides, we reclassified the smallholders and 

industrial plantations as a single class since the oil palm map in Xu et al. (2020) does not make distinctions between oil palm 

typology (industrial versus smallholder plantations). We also removed the validation points that were placed in young 

plantations because the temporal analysis in Xu et al. (2020) aimed to detect young oil palm and the plantations that have 280 

been clear-cut in the previous years (Figure 7). Note that Xu's dataset includes a 100-meter multi-year classification for the 

years 2001-2016 and we only compared the last year (2016) to ensure data availability in Sentinel-1 and 2 over the study 

area. 

3 Results 

The global map of industrial and smallholder plantations reveals the importance of high-resolution images (10 meters) for 285 

the accurate delimitation of smallholder plantations. Figure 4 shows the degree of detail of the classification image obtained 

with Sentinel-1 and Sentinel-2 composites. The figure also exemplifies the classification of industrial plantations, with the 

characteristic road network and the surrounding smallholder plantations. Supplementary Figure 4 shows examples of 

landscape types of oil palm plantations that were successfully detected and others that were omitted. 
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 290 
Figure 4. Example of the global oil palm layer in Côte d’Ivoire. Panel a) shows a Sentinel-2 true color image. Panel b) shows the 

resulting classification image obtained with a convolutional neural network (CNN). The classification image depicts an industrial 

plantation (red) surrounded by smallholder plantations (purple). The CNN learns contextual information such as the rectilinear 

road network in the industrial plantation, which is noticeable in the Sentinel-2 composite. Panel c) shows the probability of closed-

canopy oil palm. The probability layer was generated from the second last layer of the CNN, which reflects the probability of each 295 
class.  

 

We estimated the global area of planted closed-canopy oil palm at 21.00 ± 0.42 Mha, of which 15.26 ± 0.40 Mha (72.7%) 

was industrial plantations and 5.72 ± 0.22 Mha (27.3%) was smallholders. The map confirms that Southeast Asia is the 

highest producing region in the world (Figure 5) with a total surface area of 18.69 ± 0.33 Mha. It is followed by South 300 

America (0.91 ± 0.06 Mha), Western Africa (0.79 ± 0.11 Mha), Central America (0.52 ± 0.04 Mha), Central Africa (0.21 ± 

0.6 Mha), and the Pacific (0.14 ± 0.00 Mha). Oil palm plantations were found in 49 tropical countries (See Supplementary 

Table 2). However, the estimated oil palm area varies greatly among countries, with Indonesia and Malaysia representing the 

bulk of the total surface area, while most other countries have a plantation area below 2 Mha (Figure 6).  
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Figure 5. Density maps generated with the global oil palm layer. Panels a), b), and c) show the density maps of industrial oil palm 

plantations and panels d), e), and f) show the density maps for smallholder plantations. The maps have a spatial resolution of 10 

km and represent the surface of closed-canopy oil palm, in hectares, in an area of 109 hectares. The values in the map were 

obtained by dividing the area of the oil palm within the 10-kilometer pixel by the total area covered in the pixel. 
 335 

The region with the highest percentage of smallholder oil palm was West Africa (68.7 % of total plantings) (Supplementary 

figure 6). Elsewhere, the percentage of smallholders varied from 14.5% in Central Africa to 26.8% in the Pacific. As Figure 

6 illustrates, however, countries in the same region might show different proportions of smallholders and industrial 

plantations. For instance, Thailand showed the highest proportion of smallholders (71.5%) which differed from the low ratio 

in neighboring Malaysia (15.4%). Countries in Southeast Asia also showed the highest oil palm surface per total land area, 340 
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followed by smaller countries that allocate the majority of their cropland for oil palm production (Guatemala, Honduras, 

Costa Rica, and São Tomé and Príncipe). 

 

 

Figure 6. Oil palm plantation area per typology (industrial versus smallholder) for the second half-year of 2019 in the ten first 345 
countries with the largest oil palm area. The figure reflects the area mapped (asterisk mark), which resulted from the classification 

of Sentinel-1 and Sentinel-2, and the area estimate with a confidence level of 95%.The accuracy metrics obtained with the 10,816 

points show an OA of 98.52 ± 0.20% (Table 2) for the global oil palm map (Supplementary Table 3 shows the confusion 

matrix). This OA is significantly higher than the no-information rate (92.00 ± 0.51%) and, thus, we can assure that the CNN 

classification did better than assigning the major class to all the validation points. The UA and PA were lower in industrial 350 

and smallholder plantations than the same accuracies obtained in the class ‘Other land uses’. Smallholder plantations showed 

the lowest UA (76.56 ± 4.53%), while the industrial plantations showed the lowest PA (75.78 ± 3.55%). The UA and PA 

accuracies were lower when evaluated only in Sumatra (smallholder UA = 63.27 ± 7.82% and industrial PA = 69.15 ± 

4.62%). However, these accuracies were considerably lower in Descals et al., 2019, which presented a UA = 45.85 ± 6.84% 

for smallholders and PA = 54.26 ± 4.42% for industrial plantations. The state-of-the-art methodology using CNN also 355 

showed a higher overall accuracy than the Random Forest classification for the case study in Sumatra (91.31 ± 0.97% 

compared to the 94.02 ± 0.89% in the current study).  

 

 

 360 

Table 2. Accuracy assessment of the global oil palm layer for the second half of 2019 and comparison of the global layer with the 

results of a previous study (Descals et al., 2019), which used a Random Forest in Sumatra for the same year. The accuracy metrics 
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of the global layer were estimated with 10,816 points randomly distributed in the main oil palm producing areas in the world, 

while the comparison used only the validation points that were located in Sumatra (2,463 points). The reported metrics are the 

Overall Accuracy (OA), the user’s accuracy (UA), and the producer’s accuracy (PA). The accuracy metrics are reported with a 365 
confidence interval (95% confidence level). 

    Global OP Global OP (Sumatra) Descals et al., 2019 (Sumatra) 

OA (%)  98.52 (99.42, 99.61) 94.02 (93.13, 94.91) 91.31 (90.34, 92.28) 
  Other 99.19 (99.01, 99.36) 97.00 (96.27, 97.73) 96.97 (96.24, 97.71) 
UA (%) Industrial 88.22 (85.49, 90.96) 89.25 (85.10, 93.40) 88.70 (84.04, 93.36) 
  Smallholder 86.92 (81.80, 92.04) 63.27 (55.47, 71.06) 45.85 (39.03, 52.67) 
  Other 99.52 (99.42, 99.61) 97.99 (97.41, 98.57) 96.59 (95.86, 97.31) 
PA (%) Industrial 75.78 (72.23, 79.33) 69.15 (64.54, 73.77) 54.26 (49.83, 58.68) 
  Smallholder 84.94 (81.36, 88.51) 81.44 (75.26, 87.63) 83.30 (77.47, 89.13) 

 

Our results (OA = 96.59 ± 0.50%) performed better than Xu's classification image (OA = 91.35 ± 0.69%) for 2016 

(Supplementary Table 4). The producer’s accuracy for industrial plantations in Xu's results (PA = 76.41 ± 3.08%) is higher 

than our results (PA = 73.65 ± 2.94%), although this difference is not significant for a confidence level of 95%. The main 370 

difference between the data sets, however, was found in the user’s accuracy for smallholders, in which our results excelled 

(UA = 96.60 ± 0.51% compared to 57.36 ± 3.76% in Xu’s data set). The comparison with Xu’s data, however, only reflects 

the accuracies for closed-canopy oil palm plantations; the multi-annual analysis in Xu et al., 2020 also included the detection 

of disturbances in the time series to classify young plantations. Similar to Xu’s data, the dataset produced in (Gaveau et al., 

2021) also mapped young oil palm and areas that were clear-cut for oil palm plantation in Indonesia. For this reason, our 375 

closed-canopy oil palm area estimate was 12.05 ± 0.23 Mha in Indonesia (area mapped was 11.54 Mha, with 7.71 Mha 

(66.8%) industrial and 3.83 Mha (33.2%) smallholder) but, by comparison, Gaveau found a higher oil palm area for 

Indonesia for the same year: 16.26 Mha. Despite this difference, Gaveau found a similar ratio between industrial and 

smallholder plantation extent: 10.33 Mha industrial (64%) and 5.93 Mha smallholder (36%).  



16 
 

 380 
Figure 7. Comparison of the classification image obtained with the convolutional neural network (CNN) and the last year of the 

multiannual analysis presented in Xu et al., 2020. Panel a) shows a Sentinel-1 composite (VV-VH-VV) for the second half-year of 

2016 in Riau province (Indonesia). The VV and VH bands were transformed and stretched so that closed-canopy oil palm appears 

in green. Panel b) shows the classification image that results from the CNN using the Sentinel-1 and Sentinel-2 composites for 

2016. Panel c) shows the oil palm layer presented in Xu et al., 2020 for the year 2016.  385 

The comparison with inventories from FAOSTAT also evidences a large omission of oil palm plantations in West Africa 

(Supplementary figure 7). The total surface reported as harvested area in FAOSTAT is 4.16 Mha in Western Africa, while 

our oil palm area estimate was 0.79 ± 0.11 Mha and the area mapped 0.42 Mha. The country with the highest difference is 

Nigeria, with an area estimate of 3.02 Mha reported by FAOSTAT that contrasts with the 0.01 Mha classified by the CNN 

and the 0.25 ± 0.07 Mha total closed-canopy oil palm area estimate.  390 

4 Discussion 

The results confirm previous findings on the suitability of radar satellite data for mapping closed-canopy oil palm plantations 

at the regional scale (Miettinen & Liew, 2011) and the improved accuracies obtained with the combined use of radar and 

optical data for mapping smallholder and industrial oil palm plantations (Descals et al., 2019). Our study further shows that 

these plantations can be mapped globally and by typology at high spatial resolution (10 meters); The results obtained with 395 

the CNN outperformed previous studies and provide evidence that deep learning is more suitable than standard machine 

learning algorithms, such as Random Forests, when contextual information is required for class prediction. Overall, the 
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results show a high accuracy (OA = 97.46 ± 0.26%). The accuracy assessment and the comparison with other products also 

evidences uncertainties associated to the oil palm definition: young plantations, plantations that have open canopies, and 

plantations mixed with non-palm tree species, such as semi-wild oil plantations in Africa. 400 

We compared our findings with three studies, Descals et al. (2019), Xu et al. (2020), and the dataset developed by (Gaveau 

et al., 2021). Our CNN model applied to Sentinel-1 and Sentinel-2 classified closed-canopy oil palm stands with higher 

detail (10-meter spatial resolution) than existing datasets. Although, at coarser resolution (100-meter spatial resolution), the 

temporal analysis used in Xu et al., 2020 aimed to detect disturbances (e.g., land clearing and burning) that may or may not 

result in the development of oil palm plantations. Thus, Xu et al. classified opened-canopy plantations that remained 405 

undetected in our classification. Accordingly, the omission error for oil palm was lower in Xu’s case, although this 

difference was not significant. However, Xu et al. detected much more than oil palm plantation, including scrubs and 

grasslands and, therefore, commission error for oil palm was significantly higher in Xu’s map (UA = 57.36 ± 3.76 % 

compared to 96.55 ± 1.92 % in our study).  

Gaveau et al., 2021 did not directly measure planted areas, but instead, they identified areas that were “cleared to develop 410 

plantations”. An area may have been cleared for oil palm, left idle because of several constraints, or the area may have been 

planted but the plantation may have failed. The comparison with Xu’s and Gaveau’s maps evidences an important 

shortcoming with our method; the classification of oil palm with radar data can only detect closed-canopy oil palm stands 

and, thus, excludes areas cleared for oil palm that has been left idle or where oil palm trees died. Besides, oil palm must be at 

least 3-years-old (Descals et al. 2019) to reach the full canopy closure. Therefore, it is likely that our maps missed young oil 415 

palm plantations developed after 2016. The dataset developed in Gaveau et al., 2021 is more suited to verify the impacts of 

the oil palm industry on forests, while our method is more suited to map the productive planted area, i.e. closed-canopy oil 

palm stands > 3 years old. In contrast, Gaveau’s dataset was produced mostly by visual interpretation and manual 

delimitation of oil palm development while our method consisted of a supervised learning algorithm; our trained CNN can 

automatically classify remotely-sensed data into oil palm maps for future land cover monitoring.   420 

Since our method classified only closed-canopy oil palm, it also struggled to detect oil palm in non-homogeneous settings 

(e.g., oil palm mixed with other crops), plantation with low canopy coverage, and naturally occurring and semi-wild oil palm 

trees, known as feral oil palm, that are present in Africa. These semi-wild oil palm plantations explain the large difference 

with the harvested area reported by FAOSTAT in West Africa. This means that our global estimate of total planted oil palm 

areas (21.00 ± 0.42 Mha) is an underestimate, which considers only closed-canopy oil palm plantations. It is difficult to say 425 

by how much we underestimate the total planted area if considering young, non-homogeneous settings, and sparse oil palm 

plantations, but assuming constant planting rates and an average age of 25 years of palms until replanting, we could miss 

3/25 = 12% of the total planted area. 
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Despite the caveats regarding the total areas of planted oil palm, our findings of the ratio between smallholders and 

industrial-type plantings are still relevant, as both types of oil palm are similarly affected by omission in our analysis (except 430 

the oil palm we miss in agroforestry type settings, which is mostly smallholders). Evidence of this is that the ratios reported 

by (Gaveau et al., 2021) are similar to our estimates in Indonesia. Globally, our data indicate that 72.7% of planted oil palm 

is under industrial-scale management and 27.3% managed by smallholders. These percentages diverge from the commonly 

stated claim that 40% of the palm oil produced globally is from smallholders (Meijaard et al., 2018). Not only is the land 

managed in smallholder-type settings less than 40%, but there is also a significant yield gap between industrial-scale and 435 

smallholder-scale operators. Smallholder yields are often 40% or lower than yields in industrially-managed plantations 

(Woittiez et al., 2017), which suggests that the overall contribution of smallholders to global palm oil production is about 

18% rather than 40%. Industrial-scale operators thus appear to produce about 82% of the global palm oil. We note that this 

excludes the locally produced palm oil in agroforestry-type settings in the African tropics, where oil palm is traditionally 

produced for local consumption. 440 

Our findings on the ratio between smallholder and industrial-scale oil palm are different from those reported by various 

governments. For example, the government of Indonesia estimates that 40.8% of the country’s oil palm planted area is 

developed under smallholder licenses, whereas our analysis of the typical characteristics of planted crops indicate that this 

ratio is 66.8% industrial and 33.2% smallholder for the country. To qualify as a ‘smallholder farmer’ in Indonesia, according 

to the government, farms must be less than 25 ha. Those that cultivate less than 25 ha of oil palm are required to apply for a 445 

Plantation Registration Certificate (STD-B), while those producers cultivating more than 25 ha require a Plantation Business 

License (IUP-B) (Jelsma et al., 2017). The latter involves more complex procedures and regulatory requirements such as an 

environmental impact assessment (Paoli et al., 2013). Those with an STD-B are exempted from most of these requirements 

(Jelsma et al. 2017). This creates an incentive for producers to classify their plantations as non-industrial scale because the 

paperwork and licensing involve fewer hurdles. This mismatch between land occupancy (de facto) and legal allocation (de 450 

jure) was also noted by (Gaveau et al., 2017) in Sumatra who noted unregistered medium-sized landowners operating like 

companies in terms of their approach to oil palm development, but without formal company status. Missing young 

plantations cannot explain the large difference we noticed in Indonesia between our planted area estimate and FAO harvested 

area because expansion has gone down in recent years (Gaveau et al., 2019). In important producing regions (Riau, 

Sumatra), only 15% of all agricultural land parcels have a national-level registration and 26% of all oil palm plantations were 455 

only registered at the village level (Meijaard et al., 2018). Unregistered plantations explain why we found more plantations 

than FAOSTAT. Discrepancies between this study's findings and those of various governments on the ratio between 

smallholder and industrial-scale oil palm could result from underestimations by authorities as identified by Oon and 

colleagues (2019). As with Indonesia, it indicates how difficult it is to accurately map smallholder oil palm because of the 

heterogeneous characteristics of this land use, the lack of legal registration of smallholder lands, and potentially vested 460 

interests in running large-scale operations under smallholder type licenses (Supplementary figure 8). 
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The CNN model trained for the year 2019 is planned to be used for follow-up monitoring once a year to generate global oil 

palm maps. The shortcomings of deep learning include the high computational cost for training the models and the high cost 

for gathering labeled data compared to the standard machine learning algorithms commonly used in remote sensing, such as 

Random Forest. In this study, 296 images of 1000 x 1000 pixels were used as a training data set, consisting of 200 labeled 465 

images and 96 augmented images, and the computing time for training a pre-trained DeepLabv3+ was nearly 8 days with an 

office computer. Despite this, the computing time and the size of our training dataset were considerably lower than state-of-

the-art deep learning studies in computer vision (i.e. more than 200,000 labeled images in the Common Objects in Context 

(COCO) dataset) in which the number of classes and complexity of the classification problem surpasses the current study. 

5 Code availability 470 

The code that generates the Sentinel-1 and Sentinel-2 composites can be found at: 

https://github.com/adriadescals/oil_palm_global  

The original code of the semantic segmentation model DeepLabv3+ can be found at: 

https://github.com/tensorflow/models/tree/master/research/deeplab  

6 Data availability 475 

The dataset presented in this study is freely available for download at https://doi.org/10.5281/zenodo.4473715 (Descals et 

al., 2021). The dataset contains 634 100x100 km tiles, covering areas where oil palm plantations were detected. The file 

'grid.shp' contains the grid that covers the potential distribution of oil palm. The file 'grid_withOP.shp' shows the 100x100 

grid squares with presence of oil palm plantations. The classified images (‘oil_palm_map’ folder, in GeoTIFF format) are 

the output of the convolutional neural network based on Sentinel-1 and Sentinel-2 half-year composites. The images have a 480 

spatial resolution of 10 meters and contain three classes: [1] Industrial closed-canopy oil palm plantations, [2] Smallholder 

closed-canopy oil palm plantations, and [3] other land covers/uses that are not closed canopy oil palm. The file 

‘Validation_points_GlobalOilPalmLayer_2019.shp’ includes the 13,495 points that were used to validate the product. Each 

point includes the attribute ‘Class’, which is the labelled class assigned by visual interpretation, and the attribute ‘predClass, 

which reflects the predicted class by the convolutional neural network.  The ‘Class’ and ‘predClass’ values are the same as 485 

the raster files: [1] Industrial closed-canopy oil palm plantations, [2] Smallholder closed-canopy oil palm plantations, and [3] 

other land covers/uses that are not closed canopy oil palm. 

The data can be visualized online at the BIOPAMA application portal: https://apps.biopama.org/oilpalm/. The BIOPAMA 

application portal also includes the probability layer, which shows the probability (from 0 to 100) that a pixel is closed-

canopy oil palm plantation. The data can also be visualized at the Google Earth Engine (GEE) experimental app: 490 

https://github.com/adriadescals/oil_palm_global
https://github.com/tensorflow/models/tree/master/research/deeplab
https://doi.org/10.5281/zenodo.4473715
https://apps.biopama.org/oilpalm/
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https://adriadescals.users.earthengine.app/view/global-oil-palm-map-2019. The global oil palm map is hosted in GEE as an 

Image Collection: https://code.earthengine.google.com/?asset=users/adriadescals/shared/OP/global_oil_palm_map_v1. 

The Sentinel-1 SAR GRD and Sentinel-2 Level-2A used in this study (scenes taken in the second half year of 2019 in the 

tropics, and second half year of 2016 in Sumatra) are available at https://scihub.copernicus.eu/ and can be retrieved in GEE. 

When using GEE, the Sentinel-1 and 2 data are hosted and accessed in the Earth Engine data catalog (the links to the data are 495 

https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S1_GRD and 

https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR respectively). Despite the data are 

hosted by GEE, these satellite data are the same as accessed via the official portal (Copernicus Open Access Hub: 

https://scihub.copernicus.eu/); Data ingested and hosted in GEE are always maintained in their original projection, 

resolution, and bit depth (Gorelick et al., 2017). 500 

The WorldClim bioclimatic variables (WorldClim V1 Bioclim) (Hijmans et al., 2005) were also accessed through GEE: 

https://developers.google.com/earth-engine/datasets/catalog/WORLDCLIM_V1_BIO. The data can be accessed in the 

official portal at https://www.worldclim.org/data/v1.4/worldclim14.html. 

The IUCN industrial oil palm layer (Meijaard et al., 2018) can be found at https://doi.org/10.5061/dryad.ghx3ffbn9. The oil 

palm layer of Indonesia and Malaysia for the year 2016 (Xu et al., 2020) can be found at 505 

https://doi.org/10.5281/zenodo.3467071. The oil palm layer of Sumatra for the year 2019, developed with the same 

methodology as in Descals et al., 2019 for Riau province (Indonesia), is hosted as a GEE asset at 

https://code.earthengine.google.com/?asset=users/adriadescals/shared/Sumatra_oilPalm_L2_Descals_et_al_2019. 

Very-high-resolution images (spatial resolution < 1 meter) from DigitalGlobe can be visualized in the GEE code editor (i.e. 

https://code.earthengine.google.com/7b35908829cdc62617138a9759eb370e) or Google Maps (i.e. 510 

https://www.google.com/maps/@-3.969372,105.048514,782m/data=!3m1!1e3)  

The country-wide harvested area of oil palm was extracted from the FAOSTAT database (accessed on 10 Jun 2020): 

http://www.fao.org/faostat/en/.  

7 Conclusions 

This study presents the first global map of oil palm plantations, for the year 2019, derived from remotely-sensed data with a 515 

spatial resolution of 10 meters. We classified Sentinel-1 and Sentinel-2 data into a map that discriminates between 

smallholders and industrial oil palm plantations. We obtained high accuracies, with user’s and consumer’s accuracy 

generally above 80%, thanks to the use of cutting-edge deep learning algorithms. The method is deployable and can generate 

yearly maps for oil palm monitoring in a cloud processing environment and based on freely available satellite imagery. 

https://adriadescals.users.earthengine.app/view/global-oil-palm-map-2019
https://code.earthengine.google.com/?asset=users/adriadescals/shared/OP/global_oil_palm_map_v1
https://scihub.copernicus.eu/
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S1_GRD
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR
https://scihub.copernicus.eu/
https://developers.google.com/earth-engine/datasets/catalog/WORLDCLIM_V1_BIO
https://www.worldclim.org/data/v1.4/worldclim14.html
https://doi.org/10.5061/dryad.ghx3ffbn9
https://doi.org/10.5281/zenodo.3467071
https://code.earthengine.google.com/?asset=users/adriadescals/shared/Sumatra_oilPalm_L2_Descals_et_al_2019
https://code.earthengine.google.com/7b35908829cdc62617138a9759eb370e
https://www.google.com/maps/@-3.969372,105.048514,782m/data=!3m1!1e3
http://www.fao.org/faostat/en/
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Our global oil palm map makes an important contribution to the palm oil debate. It will be useful to solve or at least clarify a 520 

range of social and environmental debates. We know that oil palm plantations are a major cause of deforestation in Indonesia 

and Malaysia (Austin et al., 2019; Gaveau et al., 2019), but the share of oil palm-driven deforestation to global tropical forest 

loss is not known.  This map will help to inform the debate on oil palm driven deforestation globally. Forest clearing for oil 

palm is associated with negative socio-economic impacts on forest-dependent communities (Santika et al., 2019). This map 

validates a novel approach to mapping where oil palm is grown by smallholders who generate direct income or consumption 525 

from their own plantations, as opposed to industrial-scale oil palm (or industrial-scale plantings disguised as smallholder) 

where plantations provide labor opportunity but profits primarily attribute to company owners and the government (through 

taxes). The data can thus guide better planning for maximizing socio-economic benefits from oil palm. The global oil palm 

layer also assists in the discussion about environmental impacts of oil palm, including on biodiversity (Fitzherbert et al., 

2008; Meijaard et al., 2018) and regional climate (McAlpine et al., 2018). These negative impacts are real but need to be 530 

considered in the light of meeting the global demand for vegetable oil through optimal allocation of land not just to oil palm, 

but to all major oil-producing crops. This requires high-resolution spatial data for all oil seed crops (Meijaard, Abrams, et al., 

2020) so that informed decisions can be made about land use based on yield differences, past environmental and social 

impacts of different crops and the different characteristics of oils from different crops and their particular end uses. Finally, 

and relevant to the current COVID-19 pandemic, our global map can help localize areas where zoonotic diseases can 535 

originate from, especially in areas where oil palm expansion was associated with recent deforestation. Such insights are 

essential for the health of people and the economy (Wardeh et al., 2020).  

 

Supplement. Supplementary material related to this article is available online at: https://doi.org/10.5194/essd-XX-XXXX-

XXXX-supplement. 540 
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