Response to comments

Title: A 30-meter terrace mapping in China using Landsat 8 imagery and digital elevation model based on the

Google Earth Engine

MS No.: essd-2020-157

5

Referee #2

General comments

Comment 1:

Overall, very useful, a good product for ESSD. With some small efforts authors could improve data access and data description

10 for many users.

Response 1:

Thank you very much for the comments and suggestions. Please see the detailed point-by-point responses below.

Specific comments

15 **Comment 1:**

Section 2.1.1: Authors downloaded a LandSat product that already included cloud masking. But they applied their own additional cloud masking? Please clarify. Why and how did they perform the second cloud masking.

Response 1:

Sorry for the unclear expression. The Landsat product in the Google Earth Engine just includes the cloud mask band (produced

20 using CFMASK) to indicate the cloudy pixels, but the cloud masking is not performed. We conducted the cloud masking according to the cloud mask band (the pixel_qa band).

We modified the original sentence to "This product has been atmospherically corrected and contains a cloud, shadow, water, and snow mask band produced using CFMASK, as well as a per-pixel saturation mask band (USGS, 2018). All scenes covering China acquired in 2018 were selected in our study. After obtaining the 10196 images, we removed the clouds in each image

25 based on the cloud mask band (the pixel QA band) of Landsat 8 SR data." (Section 2.1.1).

Comment 2:

30 Section 2.1.2: STRM DEM - provide a citation for the (standard?) void-filling process, here and/or in Table S2. Many readers will not know these acronyms?

Response 2:

We supplemented a reference for the void-filling process in **Section 2.1.2**: "The product at 1 arc-second (30 m) resolution is available on GEE, which has undergone a void-filling process using open-source data (ASTER GDEM2, GMTED2010, and NED) (USGS, 2015).".

Reference:

35

USGS.: The shuttle radar topography mission (SRTM) collection user guide, https://lpdaac.usgs.gov/documents/179/SRTM_ User_Guide_V3.pdf, last access: 15 March 2021, 2015.

40 **Comment 3:**

Line 112, 113 "we suppose the terrain changes little in decades." Interesting, this reviewer tends to agree. But what decadal changes might impact terraces? Consolidation? Urbanization? One supposes most terraces lie above floodplains, but construction of dams for agricultural water or flood management? In a dynamic Chinese economy, can we really assume static distribution and abundance of terraced agriculture? With their expertise, perhaps authors can and should comment? I note this

45 as possible uncertainty because a few paragraphs later the authors mention use of / calculation of Normalized Difference Building Index (NDBI), which implies that they might need to account for temporal changes in land use over their time periods?

Response 3:

We do not and can not assume the static distribution and abundance of terraced agriculture. As a land use/cover type, terrace may transform with other land use/cover types (e.g., slope cropland, urban, other vegetations). As you mentioned, both

50 construction of dams or other facilities and urbanization can change terrace distribution. However, most land use/cover changes will not have much impact on the terrain.

We supplemented the statement about the uncertainty caused by terrain data in **Section 3.6**: "On the one hand, the inconsistent year of terrain data and classification led to the uncertainties. Terrain may change due to the land use/cover transformations during 2010-2018. However, in relative to the vertical accuracy of terrain data, most transformations had little impact on terrain.

55 Even if terrain changed significantly in somewhere during the eight years, the spectral features in 2018 can help with classification. And the satisfactory accuracy of our terrace map also indicated the assumption of little terrain change was acceptable. But there is no doubt that better results can be achieved if high resolution and precision terrain data in 2018 is available."

Comment 4:

Section 2.1.3, GlobeLand30 represents an interesting product, perhaps unfamiliar to global LULUC communities. Need an actual citation? GlobeLand30 is not in GEE? Same issue about static vs dynamic: in rapidly-changing Chinese economy, can

one accept the assumption of no change between 2010 and 2018?

Response 4:

GlobeLand30 is not in GEE, we downloaded the product from www.globeland30.org and uploaded it into GEE.

Both reference and information related to GlobeLand30 were added to the manuscript: "a well-established and widely used source of land cover information, generated by integration of pixel-based and objected-based methods with knowledge (POK)

70 using multi-source data (Chen et al., 2015)." (Section 2.1.3); "GlobeLand30 was first downloaded from the website (www.globeland30.org) and then uploaded into GEE." (Section 2.1.3).

Reference:

75

Chen, J., Chen, J., Liao, A., Cao, X., Chen, L., Chen, X., He, C., Han, G., Peng, S., Lu, M., Zhang, W., Tong, X. and Mills, J.: Global land cover mapping at 30 m resolution: A POK-based operational approach, ISPRS J. Photogramm. Remote Sens., 103, 7-27, https://doi.org/10.1016/j.isprsjprs.2014.09.002, 2015.

Cropland was indeed changing between 2010 and 2018, but we found it had little influence to our results. We added the quantification of the uncertainty caused by the inconsistent years to **Section 3.6**: "Furthermore, the non-correspondence of cropland extent data year and terrace/non-terrace classification year also had an impact on the results. Compared to using a cropland map in 2018, the major limitation of using cropland map in 2010 is that some terraces located in the newly increased

80 cropland area will be omitted. We quantified the omission caused by the cropland mask using the test samples. Only 119 of the total 1092 terrace test samples located outside the cropland extent of GlobeLand30 2010, indicating the maximum possible omission errors caused by the non-corresponding year was 10.90%.".

Comment 5:

85 The reviewer confirms 39 features from Table 1: 7 spectral bands from LandSat plus four indices, each with three ranges, plus 6 elevation-related features from SRTM. But several indices listed, e.g. NDBI, incorporate middle infrared (MIR) while MIR not listed among the bands downloaded or processed. Please can authors explain?

Response 5:

Sorry for mistakes. In the table, the MIR band in the algorithm of NDBI and MNDWI corresponds to the SWIR1 band of

90 Landsat 8 surface reflectance (SR) imagery.

We have revised the algorithms in **Table 2**.

Feature	Data source/Algorithm
Percentiles of spectral bands/indices	Landsat 8 surface reflectance (SR) imagery
Bands	Landsat 8 SR Band 2—7 (Blue, Green, Red, NIR, SWIR1, SWIR2), Band 11 (TIRS2)
Normalized Difference Vegetation Index (NDVI)	(NIR – Red) (NIR + Red)
Modified normalized Difference Water Index (MNDWI)	(Green – SWIR1) (Green + SWIR1)
Normalized Difference Building Index (NDBI)	(SWIR1 – NIR) (SWIR1 + NIR)
Bold Soil Index (BSI)	((SWIR1 + Red) - (Blue + NIR)) ((SWIR1 + Red) + (Blue + NIR))
Topographic factors	Shuttle Radar Topography Mission digital elevation model (SRTM DEM) data
Elevation	SRTM DEM data
Slope	Elevation change Horizontal distance change
Slope of Slope (SOS)	Slope change Horizontal distance change
Roughness (R)	<u>Scurved surface</u> Splane surface
Slope shape (P)	$H_{i,j} - \frac{\sum_{i=1}^{n} H_i}{n}$
Relief (RF)	H _{max} – H _{min}

Comment 6:

Line 153, 154: "(2151 terrace samples and 2639 non-terrace samples) were collected by visual interpretation of Landsat images,

100 SRTM DEM data, cropland extent data extracted from GlobeLand30, and Google Earth images". Authors inspected nearly 5000 images visually? To confirm terrace vs non-terrace? To confirm other land use (agriculture) feature? Impressive but difficult to understand or replicate? What did inspectors gain from GE images not available from LandSat or SRTM? Google Earth images within GEE or separate? GE images one of the least replicatable aspects of this research?

Response 6:

105 Yes, we visually interpreted the images to confirm terraces and non-terraces according to land use features. The process of sample collection is random and difficult to replicate. From high-resolution GE images, we can gain more detailed information, such as texture. GE images are especially useful for us to visually identify small terraces. In the study, we used the Google

Earth images within GEE. Compared with other images such as Landsat images and SRTM images, GE images are less replicable, but some history GE images can be viewed in the Google Earth software.

110 We added Section 2.1.4 to describe Google Earth images used in the study: "Google Earth images on GEE were used as auxiliary data for samples collection. This dataset is a composited product combining multiple sets of satellite imagery, which are provided by different commercial image providers or government agencies at different zoom level (Potere, 2008). Its highest resolution can reach less than 1 m. With more detailed information (e.g., texture) provided by the high-resolution Google Earth images, we can visually distinguish the samples more accurately.".

115 **References:**

Potere, D.: Horizontal positional accuracy of Google Earth's high-resolution imagery archive, Sensors, 8, 7973-7981, https://doi.org/10.3390/s8127973, 2008.

Comment 7:

120 Lines 162, 163: test dataset has a much higher ratio on non-terrace to terrace (almost 10 to 1) than training data (more like 5 to 4). Does this matter? Will this difference arise later as an uncertaintly factor?

Response 7:

It is true that using sample sets with different sample ratios can get different accuracy evaluation results. Generally, the accuracy will be more reliable when the sample size ratio of terrace/non-terrace is closer to the real area ratio of terrace/non-

125 terrace and the sample sizes of both types are sufficient. Our test samples were randomly generated in order to approach the real area ratio. And the subsequent two rounds of sample densifying described in Section 2.3 further ensured enough terrace samples (N>1000). Thus, we think the test sample size ratio is appropriate and can reflect the true accuracy of mapping result.

Comment 8:

130 Section 2.4 Terrace/non-terrace. Because not more than 20% Chinese land area = agriculture, terrace area also has to be << 20%? RF classifier specific to each province - very positive! All this done within GEE?</p>

Response 8:

Right. The area information was supplemented to Section 3.3: "As for the total area of terraces in China for 2018, it was estimated to be 53.55 Mha by the PC method, accounting for 26.43% of China's cropland area and 5.58% of China's land area

135 (about 960 Mha). And the EM method showed that the total terrace area was 58.46±2.99 Mha, i.e., 28.85%±1.48% of China's cropland area and 6.09%±0.31% of China's land area.".

In addition to the whole mapping process, the area calculation was also done within GEE.

Comment 9:

Section 2.5 Post-processing. Understand the purpose for and mechanism of mode filtering. More interested - and worried - about the sieving process. Terraces on slopes often have a long axis following contour lines but a short axis up- or down-slope. Which axis and/or what areal dimensions do the authors use here as "small". "Small" area for terraces not the same as

145 "small" area of non-terraces? Confused about pixels vs resolution. Understand LandSat at 30 m, but that means 10 pixels represents 300m? Rather large dimension for a "small" area? Or perhaps not on 1km x 1km scale? Please correct my misimpressions.

Response 9:

In the study, patch area was used to measure "small". Terrace/non-terrace patch with an area of 10 pixels (i.e., about 9000 m²)

150 or less was considered as "small". The threshold (10 pixels) was determined through experiments. We tried a series of sieving threshold and got the highest accuracy when the threshold was set to 10 pixels.

Several sentences were added to make it more clear in Section 2.5.2: "Namely, terrace/non-terrace patches with an area of 10 pixels (about 9000 m²) or less were sieved.".

155 **Comment 10:**

Line 204: Because, in subsequent text, authors often switch between user/producer terms (UA, PA) and commission/omission terms, take this opportunity to define both? For example, in line 204, "the user's accuracy (UA) of the terrace class" could become 'the user's accuracy (UA, also referred to as 'commission error') of the terrace class'. Authors will know how best to make these connections but because they use both (user/producer and commission/omission) they need to clarify.

160 **Response 10:**

Thank you for the advice. We also agree the connections will make it easier for readers to understand.

We added the connections in **Section 3.2**: "The producer's accuracy (PA, also referred to as "1-omission error") of the terrace class was 79.945%, whereas the user's accuracy (UA, also referred to as "1-commission error") of the terrace class was 71.149%".

165

Comment 11:

Line 211 - again, reader needs to know explicitly how authors define "small".

Response 11:

Here, small was also defined as "terraces with an area of 10 pixels (i.e., about 9000 m²) or less", which were sieved during the

post-processing, and thus could not be identified in our terrace map.
 In Section 3.2, the explicit definition "small patch terraces (terrace with an area of 10 pixels (about 9000 m²) or less)" was

given.

Comment 12:

175 Line 212 - is this second test set of 301 samples also available at Zenodo? Not obvious? It seems like the authors regard it as an important independent test product?

Response 12:

Sorry, the test sample set is not available at Zenodo. The sample sets are important for mapping project. Please understand that we can not make them public because of some cooperation.

180

Comment 13:

Line 240 - if cropland represents 20% of total China land area, and terraces represent 26 to 28% of cropland, then terraces represent 5% to almost 6% of total China area? I do this as a sort of 'mass balance' check; have I got this correct? If not correct, what did I miss?

185 **Response 13:**

Correct. The area information was supplemented to **Section 3.3**: "As for the total area of terraces in China for 2018, it was estimated to be 53.55 Mha by the PC method, accounting for 26.43% of China's cropland area and 5.58% of China's land area. And the EM method showed that the total terrace area was 58.46 ± 2.99 Mha, i.e., $28.85\%\pm1.48\%$ of China's cropland area and $6.09\%\pm0.31\%$ of China's land area."

190

Comment 14:

Line 277 - finally a list of 12 excluded provinces! Having this information appear earlier in the manuscript would have answered many questions for this reader.

Response 14:

195 Thank you for the advice. We added the information about test samples in the previous part of the manuscript (Section 2.3): "The terrace test sample is zero in 12 provinces (Beijing, Hainan, Heilongjiang, Hongkong, Jilin, Jiangsu, Macao, Shanghai, Taiwan, Tianjin, Tibet, and Xinjiang), while the terrace/non-terrace test samples are insufficient (N<10 for either terrace or non-terrace) in 14 provinces (Liaoning, Zhejiang, and the above 12 provinces). Thus, terrace area of the 14 provinces was not analyzed in Section 3.3 and accuracy of the 12 provinces was not evaluated in Section 3.4.3.".

200

Comment 15:

Uncertainty assessment/discussion and feature importance, including Figures 6 to 10, represent strong positive features of this data description. Thank authors for this careful analysis.

Response 15:

Comment 16:

Limitations and directions - overall a very useful discussion, particularly about spatial resolution. Again this issue of visual inspection. Who has energy to visually inspect 1000s of images and how does one quality-control outcomes of such inspection?

210 Even if the authors can not provide quantitative assessment, they could help other users with a general estimate of the effort involved? The authors also discuss merits of GlobeLand30 vs other LU products. Again, users will want to know how they might get access to GL30 (e.g. via GEE?) as well as other references to GL30 use and accuracy.

Response 16:

The sample collection work referred to a previous study (Zhao et al., 2014). We double-checked the samples to ensure a

215 quality-control outcome. Information related to sample collection was added in **Section 2.3**: "We referred to Zhao et al. (2014) to conduct the interpretation and quality control. The samples were double-checked to ensure reliability.".

The GlobeLand30 product can be accessed in *www.globeland30.org*. We downloaded it from the website and uploaded it to the GEE. More detailed information about the GlobeLand30 can be accessed from the references.

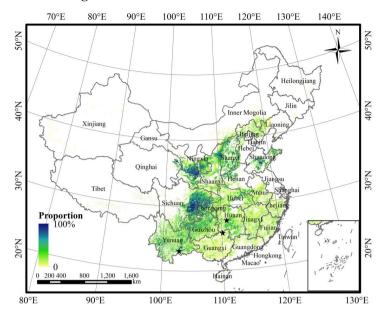
Information related to GlobeLand30 was added to the manuscript: "a well-established and widely used source of land cover information, generated by integration of pixel-based and objected-based methods with knowledge (POK) using multi-source data (Chen et al., 2015)." (Section 2.1.3); "GlobeLand30 was first downloaded from the website (www.globeland30.org) and then uploaded into GEE." (Section 2.1.3);

Reference:

Zhao, Y., Gong, P., Yu, L., Hu, L., Li, X., Li, C., Zhang, H., Zheng, Y., Wang, J., Zhao, Y., Cheng, Q., Liu, C., Liu, S. and Wang,
X.: Towards a common validation sample set for global land-cover mapping. Int. J. Remote Sens., 35, 4795-4814, https://doi.org/10.1080/01431161.2014.930202, 2014.

Chen, J., Chen, J., Liao, A., Cao, X., Chen, L., Chen, X., He, C., Han, G., Peng, S., Lu, M., Zhang, W., Tong, X. and Mills, J.: Global land cover mapping at 30 m resolution: A POK-based operational approach, ISPRS J. Photogramm. Remote Sens., 103, 7-27, https://doi.org/10.1016/j.isprsjprs.2014.09.002, 2015.

230


Comment 17:

On Fig 3, not obvious that Xinjiang or Heilongjiang provinces have terraces. Need different or brighter color scale. Could authors mark location of positive outcomes shown in Figure 4 in Yunnan, Hunan or Guangxi provinces on Figure 3?

Response 17:

In our terrace map, there are very few terraces in Xinjiang and Heilongjiang provinces. Thus, it is difficult to find them in Fig 3. To make it easier for readers to find them in Fig 3, we changed the display resolution of terrace map in Xinjiang, Heilongjiang and Liaoning provinces from 1km to 5km. And we also marked the terrace locations in Figure 4 on Figure 3.

The revised Figure 3 is shown below.

240 Figure 3: Terrace distribution across China in 2018. The map values indicate the proportion of terrace within a 1km×1 km grid cell except for Heilongjiang, Liaoning and Xinjiang, where the mapping results are displayed at 5×5 km for clearer visual effect. Shanghai and Macao are the only two provinces have no terrace in this map. The locations of three well-known terraces shown in Fig. 4 are marked as stars in the terrace map.

245 **Comment 18:**

Figure 5 does not include all the provinces show in map on Figure 3? By cropland or terrace abundance or some other LU factor, authors have eliminated far west or far north provinces from their analysis. Did the reviewer miss an earlier statement to this effect? These represent the "other provinces" mentioned in line 238? No, they represent the 12 province excluded, listed at line 277. A reader needs to see this exclusion information earlier, before any results, perhaps even before most methods?

250 **Response 18:**

Yes, Figure 3 includes all the provinces in China (34 provinces), but Figure 5 does not include the 14 provinces without sufficient test samples (N<10 for either terrace or non-terrace).

We explained the "other provinces" in **Section 3.3**: "Terrace area for other 14 provinces (Beijing, Hainan, Heilongjiang, Hongkong, Jilin, Jiangsu, Liaoning, Macao, Shanghai, Taiwan, Tianjin, Tibet, Xinjiang, and Zhejiang) have not been analyzed

255 due to insufficient test samples to estimate the uncertainty".

We also added the exclusion information in the previous part (Section 2.3): "The terrace test sample is zero in 12 provinces (Beijing, Hainan, Heilongjiang, Hongkong, Jilin, Jiangsu, Macao, Shanghai, Taiwan, Tianjin, Tibet, and Xinjiang), while the terrace/non-terrace test samples are insufficient (N<10 for either terrace or non-terrace) in 14 provinces (Liaoning, Zhejiang,

and the above 12 provinces). Thus, terrace area of the 14 provinces was not analyzed in Section 3.3 and accuracy of the 12 provinces was not evaluated in Section 3.4.3.".

Comment 19:

Figure 10: very difficult to read / interpret axis labels. Table S1 helps, it should move into main manuscript as part of legend for Figure 10?

265 (Because Table S2, the source attribution table, also belongs in main manuscript, perhaps in or near Section 2, authors could include S1 and S2 in main manuscript and thereby eliminate supplement?)

Response 19:

Thank you for the suggestion. We changed Table S1 to Table 5 and moved it next to Figure 10 in **Section 3.5**. And we changed Table S2 to Table 1 in **Section 2.1**. Accordingly, the sequence numbers of other tables were changed in the manuscript.

270