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Abstract 12 

Deep convection possesses markedly distinct properties at different spatiotemporal scales. We 13 

present an original high-resolution (4 km, hourly) unified data product of mesoscale convective 14 

systems (MCSs) and isolated deep convection (IDC) in the United States east of the Rocky 15 

Mountains and examine their climatological characteristics from 2004 to 2017. The data product 16 

is produced by applying an updated Flexible Object Tracker algorithm to hourly satellite 17 

brightness temperature, radar reflectivity, and precipitation datasets. Analysis of the data product 18 

shows that MCSs are much larger and longer-lasting than IDC, but IDC occurs about 100 times 19 

more frequently than MCSs, with a mean convective intensity comparable to that of MCSs. 20 

Hence both MCS and IDC are essential contributors to precipitation east of the Rocky 21 

Mountains, although their precipitation shows significantly different spatiotemporal 22 

characteristics. IDC precipitation concentrates in summer in the Southeast with a peak in the late 23 

afternoon, while MCS precipitation is significant in all seasons, especially for spring and 24 

summer in the Great Plains. The spatial distribution of MCS precipitation amounts varies by 25 

seasons, while diurnally, MCS precipitation generally peaks during nighttime except in the 26 

Southeast. Potential uncertainties and limitations of the data product are also discussed. The data 27 

product is useful for investigating the atmospheric environments and physical processes 28 

associated with different types of convective systems, quantifying the impacts of convection on 29 

hydrology, atmospheric chemistry, and severe weather events, and evaluating and improving the 30 

representation of convective processes in weather and climate models. The data product is 31 

available at http://dx.doi.org/10.25584/1632005 (Li et al., 2020). 32 

 33 
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1 Introduction 34 

In the atmosphere, deep convection refers to thermally driven turbulent mixing that 35 

displaces air parcels from the lower atmosphere to the troposphere above 500 hPa (Davison, 36 

1999), leading to the development of convective storms. The heavy rain-rates associated with 37 

deep convection can significantly affect the water cycle (Hu et al., 2020) and other aspects such 38 

as soil erosion (Nearing et al., 2004), surface water quality (Carpenter et al., 2018; Motew et al., 39 

2018), and managed and unmanaged ecosystems (Angel et al., 2005; Derbile and Kasei, 2012; 40 

Rosenzweig et al., 2002) that are essential elements of the biogeochemical cycle. By 41 

redistributing heat, mass, and momentum within the atmosphere, deep convection also has 42 

important effects on atmospheric chemistry (Anderson et al., 2017; Andreae et al., 2001; Choi et 43 

al., 2014; Grewe, 2007; Thompson et al., 1997; Twohy et al., 2002), large-scale environments 44 

(Houze Jr, 2004; Piani et al., 2000; Stensrud, 1996, 2013; Wang, 2003), and radiation balance 45 

(Feng et al., 2011; Zhang et al., 2017). 46 

Besides its effects on the energy, water, and biogeochemical cycles, deep convection also 47 

has more direct societal impacts. As a significant source of natural hazards such as tornadoes, 48 

hail, wind gusts, lightning, and flash flooding, deep convection poses critical threats to human 49 

life and property (Brooks et al., 2003; Doswell III et al., 1996; Koehler, 2020; Taszarek et al., 50 

2020). During 1950 – 1994, deep convection thunderstorms produced 47% of annual rainfall and 51 

up to 72% of summer rainfall on average east of the Rocky Mountains (Changnon, 2001b). 52 

During the same period, both the number of severe thunderstorms and deep convection 53 

precipitation has increased in most regions of the contiguous United States (CONUS) 54 

(Changnon, 2001a, b; Groisman et al., 2004). Folger and Reed (2013) found that hazards 55 
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associated with thunderstorms accounted for 57% of annual insured catastrophe losses since 56 

1953. Since the 1980s, the inflation-adjusted economic losses due to convective storms increased 57 

from about $5 billion to about $20 billion in the recent decade (https://www.iii.org/fact-58 

statistic/facts-statistics-tornadoes-and-thunderstorms). With warmer temperatures, the 59 

environments of hazardous convective weather are projected to become more frequent in the 60 

future (Diffenbaugh et al., 2013; Seeley and Romps, 2015), although few robust trends have 61 

emerged in the recent decades (Houze Jr et al., 2019; Tippett et al., 2015). 62 

The crucial roles of deep convection motivate the need for more accurate and 63 

comprehensive datasets to improve understanding and modeling of this process and its impacts. 64 

To this end, datasets with information on the location and time of occurrence, intensity, and other 65 

properties of deep convection are necessary to understand and quantify its impacts on the 66 

hydrologic cycle, severe weather hazards, large-scale circulations, etc. While field campaign data 67 

can provide detailed information on deep convection properties, they are limited in space-time 68 

coverage for statistical analysis. A corresponding reliable long-term dataset is undoubtedly 69 

useful for model evaluation and development (Prein et al., 2017; Yang et al., 2017). 70 

Deep convection can exist as isolated convective storms or organized storms with 71 

mesoscale structures. A mesoscale convective system (MCS) is an aggregate of convective 72 

storms organized into a larger and longer-lived system, which is the largest type of deep 73 

convection. Due to their much longer duration and broader spatial coverage, MCSs generally 74 

have stronger and longer-lasting influences on large-scale circulations than isolated deep 75 

convection (IDC) events (Bigelbach et al., 2014; Stensrud, 1996, 2013). MCSs may also produce 76 

higher rain rates, larger echo top heights, and greater water and ice masses than IDC (Rowe et 77 
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al., 2011, 2012). The enhanced rain rates in MCSs might be caused by larger amounts of ice 78 

falling out and melting, higher amounts of liquid water below the melting level, and higher 79 

concentrations of smaller drops (Rowe et al., 2011, 2012). Rowe et al. (2012) also suggested that 80 

the enhanced rainfall from MCSs might be associated with more favorable environmental 81 

conditions, such as higher convective available potential energy (CAPE) and wind shear. CAPE 82 

and wind shear can impose different impacts on the initiation and evolution of IDC and MCSs 83 

(French and Parker, 2008). 84 

Considering the significant differences between IDC and MCS events, a reliable long-term 85 

dataset not only describing the characteristics of deep convection but also separating IDC events 86 

from MCSs is useful. With the deployment of operational remote sensing platforms such as 87 

geostationary satellites and ground-based radar network several decades ago, scientists have 88 

developed numerical algorithms to automatically detect deep convective systems and track their 89 

evolutions over large areas and for long durations on the basis of continuous measurements from 90 

remote sensors (Cintineo et al., 2013; Feng et al., 2011; Feng et al., 2012; Futyan and Del Genio, 91 

2007; Geerts, 1998; Hodges and Thorncroft, 1997; Liu et al., 2007; Machado et al., 1998). 92 

Objective tracking of deep convection has been applied to geostationary satellite data (Cintineo 93 

et al., 2013; Sieglaff et al., 2013; Walker et al., 2012) and Next Generation Weather Radar 94 

(NEXRAD) data (Haberlie and Ashley, 2019; Pinto et al., 2015) in the United States (US) over 95 

different periods. However, a long-term climatological data product of MCS and IDC events 96 

over the CONUS has heretofore not been developed. 97 

Here, building on the work by Feng et al. (2019), which developed an algorithm for MCS 98 

tracking and a dataset for MCSs for eastern CONUS, we produce a unified high-resolution data 99 
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product of both MCS and IDC events and analyze their characteristics east of the Rocky 100 

Mountains for 2004 – 2017. The data product is developed by applying an updated Flexible 101 

Object Tracker (FLEXTRKR) algorithm (Feng et al., 2018; Feng et al., 2019) and the Storm 102 

Labeling in Three Dimensions (SL3D) algorithm (Starzec et al., 2017) to the NCEP (National 103 

Centers for Environmental Prediction) / CPP (the Climate Prediction Center) L3 4 km Global 104 

Merged IR V1 brightness temperature (Tb) dataset (Janowiak et al., 2017), the 3-D Gridded 105 

NEXRAD Radar (Gridrad) dataset (Homeyer and Bowman, 2017), the NCEP Stage IV 106 

precipitation dataset (Lin and Mitchell, 2005), and melting level heights from ERA5 (ECMWF, 107 

2018). Section 2 describes the updated FLEXTRKR and SL3D algorithms in detail, as well as 108 

the source datasets used by the algorithms. In Section 3, we first compare the climatological 109 

characteristics between MCS and IDC events based on the MCS/IDC data product. Then, as an 110 

application of the data product, we examine the spatiotemporal precipitation characteristics of 111 

MCS and IDC events. In Section 4, we discuss the uncertainties and limitations of the data 112 

product. Section 5 provides the availability information of the data product. Finally, we 113 

summarize the study in Section 6. 114 

2 Source datasets and algorithms 115 

2.1 Source datasets 116 

2.1.1 Merged 4-km Infrared brightness temperature dataset 117 

In this study, we identify cold clouds associated with MCSs and IDC by using the NOAA 118 

NCEP/CPP L3 half-hourly 4 km Global Merged IR V1 infrared Tb data for 2004 –  2017 119 

(Janowiak et al., 2017). The dataset is a combination of various geostationary IR satellites with 120 
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parallax correction and viewing angle correction, therefore, providing continuous coverage 121 

globally from 60°S – 60°N with a horizontal resolution of about 4 km and a temporal resolution 122 

of 0.5 hours (Janowiak et al., 2001). We only use the hourly Tb data in the FLEXTRKR 123 

algorithm discussed below, as all other datasets are only available at an hourly interval. 124 

2.1.2 Three-dimensional Gridded NEXRAD Radar (Gridrad) dataset 125 

Gridrad is an hourly 3-D radar reflectivity (ZH) mosaic combining individual NEXRAD 126 

radar observations to a Cartesian gridded dataset, with a horizontal resolution of 0.02° × 0.02° 127 

and a vertical resolution of 1 km. The dataset covers 115° W to 69° W in longitude, 25° N to 49° 128 

N in latitude, and 1 to 24 km in altitude above sea level (ASL). Homeyer and Bowman (2017) 129 

produced the dataset by applying a four-dimensional binning procedure to merge level-2 ZH data 130 

from 125 National Weather Service (NWS) NEXRAD weather radars to Gridrad grid boxes at 131 

analysis times. Only the level-2 observations within 300 km of each radar and 3.8 minutes of the 132 

analysis time were used in the binning procedure. The Gridrad ZH was the weighted average of 133 

the level-2 observations within the Gridrad grid boxes to reduce the potential loss of information. 134 

The weight calculation of each level-2 observation followed a Gaussian scheme in both space 135 

and time. Observation weight was negatively correlated with the distance of the observation from 136 

the source radar and the time difference between the observation and analysis time. The Gridrad 137 

dataset provides the total weight of the level-2 observations within each Gridrad grid box, which 138 

is useful for quality control. In addition, the number of level-2 radar observations (Nobs) and the 139 

number of level-2 radar observations with echoes (Necho) within each Gridrad grid box around 140 

analysis times (± 3.8 min) are also available in the Gridrad dataset. 141 
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We obtain the Gridrad datasets between 2004 and 2017 from NCAR/UCAR Research Data 142 

Archive (RDA) (https://rda.ucar.edu/datasets/ds841.0/, last access: Jan 2, 2020). Following the 143 

quality control criteria of Homeyer and Bowman (2017) (http://gridrad.org/software.html, last 144 

access: Jan 22, 2020), we remove potential low-quality observations, scanning artifacts, and non-145 

meteorological echoes from biological scatters and artifacts. Then we regrid Gridrad ZH onto the 146 

4 km satellite Merged IR grids by using the “bilinear” method from the Earth System Modeling 147 

Framework (ESMF) Python module (https://www.earthsystemcog.org/projects/esmpy/) as 148 

follows. 149 

 First, we convert the Gridrad logarithmic reflectivity ZH to linear reflectivity (Z’: mm6 m-3). 150 

We then set Z’ in grid boxes with radar observations but no echoes (Nobs > 0, but ZH = NAN; 151 

NAN, Not-A-Number) to 0 (Z’ = 0). Here the physical interpretation is that NEXRAD scans 152 

those grid boxes, but no detectable hydrometeors return any echo. The primary motivation of this 153 

procedure is to avoid the reduction of the number of valid reflectivity values after re-gridding, as 154 

the ESMF bilinear method treats destination point as NAN as long as there is one NAN value in 155 

the source points. A common scenario is at the edge between hydrometeor echoes and clear air. 156 

Setting Z’ of those grid boxes having radar observations but no echoes to NAN would cause all 157 

surrounding destination points to become NAN even though all other source points have valid Z’ 158 

values, which would reduce the number of re-gridded valid ZH (ZH ≠ NAN) by about 20% for 159 

2004 – 2017. After the “bilinear” re-gridding of Z’, we convert the linear reflectivity Z’ back to 160 

the logarithmic reflectivity ZH. And we set ZH equal to NAN for those grid boxes with Z’ equal 161 

to 0. Now the NAN values are acceptable and won’t affect the SL3D algorithm and FLEXTRKR 162 

algorithm discussed below. 163 

https://rda.ucar.edu/datasets/ds841.0/
http://gridrad.org/software.html
https://www.earthsystemcog.org/projects/esmpy/
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2.1.3 NCEP Stage IV precipitation dataset 164 

The NCEP Stage IV precipitation dataset provides hourly rain accumulations over polar 165 

stereographic grids across the CONUS with a resolution of 4.76 km at 60°N since 2002. The 166 

dataset is a mosaic of precipitation estimates from 12 River Forecast Centers (RFCs) over the 167 

CONUS (Stage IV data in Alaska and Puerto Rico are archived separately) (Lin and Mitchell, 168 

2005; Nelson et al., 2016). Each RFC produces its precipitation estimates through a combination 169 

of radar and rain gauge data based on the multisensory precipitation estimator (MPE) algorithm 170 

(for most RFCs), P3 algorithm (for Arkansas-Red basin RFC), or Mountain Mapper algorithm 171 

(for California-Nevada, Northwest, and Colorado-basin RFCs with missing radar-derived 172 

estimates) (Nelson et al., 2016). Some manual quality control steps are conducted to remove bad 173 

radar and gauge data before radar-gauge merging (Lin and Mitchell, 2005; Nelson et al., 2016). 174 

The Stage IV dataset has been widely used as a basis to evaluate model simulations, satellite 175 

precipitation estimates, and radar precipitation estimates (Davis et al., 2006; Gourley et al., 2011; 176 

Kalinga and Gan, 2010; Lopez, 2011; Yuan et al., 2008). Here, we obtain the hourly Stage IV 177 

precipitation for 2004 – 2017 from NCAR/UCAR RDA (https://rda.ucar.edu/datasets/ds507.5/, 178 

last access: Dec 28, 2019). We regrid the original Stage IV precipitation from polar stereographic 179 

grids to the 4 km satellite Merged IR grids by using the “neareststod” method from the ESMF 180 

‘NCL’ module (https://www.ncl.ucar.edu/Applications/ESMF.shtml). The “neareststod” method 181 

maps each destination point to the closest source point. 182 

2.1.4 ERA5 melting level dataset 183 

Melting hydrometeors produce intense radar echoes in a horizontal layer about 0.5 km thick 184 

located just below the 0°C level (melting level), which is known as “bright band” (Giangrande et 185 

https://rda.ucar.edu/datasets/ds507.5/
https://www.ncl.ucar.edu/Applications/ESMF.shtml


10 

al., 2008; Steiner et al., 1995). The bright-band signatures are often pronounced for stratiform 186 

precipitation, while convective precipitation produces well-defined vertical cores of maximum 187 

reflectivity, diluting the bright-band signals (Giangrande et al., 2008; Steiner et al., 1995).  188 

Therefore, the SL3D algorithm that is described below examines ZH above the melting level to 189 

avoid the false identification of stratiform rain as convective (Starzec et al., 2017). In this study, 190 

we use the hourly melting level heights from the ERA5 reanalysis dataset. 191 

ERA5, as the successor to ERA-Interim, contains many modeling improvements and more 192 

observations based on 4D-Var data assimilation using Cycle 41r2 of the Integrated Forecasting 193 

System (IFS) at the European Centre for Medium-Range Weather Forecasts (ECMWF). ERA5 194 

provides hourly estimates of atmospheric variables at a horizontal resolution of 31 km and 137 195 

vertical levels from the surface to 0.01 hPa from 1979 to the present (Hersbach et al., 2019). We 196 

obtain ERA5 “Zero degree level” (melting level heights above ground) for 2004 – 2017 and 197 

“Orography” (geopotential at the ground surface) from the Climate Data Store (CDS) disks 198 

(ECMWF, 2018) (last access: Jan 24, 2020). The CDS archived ERA5 variables have been 199 

interpolated to regular latitude/longitude grids with a resolution of 0.25° × 0.25°. We calculate 200 

melting level heights ASL from “Zero degree level” and “Orography” (divided by 9.80665 m s-2 201 

to obtain ground surface height). Finally, we regrid the hourly 0.25° melting level heights ASL 202 

to the 4-km satellite Merged IR grids by using the ESMF “neareststod” method. 203 

We summarize the basic information of the four types of source datasets in Table A1. And, 204 

we define our data product domain as 110°W – 70°W in longitude and 25°N – 51°N in latitude 205 

(Figure 1), which covers the US east of the Rocky Mountains and excludes the western US. The 206 

domain coverage takes into consideration the availability of the GridRad radar dataset, the 207 
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relatively scarce radar coverage over the Rocky Mountains, and associated uncertainties in radar-208 

based Stage IV precipitation estimates in complex terrains (Nelson et al., 2016). As shown in 209 

Figure 1a, we further define four regions in the domain following Feng et al. (2019): Northern 210 

Great Plains (NGP), Southern Great Plains (SGP), Southeast (SE), and Northeast (NE). 211 



12 

 212 
Figure 1. (a) Data product domain and region definitions. Blue shading denotes the Northern 213 
Great Plains (NGP), green-yellow shading denotes the Southern Great Plains (SGP), light steel 214 
blue shading denotes the Southeast (SE), and orange shading denotes the Northeast (NE). The 215 
locations of some US states within each region are also labeled. TX is for Texas, OK for 216 
Oklahoma, KS for Kansas, NE for Nebraska, IA for Iowa, MO for Missouri, AR for Arkansas, 217 
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LA for Louisiana, MS for Mississippi, AL for Alabama, TN for Tennessee, KY for Kentucky, 218 
and FL for Florida. (b) The location of the data product domain (red box) in North America. 219 

2.2 Algorithm description 220 

2.2.1 SL3D algorithm 221 

The SL3D algorithm exploits Gridrad ZH to classify each grid column with radar echoes 222 

into five categories: convective, precipitating stratiform, non-precipitating stratiform, anvil, and 223 

convective updraft (Starzec et al., 2017). SL3D identifies these five categories successively 224 

following the criteria listed in Table A2. We run the SL3D algorithm for 2004 – 2017 by using 225 

the re-gridded ERA5 melting level heights and Gridrad ZH dataset described in Section 2.1. 226 

Figure 2e shows an example of the SL3D classification results based on Gridrad ZH (Figure 2d) 227 

at 2005-07-04T03:00:00Z. A sizeable convective system with intense radar echoes and 228 

precipitation is observed in Kansas, and many isolated convection events are also observed in the 229 

Southeast. The SL3D classification results will be used in the following FLEXTRKR algorithm 230 

to identify convective core features (CCFs, continuous updraft/convective areas with 231 

precipitation > 0 mm h-1, which are used to indicate the existence of convective activity in the 232 

IDC definition; red regions in Figure 3) and precipitation features (PFs, continuous 233 

updraft/convective/precipitating-stratiform areas with precipitation > 1 mm h-1; green areas in 234 

Figure 3, which are used to denote the sizes of convective systems in the MCS and IDC 235 

definitions). 236 
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2.2.2 MCS/IDC identification and tracking 237 

The FLEXTRKR algorithm was first developed and used by Feng et al. (2019) to track 238 

MCSs. In this study, we further update the algorithm so that it can identify and track MCS and 239 

IDC events simultaneously. 240 

Figure 3 displays the schematic of FLEXTRKR (Feng et al., 2019). The first step is to 241 

identify cold cloud systems (CCSs; continuous areas with Tb < 241 K) at each hour by applying a 242 

multiple Tb threshold “detect and spread” approach (Futyan and Del Genio, 2007). We search for 243 

cold cloud cores with Tb < 225 K and spread the cold cloud cores to contiguous areas with Tb < 244 

241 K. Cloud systems that do not contain a cold cloud core but with Tb < 241 K are also labeled 245 

as long as they can form continuous areas with at least 64 km2 (4 pixels). In addition, as 246 

described in Feng et al. (2019), CCSs that share the same coherent precipitation feature are 247 

combined as a single CCS. A coherent precipitation feature is defined as continuous areas with 248 

smoothed ZH at 2 km > 28 dBZ (if ZH is not available at 2 km, use ZH at 3 km instead if it is 249 

available) (Feng et al., 2019). We use a 5 × 5 pixel moving window to smooth ZH. Figure 2b 250 

shows an example of the CCSs identified in the first step based on Tb at 2005-07-04T03:00:00Z. 251 

“Cloud 1” in Figure 2b corresponds to a large area of low Tb in the central US (Figure 2a). 252 

In step 2, CCSs between two consecutive hours are linked if their spatial overlaps are > 253 

50%. “Linked” means the CCSs are considered to be from the same cloud systems. FLEXTRKR 254 

produces tracks by extending the link between two consecutive time steps to the entire tracking 255 

period, as shown in Figure 3. Each track represents the lifecycle of a cloud system. We calculate 256 

a series of CCS summary statistics associated with each track, such as CCS-based lifetime of the 257 

track (the duration of the track when CCSs are present), CCS area, CCS major axis length, CCS 258 
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propagation speed, etc. Besides, SL3D classification (Figure 2e) and Stage IV precipitation 259 

(Figures 2c) within the tracked CCS are associated with the tracks and their merges and splits 260 

(described below). Then, we can obtain CCF and PF statistics of each track, such as convective 261 

and stratiform area, precipitation intensity and coverage, radar-derived echo-top heights, PF 262 

major axis length, CCF major axis length, intense convective cells (convective cells with column 263 

maximum reflectivity ≥ 45 dBZ and precipitation > 1 mm h-1; pink areas in Figure 3, which are 264 

used to indicate intense convective activity in the following MCS definition), etc. 265 

Merging and splitting refer to situations when two or more CCSs are linked to one CCS 266 

between consecutive hours (Figures A1 and A2). A track associated with the largest CCS is 267 

defined as the main track (Figure A3), and smaller tracks from merges/splits are regarded as 268 

parts of the main track when calculating PF and CCF statistics. In the algorithm, we require that 269 

a “merge”/”split” track associated with an MCS/IDC event must have a CCS-based lifetime of 270 

no more than 5 hours. Otherwise, we treat it as an independent track. 271 

 The identification of MCS and IDC is based on the CCS, PF, and CCF statistics of the 272 

tracks. Following the definition of MCSs by Feng et al. (2019) (Figure 4), we define a track as an 273 

MCS if it satisfies the following criteria: 1) there is at least one pixel of cold cloud core during 274 

the whole lifecycle of the track; 2) CCS areas associated with the track surpass 60,000 km2 for 275 

more than six continuous hours; 3) PF major axis length exceeding 100 km and intense 276 

convective cell areas of at least 16 km2 exist for more than five consecutive hours. Considering 277 

the lack of a strict and universal MCS definition (Geerts et al., 2017; Haberlie and Ashley, 2019; 278 

Pinto et al., 2015; Prein et al., 2017), we evaluate the impact of different MCS definition criteria 279 

on the data product in Section 4.4. For the non-MCS tracks, we further identify IDC with the 280 
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following two criteria (Figure 4): 1) a CCS with at least 64 km2 (4 pixels) is detected; 2) at least 281 

1 hour during the lifecycle of the track when PF and CCF are present (PF and CCF major axis 282 

lengths ≥ 4 km). In addition, for each IDC event, the CCS-based lifetime of associated merge 283 

and split tracks cannot surpass the lifetime of the IDC event. Here, the IDC criteria denote a low 284 

limit in convective signals that we can identify by using the FLEXTRKR algorithm and given 285 

source datasets. Potential uncertainties associated with the limit are discussed in Section 4.3. 286 

Note that while we designate the term IDC to differentiate smaller convective storms from 287 

MCSs, there are sub-categories of deep convection within IDC. For example, multicellular 288 

convection systems that do not grow large enough or last long enough to meet our MCS 289 

definition are defined as IDC in our study, even though they are not necessarily “isolated.” Users 290 

of the data product can further separate sub-categories within IDC using the derived CCF 291 

statistics information to address specific science questions or research objectives. 292 

Finally, the FLEXTRKR algorithm maps MCS/IDC track information back to the domain 293 

pixels. Figures 2f – 2i give an example of the pixel-level MCS/IDC information at 2005-07-294 

04T03:00:00Z. Figure 2f displays the spatial coverages of MCS/IDC tracks at that time at pixel 295 

scale and the corresponding unique numbers of these tracks. From Figure 2f, we know whether a 296 

pixel belongs to an MCS/IDC track and the number of the track if the pixel belongs to a track. 297 

We can further determine whether the track is an MCS or IDC event from Figure 2g, which 298 

shows the types (MCS or IDC) of the tracks in Figure 2f at pixel scale. Figures 2h and 2i are 299 

similar to Figures 2f and 2g, respectively. The difference is that Figures 2h and 2i only show 300 

pixels with precipitation > 1 mm h-1 in that hour. Together, the track-based CCS, PF, and CCF 301 

statistics of MCS and IDC events and the pixel-level dataset constitute the unified high-302 
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resolution MCS/IDC data product we develop in this study. Original Tb (Figure 2a), Stage IV 303 

precipitation (Figure 2c), Gridrad ZH at 2 km (Figure 2d), and Gridrad derived echo-top heights 304 

are also archived in the data product. 305 

We run the FLEXTRKR algorithm separately for each year from 2004 to 2017. The starting 306 

time of each continuous tracking is 00Z on 1 January, and the ending time is 23Z on 31 307 

December. Because winter has the fewest deep convection events, very few MCS/IDC events 308 

extend between two different years based on our investigation. Also, the lifetimes of MCS/IDC 309 

events are much shorter compared to our tracking period. Therefore, running FLEXTRKR 310 

separately for each year rather than continuously for the whole period has little impact on the 311 

MCS/IDC statistics. 312 
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 313 
Figure 2. FLEXTRKR pixel-level outputs at 03:00:00Z on July 4, 2005. (a) is satellite Tb. (b) 314 
shows identified CCS labels. CCS labels are unique at each hour. (c) is Stage IV hourly 315 
accumulated precipitation. (d) is Gridrad ZH at 2 km (if it is not available, ZH at 3 km is provided 316 
if it is available). (e) is the SL3D classification results: 1, convective updraft; 2, convective; 3, 317 
precipitating stratiform; 4, non-precipitating stratiform; 5, anvil. (f) displays the track numbers to 318 
which pixels belong. Here, the track numbers are not the real values in the MCS/IDC data 319 
product. The track numbers should be unique throughout the whole running period. We adjust 320 
the track numbers here to make the figure clear. Similar to “PF track number.” (g) gives 321 
information on whether the pixels belong to MCS (marked as 1) or IDC (marked as 2) tracks, 322 
which correspond to the tracks shown in (f). (h) also displays the track numbers to which the 323 
pixels belong, but only for pixels with precipitation > 1 mm h-1. (i) is like (g) but corresponds to 324 
(h). All these variables are stored in the FLEXTRKR hourly pixel-level output files. 325 

 326 
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 327 
Figure 3. Schematic of the FLEXTRKR algorithm highlighting three key steps in the algorithm: 328 
(1) the identification of CCS (upper left), (2) linking of overlapping CCSs (upper right), and (3) 329 
the tracking of both PF and CCF (bottom). 330 

 331 
Figure 4. Definition of MCS and IDC based on the FLEXTRKR algorithm shown in Figure 3 332 
and the specific threshold values used in the algorithm. 333 
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3 Results and discussions 334 

3.1 Climatological characteristics of MCS and IDC events 335 

According to the MCS/IDC data product, we identify 45,346 IDC and 454 MCS events each 336 

year on average between 2004 and 2017 in our data product domain. Summer (June – August) 337 

has the most IDC and MCS events with average numbers of 25,073 and 212, while winter has 338 

the least with average quantities of 2,545 and 37. During spring and autumn, there are 8,543 and 339 

9,185 IDC events and 122 and 83 MCSs, respectively. The seasonal feature with the most 340 

occurrences of MCSs in winter and the least in summer is consistent with the results of Geerts 341 

(1998) in the Southeast US and Haberlie and Ashley (2019) over portions of the CONUS east of 342 

the Continental Divide (ECONUS). 343 

We compare the climatological characteristics of MCS and IDC events in Table 1. MCSs 344 

have much longer lifetimes than IDC, averaging 21.1 hours (CCS-based) and 18.9 hours (PF-345 

based), compared to 2.1 hours (CCS-based) and 1.7 hours (PF-based) for IDC. Here, PF-based 346 

lifetime refers to the lifetime determined by the MCS/IDC PFs. Only those hours with a 347 

significant PF present (PF major axis length > 20 km for MCSs; ≥ 4 km for IDC) are counted 348 

during the lifecycle of an MCS/IDC event, which represent the active convective period of a 349 

storm. We find that MCSs have the longest PF lifetime in winter (21.3 hours) and the shortest in 350 

summer (17.9 hours). In comparison, IDC has the longest PF lifetime in winter (1.9 hours), but 351 

the summer lifetime (1.7 hours) is comparable to spring and autumn. We examine the seasonal 352 

cumulative distribution functions (CDFs) of PF lifetimes for MCS and IDC events for 2004 – 353 

2017 in Figure A4. Results show winter has the largest fraction of MCS/IDC events with longer 354 

lifetimes than other seasons. 355 
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 As expected, MCSs are much larger than IDC events in spatial coverage and precipitation 356 

area, as shown in Table 1 by the comparisons of CCS area, PF major axis length, PF 357 

convective/stratiform area, CCF area, and CCF major axis length. Generally, on average, winter 358 

MCS/IDC events are the largest in overall spatial coverage (both CCS and PF areas), while 359 

summer has the smallest. The larger and longer-lived MCSs in winter than in summer were also 360 

observed in the Southeast US in 1994 – 1995 by Geerts (1998). The remarkable seasonal 361 

difference in MCS/IDC overall spatial coverage is mainly due to stratiform areas. Convective 362 

areas are much smaller than stratiform areas. The PF stratiform area of MCSs in winter is 90,513 363 

km2, 2.4  times larger than the area of 26,599 km2 in summer, but the PF convective area of 364 

MCSs in winter is 7,293 km2, 14% smaller than 8,465 km2 in summer. Similarly, the IDC PF 365 

stratiform area in winter is 3,182 km2, 2.8 times larger than 828 km2 in summer, while the IDC 366 

PF convective area in winter is 528 km2, slightly larger (9%) than 483 km2 in summer. Unlike 367 

stratiform areas with the largest value in winter, convective activity is the most intense in 368 

summer as indicated by the PF mean convective 20-dBZ echo-top height in Table 1. The most 369 

intense convective activity reflects the strongest atmospheric thermal instability due to the 370 

strongest solar radiation in summer. We further confirm this point by investigating the MCS/IDC 371 

initiation time. As shown in Figure A5, most MCS and IDC events initiate in the afternoon of 372 

summer when atmospheric instability is the strongest, consistent with Geerts (1998), who found 373 

warm-season MCSs generally initiated at 12:00 – 14:00 Local Time in the Southeast US. 374 

Although MCSs are much larger than IDC events in spatial coverage, their mean convective 375 

20-dBZ echo-top heights, which can be used to represent their mean convective intensities, are 376 

similar in Table 1. And their PF mean convective and stratiform rain rates are also comparable. 377 

PF mean convective and stratiform rain rates show significant seasonal variations for both MCS 378 
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and IDC events. Summer MCS and IDC events have the largest rain rates, followed by autumn. 379 

Winter has the lowest rain rates compared to other seasons. 380 

The high-resolution nature of the MCS/IDC data product enables a detailed examination of 381 

the 3-D evolutions of MCS/IDC events to investigate the relationships between atmospheric 382 

environments and MCS/IDC characteristics and to examine the impacts of MCSs and IDC on 383 

hydrology, atmospheric chemistry, and severe weather hazards. The data product can also be 384 

used to evaluate and improve the representation of MCS/IDC processes in weather and climate 385 

models. As an example of the application of the MCS/IDC data product, in Section 3.2, we 386 

investigate the contributions of MCS and IDC events to precipitation east of the Rocky 387 

Mountains for 2004 – 2017. 388 
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3.2 Precipitation characteristics from different sources 402 

Here we only consider hourly data with precipitation > 1 mm h-1 (Feng et al., 2019). At 4 403 

km resolution, precipitation less than 1 mm h-1 accounts for less than 19% of the total 404 

precipitation, and the uncertainty of radar-derived precipitation at such low rainfall intensity is 405 

typically large. Including hourly data with precipitation ≤ 1 mm h-1 in the calculation will 406 

change the values shown in this study but will neither affect the comparison among MCS, IDC, 407 

and non-convective (NC) precipitation nor their spatial distribution patterns. Here, NC 408 

precipitation refers to precipitation not associated with any MCS or IDC events and is mainly 409 

from stratiform rain. Total precipitation is the sum of MCS, IDC, and NC precipitation. It is 410 

noteworthy that NC precipitation may contain some convection-associated rain due to the 411 

limitation of the source datasets and the algorithms used in this study. More relevant details are 412 

discussed in Section 3.2.3 and Section 4. 413 

3.2.1 Annual spatial distributions of different types of precipitation 414 

According to the MCS/IDC data product, the annual average total precipitation east of the 415 

Rocky Mountains in the US (US grid cells in Figure 1) is 691 mm between 2004 and 2017 with 416 

a mean precipitation intensity of 3.6 mm h-1. MCSs contribute the most to the total precipitation 417 

with a fraction of 45%, followed by NC (30%) and IDC (25%). And the mean precipitation 418 

intensities of MCSs (4.4 mm h-1) and IDC (3.8 mm h-1) are much larger than NC (2.7 mm h-1). 419 

Our MCS precipitation fraction (45%) is higher than that (~30%) from Haberlie and Ashley 420 

(2019) over the ECONUS due to their different algorithms and stricter criteria to track and 421 

define MCSs. 422 

Figure 5 displays the spatial distributions of annual mean precipitation amounts and 423 

intensities for different precipitation types for 2004 – 2017. We also calculate the distributions 424 
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of the fractions of different types of precipitation in Figure 6. MCS precipitation strongly 425 

affects the whole eastern US (105°W – 70°W, MCS precipitation fractions: 46% ± 12%), 426 

especially in the South Central US (MCS precipitation fractions: ~60%). The spatial 427 

distribution patterns of MCS annual precipitation amounts and fractions in Figure 5 are similar 428 

to those from Haberlie and Ashley (2019), although their MCS precipitation fractions are 429 

generally lower than our results. IDC precipitation is concentrated in the SE and NE coastal 430 

areas, with peak values in Florida. NC precipitation is substantial in the eastern and southern 431 

regions with ample moisture supply and contributes over 35% to the total precipitation across 432 

most of the NE region. The coastal area near Louisiana, which is significantly affected by all 433 

three types of precipitation, has the most total precipitation with annual amounts of over 1,350 434 

mm. The annual total precipitation amounts in most regions of SE also exceed 1,050 mm due to 435 

MCS contributions. While the total precipitation amounts in most regions of Florida are also 436 

over 1,050 mm, they are mainly attributed to IDC. 437 

The spatial patterns of precipitation intensities are somewhat different from those of 438 

precipitation amounts (Figure 5). Generally, the southern regions, especially in the coastal 439 

areas, have larger precipitation intensities than the northern areas. The MCS precipitation 440 

intensities are the largest in Texas, Louisiana, Oklahoma, and Kansas, significantly shifting 441 

west compared to MCS precipitation amounts. Unlike IDC precipitation amounts concentrating 442 

in the SE and NE coastal areas, IDC precipitation intensities are the largest over the SGP and 443 

SE. IDC precipitation intensities over the NE are much smaller compared to the SGP and SE, 444 

similar to NC precipitation intensities. We summarize the annual mean precipitation amounts 445 

and intensities of different types of precipitation in the NGP, SGP, SE, and NE in Table A3. 446 

The distributions of MCS/IDC precipitation amounts are mainly determined by the 447 

distributions of MCS/IDC hours (Figures 5 and 7). Here, the MCS/IDC hour of a grid cell 448 
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during a period is the number of hours when any MCS/IDC events produce > 1 mm hourly 449 

accumulated rainfall in the grid cell. The distributions of MCS/IDC precipitation intensities, 450 

although not the main factor, can also affect the distributions of MCS/IDC precipitation 451 

amounts. For example, the maximum MCS hours are located around Missouri (Figures 7a), but 452 

the maximum MCS precipitation amount is in the coastal area of Louisiana (Figure 5c). The 453 

larger MCS precipitation intensities in the southern regions contribute more to the MCS 454 

precipitation amount in the southern US. In addition, a large number of IDC events (IDC 455 

hours > 60 h yr-1) occur in the NE region along the Appalachian Mountains (Figure 7b), but 456 

IDC in that region only contributes to 20% – 30% of the total precipitation amount (Figure 6b) 457 

due to the low precipitation intensities (Figure 5f). 458 
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 459 
Figure 5. Distributions of annual mean precipitation amounts (a, c, e, g) and intensities (b, d, f, 460 
h) for different types of precipitation for 2004 – 2017. (a) and (b) are for total precipitation, (c) 461 
and (d) are for MCS precipitation, (e) and (f) are for IDC precipitation, and (g) and (h) are for 462 
NC precipitation. We only include hourly data with precipitation > 1 mm h-1 in the calculation. 463 
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 464 
Figure 6. Distributions of the fractions of different types of precipitation (MCS, IDC, NC). 465 
Here, precipitation refers to annual mean values for 2004 – 2017. We exclude hourly data with 466 
precipitation ≤ 1 mm h-1 in the calculation. 467 
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 468 
Figure 7. Spatial distributions of annual mean MCS/IDC hours for 2004 – 2017. (a) is for 469 
MCS, and (b) is for IDC. The annual mean MCS/IDC hour of a grid cell is the number of hours 470 
per year when any MCS/IDC events produce > 1 mm hourly accumulated rainfall in the grid 471 
cell. 472 

3.2.2 Seasonal spatial distributions of different types of precipitation 473 

Figures 8, A6, and A7 display the mean seasonal distributions of precipitation amounts, 474 

precipitation fractions, and precipitation intensities for different types of precipitation in 2004 – 475 
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2017. The MCS precipitation center migrates northwards from Arkansas in spring to northern 476 

Missouri and Iowa in summer, followed by a southward migration to Louisiana in autumn, and 477 

finally to Mississippi and Alabama in the Southeast (Figures 8e – 8h) in winter. The seasonal 478 

shift of the MCS precipitation center agrees with the study of Haberlie and Ashley (2019), 479 

showing different MCS precipitation distributions between warm and cold seasons over the 480 

ECONUS. Spring and summer have much larger MCS precipitation amounts (~100 mm) than 481 

autumn (~62 mm) and winter (~50 mm). The mean MCS precipitation amount in spring is close 482 

to that in summer. However, the total number of identified MCSs in summer (212) is much 483 

higher than that in spring (122), as discussed in Section 3.1; and the mean MCS precipitation 484 

intensity in summer (5.2 mm h-1) is also larger than that in spring (4.1 mm h-1) (Figure A7). The 485 

inconsistency is because MCSs in spring occur in more favorable large-scale environments with 486 

strong baroclinic forcing and low-level moisture convergence (Feng et al., 2019; Song et al., 487 

2019). As a result, spring MCSs are larger and longer-lasting, and they produce more rainfall 488 

per MCS event compared to those in summer (Table 1), compensating for the fewer number of 489 

MCS events and lower precipitation intensities in spring. The fractions of MCS precipitation 490 

amounts are generally > 35% over the Northern and Southern Great Plains in spring and 491 

summer and can reach up to over 70% within the MCS precipitation center (Figures A6a – 492 

A6b). The results are roughly consistent with Fritsch et al. (1986), which showed that MCSs 493 

accounted for about 30% – 70% of the warm-season (April-September) precipitation over much 494 

of the region between the Rocky Mountains and the Mississippi River. The results are also 495 

consistent with Haberlie and Ashley (2019) showing MCS precipitation fractions generally > 496 

30% with a peak > 60% over the Great Plains between May and August. Due to the low 497 

precipitation amounts of IDC and NC, the fractions of MCS precipitation amounts in autumn 498 

and winter are also large, showing over 50% within the MCS precipitation center (Figures A6c 499 

– A6d). 500 
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 The IDC precipitation amounts reach a maximum in summer, centered in the coastal areas 501 

of the SE, where IDC precipitation contributes to more than 40% of the total precipitation 502 

amounts (Figures 8i – 8l and A6e – A6h). Winter has the least IDC precipitation. Areas of high 503 

IDC precipitation do not show much seasonal variability, suggesting that IDC is constrained by 504 

local conditions such as moisture availability, local solar radiation, and land-atmosphere 505 

interactions. The NC precipitation amount also peaks in summer, followed by autumn, 506 

particularly in the NE (Figures 8m – 8p). However, because both MCS and IDC precipitation 507 

amounts are very high in summer, the fraction of the NC precipitation amount in summer (28%) 508 

is smaller than that of winter (32%) (Figures A6i – A6l). Winter NC precipitation center occurs 509 

in the SE coastal areas (Figure 8p). 510 

 511 
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Figure 8. Distributions of annual mean seasonal precipitation amounts for different types of 512 
precipitation for 2004 – 2017. The first row is for total precipitation, the second for MCS 513 
precipitation, the third row for IDC precipitation, and the fourth row for NC precipitation. The 514 
first column shows spring precipitation, the second column for summer, the third column for 515 
autumn, and the fourth column for winter. MCS, IDC, and NC precipitation share the same 516 
label bar. We exclude hourly data with precipitation ≤ 1 mm h-1 in the calculation. 517 

The precipitation intensities of all three types peak in summer and reach minimums in 518 

winter (Figure A7). In each season, precipitation intensities in the south are larger than those in 519 

the north except for MCS precipitation intensities in summer, which maximize in Oklahoma. 520 

We summarize the mean seasonal precipitation amounts and intensities of different types of 521 

precipitation over the 4 climate regions of Figure 1 in Table A4. 522 

3.2.3 Diurnal cycles of different types of precipitation 523 

Figure 9 shows the monthly mean diurnal cycles of precipitation amounts from MCSs, 524 

IDC, and NC in the NGP, SGP, SE, and NE, respectively. Generally, MCS precipitation peaks 525 

during nighttime in the NGP, SGP, and NE. The seasonal shift of the peaks from spring in the 526 

SGP to summer in the NGP reflects the northward migration of the MCS precipitation center in 527 

the Great Plains (Figures 8e and 8f). 528 

The SE has significantly different diurnal cycles of MCS precipitation from other regions. 529 

In spring, SE MCS precipitation is mainly located in the western areas (Figure 8e), showing 530 

similar diurnal characteristics as the SGP MCS precipitation but with peaks in the early 531 

morning and late afternoon (Figures 9d and 9g). Besides, the SGP MCS precipitation peaks in 532 

May (Figure 9d), while SE peaks in April (Figure 9g), suggesting that the MCS precipitation 533 

center first appears in the western SE regions (Alabama, Mississippi, and Louisiana) in April, 534 

and then moves northwards to Arkansas in May. In summer, the SE MCS precipitation diurnal 535 

cycles are more like those of IDC (Figures 9g and 9h), peaking in the late afternoon and much 536 

different from those in the Great Plains. The significantly different precipitation diurnal 537 



33 

variations between the Great Plains and SE were also identified by Haberlie and Ashley (2019). 538 

We find that most summer MCS precipitation over the SE occurs near the coastal areas (Figure 539 

8f), far from the MCS precipitation center in northern Missouri and Iowa, suggesting either a 540 

different MCS genesis mechanism in the SE from those in the SGP and NGP (Feng et al., 2019) 541 

or long-duration deep convective systems showing MCS characteristics (Geerts, 1998). In 542 

autumn, the SE MCS precipitation peaks in the morning (Figure 9g). The diurnal cycle of MCS 543 

precipitation in September shows mixed features of summer and autumn with peaks both in the 544 

morning and the afternoon. In winter months, the diurnal cycle of the SE MCS precipitation 545 

shifts from the autumn feature to the spring feature, with peaks shifting from the morning to the 546 

afternoon. The distinct diurnal cycles of SE MCS precipitation in different seasons in Figure 9g 547 

are roughly consistent with the corresponding seasonal diurnal variations of MCS occurrence 548 

frequencies from Geerts (1998), where the occurrence time of an MCS was defined as the 549 

central time between the initiation and decay of the MCS. 550 

The diurnal cycles of IDC precipitation are consistent in all regions (Figures 9b, 9e, 9h, 551 

and 9k), peaking in the late afternoon in summer (Tian et al., 2005), again reflecting the impact 552 

of local instability driven by the solar forcing on IDC development. NC precipitation (Figures 553 

9c, 9f, 9i, and 9l) shows some diurnal cycle characteristics similar to IDC precipitation. It may 554 

be caused by the limitation of the temporal resolution of the datasets used in the FLEXTRKR 555 

algorithm. Weak IDC events that are shorter than 1 hour could be missed by Gridrad in 556 

identifying CCFs, as Gridrad ZH only considers reflectivities within ± 3.8 minutes of the 557 

analysis time. These weak IDC could be aliased to NC precipitation, therefore showing some 558 

similar diurnal cycles as IDC. Another possible reason is that the FLEXTRKR algorithm may 559 

miss some parts of IDC clouds with Tb ≥ 241 K, which are then classified as NC, so the NC 560 

precipitation exhibits some IDC characteristics. 561 
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The monthly diurnal cycles of precipitation intensities for MCSs, IDC, and NC are 562 

generally similar among all regions, peaking in the late afternoon and early morning in the 563 

warm season (Figure A8). 564 

 565 
Figure 9. Monthly mean diurnal cycles of precipitation amounts from MCSs (a, d, g, j), IDC (b, 566 
e, h, k), and NC (c, f, i, l) in the NGP (a, b, c), SGP (d, e, f), SE (g, h, i), and NE (j, k, l) during 567 
2004 – 2017. 568 
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4 Uncertainties of the data product 569 

4.1 Uncertainties from source datasets 570 

The NCEP/CPP L3 4 km Global Merged IR V1 Tb dataset has been view-angle corrected 571 

and re-navigated for parallax (Janowiak et al., 2001) to reduce errors. However, the US 572 

continent is covered by two series of geostationary IR satellites (GOES-W and GEOS-E). 573 

During the production of the Tb dataset, the value with the smaller zenith angle is adopted when 574 

duplicate data are available in a grid pixel. Measurements from different satellites may be 575 

inconsistent. Janowiak et al. (2001) suggest this type of inconsistency to be considered minor. 576 

For the Gridrad radar dataset, some bad volumes have been removed during the production 577 

of Gridrad ZH. We further filter out potential low-quality observations, scanning artifacts, and 578 

non-meteorological echoes from biological scatters and artifacts following the approaches of 579 

Homeyer and Bowman (2017). However, there is another source of error from anomalous 580 

propagation caused by non-standard refractions of radar signals in the lower atmosphere, which 581 

cannot be mitigated during the filtering procedure. Non-standard refractions can result in 582 

underestimation or overestimation of the true radar beam altitude, thus affecting the location of 583 

radar reflectivity for binning. Estimating the corresponding uncertainties is out of the scope of 584 

this study. However, anomalous propagation is typically limited to radar beams traveling long 585 

distances in the boundary layer (Homeyer and Bowman, 2017). 586 

Stage IV precipitation is a mosaic of precipitation estimates based on a combination of 587 

NEXRAD and gauge data from 12 RFCs. Therefore, the errors of Stage IV are from several 588 

sources, such as inherent NEXRAD biases, radar quantitative precipitation estimate (QPE) 589 

algorithm biases, bad gauge data removal inconsistency among different RFCs, multisensory 590 
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processing algorithm inconsistency among different RFCs, and mosaicking border 591 

discontinuities (Nelson et al., 2016). The most severe errors occur in the western US, where 592 

NEXRAD data are limited, and a gauge-only rainfall estimation algorithm is used (Nelson et 593 

al., 2016; Smalley et al., 2014). Hence our data product has a geographical focus east of the 594 

Rocky Mountains, with the best NEXRAD coverage in the US. After regridding the Stage IV 595 

precipitation into our 4-km domain, we further manually filter out certain “erroneous 596 

precipitation” hours and set all precipitation in those hours to missing values. “Erroneous 597 

precipitation” is defined as sudden appearance and disappearance of a large contiguous area (> 598 

4,800 km2) with intense precipitation (> 40 mm h-1) (Figure A9), which is physically not 599 

possible. There are 40 hours in total in the period 2004 – 2017 containing such “erroneous 600 

precipitation.” 601 

As the FLEXTRKR algorithm is applied to a combination of three independent types of 602 

remote sensing datasets, we identify the most robust MCS/IDC events satisfying all the criteria 603 

based on the three datasets. It reduces the potential false classification of tracks as MCSs or 604 

IDC based on any single dataset. And to consider the potential error of ERA5 melting level 605 

heights, we require ZH ≥ 45 dBZ above (Zmelt + 1) km for convective classification in the SL3D 606 

algorithm (Table A2). 607 

4.2 The impact of missing data 608 

In the CCS identification step of the FLEXTRKR algorithm, we require the fraction of 609 

missing satellite Tb in the domain at each hour to be less than 20%. Otherwise, the hour is 610 

excluded from our data product. During 2004 – 2017, we excluded 716 hours with missing 611 

satellite Tb data, accounting for less than 0.6% of the total period. The year with the most 612 

missing satellite data is 2008, with 206 missing hours (2.3%), followed by 2004 with 154 hours 613 
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(1.8%). All other years have no more than 57 missing hours. During the link procedure of the 614 

FLEXTRKR algorithm, we search the next hour if a missing hour is encountered, as long as the 615 

time gap between the two “linked” hours is less than 4 hours. Otherwise, we start new tracks 616 

from the next available hour. This method aims to reduce the impact of the missing hours. 617 

Considering the high completeness of the satellite Tb data in 2004 – 2017, we conclude that the 618 

missing satellite data have little effect on the data product. 619 

We show the distribution of the fractions of valid Stage IV precipitation data in 2004 – 620 

2017 in Figure A10. The fractions are over 97% for all grid cells of the US in the domain. Most 621 

grid cells in the US have less than 2% missing hours, which should have a negligible impact on 622 

the data product. 623 

Figure A11 shows the fractions of available Gridrad reflectivity data from 2004 to 2017 624 

between 1 km and 12 km ASL. The fractions are relatively high over the majority of the 625 

troposphere except for 1 km ASL. Based on the criteria of the SL3D algorithm, ZH at 1 km is 626 

rarely used and can be easily substituted by ZH at 2 km. Generally, Gridrad has good spatial 627 

coverage during the period with most grid cells east of the Rocky Mountains having fractions > 628 

90% between 2 and 9 km and 80% between 10 and 12 km. The completeness of the Gridrad 629 

dataset is relatively lower compared to the satellite Tb and Stage IV precipitation datasets, and 630 

Gridrad ZH is a crucial variable in the SL3D classification and MCS/IDC identification. 631 

Therefore, the missing data of Gridrad ZH should have some impacts on our data product. 632 

However, as an advanced long-term high-resolution 3-D radar reflectivity dataset, Gridrad is 633 

valuable for constructing a climatological MCS/IDC data product. 634 
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4.3 Temporal resolution limitation of the source datasets 635 

As we discussed in Section 3.2.3, the diurnal cycles of NC precipitation show some 636 

possible aliasing from IDC precipitation. Some weak IDC events are so short that the hourly 637 

data cannot properly capture their occurrence, especially for Gridrad ZH, which only includes 638 

reflectivities within ± 3.8 minutes of each hour. We calculate the cumulative distribution 639 

functions of PF-based lifetimes for MCS and IDC events and their associated precipitation in 640 

the data product for 2004 – 2017, as shown in Figure 10. About 75% of IDC events have a PF-641 

based lifetime of 1 hour. Therefore, it is almost certain that we miss some IDC events shorter 642 

than 1 hour in the data product. Here we give an estimate of the probability p that a given IDC 643 

event with a convective signal duration of x minutes is detected by radar, as expressed below: 644 

2 3.8

60
p

x


=

−
          (1) 645 

where the numerator is the time window of Gridrad observation in each hour, and x is the 646 

duration of the IDC event. The detection probability is only about 25% when x = 30 minutes. 647 

To obtain a detection probability of 50%, we require x ≥ 45 minutes. Hence, we cannot assess 648 

the distribution of IDC convective signals with durations less than 1 hour using the currently 649 

available datasets. Higher-resolution datasets, such as individual NEXRAD radar data, which 650 

typically has an update cycle of 4-5 min, are necessary to derive the information. However, as 651 

shown in Figure 10, we find that precipitation from IDC events with a 1-hour PF lifetime only 652 

accounts for about 10% of the total IDC precipitation. Therefore, IDC events with PF lifetimes 653 

less than 1 hour should have a relatively small impact on precipitation. 654 
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 655 
Figure 10. Cumulative distribution functions of PF-based lifetimes for MCS and IDC events 656 
and their associated precipitation in the data product domain for 2004 – 2017. The red solid line 657 
is for the number of MCSs, the red dash line for MCS associated precipitation, the blue solid 658 
line for the number of IDC events, and the blue dash line for IDC associated precipitation. 659 

4.4 The impact of MCS and IDC definition criteria 660 

The separation between MCSs and long-lasting IDC events is somewhat fuzzy (Feng et al., 661 

2019; Geerts et al., 2017; Haberlie and Ashley, 2019; Pinto et al., 2015; Prein et al., 2017). 662 

Here, we briefly examine the impact of different MCS/IDC definition criteria on the data 663 

product. We change the definition of MCSs to relax the CCS and PF size and duration 664 

thresholds. Specifically, the second and third criteria listed in Section 2.2.2 are modified as 665 

follows: 2) CCS areas associated with the track surpass 40,000 km2 for more than 4 continuous 666 

hours; 3) PF major axis length exceeding 80 km and intense convective cell areas ≥ 16 km2 667 

exist for more than 3 consecutive hours. And we also require that each merge/split-track 668 

associated with MCS/IDC events must have a CCS-based lifetime of no more than 3 hours. We 669 

keep the definition of IDC the same as described in Section 2.2.2, which is a limit for IDC that 670 

we can identify based on the source datasets. 671 
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By using the new definition, as expected, the lifetimes and spatial coverages of MCSs are 672 

reduced, and those of IDC change little because most IDC events cannot satisfy the new MCS 673 

criteria (Tables 1 and A5). The annual number of MCSs identified in 2004 – 2017 increases 674 

from 454 to 857. The number increases from 122 to 207 in spring, 212 to 434 in summer, 83 to 675 

151 in autumn, and 37 to 62 in winter. As PF-based lifetimes of MCS/IDC events in summer 676 

are the shortest (Table 1), the new definition has the most significant impact in summer. The 677 

annual number of IDC decreases from 45,346 to 45,225. Reducing the merge/split lifetime limit 678 

retains more independent IDC events, which is the reason why the decrease in the number of 679 

IDC events is smaller than the increase in the number of MCSs. Annual mean MCS 680 

precipitation east of the Rocky Mountains increases from 313 mm to 353 mm, while IDC 681 

precipitation decreases from 170 mm to 130 mm. The fraction of MCS precipitation only 682 

increases by 6% (from 45% to 51%), compared to the almost doubling of MCS number (from 683 

454 to 857), suggesting the MCS definition in the original data product is capable of capturing 684 

most of the important MCSs with heavy precipitation. Similar to MCS numbers, summer has 685 

the most increase in MCS precipitation amount, from 100 mm to 119 mm. And annual mean 686 

MCS and IDC precipitation intensities decrease slightly as MCS precipitation intensities are 687 

somewhat larger than IDC in most regions (Tables A3, A4, A6, and A7). We summarize the 688 

regional precipitation statistics of the NGP, SGP, SE, and NE based on the new definition in 689 

Tables A6 and A7. 690 

Although the new definition changes the absolute values of MCS/IDC characteristics, the 691 

contrast between MCS and IDC events is still present. The new definition has small impacts on 692 

the spatial distribution patterns of MCS/IDC precipitation. And NC precipitation characteristics 693 

are almost the same as before. Therefore, our original definition captures the essential 694 

characteristics of MCS and IDC events. In addition, the original data product is complete and 695 
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flexible. We store all criteria variables of MCS/IDC events in the data product. Users can easily 696 

change the definition of MCSs and switch between tracks that are attributed to MCS and IDC 697 

without re-running the FLEXTRKR algorithm. There is no need to change the “track” and 698 

“merge” lifetime criterion as we do above because they have little impact on the climatological 699 

characteristics of MCS and IDC events. 700 

4.5 Recommendations for the usage of the MCS/IDC data product 701 

Considering the limitations and uncertainties mentioned above, we generally recommend 702 

using the data product for observational analyses and model evaluations of convection statistics 703 

and characteristics over relatively long periods such as a month, a season, or longer to fully take 704 

advantage of the long term dataset, although analysis of individual weather events is also 705 

possible as supported by the hourly temporal resolution of the data product. In addition, since 706 

the completeness and quality of the source radar dataset degrade dramatically beyond the US 707 

border and over the Rocky Mountains (Figure A11), we recommend the usage of the data 708 

product within the CONUS east of the Rocky Mountains to alleviate the impact of the 709 

termination of MCS/IDC tracks due to poor radar coverage and missing radar data beyond their 710 

maximum scan range. 711 

Detailed investigation of a short period or a specific MCS/IDC event is acceptable, but 712 

cautions should be taken when encountering missing data around the track during the period. 713 

Due to the complexity of the algorithms used to develop the data product, it is difficult to 714 

quantify the impact of missing data on the MCS/IDC track. Therefore, we do not recommend 715 

examining a specific MCS/IDC track if there are too many missing data (precipitation, Tb, or 716 

ZH) along the track. Users planning to apply the data product for a specific case study should 717 

examine the availability of the source data first, which are also stored in the data product except 718 
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for 3-D ZH due to the large data volume. Users can access the original 3-D ZH at 719 

https://rda.ucar.edu/datasets/ds841.0/ (Table A1). 720 

Lastly, although our sensitivity test in Section 4.4 shows that precipitation characteristics 721 

are similar between two different sets of MCS/IDC definition criteria, we still recommend users 722 

conduct further sensitivity tests and examine the impact of different definition criteria on the 723 

results if the data product is applied to other studies, such as the effects of MCS and IDC events 724 

on atmospheric circulation, environmental conditions associated with the initiation and 725 

evolution of MCS and IDC events, and MCS/IDC associated weather hazards. 726 

5 Data availability 727 

The high-resolution (4 km hourly) MCS/IDC data product and the corresponding user 728 

guide document are available at http://dx.doi.org/10.25584/1632005 (Li et al., 2020). The 729 

original format of the data files is NetCDF-4, and we archive them as compressed files for each 730 

year so that the data product is easily accessible. The user guide contains a brief explanation 731 

about the approach to develop the data product and a detailed description of the data file content 732 

to help users understand the data product. 733 

6 Conclusions 734 

Here we present a unified high-resolution (4 km, hourly) data product that describes the 735 

spatiotemporal characteristics of MCS and IDC events from 2004 to 2017 east of the Rocky 736 

Mountains over the CONUS. We produce the data product by applying an updated FLEXTRKR 737 

algorithm to the NCEP/CPP L3 4 km Global Merged IR V1 Tb dataset, ERA5 melting level 738 

heights, the 3-D Gridrad radar reflectivity dataset, and the Stage IV precipitation dataset. 739 

Climatological features of the MCS and IDC events from the data product are compared, with a 740 

http://dx.doi.org/10.25584/1632005
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focus on their precipitation characteristics. Consistent with our definitions of MCSs and IDC in 741 

the FLEXTRKR algorithm, we find that MCSs have much broader spatial coverage and longer 742 

duration than IDC events. While there are many more frequent IDC occurrences than MCSs, 743 

the mean convective intensities of IDC events are comparable to those of MCSs. MCS and IDC 744 

events both contribute significantly to precipitation east of the Rocky Mountains but with 745 

distinct spatiotemporal variabilities. MCS precipitation affects most regions of the eastern US in 746 

all seasons, especially in spring and summer. The MCS precipitation center migrates 747 

northwards from Arkansas in spring to northern Missouri and Iowa in summer, followed by a 748 

southward migration to Louisiana in autumn, and finally to Mississippi and Alabama in the 749 

Southeast in winter. IDC precipitation mostly concentrates in the Southeast in summer. IDC 750 

precipitation shows a significant diurnal cycle in summer months with a peak around 16:00 – 751 

17:00 Local Time over all regions east of the Rocky Mountains. In contrast, MCS precipitation 752 

peaks during nighttime in spring and summer for most regions except for the Southeast, where 753 

MCS precipitation peaks in the late afternoon in summer, similar to IDC precipitation. Lastly, 754 

we analyze the potential uncertainties of the data product and the sensitivity of the dataset to 755 

MCS definitions and give our recommendations for the usage of the data product. The data 756 

product will be useful for investigating the atmospheric environments and physical processes 757 

associated with convective systems, quantifying the impacts of convection on hydrology, 758 

atmospheric chemistry, severe weather hazards, and other aspects of the energy, water, and 759 

biogeochemical cycles, and improving the representation of convective processes in weather 760 

and climate models. 761 
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Table A7. Annual mean seasonal precipitation amounts and intensities for different types of 786 
precipitation in different regions of the US for 2004 – 2017 by using the new MCS definition 787 

 
Precipitation amount / mm Precipitation intensity / mm h-1 

Total MCS IDC NC Total MCS IDC NC 

NGP 

spring 150 83 26 41 2.9 3.5 2.8 2.2 

summer 214 130 34 50 4.2 5.0 4.5 3.0 

autumn 109 50 20 39 2.9 3.8 3.0 2.3 

winter 42 17 9 16 1.9 2.4 1.9 1.7 

SGP 

spring 176 126 20 30 4.2 5.0 3.9 2.9 

summer 200 102 51 47 4.7 5.5 5.2 3.2 

autumn 150 70 28 52 4.1 5.2 4.5 3.0 

winter 87 47 13 27 2.8 3.5 2.6 2.2 

SE 

spring 275 170 39 66 4.6 5.2 4.8 3.3 

summer 367 153 115 99 5.2 5.8 6.1 3.7 

autumn 249 122 42 85 4.6 5.4 5.5 3.5 

winter 265 156 31 78 3.8 4.6 3.7 2.8 

NE 

spring 230 108 44 78 2.9 3.5 3.1 2.4 

summer 276 99 66 111 4.2 4.9 5.0 3.3 

autumn 218 85 39 94 3.2 3.8 3.5 2.6 

winter 165 79 31 55 2.4 2.9 2.3 2.1 

 788 
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 789 
Figure A1. Schematic of CCS merging and splitting. 790 
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 791 
Figure A2. An example of CCS merging and splitting from 2005-05-07T4:00:00Z – 792 
T9:00:00Z. Cloud 1 and Cloud 2 at 5:00:00Z merged into Cloud 1 at 6:00:00Z. And Cloud 1 at 793 
7:00:00Z at least split to Cloud 1 and Cloud 3 at 8:00:00Z. 794 
 795 
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 796 
Figure A3. Schematic of “merge” tracks and “split” tracks. 797 
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 798 
Figure A4. Seasonal cumulative distribution functions of PF-based lifetimes for (a) MCSs and 799 
(b) IDC in the data product domain for 2004 – 2017. Red lines denote spring, blue lines denote 800 
summer, green lines denote autumn, and black lines denote winter. 801 
 802 



55 

 803 
Figure A5. Annual mean monthly diurnal cycles of initiated MCS (left panel) and IDC (right 804 
panel) numbers in the data product domain for 2004 – 2017. Here, we define that an MCS or 805 
IDC event initiates when the first PF appears. Therefore, we can derive the initiated time of all 806 
MCS and IDC events, which is the basis of this figure. For example, on average, more than 7 807 
MCSs initiated at 14:00 Local Time every June between 2004 and 2017. 808 
 809 
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 821 
Figure A8. Monthly mean diurnal cycles of precipitation intensities for MCSs (a, d, g, j), IDC 822 
(b, e, h, k), and NC (c, f, i, l) in the NGP (a, b, c), SGP (d, e, f), SE (g, h, i), and NE (j, k, l) 823 
during 2004 – 2017. 824 
 825 
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 826 
Figure A9. An example of Stage IV erroneous precipitation. Stage IV shows a large area of 827 
intense precipitation suddenly appearing at 2011-05-02T12:00:00Z, which then unexpectedly 828 
disappears at 13:00:00Z, comes back abruptly at 14:00:00Z, and finally goes away immediately 829 
at 17:00:00Z. 830 
 831 
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 832 
Figure A10. Distribution of the fraction of valid Stage IV precipitation data for 2004 – 2017. 833 
Here, “valid” means that precipitation data are available and reasonable. The erroneous 834 
precipitation discussed in Section 4.1 is unreasonable and invalid. 835 
 836 
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 837 
Figure A11. Distributions of the fractions of available radar reflectivity data for 2004 – 2017 at 838 
different vertical levels. As long as radars scan a grid cell, we think of it as “available” even 839 
though there is no echo. 840 
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