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Rebecca Adams-Selin for their thoughtful comments and suggestions. We have 

carefully reviewed the comments and have revised the manuscript accordingly. Our 

responses are given in a point-by-point manner below. We have also attached a version 

of the manuscript and supplement with trackable changes and hope the revised 

manuscript is suitable for publication. 

Please address all correspondence concerning this manuscript to me 

(jianfeng.li@pnnl.gov). 

Thanks again for your time. 

 

Sincerely, 

Jianfeng Li 

Atmospheric Sciences and Global Change Division 

Pacific Northwest National Laboratory 

Richland, Washington, US, 99354 



Response to Reviewer #1: Dr. Tomeu Rigo 

Thank you for your careful and thorough reading of this manuscript and your thoughtful 

comments and suggestions. Our responses follow your comments (in Italics). 

General comments: 

The authors present a new methodology for identifying mesoscale convective systems 

based on the combination of three different sources: satellite imagery, weather radar 

volumetric mosaics and rainfall charts obtained from the merging of radar estimation 

and rain gauge values. The work results interesting but there are some points that 

should be solved before its accepting. One is the large number of typos associated with 

the table and figures references (what is S1, S2, …?). 

Reply: 

Thanks. Table Sx or Figure Sx means figures or tables in the supplement. There is a 

supplement attached to the main manuscript. 

Second one is conceptual, and more important to me: when the authors define isolated 

deep convection, they do not refer in any case to supercells. Besides, while the 

limitations of the methodology about the spatial and temporal scales are minimized in 

the case of MCS (because of their extent and duration), the part of isolated convection 

does not look like solved as clearly. I think that the authors should try to explain better 

the limitations (if exists) about this issue or, at least, explain why the results are not 

affected by this point. 



Reply: 

Thank you for your comments. When we defined IDC, it was actually non-MCS 

convection events, consisting of many different types of deep convection, as we 

explained in Lines 295 – 300 in the revised main manuscript. Supercell is another topic. 

The well-known characteristics of supercells include hook echoes, bounded weak-echo 

regions, and the presence of strong rotation updrafts (Lynn, 2002; Naylor et al., 2012). 

Rotation recognition (or rotation-related variables, such as vertical vorticity, low-level-

shear, azimuthal shear, etc.) is necessary for the automatic identification of supercells 

(Lakshmanan and Smith, 2009; Lynn, 2002; Smith et al., 2012; Stumpf et al., 1998). 

The source datasets used in this study do not contain Doppler velocities or 

environmental wind fields and cannot be used to calculate rotation. Besides, rotation is 

not involved in the current FLEXTRKR algorithm, making FLEXTRKR unable to 

recognize supercells. Here, we need to emphasize that there are no direct relationships 

between MCS/IDC and supercell. Both MCS and IDC events may show supercell 

features sometimes during their lifetimes. The advantage of our data product is that it 

provides detailed information of each MCS/IDC track, such as the location, time, and a 

series of convective feature characteristics (area, echo intensity, echo-top height, etc.) of 

the track. Users of the data product can further identify supercell features of the track by 

incorporating rotation datasets. 

A limitation in the identification of IDC is related to the temporal resolution. The 1-hour 

temporal resolution is enough for MCSs, as they are generally large and long-lived. 

However, some IDC events associated with weak convection can be shorter than 1 hour, 



which can not be resolved by our data product. We discussed the temporal resolution 

limitation in Section 4.3 (Lines 658 – 683 in the revised main manuscript). We found 

that, from the perspective of precipitation, the IDC events with PF lifetimes shorter than 

1 hour might be much less important than those IDC events identified in our data 

product, and the missing of the IDC events with PF lifetime shorter than 1 hour should 

have little impact on our results. 

Finally, the number of results is excessive and, in my opinion, deviates the attention 

about the main objective of the research: the application of the new methodology. On 

the contrary, they do not compare their results with other methodologies, which are 

easy to find and can verify the lines provided by the current manuscript. In the next 

lines, the authors will find more detailed comments regarding some other points. 

Reply: 

Thank you for your suggestions. The manuscript's primary purpose is to introduce a new 

data product useful to the Earth science community, which is the aim of the ESSD 

journal. The methodology to produce the data product is just part of the data product 

introduction. The uncertainties, validation/assessment, and potential usage and 

applications of the data product are also parts of the data product introduction. We 

indeed show some results in Section 3. However, those results are straightforward and 

can be easily obtained from the data product. The primary purpose of Section 3 is to 

validate the quality of the data product and confirm that the data product is consistent 

with our definitions and general knowledge. Section 3.2, about precipitation 

characteristics from different sources, is also an example of the potential applications of 



the data product. Therefore, we’d like to keep these results except that we have revised 

some discussions about convection intensity in Lines 374 – 383 and 387 – 393 to make 

the sentences more understandable. We agree with you that we should add some 

comparisons between our results with other studies, further validating the data product. 

We have compared our results with other studies in Lines 346 – 349, 366 – 368, 385 – 

386, 435 – 437, 442 – 445, 498 – 500, 509 – 517, 558 – 560, and 569 – 572 in the 

revised main manuscript. 

Abstract 

Acronyms (MCS, IDC, FLEXTRKR), references (Li et al., 2020) and web pages 

(http://dx.doi.org/10.25584/1632005) are not frequent and preferable not included in 

abstracts. Do you consider strictly necessary for the understanding of the text to 

maintain them? In my opinion, at least the last sentence should be removed 

Reply: 

Thank you for your suggestions. We have deleted “FLEXTRKR” in Line 17 in the 

revised main manuscript since the acronym was only used once there, but we’d like to 

keep “MCS” and “IDC” in the abstract as they were used several times. Using the 

acronyms can simplify the abstract. For the last sentence, the doi link and reference is a 

requirement of the ESSD journal. 

Introduction 

Although Doswell et al (1996) is still one of the reference paper in this field, there are 



many more recent research manuscripts that are noticeable to include in the L46-61 

paragraph, for instance: 

⚫ Brooks, H. E., Doswell III, C. A., & Kay, M. P. (2003). Climatological estimates of 

local daily tornado probability for the United States. Weather and Forecasting, 

18(4), 626-640.  

⚫ Taszarek, M., Allen, J. T., Púčik, T., Hoogewind, K. A., & Brooks, H. E. (2020). 

Severe Convective Storms across Europe and the United States. Part II: ERA5 

Environments Associated with Lightning, Large Hail, Severe Wind, and Tornadoes. 

Journal of Climate, 33(23), 10263-10286. 

Reply: 

Thank you for your suggestions. Brooks et al. (2003) investigated the climatological 

distributions of tornado occurrence over the contiguous United States. Taszarek et al. 

(2020) investigated meteorological environments associated with lightning, large hail, 

severe wind, and tornadoes. Both studies used severe weather hazards as proxies of 

thunderstorms, confirming the relationship between the weather hazards and deep 

convection. We have cited both papers in Lines 50 – 51 in the revised main manuscript. 

Besides, we have also cited another study from Koehler (2020) in Line 50 in the revised 

main manuscript, which examined the climatological distributions of lightning flashes 

and thunderstorm days over the contiguous United States. 

L62-70: “deep convection” is repeated five times in the same paragraph. Please, modify 

the text using other options 



Reply: 

Thanks. We have deleted “deep convection” in Lines 64 and 70 and made some changes 

to the paragraph. Now those sentences are as follows. 

‘The crucial roles of deep convection motivate the need for more accurate and 

comprehensive datasets to improve understanding and modeling of this process and its 

impacts. To this end, datasets with information on the location and time of occurrence, 

intensity, and other properties of deep convection are necessary to understand and 

quantify its impacts on the hydrologic cycle, severe weather hazards, large-scale 

circulations, etc. While field campaign data can provide detailed information on deep 

convection properties, they are limited in space-time coverage for statistical analysis. A 

corresponding reliable long-term dataset is undoubtedly useful for model evaluation and 

development (Prein et al., 2017; Yang et al., 2017).’ 

L75-76: when you introduce IDC, are you including supercells? If the answer is yes, can 

you confirm that all the sentences that following this are true? In special, I disagree 

with the points about the higher rain rates, larger echo top heights, and greater ice 

masses. 

Reply: 

Thank you for your comments. The definitions of IDC and MCS in Rowe et al. (2011) 

and Rowe et al. (2012) are similar to our study, based on precipitation feature (different 

from PF in our study) major axis length and aspect ratio between the major axis and the 

minor axis. In their studies, IDC is defined as a track with precipitation feature major 



axis length < 100 km and aspect ratio less than 5:1; while an MCS is defined as a track 

with precipitation feature major axis length > 100 km. In short, their definition depends 

on the size and shape of convective areas but not rotation, which cannot be used to 

identify supercells, as we mentioned above. Since the results of Rowe et al. (2011) and 

Rowe et al. (2012) were only based on the North American Monsoon Experiment 

(NAME) in the summer of 2004, to be more accurate, we change ‘can’ to ‘may’ in Line 

77 in the revised main manuscript so that the results are not representative of all cases. 

Again, lines 80 and 82 depend on if you consider supercells or not in the IDC database 

Reply: 

Thank you for your comments. The conclusion that MCSs might be associated with 

more favorable environmental conditions is based on the results of Rowe et al. (2012). 

Their definitions of IDC and MCS have been described above briefly. French and Parker 

(2008) compared isolated supercells and MCSs, but their MCSs also showed supercell 

features. It is consistent with our previous point: supercells can be isolated or embedded 

in MCSs. We cannot separate supercell in our data product based on the algorithms and 

source datasets used in this study. To be more accurate, we have changed the sentence 

as follows (Lines 81 – 87 in the revised main manuscript). 

‘Rowe et al. (2012) also suggested that the enhanced rainfall from MCSs might be 

associated with more favorable environmental conditions, such as higher convective 

available potential energy (CAPE) and wind shear. CAPE and wind shear can impose 



different impacts on the initiation and evolution of IDC and MCSs (French and Parker, 

2008).’ 

L103-104: “We produce the data product”? 

Reply: 

We have combined the two sentences into one as follows (Lines 104 – 113 in the revised 

main manuscript). 

‘The data product is developed by applying an updated Flexible Object Tracker 

(FLEXTRKR) algorithm (Feng et al., 2018; Feng et al., 2019) and the Storm Labeling in 

Three Dimensions (SL3D) algorithm (Starzec et al., 2017) to the NCEP (National 

Centers for Environmental Prediction) / CPP (the Climate Prediction Center) L3 4 km 

Global Merged IR V1 brightness temperature (Tb) dataset (Janowiak et al., 2017), the 3-

D Gridded NEXRAD Radar (Gridrad) dataset (Homeyer and Bowman, 2017), the 

NCEP Stage IV precipitation dataset (Lin and Mitchell, 2005), and melting level heights 

from ERA5 (ECMWF, 2018).’ 

Source datasets and algorithms 

L120-121: “We only use the hourly Tb data in the FLEXTRKR algorithm discussed 

below, as all other datasets are only available at an hourly interval” Do you think that 

this time resolution could have any influence in the results? 

Reply: 



We discussed the limitations of the temporal resolution in Section 4.3 (Lines 658 – 683). 

We missed some short-duration (< 1 hour) convective events due to the 1-hour 

resolution of the data product. If all source datasets were at a resolution of 30 minutes, 

we would identify some IDC events shorter than 1 hour. Then, the data product would 

be somewhat different from the current one. Suppose we only used the half-hour Tb data 

but still used the hourly precipitation and reflectivity datasets in the FLEXTRKR 

algorithm. In that case, the results might also be different, but the difference should be 

much smaller than the former case with all half-hour source datasets. The reason is that 

Tb is only used to identify CCS in FLEXTRKR, and the confirmation of MCS and IDC 

still needs precipitation and reflectivity data. 

Figure 1: Maybe you should include a small map of the whole American continent and a 

box for the zoomed area shown in the current caption 

Reply: 

We have added another subplot in Figure 1 showing the whole North American 

continent and a red box indicating the data product domain. Please see Lines 218 – 226 

in the revised main manuscript. 

L202 (and many more): you cite “table S1” in the text, but I was not able finding this 

table in your manuscript. 

Reply: 

Table Sx or Figure Sx means figures or tables in the supplement. There is a supplement 



attached to the main manuscript. 

Para 283-288: according to these lines, maybe you should change the label of “IDC” 

category. 

Reply: 

Thank you for your suggestions. At the very beginning, we tried to use “non-MCS deep 

convection,” which is the exact meaning of these convective events. But considering 

that we plan to add hurricanes on the basis of the data product in other studies, we need 

to assign a specific name to them. We also thought about the term “quasi-isolated deep 

convection,” which Bigelbach et al. (2014) used to separate stronger air mass 

thunderstorms, multicell clusters, and supercells from weak convection and MCSs. 

However, “quasi” means “apparently but not really,” which can not represent those 

isolated thunderstorms in our data product. Finally, we decided to use “isolated deep 

convection” following the idea of Rowe et al. (2011) and Rowe et al. (2012), which used 

isolated convection to distinguish smaller convection events from MCSs, similar to our 

data product. Since we mentioned the limitation of the term “IDC” in the manuscript, 

we’d like to keep it after careful considerations. 

In figure 2(b), it seems that there are more categories that the maximum number of the 

legend. Is this it? 

Reply: 



Yes. There are too many small clouds, and it is hard to assign a distinct color to each 

cloud. It is better to assign a constant color to those smaller clouds to show those larger 

clouds clearly. 

Results 

This section results too much extend and hard to follow (because its density and the 

large number of interesting results). However, I miss the comparison of your results 

with other works such: 

Fritsch, J. M., R. J. Kane, and C. R. Chelius, 1986: The Contribution of Mesoscale 

Convective Weather Systems to the Warm-Season Precipitation in the United States. J. 

Climate Appl. Meteor., 25, 1333–1345, https://doi.org/10.1175/1520-

0450(1986)025<1333:TCOMCW>2.0.CO;2. 

Or the cited:  

Haberlie, A. M., and W. S. Ashley, 2019: A Radar-Based Climatology of Mesoscale 

Convective Systems in the United States. J. Climate, 32, 1591–1606, 

https://doi.org/10.1175/JCLI-D-18-0559.1. 

Geerts, B. (1998). Mesoscale convective systems in the southeast United States during 

1994–95: A survey. Weather and Forecasting, 13(3), 860-869. 

Then, my suggestion is reducing the results to the most interesting one (for instance, the 

percentage of contributing rainfall for each type) and comparing with the others works. 

This is also because the goal of the paper is to present the methodology, but not the 



“climatology”. Then, the authors could have the opportunity of publishing the 

climatological results in another manuscript. 

Reply: 

Thank you for your suggestions. We have compared our results with other studies in 

Lines 346 – 349, 366 – 368, 385 – 386, 435 – 437, 442 – 445, 498 – 500, 509 – 517, 558 

– 560, and 569 – 572 in the revised main manuscript. 

As mentioned above, the primary purpose of the manuscript is to introduce a new data 

product. Those results in Section 3 are used to validate the quality of the data product 

and confirm that the data product is consistent with our definitions and general 

knowledge. Section 3.2, about precipitation characteristics from different sources, is also 

an example of the potential applications of the data product. Therefore, we’d like to 

keep these results except that we have revised some discussions about convection 

intensity in Lines 374 – 383 and 387 – 393 to make the sentences more understandable. 

Uncertainties of the data product 

About lines 540-549: there are many more radar errors that can affect NEXRAD or 

other network, e.g. beam blockage, false echoes related with EM interferences, solar 

interferences, volumetric conus influence, among others. Have they considered or they 

can appear in the volumes? 

Reply: 

When we talked about potential low-quality observations, we meant a summary of those 



small errors well-mitigated by the quality control approach from Homeyer and Bowman 

(2017) (http://gridrad.org/software.html), including false echoes related to 

electromagnetic interferences and solar interferences. 

We think you meant the cone of silence when you mentioned ‘volumetric conus 

influence.’ The cone of silence and beam blockage is related to the missing radar data 

discussed in section 4.2 (Lines 647 – 657 in the revised main manuscript), as no data are 

available under the impact of the cone of silence and beam blockage. According to the 

explanation of Homeyer and Bowman (2017), many errors in the native NEXRAD 

level-2 observations that propagate into the Gridrad 3.1 data can be largely reduced 

through the quality control approach, but not completely. Therefore, there are still 

uncertainties in the radar reflectivity data we used for SL3D and FLEXTRKR. That is 

why we think that using three different datasets in the FLEXTRKR and SL3D 

algorithms could improve our identification of MCS and IDC than using a single 

dataset. 

L566-567: “we identify the most robust MCS/IDC events satisfying all the criteria based 

on the three datasets” Which percentage of data satisfies the whole set of criteria? 

Reply: 

Annually (2004 – 2017), we identified 802,633 tracks based on CCS (brightness 

temperature Tb), and finally, we obtained 45,800 MCS and IDC tracks. Therefore, 5.7% 

of the CCS tracks satisfy all the criteria. 

About Stage IV: do you think that geo-statistics contribute to the error, at the time of 

http://gridrad.org/software.html


generating the final product? 

Reply: 

We think you meant the ‘erroneous precipitation’ hours in Lines 618 – 624 in the 

revised main manuscript. We are not sure where the error is from. We contacted the 

NCEP Stage IV team for help, but they did not know the root cause of the issue either. 

We suspect that maybe NEXRAD Level-II data (reflectivity, radial velocity, etc.) were 

not well-filtered and processed in Stage I (the first step of Stage IV). Then the errors 

were transferred to the following steps to generate Stage IV. Geo-statistics may cause 

the spread of the errors to larger areas. 

L584-586: The sentence “Most grid cells in the US have less than 2% missing hours, 

which should have a negligible impact on the data product.” Is, at least, debatable. 

According to figure 5, it is difficult finding pixels with more than 170 hours of rainfall 

per year (combining both maps). This is less than 2% of the yearly hours (8760). If most 

of those missing hours coincide with a part of the rainfall period, the results changing 

notably. Please, explain better this point. 

Reply: 

Thank you for your comments. However, Figure 7 (the old Figure 5) cannot be 

compared with Figure S10 (the old Figure S12) directly, as Figure 7 and Figure S10 use 

different criteria. Firstly, according to the caption, Figure 7 shows the number of hours 

per year when any MCS/IDC events produce > 1 mm hourly accumulated rainfall in a 

grid cell, while Figure S10 is about missing values (not related to precipitation amount 



thresholds). If we exclude the limitation of > 1 mm hourly accumulated rainfall and 

count the number of hours when any MCS/IDC clouds overpass the grid cell, we can 

obtain Figure R1. 

 
Figure R1. Spatial distributions of annual mean MCS/IDC hours for 2004 – 2017. (a) is 

for MCS, and (b) is for IDC. The annual mean MCS/IDC hour of a grid cell is the 

number of hours per year when any MCS/IDC clouds overpass the grid cell. 

Secondly, Figure 7 shows the results satisfying all the criteria based on three types of 

observations, not just precipitation. That is to say, we excluded those 716 hours not 



passing the Tb criteria in Lines 632 – 635 in the revised main manuscript in Figure 7. 

However, when we plotted Figure S10, we included those 716 hours in the denominator 

to exclude the impact of missing Tb on the missing precipitation calculation. If we 

exclude those 716 hours and only count the number of hours with missing precipitation 

in the rest hours with Tb satisfying the criteria in Lines 632 – 635, we can obtain Figure 

R2, which can be compared to Figure R1. Now we find that most grids only have about 

40 – 60 missing precipitation hours per year, while MCS/IDC hours in Figure R1 are 

mostly above 400 per year, much higher than the values in Figure R2. Anyway, we 

agree with you that the 40-60 missing precipitation hours can still affect the MCS/IDC 

results if all these hours coincide with a part of the rainfall period. However, that is an 

extreme case and unlikely to happen. We find that missing precipitation generally 

occurs continuously in space. For example, from 2004-03-03T07:00:00Z to 2004-03-

03T12:00:00Z, all precipitation data are missing over the data product domain. 

Therefore, they only affect our identification of MCS and IDC during a short period and 

should have little impact on our final climatological results from the perspective of time 

length. 



 
Figure R2. The distribution of the number of hours with missing precipitation per year 

between 2004 and 2017. Those 716 hours not satisfying the Tb criteria in Lines 572 – 

576 are not included in the calculation. 

L647: What is for you “most of the important MCS”? 

Reply: 

Here, we meant MCSs with the most precipitation, which can be derived from the 

sentence in Lines 706 – 707 in the revised main manuscript: ‘The fraction of MCS 

precipitation only increases by 6% (from 45% to 51%), compared to the almost doubling 

of MCS number (from 454 to 857).’ It means that the increased MCSs contribute little to 

the total MCS precipitation. To be more accurate, we have added ‘with heavy 

precipitation’ in Lines 708 – 709 in the revised main manuscript. The sentence now is as 

follows. 

‘The fraction of MCS precipitation only increases by 6% (from 45% to 51%), compared 

to the almost doubling of MCS number (from 454 to 857), suggesting the MCS 



definition in the original data product is capable of capturing most of the important 

MCSs with heavy precipitation.’ 
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Response to Reviewer #2: Dr. Rebecca Adams-Selin 

Thank you for your careful and thorough reading of this manuscript and your thoughtful 

comments and suggestions. Our responses follow your comments (in Italics). 

This article details the development of a highly useful convective climatology for the 

eastern two-thirds of the continental U.S. Considerable effort is expended explaining the 

datasets used, potential sources of error and mitigation strategies, and the complex 

processing steps involved. Future applications for the dataset are described. I am 

concerned about the design of the algorithm not separating organized from unorganized 

isolated convection, potentially leading to impacts in the precipitation intensity 

calculations. Pending responses to my comments enumerated below, I recommend 

acceptance bending major revisions. 

Major comments: 

1. The IDC category is potentially lumping unorganized isolated convection in with 

highly organized isolated convection such as supercells. I can certainly see the 

authors’ points that MCSs are larger systems than all IDC, and thereby should 

result in larger transport, circulation, and accumulated precipitation impacts (e.g., 

Lines 80-82), but citation of a few studies in the literature to that effect would be 

useful so as to not argue from intuition alone. 

Reply: 

We had references for the larger transport and circulation effects of MCSs than IDC in 

Lines 75 – 77 in the revised main manuscript and have added another reference from 



Bigelbach et al. (2014). We think you meant the sentence in Lines 85 – 87 in the revised 

main manuscript: ‘Compared to IDC, MCSs tend to occur in more favorable 

environmental conditions, such as higher convective available potential energy (CAPE) 

and wind shear (French and Parker, 2008), potentially making them more conducive to 

hazardous weather.’ We have changed this sentence with more details. We intended to 

emphasize the different environmental conditions associated with MCS and IDC, but the 

old sentence misrepresents the results of Rowe et al. (2012) and French and Parker 

(2008). Now the sentences are as follows. 

‘Rowe et al. (2012) also suggested that the enhanced rainfall from MCSs might be 

associated with more favorable environmental conditions, such as higher convective 

available potential energy (CAPE) and wind shear. CAPE and wind shear can impose 

different impacts on the initiation and evolution of IDC and MCSs (French and Parker, 

2008).’ 

Severer precipitation impacts can also be reflected by our citation of Rowe et al. (2012). 

Regarding severe weather, however, including tornados and large hail, MCSs are 

not the primary generators. Instead, supercells are (e.g., Wurman et al. 2011 

BAMS). Furthermore, supercells are increasingly recognized as producers of heavy 

and extreme rainfall (e.g., Hitchens and Brooks 2013 AR; Smith et al. 2001 JHM). 

The conflation of two dynamical storm classes when evaluating the impacts of IDCs 

has potential impacts on the authors’ discussion of precipitation intensities (e.g., 

Figs.3, S9; Sections 3.2.1, 3.2.2). The precipitation intensity distribution for IDC 

events is in all likelihood a bimodal distribution, containing output from isolated 



non-supercells and supercells (e.g., Hitchens and Brooks 2013 AR). 

Can the authors examine the IDC portion of their climatology to determine if there 

is indeed a bimodal distribution captured within? If not, why do the authors think 

that the FLEXTRKR algorithm failed to capture heavy/extreme rain events from 

supercells? 

Is it possible to add an additional class to the FLEXTRKR algorithm to detect 

supercells specifically? How likely is it that supercells will be classified as IDC 

within this climatology? Supercells do frequently grow upscale into an MCS (e.g., 

Reif and Bluestein 2017): in such a situation, would the entire storm track be 

classified as an MCS in this climatology? How would these “misclassifications” 

impact the results? 

Reply: 

Thank you for your suggestions. However, a supercell is defined from another 

perspective but not based on the size and duration of convective systems used to 

separate MCS from IDC in this study. Supercell characteristics include hook echoes, 

bounded weak-echo regions, and the presence of strong rotation updrafts (Lynn, 2002; 

Naylor et al., 2012). Rotation recognition (or rotation-related variables, such as vertical 

vorticity, low-level-shear, azimuthal shear, etc.) is necessary for the automatic 

identification of supercells (Lakshmanan and Smith, 2009; Lynn, 2002; Smith et al., 

2012; Stumpf et al., 1998). Therefore, the current FLEXTRKR algorithm cannot 

identify supercells. Also, high spatiotemporal-resolution radar radial velocity data are 



needed to calculate rotation-related variables. Gridrad V3.1 only provides hourly 

reflectivity data. So, the source datasets used in our study is not sufficient to identify 

supercells either. We find that the Multi-Radar Multi-Sensor radar dataset mentioned 

below provides half-hourly rotation data, which can be used for supercell identification 

by using corresponding algorithms. 

Since supercell is defined differently, there are no direct relationships between 

MCS/IDC and supercell. That is to say, both MCS and IDC events can contain supercell 

features sometimes during their lifetimes (French and Parker, 2008). Supercell can exist 

in both the MCS and IDC categories in our data product. Our examination of MCS/IDC 

hourly rain rate probability density functions (PDFs) does not show a significant 

bimodal shape (Figure R3). The interesting point is that although the PDF shapes 

between MCS and IDC are very similar, MCS PDF shows slightly larger values in high 

rain rates, reflecting relatively more pixels with larger rain rates for MCSs. Figure R3 

does not mean that supercells do not have higher precipitation intensities than non-

supercells. Since supercells only account for a small portion of all convective events, 

mixing them with other IDC/MCS events in a single PDF would conceal the feature of 

supercells. We need a supercell PDF to display its uniqueness compared to other 

convective systems, similar to what Hitchens and Brooks (2013) did. 



 
Figure R3. PDFs of pixel-level hourly rain rates for MCS and IDC events during 2004 – 

2017. The orange line is for MCS, the gray line is for IDC, and the blue line is for MCS 

+ IDC. We do not consider rain rates larger than 51 mm h-1 in this figure. However, the 

number of those pixels with rain rates > 51 mm h-1 only accounts for about 0.03% of the 

total number. Excluding them should have little impact on the PDFs. 

As we mentioned, the current FLEXTRKR algorithm cannot detect supercells by merely 

adding a supercell class. To identify supercells, we need to add rotation-related variables 

in FLEXTRKR and make some other changes to the algorithm. Theoretically, 

FLEXTRKR can be used to detect supercells if enough contents are added. However, 

this is not necessary. The advantage of our data product is that we store a lot of 

information for each MCS/IDC track. Supercells can be further identified by combining 

our data product with other datasets. For example, we know the location and time 

information of an MCS in our data product. The Multi-Radar Multi-Sensor radar dataset 

can provide rotation data over the location during the time of that MCS. We can 

determine whether the MCS shows supercell features or not based on the coincident 

rotation data (may need some calculations, derivations, and coding). It is much easier 
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than modifying FLEXTRKR. 

For the last question, the answer much depends on the researchers and the purposes. In 

the study of Hitchens and Brooks (2013), they defined hours as instances of supercell 

thunderstorms if a storm showed supercell features at that hour. If the FLEXTRKR 

could identify supercell features, we would define an MCS/IDC track as supercell if it 

showed supercell features at any time during its lifetime. Or we could set some fraction 

thresholds: an MCS was defined as a supercell track only when the fraction of hours 

showing supercell features was larger than a threshold. Ultimately, this depends on the 

specific purpose of the research. Our data product is not intended for supercell research 

specifically. 

2. I had trouble following exactly how the SL3D algorithm output was incorporated 

into the climatology. Given its introduction at the start of section 2.2 I had first 

assumed its classifications were important to the FLEXTRKR algorithm in 

identifying the CCFs and PFs. After reading I’m no longer convinced it is used in 

that effort at all, but instead just incorporated into the climatology after the fact. 

How are the five SL3D categories, listed in lines 221-222, used to identify the CCFs 

and PFs (if they are)? If not, how are those categories used? On a display note, how 

does the data shown in Fig. 2e correspond to the five categories listed? 

Reply: 

Thank you for your comments. The usage of the SL3D outputs can be reflected in the 

definitions of CCF and PF (Lines 238 – 243 in the revised main manuscript). CCF is a 



continuous updraft/convective area with precipitation > 0 mm h-1, and PF is a 

continuous updraft/convective/precipitating-stratiform area with precipitation > 1 mm h-

1. Here, updraft (convective updraft), convective, precipitating-stratiform are the 

categories from SL3D (Table S2). The SL3D algorithm can determine the type of radar 

echo (five categories or missing value) of each pixel in Figure 2e (we have added 

explanations to the values in Figure 2e in Lines 327 – 328 in the revised main 

manuscript: 1, convective updraft; 2, convective; 3, precipitating stratiform; 4, non-

precipitating stratiform; 5, anvil). Therefore, after we identify a CCS track, we know the 

echo type (five categories) and Stage IV hourly precipitation of all the pixels in the CCS 

track at any time. Among these pixels, we identify continuous areas satisfying specific 

criteria, such as CCFs and PFs. That is to say, the convective/stratiform status is from 

SL3D outputs, which is necessary for the FLEXTRKR algorithm to determine MCS and 

IDC tracks. 

3. How is rain rate calculated? Is it based on assumed Z-R relationships from the 

GridRad data (which introduces a host of problems), or is it calculated by 

subtracting accumulated Stage-IV rainfall at successive hours? If calculated by 

subtracting rainfall accumulations, that has the unfortunately side effect of evenly 

distributing rainfall over the full hour, lessening peak intensities that occur over 

shorter periods of time. Given the temporal resolution of the datasets used here, that 

issue can’t be avoided, but the authors should include a few sentences qualifying 

their discussion on precipitation intensity (beyond the issues already noted in major 

comments #1.) 



Reply: 

Thank you for your comments. All precipitation values and associated variables are 

derived from the Stage-IV data, which represents hourly accumulated precipitation. As 

the temporal resolution of all the source datasets and the MCS/IDC data product is 1 

hour, we do not need to make any subtractions to Stage-IV rainfall at consecutive hours. 

Rain rate or precipitation intensity just denote mean hourly precipitation. Anyway, we 

agree with you that the 1-hour resolution may reduce peak precipitation intensities 

occurring in minutes. However, since Sections 3.1 and 3.2 talks about climatological 

mean characteristics, we do not expect the sub-hour heterogeneity will affect the results 

in Sections 3.1 and 3.2. We mentioned the limitation of the 1-hour temporal resolution 

in Section 4.3 from the perspective of Gridrad reflectivity, which only includes 

reflectivities within ± 3.8 minutes of each hour. Considering the 1-hour temporal 

resolution of our study, we cannot find a suitable place to add discussions about the sub-

hour precipitation variations. 

4. Figures S1 and S5 are key to understanding the descriptions in the text and should 

be moved to the main article. 

Reply: 

Thanks. We have moved the two figures to the main manuscript (Figures 3 and 4). All 

figure numberings have been changed accordingly in the revised main manuscript and 

supplement. 

Minor comments: 



 Lines 39-45: This is a nice summary of the wide-reaching impacts of deep 

convection. On a minor note, should multiple citations within one reference be 

provided in chronological order? 

Reply: 

Thanks. According to the reference format of ESSD on https://www.earth-system-

science-data.net/submission.html#references, in-text citations can be sorted 

chronologically or alphabetically or based on relevance, depending on the author’s 

preference. There is no specific requirement for it. References listed at the end of the 

manuscript should be sorted alphabetically under the first author's name, except for 

those with the same first author. Our current in-text citation format follows the rule of 

reference listing at the end of the manuscript. 

 Line 49: “deep convection associated thunderstorms” –> deep convective 

thunderstorms 

Reply: 

Have corrected. Please see Line 51 in the revised main manuscript. 

 Line 201: Is the “neareststod” method essentially nearest neighbor? A brief one-

line description would be helpful. 

Reply: 

Yes. There are two types of nearest neighbor methods in the ESMF regrid module: 



“neareststod” and “nearestdtos.” The “neareststod” method maps each destination point 

to the closest source point, while the “nearestdtos” method maps each source point to 

the destination point. In the “nearestdtos” approach, it is noteworthy that some 

destination points may not be mapped to any source points, which cannot be used in our 

study. We have added a sentence to explain the “neareststod” method in Lines 187 – 188 

in the revised main manuscript, just as follows. 

‘The “neareststod” method maps each destination point to the closest source point.’ 

 Lines 229-231: A few sentences describing, theoretically, how CCFs and PFs differ, 

and what kind of features each of these is intended to represent, would be helpful. It 

wasn’t always clear to me why essentially two separate datasets were being 

developed. 

Reply: 

As defined in Lines 238 – 243 in the revised main manuscript, CCF is a continuous 

updraft/convective area with precipitation > 0 mm h-1, and PF is a continuous 

updraft/convective/precipitating-stratiform area with precipitation > 1 mm h-1. The 

difference between PF and CCF can be clarified in Figure 3 in Lines 336 – 337 in the 

revised main manuscript. In the last row of Figure 3, the red color indicates CCF, and 

the green color indicates PF. Theoretically, PF represents areas with significant 

precipitation (> 1 mm h-1), while CCF represents convective cores. They are somewhat 

spatiotemporally overlapped, as generally convective cores have substantial 

precipitation. There is another variable used in the definition: intense convective cell, 



which is convective cells with column maximum reflectivity ≥ 45 dBZ and 

precipitation > 1 mm h-1 (pink areas in Figure 3) (Lines 271 – 272 in the revised main 

manuscript), representing the strongest convection activity (other values may be used in 

other studies, such as 40 dBZ in Bigelbach et al. (2014)). In the definition of MCS, we 

use PF and intense convective cells, while in the definition of IDC,  we use PF and CCF. 

PF is intended to denote the size of a convective system. However, PF cannot be used 

solely in the MCS/IDC definitions, as PF may contain no convective precipitation but 

just stratiform precipitation. Intense convective cells and CCF are used to confirm that a 

track is convective. Specifically, intense convective cells are also used in the MCS 

definition to ensure that the MCS convection activity is strong enough. Our idea of 

using two different types of variables to separate different convective systems is similar 

to Bigelbach et al. (2014), which used an areal variable to represent the size of the 

convective object and a reflectivity threshold to confirm convection. A similar definition 

approach was also found in Geerts (1998). 

Now the question is whether we can only use CCF or intense convective cells to define 

MCS and IDC. The answer is Yes. Rowe et al. (2011) and Rowe et al. (2012) used cell 

features to separate MCS and IDC events. Their cells required reflectivity (the only 

dataset used in their tracking algorithm) to be larger than 35 or 45 dBZ, which are 

similar to convective cores in our study. In their studies, IDC is defined as a track with 

cell major axis length < 100 km and aspect ratio less than 5:1; while an MCS is defined 

as a track with cell major axis length > 100 km. However, this kind of definition may be 

problematic in some cases when multiple convective cores of an MCS are somewhat 

separated by weaker precipitating stratiform clouds, making it unable to satisfy the size 



criterion. The significant large precipitating-stratiform area associated with some 

convective systems, especially for MCSs (Parker and Johnson, 2000), may cause CCF 

or intense convective cells unable to represent the actual sizes of the convective systems. 

Since there are no precise definitions of MCS or IDC and many studies used different 

source datasets and definition criteria, using CCF or intense convective cell solely in the 

MCS or IDC definition is practically possible, but the limitations should be understood. 

Finally, CCS is another variable to determine the size of the convective systems in our 

study. However, cold-top upper-level clouds do not always contain precipitation, and 

CCS cannot represent the size of the precipitating area. So, we used CCS and PF 

together in the definition. This is another reason why we use several different variables 

in the definition of MCS and IDC: we hope to minimize the false identification of MCS 

and IDC events by combining different datasets. 

We have added some explanations about our purposes to use PF, CCF, and intense 

convective cells in the updated FLEXTRKR algorithm in Lines 239 – 240, 242 – 243, 

and 272 in the revised main manuscript. 

 Lines 290-293, Fig. 2: I was only able to understand the descriptions of the pixel-

level information by reading the caption of Fig. 2. I’d move the description in the 

caption into the text and expand lines 290-293 by referencing each subfigure 

individually. 

Reply: 

Thank you for your suggestions. We have added more detailed explanations to Figures 



2f-2i in Lines 302 – 311 in the revised main manuscript. Now, the sentences are as 

follows. 

‘Figures 2f – 2i give an example of the pixel-level MCS/IDC information at 2005-07-

04T03:00:00Z. Figure 2f displays the spatial coverages of MCS/IDC tracks at that time 

at pixel scale and the corresponding unique numbers of these tracks. From Figure 2f, we 

know whether a pixel belongs to an MCS/IDC track and the number of the track if the 

pixel belongs to a track. We can further determine whether the track is an MCS or IDC 

event from Figure 2g, which shows the types (MCS or IDC) of the tracks in Figure 2f at 

the pixel scale. Figures 2h and 2i are similar to Figures 2f and 2g, respectively. The 

difference is that Figures 2h and 2i only show pixels with precipitation > 1 mm h-1 in 

that hour.’ 

 Lines 345-346, 349, 356, 358: Six different proxies for convective intensity are used 

in a small section: convective precipitation area, convective 20-dBZ echo-top 

height, area with column max reflectivity >= 45DBZ, max 30-dBZ echo-top height, 

max 40-dBZ echo-top height, mean convective 20-DBZ echo-top height. Why are all 

these different proxies are being used – do the underlying results differ? I’d find it 

easier to read if the convective intensity results were all discussed in the frame of 

one proxy. 

Reply: 

By using multiple variables, we just wanted to confirm that our results are robust. In 

addition, we hoped to separate the strongest convective activity (area with column max 



reflectivity ≥ 45DBZ and max 40-dBZ echo-top height) from the mean convective 

activity (convective 20-dBZ echo-top height). Since the original sentences are 

confusing, we have made some changes in Lines 363 – 364, 374 – 383, and 387 – 393, 

and only used convective 20-dBZ echo-top height as the proxy for mean convective 

intensity. Table 1 (Line 404 in the revised main manuscript) and Table S5 (Line 89 in 

the revised supplement) have been updated accordingly. 

 Lines 363-370: While Section 3.2 is a good application of the climatology product, 

it isn’t “a detailed examination of the 3D evolutions of MCS/IDC events.” 

Reply: 

No, it isn’t. Section 3.2 is just an example of the potential applications of the data 

product, as we mentioned in Line 400 in the revised main manuscript. The data product 

can be useful in a variety of other studies, although we only show some direct results 

from the data product in this study. In fact, although Section 3.1 also shows some results 

related to MCS and IDC, it is more intended to be used to verify our data product, to 

ensure the MCS and IDC climatological characteristics consistent with our algorithm 

definitions and general knowledge. Therefore, we summarize the potential applications 

of the data product in Lines 395 – 400 in the revised main manuscript. Lines 400 – 402 

is used to connect with Section 3.2. 

 Line 391-393: Instead of using “stratiform” as the name for all precipitation not 

associated with MCSs or IDCs, I suggest the phrase “non-convective”. 

“Stratiform” is confusing as there is stratiform rain within both MCSs and IDCs. 



Reply: 

Thank you for your suggestions. We have changed “stratiform” in Section 3.2 and 

Section 4 to “non-convective” (NC) accordingly, as well as figures and tables in the 

revised main manuscript and supplement. Besides, we have added another sentence in 

Lines 426 – 428 in the revised main manuscript discussing the limitation of NC 

precipitation, possibly containing some convective-associated rain. We think adding this 

sentence can make the definition more accurate, although we also discussed the 

limitation in Section 3.2.3 and Section 4. 

 Lines 451, 460, 466: Discussion of Figure S9 happens before that of Figure S8. 

Reply: 

Thank you for your suggestions. Figures S6 (the old Figure S8) and S7 (the old Figure 

S9) first appeared in Line 493 with the correct order. In this sentence, we wanted to keep 

precipitation amounts and fractions together (because precipitation fractions are 

calculated from precipitation amounts), so we put S6 before S7. We understand that we 

first discussed Figure S7 in detail to make the paragraph easy and fluent. However, we 

had a summarized sentence at the beginning of the paragraph and intended to discuss 

these figures together. Therefore, we want to keep the current figure order. 

 Lines 565-567: Can the authors elaborate how each dataset is incorporated into the 

CCF/PF and CCS criteria listed in Section 2.2? 

Reply: 



As defined in Lines 238 – 243 and 249 in the revised main manuscript, CCF is a 

continuous updraft/convective area with precipitation > 0 mm h-1, PF is a continuous 

updraft/convective/precipitating-stratiform area with precipitation > 1 mm h-1, and CCS 

is generally a continuous area with Tb < 241 K (exceptions and details are discussed in 

Lines 248 – 257 in the revised main manuscript). As mentioned above, all the 

precipitation values are from Stage-IV, not related to Gridrad reflectivity at all in this 

study. Gridrad only provides reflectivity ZH, and satellite infrared Tb dataset only 

provides Tb. Therefore, we can understand which datasets are used based on their 

definitions. CCS is mainly based on the satellite Tb dataset. We use “mainly” is because, 

as demonstrated in Lines 254 – 257 in the revised main manuscript, CCSs sharing the 

same coherent precipitation feature (different from PF) are connected, and the coherent 

precipitation feature is defined based on reflectivity. PF, firstly, is related to Stage IV 

precipitation dataset, as it requires precipitation > 1 mm h-1. Secondly, updraft/ 

convective/precipitating-stratiform categories are from the SL3D algorithm (Lines 229 – 

232 in the revised main manuscript), and SL3D is based on Gridrad reflectivity and 

ERA5 melting-level heights (Lines 232 – 233 in the revised main manuscript). 

Therefore, PF is defined based on Stage IV, Gridrad, and ERA5 datasets. CCF is similar 

to PF, since it is also related to SL3D categories and precipitation. Because all these 

datasets are at the same grids, we are able to handle them simultaneously, such as 

finding continuous areas satisfying specific criteria, e.g. CCS, CCF, and PF. After 

finding out CCS/CCF/PFs, we can calculate their characteristics, such as area, major 

axis length, rain rate, aspect ratio, etc. 

 Line 613: Instead of individual NEXRAD radar data, could the Multi-Radar Multi-



Sensor radar dataset be used? (https://www.nssl.noaa.gov/projects/mrms/) 

Reply: 

Just to be clear, the GridRad radar dataset used in our study is a mosaic of all the 

NEXRAD radar data east of the Rocky Mountains, but not “individual radar data.” 

Based on the parameter “3D Mosaic Levels” shown on 

https://mrms.nssl.noaa.gov/qvs/product_viewer/, the Multi-Radar Multi-Sensor radar 

dataset can be used by the SL3D and FLEXTRKR algorithms after re-gridding. The 

Multi-Radar Multi-Sensor radar dataset has a resolution of 1 km and 2 minutes, covering 

33 vertical levels from 0.5 km to 19 km, which is better than the Gridrad 3.1 dataset 

used in our study. In addition, the Multi-Radar Multi-Sensor data also contains rotation, 

which can be used for supercell identification. 

 Line 633: Section 3.2.2 –> Section 2.2.2 

Reply: 

Thanks. We have corrected it. Please see Line 694 in the revised main manuscript 

 Section 4.4: I appreciate the authors’ testing of the MCS and IDC definition criteria 

and discussion of that criteria’s impact on classified precipitation. I would 

recommend the authors urge caution of future researchers using this dataset to 

examine transport or large-scale circulation impacts without conducting their own, 

similar analysis. 

Reply: 

https://www.nssl.noaa.gov/projects/mrms/


Thank you for your suggestions. We have added a relevant sentence in Lines 744 – 749 

in the revised main manuscript. The sentence is as follows. 

‘Lastly, although our sensitivity test in Section 4.4 shows that precipitation 

characteristics are similar between two different sets of MCS/IDC definition criteria, we 

still recommend users conduct further sensitivity tests and examine the impact of 

different definition criteria on the results if the data product is applied to other studies, 

such as the effects of MCS and IDC events on atmospheric circulation, environmental 

conditions associated with the initiation and evolution of MCS and IDC events, and 

MCS/IDC associated weather hazards.’ 
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Abstract 12 

Deep convection possesses markedly distinct properties at different spatiotemporal scales. We 13 

present an original high-resolution (4 km, hourly) unified data product of mesoscale convective 14 

systems (MCSs) and isolated deep convection (IDC) in the United States east of the Rocky 15 

Mountains and examine their climatological characteristics from 2004 to 2017. The data product 16 

is produced by applying an updated FLEXTRKR (Flexible Object Tracker) algorithm to hourly 17 

satellite brightness temperature, radar reflectivity, and precipitation datasets. Analysis of the data 18 

product shows that MCSs are much larger and longer-lasting than IDC, but IDC occurs about 19 

100 times more frequently than MCSs, with a mean convective intensity comparable to that of 20 

MCSs. Hence both MCS and IDC are essential contributors to precipitation east of the Rocky 21 

Mountains, although their precipitation shows significantly different spatiotemporal 22 

characteristics. IDC precipitation concentrates in summer in the Southeast with a peak in the late 23 

afternoon, while MCS precipitation is significant in all seasons, especially for spring and 24 

summer in the Great Plains. The spatial distribution of MCS precipitation amounts varies by 25 

seasons, while diurnally, MCS precipitation generally peaks during nighttime except in the 26 

Southeast. Potential uncertainties and limitations of the data product are also discussed. The data 27 

product is useful for investigating the atmospheric environments and physical processes 28 

associated with different types of convective systems, quantifying the impacts of convection on 29 

hydrology, atmospheric chemistry, and severe weather events, and evaluating and improving the 30 

representation of convective processes in weather and climate models. The data product is 31 

available at http://dx.doi.org/10.25584/1632005 (Li et al., 2020). 32 

 33 

http://dx.doi.org/10.25584/1632005
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1 Introduction 34 

In the atmosphere, deep convection refers to thermally driven turbulent mixing that 35 

displaces air parcels from the lower atmosphere to the troposphere above 500 hPa (Davison, 36 

1999), leading to the development of convective storms. The heavy rain-rates associated with 37 

deep convection can significantly affect the water cycle (Hu et al., 2020) and other aspects such 38 

as soil erosion (Nearing et al., 2004), surface water quality (Carpenter et al., 2018; Motew et al., 39 

2018), and managed and unmanaged ecosystems (Angel et al., 2005; Derbile and Kasei, 2012; 40 

Rosenzweig et al., 2002) that are essential elements of the biogeochemical cycle. By 41 

redistributing heat, mass, and momentum within the atmosphere, deep convection also has 42 

important effects on atmospheric chemistry (Anderson et al., 2017; Andreae et al., 2001; Choi et 43 

al., 2014; Grewe, 2007; Thompson et al., 1997; Twohy et al., 2002), large-scale environments 44 

(Houze Jr, 2004; Piani et al., 2000; Stensrud, 1996, 2013; Wang, 2003), and radiation balance 45 

(Feng et al., 2011; Zhang et al., 2017). 46 

Besides its effects on the energy, water, and biogeochemical cycles, deep convection also 47 

has more direct societal impacts. As a significant source of natural hazards such as tornadoes, 48 

hail, wind gusts, lightning, and flash flooding, deep convection poses critical threats to human 49 

life and property (Brooks et al., 2003; Doswell III et al., 1996; Koehler, 2020; Taszarek et al., 50 

2020). During 1950 – 1994, deep convection associated thunderstorms produced 47% of annual 51 

rainfall and up to 72% of summer rainfall on average east of the Rocky Mountains (Changnon, 52 

2001b). During the same period, both the number of severe thunderstorms and deep convection 53 

precipitation has increased in most regions of the contiguous United States (CONUS) 54 

(Changnon, 2001a, b; Groisman et al., 2004). Folger and Reed (2013) found that hazards 55 
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associated with thunderstorms accounted for 57% of annual insured catastrophe losses since 56 

1953. Since the 1980s, the inflation-adjusted economic losses due to convective storms increased 57 

from about $5 billion to about $20 billion in the recent decade (https://www.iii.org/fact-58 

statistic/facts-statistics-tornadoes-and-thunderstorms). With warmer temperatures, the 59 

environments of hazardous convective weather are projected to become more frequent in the 60 

future (Diffenbaugh et al., 2013; Seeley and Romps, 2015), although few robust trends have 61 

emerged in the recent decades (Houze Jr et al., 2019; Tippett et al., 2015). 62 

The crucial roles of deep convection motivate the need for more accurate and 63 

comprehensive datasets of deep convection to improve understanding and modeling of this 64 

process and its impacts. To this end, datasets with information on the location and time of 65 

occurrence, intensity, and other properties of deep convection are necessary to understand and 66 

quantify its impacts on the hydrologic cycle, severe weather hazards, large-scale circulations, etc. 67 

While field campaign data can provide detailed information on deep convection properties, they 68 

are limited in space-time coverage for statistical analysis. A corresponding reliable long-term 69 

dataset of deep convection is undoubtedly useful for model evaluation and development (Prein et 70 

al., 2017; Yang et al., 2017). 71 

Deep convection can exist as isolated convective storms or organized storms with 72 

mesoscale structures. A mesoscale convective system (MCS) is an aggregate of convective 73 

storms organized into a larger and longer-lived system, which is the largest type of deep 74 

convection. Due to their much longer duration and broader spatial coverage, MCSs generally 75 

have stronger and longer-lasting influences on large-scale circulations than isolated deep 76 

convection (IDC) events (Bigelbach et al., 2014; Stensrud, 1996, 2013). MCSs can may also 77 
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produce higher rain rates, larger echo top heights, and greater water and ice masses than IDC 78 

(Rowe et al., 2011, 2012). The enhanced rain rates in MCSs might be caused by larger amounts 79 

of ice falling out and melting, higher amounts of liquid water below the melting level, and higher 80 

concentrations of smaller drops (Rowe et al., 2011, 2012). Rowe et al. (2012) also suggested that 81 

the enhanced rainfall from MCSs might be associated with more favorable environmental 82 

conditions, such as higher convective available potential energy (CAPE) and wind shear. CAPE 83 

and wind shear can impose different impacts on the initiation and evolution of IDC and MCSs 84 

(French and Parker, 2008).Compared to IDC, MCSs tend to occur in more favorable 85 

environmental conditions, such as higher convective available potential energy (CAPE) and wind 86 

shear (French and Parker, 2008), potentially making them more conducive to hazardous weather. 87 

Considering the significant differences between IDC and MCS events, a reliable long-term 88 

dataset not only describing the characteristics of deep convection but also separating IDC events 89 

from MCSs is useful. With the deployment of operational remote sensing platforms such as 90 

geostationary satellites and ground-based radar network several decades ago, scientists have 91 

developed numerical algorithms to automatically detect deep convective systems and track their 92 

evolutions over large areas and for long durations on the basis of continuous measurements from 93 

remote sensors (Cintineo et al., 2013; Feng et al., 2011; Feng et al., 2012; Futyan and Del Genio, 94 

2007; Geerts, 1998; Hodges and Thorncroft, 1997; Liu et al., 2007; Machado et al., 1998). 95 

Objective tracking of deep convection has been applied to geostationary satellite data (Cintineo 96 

et al., 2013; Sieglaff et al., 2013; Walker et al., 2012) and Next Generation Weather Radar 97 

(NEXRAD) data (Haberlie and Ashley, 2019; Pinto et al., 2015) in the United States (US) over 98 

different periods. However, a long-term climatological data product of MCS and IDC events 99 

over the CONUS has heretofore not been developed. 100 
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Here, building on the work by Feng et al. (2019), which developed an algorithm for MCS 101 

tracking and a dataset for MCSs for eastern CONUS, we produce a unified high-resolution data 102 

product of both MCS and IDC events and analyze their characteristics east of the Rocky 103 

Mountains for 2004 – 2017. The data product is developed by applying an updated Flexible 104 

Object Tracker (FLEXTRKR) algorithm (Feng et al., 2018; Feng et al., 2019) and the Storm 105 

Labeling in Three Dimensions (SL3D) algorithm (Starzec et al., 2017) using to the NCEP 106 

(National Centers for Environmental Prediction) / CPP (the Climate Prediction Center) L3 4 km 107 

Global Merged IR V1 brightness temperature (Tb) dataset (Janowiak et al., 2017), the 3-D 108 

Gridded NEXRAD Radar (Gridrad) dataset (Homeyer and Bowman, 2017), the NCEP Stage IV 109 

precipitation dataset (Lin and Mitchell, 2005), and melting level heights from ERA5 (ECMWF, 110 

2018). We produce the data product by applying an updated Flexible Object Tracker 111 

(FLEXTRKR) algorithm (Feng et al., 2018; Feng et al., 2019) and the Storm Labeling in Three 112 

Dimensions (SL3D) algorithm (Starzec et al., 2017) to the datasets mentioned above. Section 2 113 

describes the updated FLEXTRKR and SL3D algorithms in detail, as well as the source datasets 114 

used by the algorithms. In Section 3, we first compare the climatological characteristics between 115 

MCS and IDC events based on the MCS/IDC data product. Then, as an application of the data 116 

product, we examine the spatiotemporal precipitation characteristics of MCS and IDC events. In 117 

Section 4, we discuss the uncertainties and limitations of the data product. Section 5 provides the 118 

availability information of the data product. Finally, we summarize the study in Section 6. 119 



7 

2 Source datasets and algorithms 120 

2.1 Source datasets 121 

2.1.1 Merged 4-km Infrared brightness temperature dataset 122 

In this study, we identify cold clouds associated with MCSs and IDC by using the NOAA 123 

NCEP/CPP L3 half-hourly 4 km Global Merged IR V1 infrared Tb data for 2004 –  2017 124 

(Janowiak et al., 2017). The dataset is a combination of various geostationary IR satellites with 125 

parallax correction and viewing angle correction, therefore, providing continuous coverage 126 

globally from 60°S – 60°N with a horizontal resolution of about 4 km and a temporal resolution 127 

of 0.5 hours (Janowiak et al., 2001). We only use the hourly Tb data in the FLEXTRKR 128 

algorithm discussed below, as all other datasets are only available at an hourly interval. 129 

2.1.2 Three-dimensional Gridded NEXRAD Radar (Gridrad) dataset 130 

Gridrad is an hourly 3-D radar reflectivity (ZH) mosaic combining individual NEXRAD 131 

radar observations to a Cartesian gridded dataset, with a horizontal resolution of 0.02° × 0.02° 132 

and a vertical resolution of 1 km. The dataset covers 115° W to 69° W in longitude, 25° N to 49° 133 

N in latitude, and 1 to 24 km in altitude above sea level (ASL). Homeyer and Bowman (2017) 134 

produced the dataset by applying a four-dimensional binning procedure to merge level-2 ZH data 135 

from 125 National Weather Service (NWS) NEXRAD weather radars to Gridrad grid boxes at 136 

analysis times. Only the level-2 observations within 300 km of each radar and 3.8 minutes of the 137 

analysis time were used in the binning procedure. The Gridrad ZH was the weighted average of 138 

the level-2 observations within the Gridrad grid boxes to reduce the potential loss of information. 139 

The weight calculation of each level-2 observation followed a Gaussian scheme in both space 140 
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and time. Observation weight was negatively correlated with the distance of the observation from 141 

the source radar and the time difference between the observation and analysis time. The Gridrad 142 

dataset provides the total weight of the level-2 observations within each Gridrad grid box, which 143 

is useful for quality control. In addition, the number of level-2 radar observations (Nobs) and the 144 

number of level-2 radar observations with echoes (Necho) within each Gridrad grid box around 145 

analysis times (± 3.8 min) are also available in the Gridrad dataset. 146 

We obtain the Gridrad datasets between 2004 and 2017 from NCAR/UCAR Research Data 147 

Archive (RDA) (https://rda.ucar.edu/datasets/ds841.0/, last access: Jan 2, 2020). Following the 148 

quality control criteria of Homeyer and Bowman (2017) (http://gridrad.org/software.html, last 149 

access: Jan 22, 2020), we remove potential low-quality observations, scanning artifacts, and non-150 

meteorological echoes from biological scatters and artifacts. Then we regrid Gridrad ZH onto the 151 

4 km satellite Merged IR grids by using the “bilinear” method from the Earth System Modeling 152 

Framework (ESMF) Python module (https://www.earthsystemcog.org/projects/esmpy/) as 153 

follows. 154 

 First, we convert the Gridrad logarithmic reflectivity ZH to linear reflectivity (Z’: mm6 m-3). 155 

We then set Z’ in grid boxes with radar observations but no echoes (Nobs > 0, but ZH = NAN; 156 

NAN, Not-A-Number) to 0 (Z’ = 0). Here the physical interpretation is that NEXRAD scans 157 

those grid boxes, but no detectable hydrometers return any echo. The primary motivation of this 158 

procedure is to avoid the reduction of the number of valid reflectivity values after re-gridding, as 159 

the ESMF bilinear method treats destination point as NAN as long as there is one NAN value in 160 

the source points. A common scenario is at the edge between hydrometeor echoes and clear air. 161 

Setting Z’ of those grid boxes having radar observations but no echoes to NAN would cause all 162 

https://rda.ucar.edu/datasets/ds841.0/
http://gridrad.org/software.html
https://www.earthsystemcog.org/projects/esmpy/
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surrounding destination points to become NAN even though all other source points have valid Z’ 163 

values, which would reduce the number of re-gridded valid ZH (ZH ≠ NAN) by about 20% for 164 

2004 – 2017. After the “bilinear” re-gridding of Z’, we convert the linear reflectivity Z’ back to 165 

the logarithmic reflectivity ZH. And we set ZH equal to NAN for those grid boxes with Z’ equal 166 

to 0. Now the NAN values are acceptable and won’t affect the SL3D algorithm and FLEXTRKR 167 

algorithm discussed below. 168 

2.1.3 NCEP Stage IV precipitation dataset 169 

The NCEP Stage IV precipitation dataset provides hourly rain accumulations over polar 170 

stereographic grids across the CONUS with a resolution of 4.76 km at 60°N since 2002. The 171 

dataset is a mosaic of precipitation estimates from 12 River Forecast Centers (RFCs) over the 172 

CONUS (Stage IV data in Alaska and Puerto Rico are archived separately) (Lin and Mitchell, 173 

2005; Nelson et al., 2016). Each RFC produces its precipitation estimates through a combination 174 

of radar and rain gauge data based on the multisensory precipitation estimator (MPE) algorithm 175 

(for most RFCs), P3 algorithm (for Arkansas-Red basin RFC), or Mountain Mapper algorithm 176 

(for California-Nevada, Northwest, and Colorado-basin RFCs with missing radar-derived 177 

estimates) (Nelson et al., 2016). Some manual quality control steps are conducted to remove bad 178 

radar and gauge data before radar-gauge merging (Lin and Mitchell, 2005; Nelson et al., 2016). 179 

The Stage IV dataset has been widely used as a basis to evaluate model simulations, satellite 180 

precipitation estimates, and radar precipitation estimates (Davis et al., 2006; Gourley et al., 2011; 181 

Kalinga and Gan, 2010; Lopez, 2011; Yuan et al., 2008). Here, we obtain the hourly Stage IV 182 

precipitation for 2004 –- 2017 from the NCAR/UCAR RDA 183 

(https://rda.ucar.edu/datasets/ds507.5/, last access: Dec 28, 2019). We regrid the original Stage 184 

https://rda.ucar.edu/datasets/ds507.5/
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IV precipitation from polar stereographic grids to the 4 km satellite Merged IR grids by using the 185 

“neareststod” method from the ESMF ‘NCL’ module 186 

(https://www.ncl.ucar.edu/Applications/ESMF.shtml). The “neareststod” method maps each 187 

destination point to the closest source point. 188 

2.1.4 ERA5 melting level dataset 189 

Melting hydrometeors produce intense radar echoes in a horizontal layer about 0.5 km thick 190 

located just below the 0°C level (melting level), which is known as “bright band” (Giangrande et 191 

al., 2008; Steiner et al., 1995). The bright-band signatures are often pronounced for stratiform 192 

precipitation, while convective precipitation produces well-defined vertical cores of maximum 193 

reflectivity, diluting bright-band signals (Giangrande et al., 2008; Steiner et al., 1995).  194 

Therefore, the SL3D algorithm that is described below examines ZH above the melting level to 195 

avoid the false identification of stratiform rain as convective (Starzec et al., 2017). In this study, 196 

we use the hourly melting level heights from the ERA5 reanalysis dataset. 197 

ERA5, as the successor to ERA-Interim, contains many modeling improvements and more 198 

observations based on 4D-Var data assimilation using Cycle 41r2 of the Integrated Forecasting 199 

System (IFS) at the European Centre for Medium-Range Weather Forecasts (ECMWF). ERA5 200 

provides hourly estimates of atmospheric variables at a horizontal resolution of 31 km and 137 201 

vertical levels from the surface to 0.01 hPa from 1979 to the present (Hersbach et al., 2019). We 202 

obtain ERA5 “Zero degree level” (melting level heights above ground) for 2004 – 2017 and 203 

“Orography” (geopotential at the ground surface) from the Climate Data Store (CDS) disks 204 

(ECMWF, 2018) (last access: Jan 24, 2020). The CDS archived ERA5 variables have been 205 

interpolated to regular latitude/longitude grids with a resolution of 0.25° × 0.25°. We calculate 206 

https://www.ncl.ucar.edu/Applications/ESMF.shtml
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melting level heights ASL from “Zero degree level” and “Orography” (divided by 9.80665 m s-2 207 

to obtain ground surface height). Finally, we regrid the hourly 0.25° melting level heights ASL 208 

to the 4-km satellite Merged IR grids by using the ESMF “neareststod” method. 209 

We summarize the basic information of the four types of source datasets in Table S1. And, 210 

we define our data product domain as 110°W – 70°W in longitude and 25°N – 51°N in latitude 211 

(Figure 1), which covers the US east of the Rocky Mountains and excludes the western US. The 212 

domain coverage takes into consideration the availability of the GridRad radar dataset, the 213 

relatively scarce radar coverage over the Rocky Mountains, and associated uncertainties in radar-214 

based Stage IV precipitation estimates in complex terrains (Nelson et al., 2016). As shown in 215 

Figure 1a, we further define four regions in the domain following Feng et al. (2019): Northern 216 

Great Plains (NGP), Southern Great Plains (SGP), Southeast (SE), and Northeast (NE). 217 

 218 
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 219 
Figure 1. (a) Data product domain and region definitions. Blue shading denotes the Northern 220 
Great Plains (NGP), green-yellow shading denotes the Southern Great Plains (SGP), light steel 221 
blue shading denotes the Southeast (SE), and orange shading denotes the Northeast (NE). The 222 
locations of some US states within each region are also labeled. TX is for Texas, OK for 223 
Oklahoma, KS for Kansas, NE for Nebraska, IA for Iowa, MO for Missouri, AR for Arkansas, 224 



13 

LA for Louisiana, MS for Mississippi, AL for Alabama, TN for Tennessee, KY for Kentucky, 225 
and FL for Florida. (b) The location of the data product domain (red box) in North America. 226 

2.2 Algorithm description 227 

2.2.1 SL3D algorithm 228 

The SL3D algorithm exploits Gridrad ZH to classify each grid column with radar echoes 229 

into five categories: convective, precipitating stratiform, non-precipitating stratiform, anvil, and 230 

convective updraft (Starzec et al., 2017). SL3D identifies these five categories successively 231 

following the criteria listed in Table S2. We run the SL3D algorithm for 2004 – 2017 by using 232 

the re-gridded ERA5 melting level heights and Gridrad ZH dataset described in Section 2.1. 233 

Figure 2e shows an example of the SL3D classification results based on Gridrad ZH (Figure 2d) 234 

at 2005-07-04T03:00:00Z. A sizeable convective system with intense radar echoes and 235 

precipitation is observed in Kansas, and many isolated convection events are also observed in the 236 

Southeast. The SL3D classification results will be used in the following FLEXTRKR algorithm 237 

to identify convective core features (CCFs, continuous updraft/convective areas with 238 

precipitation > 0 mm h-1, which are used to indicate the existence of convective activity in the 239 

IDC definition; red regions in Figure S13) and precipitation features (PFs, continuous 240 

updraft/convective/precipitating-stratiform areas with precipitation > 1 mm h-1; green areas in 241 

Figure S13, which are used to denote the sizes of convective systems in the MCS and IDC 242 

definitions). 243 
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2.2.2 MCS/IDC identification and tracking 244 

The FLEXTRKR algorithm was first developed and used by Feng et al. (2019) to track 245 

MCSs. In this study, we further update the algorithm so that it can identify and track MCS and 246 

IDC events simultaneously. 247 

Figure S1 3 displays the schematic of FLEXTRKR (Feng et al., 2019). The first step is to 248 

identify cold cloud systems (CCSs; continuous areas with Tb < 241 K) at each hour by applying a 249 

multiple Tb threshold “detect and spread” approach (Futyan and Del Genio, 2007). We search for 250 

cold cloud cores with Tb < 225 K and spread the cold cloud cores to contiguous areas with Tb < 251 

241 K. Cloud systems that do not contain a cold cloud core but with Tb < 241 K are also labeled 252 

as long as they can form continuous areas with at least 64 km2 (4 pixels). In addition, as 253 

described in Feng et al. (2019), CCSs that share the same coherent precipitation feature are 254 

combined as a single CCS. A coherent precipitation feature is defined as continuous areas with 255 

smoothed ZH at 2 km > 28 dBZ (if ZH is not available at 2 km, use ZH at 3 km instead if it is 256 

available) (Feng et al., 2019). We use a 5 × 5 pixel moving window to smooth ZH. Figure 2b 257 

shows an example of the CCSs identified in the first step based on Tb at 2005-07-04T03:00:00Z. 258 

“Cloud 1” in Figure 2b corresponds to a large area of low Tb in the central US (Figure 2a). 259 

In step 2, CCSs between two consecutive hours are linked if their spatial overlaps are > 260 

50%. “Linked” means the CCSs are considered to be from the same cloud systems. FLEXTRKR 261 

produces tracks by extending the link between two consecutive time steps to the entire tracking 262 

period, as shown in Figure S13. Each track represents the lifecycle of a cloud system. We 263 

calculate a series of CCS summary statistics associated with each track, such as CCS-based 264 

lifetime of the track (the duration of the track when CCSs are present), CCS area, CCS major 265 
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axis length, CCS propagation speed, etc. Besides, SL3D classification (Figure 2e) and Stage IV 266 

precipitation (Figures 2c) within the tracked CCS are associated with the tracks and their merges 267 

and splits (described below). Then, we can obtain CCF and PF statistics of each track, such as 268 

convective and stratiform area, precipitation intensity and coverage, radar-derived echo-top 269 

heights, PF major axis length, CCF major axis length, intense convective cells (convective cells 270 

with column maximum reflectivity ≥ 45 dBZ and precipitation > 1 mm h-1; pink areas in Figure 271 

S13, which are used to indicate intense convective activity in the following MCS definition), etc. 272 

Merging and splitting refer to situations when two or more CCSs are linked to one CCS 273 

between consecutive hours (Figures S12 and S23). A track associated with the largest CCS is 274 

defined as the main track (Figure S34), and smaller tracks from merges/splits are regarded as 275 

parts of the main track when calculating PF and CCF statistics. In the algorithm, we require that 276 

a “merge”/”split” track associated with an MCS/IDC event must have a CCS-based lifetime of 277 

no more than 5 hours. Otherwise, we treat it as an independent track. 278 

 The identification of MCS and IDC is based on the CCS, PF, and CCF statistics of the 279 

tracks. Following the definition of MCSs by Feng et al. (2019) (Figure S54), we define a track as 280 

an MCS if it satisfies the following criteria: 1) there is at least one pixel of cold cloud core 281 

during the whole lifecycle of the track; 2) CCS areas associated with the track surpass 60,000 282 

km2 for more than six continuous hours; 3) PF major axis length exceeding 100 km and intense 283 

convective cell areas of at least 16 km2 exist for more than five consecutive hours. Considering 284 

the lack of a strict and universalthe potential impreciseness in the MCS definition (Geerts et al., 285 

2017; Haberlie and Ashley, 2019; Pinto et al., 2015; Prein et al., 2017), we evaluate the impact 286 

of different MCS definition criteria on the data product in Section 4.4. For the non-MCS tracks, 287 
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we further identify IDC with the following two criteria (Figure S54): 1) a CCS with at least 64 288 

km2 (4 pixels) is detected; 2) at least 1 hour during the lifecycle of the track when PF and CCF 289 

are present (PF and CCF major axis lengths ≥ 4 km). In addition, for each IDC event, the CCS-290 

based lifetime of associated merge and split tracks cannot surpass the lifetime of the IDC event. 291 

Here, the IDC criteria denote a low limit in convective signals that we can identify by using the 292 

FLEXTRKR algorithm and given source datasets. Potential uncertainties associated with the 293 

limit are discussed in Section 4.3. 294 

Note that while we designate the term IDC to differentiate less organizedsmaller convective 295 

storms from MCSs, there are sub-categories of deep convection within IDC. For example, 296 

multicellular convection systems that do not grow large enough or last long enough to meet our 297 

MCS definition are defined as IDC in our study, even though they are not necessarily “isolated.” 298 

Users of the data product can further separate sub-categories within IDC using the derived CCF 299 

statistics information to address specific science questions or research objectives. 300 

Finally, the FLEXTRKR algorithm maps MCS/IDC track information back to the domain 301 

pixels. Figures 2f – 2i give an example of the pixel-level MCS/IDC information at 2005-07-302 

04T03:00:00Z. Figure 2f displays the spatial coverages of MCS/IDC tracks at that time at pixel 303 

scale and the corresponding unique numbers of these tracks. From Figure 2f, we know whether a 304 

pixel belongs to an MCS/IDC track and the number of the track if the pixel belongs to a track. 305 

We can further determine whether the track is an MCS or IDC event from Figure 2g, which 306 

shows the types (MCS or IDC) of the tracks in Figure 2f at the pixel scale. Figures 2h and 2i are 307 

similar to Figures 2f and 2g, respectively. The difference is that Figures 2h and 2i only show 308 

pixels with precipitation > 1 mm h-1 in that hour. There, one can identify whether a pixel belongs 309 
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to a track; if it does, what is the track number, whether the track is an MCS or IDC event, and 310 

whether the pixel has hourly accumulated precipitation > 1 mm or not. Together, the track-based 311 

CCS, PF, and CCF statistics of MCS and IDC events and the pixel-level dataset constitute the 312 

unified high-resolution MCS/IDC data product we develop in this study. Original Tb (Figure 2a), 313 

Stage IV precipitation (Figure 2c), Gridrad ZH at 2 km (Figure 2d), and Gridrad derived echo-top 314 

heights are also archived in the data product. 315 

We run the FLEXTRKR algorithm separately for each year from 2004 to 2017. The starting 316 

time of each continuous tracking is 00Z on 1 January, and the ending time is 23Z on 31 317 

December. Because winter has the fewest deep convection events, very few MCS/IDC events 318 

extend between two different years based on our investigation. Also, the lifetimes of MCS/IDC 319 

events are much shorter compared to our tracking period. Therefore, running FLEXTRKR 320 

separately for each year rather than continuously for the whole period has little impact on the 321 

MCS/IDC statistics. 322 
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 323 
Figure 2. FLEXTRKR pixel-level outputs at 03:00:00Z on July 4, 2005. (a) is satellite Tb. (b) 324 
shows identified CCS labels. CCS labels are unique at each hour. (c) is Stage IV hourly 325 
accumulated precipitation. (d) is Gridrad ZH at 2 km (if it is not available, ZH at 3 km is provided 326 
if it is available). (e) is the SL3D classification results: 1, convective updraft; 2, convective; 3, 327 
precipitating stratiform; 4, non-precipitating stratiform; 5, anvil. (f) displays the track numbers to 328 
which pixels belong. Here, the track numbers are not the real values in the MCS/IDC data 329 
product. The track numbers should be unique throughout the whole running period. We adjust 330 
the track numbers here to make the figure clear. Similar to “PF track number.” (g) gives 331 
information on whether the pixels belong to MCS (marked as 1) or IDC (marked as 2) tracks, 332 
which correspond to the tracks shown in (f). (h) also displays the track numbers to which the 333 
pixels belong, but only for pixels with precipitation > 1 mm h-1. (i) is like (g) but corresponds to 334 
(h). All these variables are stored in the FLEXTRKR hourly pixel-level output files. 335 
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 336 
Figure 3. Schematic of the FLEXTRKR algorithm. 337 

 338 
Figure 4. Definition of MCSs and IDC. 339 
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3 Results and discussions 340 

3.1 Climatological characteristics of MCS and IDC events 341 

According to the MCS/IDC data product, we identify 45,346 IDC and 454 MCS events each 342 

year on average between 2004 and 2017 in our data product domain. Summer (June – August) 343 

has the most IDC and MCS events with average numbers of 25,073 and 212, while winter has 344 

the least with average quantities of 2,545 and 37. During spring and autumn, there are 8,543 and 345 

9,185 IDC events and 122 and 83 MCSs, respectively. The seasonal feature with the most 346 

occurrences of MCSs in winter and the least in summer is consistent with the results of Geerts 347 

(1998) in the Southeast US and Haberlie and Ashley (2019) over portions of the CONUS east of 348 

the Continental Divide (ECONUS). 349 

We compare the climatological characteristics of MCS and IDC events in Table 1. MCSs 350 

have much longer lifetimes than IDC, averaging 21.1 hours (CCS-based) and 18.9 hours (PF-351 

based), compared to 2.1 hours (CCS-based) and 1.7 hours (PF-based) for IDC. Here, PF-based 352 

lifetime refers to the lifetime determined by the MCS/IDC PFs. Only those hours with a 353 

significant PF present (PF major axis length > 20 km for MCSs; ≥ 4 km for IDC) are counted 354 

during the lifecycle of an MCS/IDC event, which represent the active convective period of a 355 

storm. We find that MCSs have the longest PF lifetime in winter (21.3 hours) and the shortest in 356 

summer (17.9 hours). In comparison, IDC has the longest PF lifetime in winter (1.9 hours), but 357 

the summer lifetime (1.7 hours) is comparable to spring and autumn. We examine the seasonal 358 

cumulative distribution functions (CDFs) of PF lifetimes for MCS and IDC events for 2004 – 359 

2017 in Figure S46. Results show winter has the largest fraction of MCS/IDC events with longer 360 

lifetimes than other seasons. 361 
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 As expected, MCSs are much larger than IDC events in spatial coverage and precipitation 362 

area, as shown in Table 1 by the comparisons of CCS area, PF areamajor axis length, PF 363 

convective/stratiform precipitation area, etcCCF area, and CCF major axis length. Generally, on 364 

average, winter MCS/IDC events are the largest in overall spatial coverage (both CCS and PF 365 

areas), while summer has the smallest. The larger and longer-lived MCSs in winter than in 366 

summer were also observed in the Southeast US in 1994 – 1995 by Geerts (1998). The 367 

remarkable seasonal difference in MCS/IDC overall spatial coverage is mainly due to stratiform 368 

areas. Convective areas are much smaller than stratiform areas. The PF stratiform area of MCSs 369 

in winter is 90,513 km2, 2.4  times larger than the area of 26,599 km2 in summer, but the PF 370 

convective area of MCSs in winter is 7,293 km2, 14% smaller than 8,465 km2 in summer. 371 

Similarly, the IDC PF stratiform area in winter is 3,182 km2, 2.8 times larger than 828 km2 in 372 

summer, while the IDC PF convective area in winter is 528 km2, slightly larger (9%) than 483 373 

km2 in summer. Unlike stratiform areas with the largest value in winter, for MCSs, convective 374 

activity is summer generally has the most intense  convective activity than winter in summer as 375 

indicated by a suite of CCF statistics, such as convective precipitation area, PF mean convective 376 

20-dBZ echo-top height, major axis length of the largest CCF, etc. in Table 1. While for IDC, 377 

convective areas are comparable among all seasons. But for the most intense portion of 378 

convective cells, as shown by area with column max reflectivity (ZHmax) ≥ 45 dBZ, max 30-dBZ 379 

echo-top height, and max 40-dBZ echo-top height, summer IDC is still much stronger than those 380 

in winter. The more most intense convective activity in summer than winter reflects the stronger 381 

strongest atmospheric thermal instability in summer due to stronger the strongest solar radiation 382 

in summer. We further confirm this point by investigating the MCS/IDC initiation time. As 383 

shown in Figure S57, most MCS and IDC events initiate in the afternoon of summer when 384 
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atmospheric instability is the strongest, consistent with Geerts (1998), who found warm-season 385 

MCSs generally initiated at 12:00 – 14:00 Local Time in the Southeast US. 386 

Although MCSs are much larger than IDC events in spatial coverage, proxies of their mean 387 

convective intensities such as their mean convective 20-dBZ echo-top heights, which can be used 388 

to represent their mean convective intensities, are similar in Table 1. And their PF mean 389 

convective and stratiform rain rates are also comparable. However, for the most intense 390 

convective cells, as indicated by the max 30/40-dBZ echo-top heights, MCSs are still much 391 

stronger than IDC events. PF mean convective and stratiform rain rates show significant seasonal 392 

cycles variations for both MCS and IDC events. Summer MCS and IDC events have the largest 393 

rain rates, followed by autumn. Winter has the lowest rain rates compared to other seasons. 394 

The high-resolution nature of the MCS/IDC data product enables a detailed examination of 395 

the 3-D evolutions of MCS/IDC events to investigate the relationships between atmospheric 396 

environments and MCS/IDC characteristics and to examine the impacts of MCSs and IDC on 397 

hydrology, atmospheric chemistry, and severe weather hazards. The data product can also be 398 

used to evaluate and improve the representation of MCS/IDC processes in weather and climate 399 

models. As an example of the application of the MCS/IDC data product, in Section 3.2, we 400 

investigate the contributions of MCS and IDC events to precipitation east of the Rocky 401 

Mountains for 2004 – 2017. 402 

 403 
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Table 1. Annual and seasonal mean characteristics of MCS and IDC events in the data product domain for 2004 – 2017 404 

 
MCS IDC 

Annual spring Summer autumn winter annual spring summer autumn winter 

CCS-based lifetime / hour 21.1 21.5 19.9 22.1 24.3 2.1 2.1 2.0 2.0 2.7 

CCS area1 / km2 185,436 223,230 130,769 185,246 373,220 6,775 9,400 4,542 6,515 20,902 

CCS major axis length / km 693 774 568 726 1,067 99 117 86 100 169 

PF-based lifetime2 / hour 18.9 19.3 17.9 19.7 21.3 1.7 1.7 1.7 1.7 1.9 

Major axis length of the largest PF3 / km 397 426 325 436 620 63 69 56 69 93 

PF convective area4 / km2 8,273 8,589 8,465 7,752 7,293 494 509 483 502 528 

PF stratiform area / km2 41,336 47,241 26,559 48,376 90,513 1,261 1,610 828 1,583 3,182 

PF mean convective rain rate / mm h-1 4.4 3.9 4.7 4.5 3.8 4.2 3.4 4.5 4.3 3.0 

PF mean stratiform rain rate /mm h-1 2.6 2.4 2.8 2.6 2.2 2.8 2.5 3.0 2.9 2.3 

Area with ZHmax ≥ 45 dBZ within the largest PF / km2 1,078 1,147 1,203 807 735 56 58 59 49 42 

PF mean convective 20-dBZ echo-top height / km 6.5 6.2 7.2 6.0 4.9 6.6 6.1 7.0 6.2 5.0 

Area of the largest CCF / km2 2,578 2,515 2,983 2,068 1,606 343 359 339 340 349 

Major axis length of the largest CCF / km 109 109 117 100 92 29 30 29 29 31 

Max 30-dBZ echo-top height of the largest CCF / km 13.2 12.8 14.5 12.0 10.0 7.0 6.4 7.6 6.5 5.0 

Max 40-dBZ echo-top height of the largest CCF / km 11.0 11.0 12.2 9.4 7.7 5.4 5.1 5.9 5.0 3.7 

1 In this table, for hourly characteristics (all variables except for CCS-based lifetime and PF-based lifetime), we generally first calculate the average values of the characteristics 405 
during the duration of each MCS/IDC event except for the max 30/40-dBZ echo-top heights, which are the maximum values of the attributes within the period. Then we calculate 406 
the mean values of the characteristics of all MCS/IDC events. For example, an MCS has a CCS-based lifetime of 10 hours. During its duration, it has a CCS at each hour. We 407 
calculate the average CCS area during the 10 hours, which is the average CCS area of the MCS. Then, we average all MCSs identified during a period to derive the values shown 408 
in this row.  409 
2 Lifetimes of MCS/IDC events determined by PFs. Only count those hours of an MCS/IDC event with a significant PF present (PF major axis length > 20 km for MCSs; ≥ 4 km 410 
for IDC). 411 
3 There can be multiple PFs and CCFs at a given time for an MCS/IDC event. “Largest” means only the largest PF or CCF is used in the calculation. 412 
4 There can be multiple PFs and CCFs at a given time for an MCS/IDC event. If not specified, all PFs/CCFs are considered. For example, convective areas of all PFs at a given 413 
time are summed to represent the PF convective area of an MCS/IDC event at that time. Similarly, the convective rain rates of all PFs at the given time are averaged to represent 414 
the PF mean convective rain rate of the MCS/IDC at that time. 415 
 416 
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3.2 Precipitation characteristics from different sources 417 

Here we only consider hourly data with precipitation > 1 mm h-1 (Feng et al., 2019). At 4 418 

km resolution, precipitation less than 1 mm h-1 accounts for less than 19% of the total 419 

precipitation, and the uncertainty of radar-derived precipitation at such low rainfall intensity is 420 

typically large. Including hourly data with precipitation ≤ 1 mm h-1 in the calculation will change 421 

the values shown in this study but will neither affect the comparison among MCS, IDC, and 422 

stratiform non-convective (NC) precipitation nor their spatial distribution patterns. Stratiform 423 

Here, NC precipitation mentioned in this section refers to precipitation areas not associated with 424 

any MCSs or IDC events and is mainly from stratiform rain. Total precipitation is the sum of 425 

MCS, IDC, and stratiform NC precipitation. It is noteworthy that NC precipitation may contain 426 

some convection-associated rain due to the limitation of the source datasets and the algorithms 427 

used in this study. More relevant details are discussed in Section 3.2.3 and Section 4. 428 

3.2.1 Annual spatial distributions of different types of precipitation 429 

According to the MCS/IDC data product, the annual average total precipitation east of the 430 

Rocky Mountains in the US (US grid cells in Figure 1) is 691 mm between 2004 and 2017 with a 431 

mean precipitation intensity of 3.6 mm h-1. MCSs contribute the most to the total precipitation 432 

with a fraction of 45%, followed by stratiform NC (30%) and IDC (25%). And the mean 433 

precipitation intensities of MCSs (4.4 mm h-1) and IDC (3.8 mm h-1) are much larger than 434 

stratiform NC (2.7 mm h-1). Our MCS precipitation fraction (45%) is higher than that (~30%) 435 

from Haberlie and Ashley (2019) over the ECONUS due to their different algorithms and stricter 436 

criteria to track and define MCSs. 437 
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Figure 3 5 displays the spatial distributions of annual mean precipitation amounts and 438 

intensities for different precipitation types for 2004 – 2017. We also calculate the distributions of 439 

the fractions of different types of precipitation in Figure 46. MCS precipitation strongly affects 440 

the whole eastern US (105°W – 70°W, MCS precipitation fractions: 46% ± 12%), especially in 441 

the South Central US (MCS precipitation fractions: ~60%). The spatial distribution patterns of 442 

MCS annual precipitation amounts and fractions in Figure 5 are similar to those from Haberlie 443 

and Ashley (2019), although their MCS precipitation fractions are generally lower than our 444 

results. IDC precipitation is concentrated in the SE and NE coastal areas, with peak values in 445 

Florida. Stratiform NC precipitation is substantial in the eastern and southern regions with ample 446 

moisture supply and contributes over 35% to the total precipitation across most of the NE region. 447 

The coastal area near Louisiana, which is significantly affected by all three types of precipitation, 448 

has the most total precipitation with annual amounts of over 1,350 mm. The annual total 449 

precipitation amounts in most regions of SE also exceed 1,050 mm due to MCS contributions. 450 

While the total precipitation amounts in most regions of Florida are also over 1,050 mm, they are 451 

mainly attributed to IDC. 452 

The spatial patterns of precipitation intensities are somewhat different from those of 453 

precipitation amounts (Figure 35). Generally, the southern regions, especially in the coastal 454 

areas, have larger precipitation intensities than the northern areas. The MCS precipitation 455 

intensities are the largest in Texas, Louisiana, Oklahoma, and Kansas, significantly shifting west 456 

compared to MCS precipitation amounts. Unlike IDC precipitation amounts concentrating in the 457 

SE and NE coastal areas, IDC precipitation intensities are the largest over the SGP and SE. IDC 458 

precipitation intensities over the NE are much smaller compared to the SGP and SE, similar to 459 
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stratiform NC precipitation intensities. We summarize the annual mean precipitation amounts 460 

and intensities of different types of precipitation in the NGP, SGP, SE, and NE in Table S3. 461 

The distributions of MCS/IDC precipitation amounts are mainly determined by the 462 

distributions of MCS/IDC hours (Figures 3 5 and 57). Here, the MCS/IDC hour of a grid cell 463 

during a period is the number of hours when any MCS/IDC events produce > 1 mm hourly 464 

accumulated rainfall in the grid cell. The distributions of MCS/IDC precipitation intensities, 465 

although not the main factor, can also affect the distributions of MCS/IDC precipitation amounts. 466 

For example, the maximum MCS hours are located around Missouri (Figures 5a7a), but the 467 

maximum MCS precipitation amount is in the coastal area of Louisiana (Figure 53c). The larger 468 

MCS precipitation intensities in the southern regions contribute more to the MCS precipitation 469 

amount in the southern US. In addition, a large number of IDC events (IDC hours > 60 h yr-1) 470 

occur in the NE region along the Appalachian Mountains (Figure 5b7b), but IDC in that region 471 

only contributes to 20% – 30% of the total precipitation amount (Figure 4b6b) due to the low 472 

precipitation intensities (Figure 3f5f). 473 
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 475 
Figure 35. Distributions of annual mean precipitation amounts (a, c, e, g) and intensities (b, d, f, 476 
h) for different types of precipitation for 2004 – 2017. (a) and (b) are for total precipitation, (c) 477 
and (d) are for MCS precipitation, (e) and (f) are for IDC precipitation, and (g) and (h) are for 478 
stratiform NC precipitation. We only include hourly data with precipitation > 1 mm h-1 in the 479 
calculation. 480 

 481 



29 

 482 



30 

 483 
Figure 46. Distributions of the fractions of different types of precipitation (MCS, IDC, 484 
stratiformNC). Here, precipitation refers to annual mean values for 2004 – 2017. We exclude 485 
hourly data with precipitation ≤ 1 mm h-1 in the calculation. 486 
 487 
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 488 
Figure 57. Spatial distributions of annual mean MCS/IDC hours for 2004 – 2017. (a) is for MCS, 489 
and (b) is for IDC. The annual mean MCS/IDC hour of a grid cell is the number of hours per 490 
year when any MCS/IDC events produce > 1 mm hourly accumulated rainfall in the grid cell. 491 
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3.2.2 Seasonal spatial distributions of different types of precipitation 492 

Figures 68, S8S6, and S9 S7 display the mean seasonal distributions of precipitation 493 

amounts, precipitation fractions, and precipitation intensities for different types of precipitation 494 

in 2004 – 2017. The MCS precipitation center migrates northwards from Arkansas in spring to 495 

northern Missouri and Iowa in summer, followed by a southward migration to Louisiana in 496 

autumn, and finally to Mississippi and Alabama in the Southeast (Figures 6e 8e – 86h) in winter. 497 

The seasonal shift of the MCS precipitation center agrees with the study of Haberlie and Ashley 498 

(2019), showing different MCS precipitation distributions between warm and cold seasons over 499 

the ECONUS. Spring and summer have much larger MCS precipitation amounts (~100 mm) 500 

than autumn (~62 mm) and winter (~50 mm). The mean MCS precipitation amount in spring is 501 

close to that in summer. However, the total number of identified MCSs in summer (212) is much 502 

higher than that in spring (122), as discussed in Section 3.1; and the mean MCS precipitation 503 

intensity in summer (5.2 mm h-1) is also larger than that in spring (4.1 mm h-1) (Figure S9S7). 504 

The inconsistency is because MCSs in spring occur in more favorable large-scale environments 505 

with strong baroclinic forcing and low-level moisture convergence (Feng et al., 2019; Song et al., 506 

2019). As a result, spring MCSs are larger and longer-lasting, and they produce more rainfall per 507 

MCS event compared to those in summer (Table 1), compensating for the fewer number of MCS 508 

events and lower precipitation intensities in spring. The fractions of MCS precipitation amounts 509 

are generally > 35% over the Northern and Southern Great Plains in spring and summer and can 510 

reach up to over 70% Wwithin the MCS precipitation center (Figures S6a – S6b). The results are 511 

roughly consistent with Fritsch et al. (1986), which showed that MCSs accounted for about 30% 512 

– 70% of the warm-season (April-September) precipitation over much of the region between the 513 

Rocky Mountains and the Mississippi River. The results are also consistent with Haberlie and 514 
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Ashley (2019) showing MCS precipitation fractions generally > 30% with a peak > 60% over the 515 

Great Plains between May and August.  in spring and summer, MCS precipitation accounts for 516 

over 70% of the total precipitation amounts (Figures S8a – S8b). And dDue to the low 517 

precipitation amounts of IDC and stratiformNC, the fractions of MCS precipitation amounts in 518 

autumn and winter are also large, showing over 50% within the MCS precipitation center 519 

(Figures S8c S6c – S8dS6d). 520 

 The IDC precipitation amounts reach a maximum in summer, centered in the coastal areas 521 

of the SE, where IDC precipitation contributes to more than 40% of the total precipitation 522 

amounts (Figures 6i 8i – 86l and S68e – S68h). Winter has the least IDC precipitation. Areas of 523 

high IDC precipitation do not show much seasonal variability, suggesting that IDC is constrained 524 

by local conditions such as moisture availability, local solar radiation, and land-atmosphere 525 

interactions. The stratiform NC precipitation amount also peaks in summer, followed by autumn, 526 

particularly in the NE (Figures 6m 8m – 86p). However, because both MCS and IDC 527 

precipitation amounts are very high in summer, the fraction of the stratiform NC precipitation 528 

amount in summer (28%) is smaller than that of winter (32%) (Figures S8i S6i – S68l). Winter 529 

stratiform NC precipitation center occurs in the SE coastal areas (Figure 86p). 530 
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 532 
Figure 68. Distributions of annual mean seasonal precipitation amounts for different types of 533 
precipitation for 2004 – 2017. The first row is for total precipitation, the second for MCS 534 
precipitation, the third row for IDC precipitation, and the fourth row for stratiform NC 535 
precipitation. The first column shows spring precipitation, the second column for summer, the 536 
third column for autumn, and the fourth column for winter. MCS, IDC, and stratiform NC 537 
precipitation share the same label bar. We exclude hourly data with precipitation ≤ 1 mm h-1 in 538 
the calculation. 539 

The precipitation intensities of all three types peak in summer and reach minimums in 540 

winter (Figure S9S7). In each season, precipitation intensities in the south are larger than those in 541 

the north except for MCS precipitation intensities in summer, which maximize in Oklahoma. We 542 

summarize the mean seasonal precipitation amounts and intensities of different types of 543 

precipitation over the 4 climate regions of Figure 1 in Table S4. 544 
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3.2.3 Diurnal cycles of different types of precipitation 545 

Figure 7 9 shows the monthly mean diurnal cycles of precipitation amounts from MCSs, 546 

IDC, and stratiform NC in the NGP, SGP, SE, and NE, respectively. Generally, MCS 547 

precipitation peaks during nighttime in the NGP, SGP, and NE. The seasonal shift of the peaks 548 

from spring in the SGP to summer in the NGP reflects the northward migration of the MCS 549 

precipitation center in the Great Plains (Figures 6e 8e and 86f). 550 

The SE has significantly different diurnal cycles of MCS precipitation from other regions. 551 

In spring, SE MCS precipitation is mainly located in the western areas (Figure 6e8e), showing 552 

similar diurnal characteristics as the SGP MCS precipitation but with peaks in the early morning 553 

and late afternoon (Figures 7d 9d and 7g9g). Besides, the SGP MCS precipitation peaks in May 554 

(Figure 7d9d), while SE peaks in April (Figure 7g9g), suggesting that the MCS precipitation 555 

center first appears in the western SE regions (Alabama, Mississippi, and Louisiana) in April, 556 

and then moves northwards to Arkansas in May. In summer, the SE MCS precipitation diurnal 557 

cycles are more like those of IDC (Figures 7g 9g and 7h9h), peaking in the late afternoon and 558 

much different from those in the Great Plains. The significantly different precipitation diurnal 559 

variations between the Great Plains and SE were also identified by Haberlie and Ashley (2019). 560 

We find that most summer MCS precipitation over the SE occurs near the coastal areas (Figure 561 

6f8f), far from the MCS precipitation center in northern Missouri and Iowa, suggesting either a 562 

different MCS genesis mechanism in the SE from those in the SGP and NGP (Feng et al., 2019) 563 

or long-duration deep convective systems showing MCS characteristics (Geerts, 1998). In 564 

autumn, the SE MCS precipitation peaks in the morning (Figure 7g9g). The diurnal cycle of 565 

MCS precipitation in September shows mixed features of summer and autumn with peaks both in 566 
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the morning and the afternoon. In winter months, the diurnal cycle of the SE MCS precipitation 567 

shifts from the autumn feature to the spring feature, with peaks shifting from the morning to the 568 

afternoon. The distinct diurnal cycles of SE MCS precipitation in different seasons in Figure 9g 569 

are roughly consistent with the corresponding seasonal diurnal variations of MCS occurrence 570 

frequencies from Geerts (1998), where the occurrence time of an MCS was defined as the central 571 

time between the initiation and decay of the MCS. 572 

The diurnal cycles of IDC precipitation are consistent in all regions (Figures 7b9b, 97e, 97h, 573 

and 97k), peaking in the late afternoon in summer (Tian et al., 2005), again reflecting the impact 574 

of local instability driven by the solar forcing on IDC development. Stratiform NC precipitation 575 

(Figures 7c9c, 97f, 97i, and 97l) shows some diurnal cycle characteristics similar to IDC 576 

precipitation. It may be caused by the limitation of the temporal resolution of the datasets used in 577 

the FLEXTRKR algorithm. Weak IDC events that are shorter than 1 hour could be missed by 578 

Gridrad in identifying CCFs, as Gridrad ZH only considers reflectivities within ± 3.8 minutes of 579 

the analysis time. These weak IDC could be aliased to stratiform NC precipitation, therefore 580 

showing some similar diurnal cycles as IDC. Another possible reason is that the FLEXTRKR 581 

algorithm may miss some parts of IDC clouds with Tb ≥ 241 K, which are then classified as 582 

stratiformNC, so the stratiform NC precipitation exhibits some IDC characteristics. 583 

The monthly diurnal cycles of precipitation intensities for MCSs, IDC, and stratiform NC 584 

are generally similar among all regions, peaking in the late afternoon and early morning in the 585 

warm season (Figure S10S8). 586 
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 588 
Figure 79. Monthly mean diurnal cycles of precipitation amounts from MCSs (a, d, g, j), IDC (b, 589 
e, h, k), and stratiform NC (c, f, i, l) in the NGP (a, b, c), SGP (d, e, f), SE (g, h, i), and NE (j, k, 590 
l) during 2004 – 2017. 591 
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4 Uncertainties of the data product 592 

4.1 Uncertainties from source datasets 593 

The NCEP/CPP L3 4 km Global Merged IR V1 Tb dataset has been view-angle corrected 594 

and re-navigated for parallax (Janowiak et al., 2001) to reduce errors. However, the US continent 595 

is covered by two series of geostationary IR satellites (GOES-W and GEOS-E). During the 596 

production of the Tb dataset, the value with the smaller zenith angle is adopted when duplicate 597 

data are available in a grid pixel. Measurements from different satellites may be inconsistent. 598 

Janowiak et al. (2001) suggest this type of inconsistency to be considered minor. 599 

For the Gridrad radar dataset, some bad volumes have been removed during the production 600 

of Gridrad ZH. We further filter out potential low-quality observations, scanning artifacts, and 601 

non-meteorological echoes from biological scatters and artifacts following the approaches of 602 

Homeyer and Bowman (2017). However, there is another source of error from anomalous 603 

propagation caused by non-standard refractions of radar signals in the lower atmosphere, which 604 

cannot be mitigated during the filtering procedure. Non-standard refractions can result in 605 

underestimation or overestimation of the true radar beam altitude, thus affecting the location of 606 

radar reflectivity for binning. Estimating the corresponding uncertainties is out of the scope of 607 

this study. However, anomalous propagation is typically limited to radar beams traveling long 608 

distances in the boundary layer (Homeyer and Bowman, 2017). 609 

Stage IV precipitation is a mosaic of precipitation estimates based on a combination of 610 

NEXRAD and gauge data from 12 RFCs. Therefore, the errors of Stage IV are from several 611 

sources, such as inherent NEXRAD biases, radar quantitative precipitation estimate (QPE) 612 
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algorithm biases, bad gauge data removal inconsistency among different RFCs, multisensory 613 

processing algorithm inconsistency among different RFCs, and mosaicking border 614 

discontinuities (Nelson et al., 2016). The most severe errors occur in the western US, where 615 

NEXRAD data are limited, and a gauge-only rainfall estimation algorithm is used (Nelson et al., 616 

2016; Smalley et al., 2014). Hence our data product has a geographical focus east of the Rocky 617 

Mountains, with the best NEXRAD coverage in the US. After regridding the Stage IV 618 

precipitation into our 4-km domain, we further manually filter out certain “erroneous 619 

precipitation” hours and set all precipitation in those hours to missing values. “Erroneous 620 

precipitation” is defined as sudden appearance and disappearance of a large contiguous area (> 621 

4,800 km2) with intense precipitation (> 40 mm h-1) (Figure S11S9), which is physically not 622 

possible. There are 40 hours in total in the period 2004 – 2017 containing such “erroneous 623 

precipitation.” 624 

As the FLEXTRKR algorithm is applied to a combination of three independent types of 625 

remote sensing datasets, we identify the most robust MCS/IDC events satisfying all the criteria 626 

based on the three datasets. It reduces the potential false classification of tracks as MCSs or IDC 627 

based on any single dataset. And to consider the potential error of ERA5 melting level heights, 628 

we require ZH ≥ 45 dBZ above (Zmelt + 1) km for convective classification in the SL3D algorithm 629 

(Table S2). 630 

4.2 The impact of missing data 631 

In the CCS identification step of the FLEXTRKR algorithm, we require the fraction of 632 

missing satellite Tb in the domain at each hour to be less than 20%. Otherwise, the hour is 633 

excluded from our data product. During 2004 – 2017, we excluded 716 hours with missing 634 
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satellite Tb data, accounting for less than 0.6% of the total period. The year with the most 635 

missing satellite data is 2008, with 206 missing hours (2.3%), followed by 2004 with 154 hours 636 

(1.8%). All other years have no more than 57 missing hours. During the link procedure of the 637 

FLEXTRKR algorithm, we search the next hour if a missing hour is encountered, as long as the 638 

time gap between the two “linked” hours is less than 4 hours. Otherwise, we start new tracks 639 

from the next available hour. This method aims to reduce the impact of the missing hours. 640 

Considering the high completeness of the satellite Tb data in 2004 – 2017, we conclude that the 641 

missing satellite data have little effect on the data product. 642 

We show the distribution of the fractions of valid Stage IV precipitation data in 2004 – 2017 643 

in Figure S12S10. The fractions are over 97% for all grid cells of the US in the domain. Most 644 

grid cells in the US have less than 2% missing hours, which should have a negligible impact on 645 

the data product. 646 

Figure S13 S11 shows the fractions of available Gridrad reflectivity data from 2004 to 2017 647 

between 1 km and 12 km ASL. The fractions are relatively high over the majority of the 648 

troposphere except for 1 km ASL. Based on the criteria of the SL3D algorithm, ZH at 1 km is 649 

rarely used and can be easily substituted by ZH at 2 km. Generally, Gridrad has good spatial 650 

coverage during the period with most grid cells east of the Rocky Mountains having fractions > 651 

90% between 2 and 9 km and 80% between 10 and 12 km. The completeness of the Gridrad 652 

dataset is relatively lower compared to the satellite Tb and Stage IV precipitation datasets, and 653 

Gridrad ZH is a crucial variable in the SL3D classification and MCS/IDC identification. 654 

Therefore, the missing data of Gridrad ZH should have some impacts on our data product. 655 
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However, as an advanced long-term high-resolution 3-D radar reflectivity dataset, Gridrad is 656 

valuable for constructing a climatological MCS/IDC data product. 657 

4.3 Temporal resolution limitation of the source datasets 658 

As we discussed in Section 3.2.3, the diurnal cycles of stratiform NC precipitation show 659 

some possible aliasing from IDC precipitation. Some weak IDC events are so short that the 660 

hourly data cannot properly capture their occurrence, especially for Gridrad ZH, which only 661 

includes reflectivities within ± 3.8 minutes of each hour. We calculate the cumulative 662 

distribution functions of PF-based lifetimes for MCS and IDC events and their associated 663 

precipitation in the data product for 2004 – 2017, as shown in Figure 810. About 75% of IDC 664 

events have a PF-based lifetime of 1 hour. Therefore, it is almost certain that we miss some IDC 665 

events shorter than 1 hour in the data product. Here we give an estimate of the probability p that 666 

a given IDC event with a convective signal duration of x minutes is detected by radar, as 667 

expressed below: 668 

2 3.8

60
p

x


=

−
          (1) 669 

where the numerator is the time window of Gridrad observation in each hour, and x is the 670 

duration of the IDC event. The detection probability is only about 25% when x = 30 minutes. To 671 

obtain a detection probability of 50%, we require x ≥ 45 minutes. Hence, we cannot assess the 672 

distribution of IDC convective signals with durations less than 1 hour using the currently 673 

available datasets. Higher-resolution datasets, such as individual NEXRAD radar data, which 674 

typically has an update cycle of 4-5 min, are necessary to derive the information. However, as 675 

shown in Figure 810, we find that precipitation from IDC events with a 1-hour PF lifetime only 676 
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accounts for about 10% of the total IDC precipitation. Therefore, IDC events with PF lifetimes 677 

less than 1 hour should have a relatively small impact on precipitation. 678 

 679 
Figure 810. Cumulative distribution functions of PF-based lifetimes for MCS and IDC events 680 
and their associated precipitation in the data product domain for 2004 – 2017. The red solid line 681 
is for the number of MCSs, the red dash line for MCS associated precipitation, the blue solid line 682 
for the number of IDC events, and the blue dash line for IDC associated precipitation. 683 

4.4 The impact of MCS and IDC definition criteria 684 

The separation between MCSs and long-lasting IDC events is somewhat fuzzy (Feng et al., 685 

2019; Geerts et al., 2017; Haberlie and Ashley, 2019; Pinto et al., 2015; Prein et al., 2017). Here, 686 

we briefly examine the impact of different MCS/IDC definition criteria on the data product. We 687 

change the definition of MCSs to relax the CCS and PF size and duration thresholds. 688 

Specifically, the second and third criteria listed in Section 2.2.2 are modified as follows: 2) CCS 689 

areas associated with the track surpass 40,000 km2 for more than 4 continuous hours; 3) PF 690 

major axis length exceeding 80 km and intense convective cell areas ≥ 16 km2 exist for more 691 
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than 3 consecutive hours. And we also require that each merge/split-track associated with 692 

MCS/IDC events must have a CCS-based lifetime of no more than 3 hours. We keep the 693 

definition of IDC the same as described in Section 23.2.2, which is a limit for IDC that we can 694 

identify based on the source datasets. 695 

By using the new definition, as expected, the lifetimes and spatial coverages of MCSs are 696 

reduced, and those of IDC change little because most IDC events cannot satisfy the new MCS 697 

criteria (Tables 1 and S5). The annual number of MCSs identified in 2004 – 2017 increases from 698 

454 to 857. The number increases from 122 to 207 in spring, 212 to 434 in summer, 83 to 151 in 699 

autumn, and 37 to 62 in winter. As PF-based lifetimes of MCS/IDC events in summer are the 700 

shortest (Table 1), the new definition has the most significant impact in summer. The annual 701 

number of IDC decreases from 45,346 to 45,225. Reducing the merge/split lifetime limit retains 702 

more independent IDC events, which is the reason why the decrease in the number of IDC events 703 

is smaller than the increase in the number of MCSs. Annual mean MCS precipitation east of the 704 

Rocky Mountains increases from 313 mm to 353 mm, while IDC precipitation decreases from 705 

170 mm to 130 mm. The fraction of MCS precipitation only increases by 6% (from 45% to 706 

51%), compared to the almost doubling of MCS number (from 454 to 857), suggesting the MCS 707 

definition in the original data product is capable of capturing most of the important MCSs with 708 

heavy precipitation. Similar to MCS numbers, summer has the most increase in MCS 709 

precipitation amount, from 100 mm to 119 mm. And annual mean MCS and IDC precipitation 710 

intensities decrease slightly as MCS precipitation intensities are somewhat larger than IDC in 711 

most regions (Tables S3, S4, S6, and S7). We summarize the regional precipitation statistics of 712 

the NGP, SGP, SE, and NE based on the new definition in Tables S6 and S7. 713 
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Although the new definition changes the absolute values of MCS/IDC characteristics, the 714 

contrast between MCS and IDC events is still present. The new definition has small impacts on 715 

the spatial distribution patterns of MCS/IDC precipitation. And stratiform NC precipitation 716 

characteristics are almost the same as before. Therefore, our original definition captures the 717 

essential characteristics of MCS and IDC events. In addition, the original data product is 718 

complete and flexible. We store all criteria variables of MCS/IDC events in the data product. 719 

Users can easily change the definition of MCSs and switch between tracks that are attributed to 720 

MCS and IDC without re-running the FLEXTRKR algorithm. There is no need to change the 721 

“track” and “merge” lifetime criterion as we do above because they have little impact on the 722 

climatological characteristics of MCS and IDC events. 723 

4.5 Recommendations for the usage of the MCS/IDC data product 724 

Considering the limitations and uncertainties mentioned above, we generally recommend 725 

using the data product for observational analyses and model evaluations of convection statistics 726 

and characteristics over relatively long periods such as a month, a season, or longer to fully take 727 

advantage of the long term dataset, although analysis of individual weather events is also 728 

possible as supported by the hourly temporal resolution of the data product. In addition, since the 729 

completeness and quality of the source radar dataset degrade dramatically beyond the US border 730 

and over the Rocky Mountains (Figure S13S11), we recommend the usage of the data product 731 

within the CONUS east of the Rocky Mountains to alleviate the impact of the termination of 732 

MCS/IDC tracks due to poor radar coverage and missing radar data beyond their maximum scan 733 

range. 734 
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Detailed investigation of a short period or a specific MCS/IDC event is acceptable, but 735 

cautions should be taken when encountering missing data around the track during the period. 736 

Due to the complexity of the algorithms used to develop the data product, it is difficult to 737 

quantify the impact of missing data on the MCS/IDC track. Therefore, we do not recommend 738 

examining a specific MCS/IDC track if there are too many missing data (precipitation, Tb, or ZH) 739 

along the track. Users planning to apply the data product for a specific case study should 740 

examine the availability of the source data first, which are also stored in the data product except 741 

for 3-D ZH due to the large data volume. Users can access the original 3-D ZH at 742 

https://rda.ucar.edu/datasets/ds841.0/ (Table S1). 743 

Lastly, although our sensitivity test in Section 4.4 shows that precipitation characteristics 744 

are similar between two different sets of MCS/IDC definition criteria, we still recommend users 745 

conduct further sensitivity tests and examine the impact of different definition criteria on the 746 

results if the data product is applied to other studies, such as the effects of MCS and IDC events 747 

on atmospheric circulation, environmental conditions associated with the initiation and evolution 748 

of MCS and IDC events, and MCS/IDC associated weather hazards. 749 

5 Data availability 750 

The high-resolution (4 km hourly) MCS/IDC data product and the corresponding user guide 751 

document are available at http://dx.doi.org/10.25584/1632005 (Li et al., 2020). The original 752 

format of the data files is NetCDF-4, and we archive them as compressed files for each year so 753 

that the data product is easily accessible. The user guide contains a brief explanation about the 754 

approach to develop the data product and a detailed description of the data file content to help 755 

users understand the data product. 756 

http://dx.doi.org/10.25584/1632005
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6 Conclusions 757 

Here we present a unified high-resolution (4 km, hourly) data product that describes the 758 

spatiotemporal characteristics of MCS and IDC events from 2004 to 2017 east of the Rocky 759 

Mountains over the CONUS. We produce the data product by applying an updated FLEXTRKR 760 

algorithm to the NCEP/CPP L3 4 km Global Merged IR V1 Tb dataset, ERA5 melting level 761 

heights, the 3-D Gridrad radar reflectivity dataset, and the Stage IV precipitation dataset. 762 

Climatological features of the MCS and IDC events from the data product are compared, with a 763 

focus on their precipitation characteristics. Consistent with our definitions of MCSs and IDC in 764 

the FLEXTRKR algorithm, we find that MCSs have much broader spatial coverage and longer 765 

duration than IDC events. While there are many more frequent IDC occurrences than MCSs, the 766 

mean convective intensities of IDC events are comparable to those of MCSs. MCS and IDC 767 

events both contribute significantly to precipitation east of the Rocky Mountains but with distinct 768 

spatiotemporal variabilities. MCS precipitation affects most regions of the eastern US in all 769 

seasons, especially in spring and summer. The MCS precipitation center migrates northwards 770 

from Arkansas in spring to northern Missouri and Iowa in summer, followed by a southward 771 

migration to Louisiana in autumn, and finally to Mississippi and Alabama in the Southeast in 772 

winter. IDC precipitation mostly concentrates in the Southeast in summer. IDC precipitation 773 

shows a significant diurnal cycle in summer months with a peak around 16:00 – 17:00 Local 774 

Time over all regions east of the Rocky Mountains. In contrast, MCS precipitation peaks during 775 

nighttime in spring and summer for most regions except for the Southeast, where MCS 776 

precipitation peaks in the late afternoon in summer, similar to IDC precipitation. Lastly, we 777 

analyze the potential uncertainties of the data product and the sensitivity of the dataset to MCS 778 

definitions and give our recommendations for the usage of the data product. The data product 779 
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will be useful for investigating the atmospheric environments and physical processes associated 780 

with convective systems, quantifying the impacts of convection on hydrology, atmospheric 781 

chemistry, severe weather hazards, and other aspects of the energy, water, and biogeochemical 782 

cycles, and improving the representation of convective processes in weather and climate models. 783 
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Figure captions 29 

Figure S1. Schematic of the FLEXTRKR algorithm. 30 

Figure S12. Schematic of CCS merging and splitting. 31 

Figure S23. An example of CCS merging and splitting from 2005-05-07T4:00:00Z – 32 
T9:00:00Z. Cloud 1 and Cloud 2 at 5:00:00Z merged into Cloud 1 at 6:00:00Z. And 33 
Cloud 1 at 7:00:00Z at least split to Cloud 1 and Cloud 3 at 8:00:00Z. 34 

Figure S34. Schematic of “merge” tracks and “split” tracks. 35 

Figure S5. Definition of MCSs and IDC. 36 

Figure S46. Seasonal cumulative distribution functions (CDFs) of PF-based lifetimes 37 
for (a) MCSs and (b) IDC in the data product domain for 2004 – 2017. Red lines denote 38 
spring, blue lines denote summer, green lines denote autumn, and black lines denote 39 
winter. 40 

Figure S57. Annual mean monthly diurnal cycles of initiated MCS (left panel) and IDC 41 
(right panel) numbers in the data product domain for 2004 – 2017. Here, we define that 42 
an MCS or IDC event initiates when the first PF appears. Therefore, we can derive the 43 
initiated time of all MCS and IDC events, which is the basis of this figure. For example, 44 
on average, more than 7 MCSs initiated at 14:00 Local Time (LT) every June between 45 
2004 and 2017. 46 

Figure S68. Distributions of the fractions of different types of precipitation in each 47 
season. Here, precipitation refers to annual mean seasonal amounts for 2004 – 2017. We 48 
exclude hourly data with precipitation ≤ 1 mm h-1 in the calculation. The first row is for 49 
total precipitation, the second for MCS precipitation, the third for IDC precipitation, and 50 
the fourth for stratiform NC precipitation. The first column shows spring precipitation, 51 
the second for summer, the third for autumn, and the fourth for winter. 52 

Figure S79. Distributions of annual mean seasonal precipitation intensities for different 53 
types of precipitation for 2004 – 2017. The first row is for total precipitation, the second 54 
for MCS precipitation, the third for IDC precipitation, and the fourth for stratiform NC 55 
precipitation. The first column shows spring precipitation, the second for summer, the 56 
third for autumn, and the fourth for winter. We exclude hourly data with precipitation ≤ 57 
1 mm h-1 in the calculation. 58 

Figure S10S8. Monthly mean diurnal cycles of precipitation intensities for MCSs (a, d, 59 
g, j), IDC (b, e, h, k), and stratiform NC (c, f, i, l) in the NGP (a, b, c), SGP (d, e, f), SE 60 
(g, h, i), and NE (j, k, l) during 2004 – 2017. 61 

Figure S11S9. An example of Stage IV erroneous precipitation. Stage IV shows a large 62 
area of intense precipitation suddenly appearing at 2011-05-02T12:00:00Z, which then 63 
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unexpectedly disappears at 13:00:00Z, comes back abruptly at 14:00:00Z, and finally 64 
goes away immediately at 17:00:00Z. 65 

Figure S102. Distribution of the fraction of valid Stage IV precipitation data for 2004 – 66 
2017. Here, “valid” means that precipitation data are available and reasonable. The 67 
erroneous precipitation discussed in the main manuscript is unreasonable and invalid. 68 

Figure S113. Distributions of the fractions of available radar reflectivity data for 2004 – 69 
2017 at different vertical levels. As long as radars scan a grid cell, we think it as 70 
“available” even though there is no echo. 71 

 72 
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Table S1. Summary of source datasets used to develop the MCS/IDC data product 73 

Dataset name 
NCEP/CPP L3 half-hourly 

4 km Global Merged IR 

Three-dimensional Gridded 

NEXRAD Radar (Gridrad) 

NCEP Stage IV 

precipitation 
ERA5 melting level 

Dataset version V 1 V 3.1 V 1.0  

DOI 10.5067/P4HZB9N27EKU 10.5065/D6NK3CR7 10.5065/D69Z93M3 10.24381/cds.adbb2d47 

URL 

https://disc.gsfc.nasa.gov/da

tasets/GPM_MERGIR_1/su

mmary 

https://rda.ucar.edu/datasets

/ds841.0/ 

https://rda.ucar.edu/datasets

/ds507.5/ 

https://cds.climate.copernic

us.eu/cdsapp#!/dataset/rean

alysis-era5-single-

levels?tab=overview 

Last access Dec 28, 2019 Jan 2, 2020 Dec 28, 2019 Jan 24, 2020 

Initial spatial 

resolution 
Horizontal: ~ 4 km 

Horizontal: 0.02° 

Vertical: 1 km 
Horizontal: ~ 4 km Horizontal: 0.25° 

Initial temporal 

resolution 
0.5 hours 1 hour 1 hour 1 hour 

 74 

https://doi.org/10.5067/P4HZB9N27EKU
https://rda.ucar.edu/datasets/ds841.0/
https://rda.ucar.edu/datasets/ds841.0/
https://rda.ucar.edu/datasets/ds507.5/
https://rda.ucar.edu/datasets/ds507.5/
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Table S2. The classification criteria of the Storm Labeling in Three Dimensions (SL3D) algorithm in this study 75 

SL3D category Criteria 

convective 

ZH
1 = 25 dBZ echo-top height ≥ 10 km; or ZH ≥ 45 dBZ above (Zmelt

2 + 1) km; or ZH peakedness3 exceeding 

thresholds4 in at least 30% of the echo column between surface and 9 km. 

After the above filtering, exclude isolated convective grid points. Finally, grid points that have ZHmax
5 ≥ 25 

dBZ and are immediately adjacent to other convective grid points are classified as convective. 

precipitating 

stratiform 
ZH ≥ 20 dBZ at 3 km; or ZH ≥ 10 dBZ at 1 km or 2 km 

non-precipitating 

stratiform 

no echo or ZH < 20 dBZ at 3 km, and echo presents above 3 km. If no echo at 3 km – 5 km, but echo presents 

above 5 km, classified as an anvil. 

anvil No echo at 3 km – 5 km, but echo presents above 5 km 

convective 

updraft 

convective grid points satisfy: (1) ZHmax ≥ 40 dBZ, and (2) HZ

z




≥ 8 dBZ km-1 with echoes in at least six of 

eight horizontally adjacent grid volumes presents between the surface and 7 km. 
1 ZH: logarithmic radar reflectivity. 76 
2 Zmelt: melting level height. If temperatures at different vertical levels within a grid column are all below zero, there is no melting level. In this 77 
situation, we set Zmelt = -2. 78 
3 Peakedness is the difference between the ZH of the grid point being evaluated and the median ZH of a horizontal 12-km radius around the point. 79 

4 

2

max 4.0 ,10.0
337.5

HZ
threshold dBZ dBZ

 
= − 

 
. 80 

5 ZHmax denotes column max reflectivity. 81 
 82 
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Table S3. Annual mean precipitation amounts and intensities for different types of precipitation in different regions of the US for 83 
2004 – 2017 84 

 
Precipitation amount / mm Precipitation intensity / mm h-1 

Total MCS IDC StratiformNC Total MCS IDC StratiformNC 

NGP 515 254 116 145 3.3 4.3 3.3 2.4 

SGP 613 308 149 156 4.1 5.2 4.4 2.9 

SE 1,156 526 303 327 4.5 5.2 5.3 3.3 

NE 889 324 228 337 3.2 3.7 3.6 2.6 

 85 
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Table S4. Annual mean seasonal precipitation amounts and intensities for different types of precipitation in different regions of the 86 
US for 2004 – 2017 87 

 
Precipitation amount / mm Precipitation intensity / mm h-1 

Total MCS IDC StratiformNC Total MCS IDC StratiformNC 

NGP 

spring 150 78 31 40 2.9 3.6 2.8 2.2 

summer 214 117 47 50 4.2 5.0 4.5 3.0 

autumn 109 43 27 39 2.9 3.9 3.1 2.3 

winter 42 15 11 15 1.9 2.4 1.9 1.7 

SGP 

spring 176 119 27 30 4.2 5.2 3.9 2.9 

summer 200 83 71 47 4.7 5.5 5.3 3.2 

autumn 150 62 36 52 4.1 5.3 4.6 3.0 

winter 87 44 16 27 2.8 3.6 2.6 2.2 

SE 

spring 275 157 52 66 4.6 5.3 4.8 3.3 

summer 367 112 156 99 5.2 5.7 6.1 3.7 

autumn 249 109 55 85 4.6 5.4 5.5 3.5 

winter 265 147 40 78 3.8 4.7 3.7 2.8 

NE 

spring 230 97 56 78 2.9 3.5 3.2 2.4 

summer 276 80 85 111 4.2 4.9 5.0 3.3 

autumn 218 75 49 94 3.2 3.8 3.6 2.6 

winter 165 72 39 55 2.4 2.9 2.4 2.1 

 88 
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Table S5. Annual and seasonal mean characteristics of MCS and IDC events in the data product domain for 2004 – 2017 by using the new MCS definition1 89 

 
MCS IDC 

annual spring summer autumn winter annual spring summer autumn winter 

CCS-based lifetime / hour 17.1 17.6 16.0 18.2 20.0 2.0 2.1 2.0 2.0 2.6 

CCS area / km2 135,541 172,517 93,828 139,837 295,931 6,657 9,379 4,314 6,352 21,484 

CCS major axis length / km 579 667 475 615 935 99 117 85 99 173 

PF-based lifetime / hour 15.0 15.6 14.1 15.8 17.1 1.6 1.6 1.6 1.6 1.8 

Major axis length of the largest PF / km 321 357 264 357 518 63 69 55 68 93 

PF convective area / km2 6,119 6,468 6,091 5,897 5,697 477 496 463 487 520 

PF stratiform area / km2 28,570 34,718 17,997 34,607 67,902 1,205 1,559 774 1,517 3,113 

PF mean convective rain rate / mm h-1 4.5 4.0 4.8 4.6 3.9 4.1 3.4 4.5 4.3 3.0 

PF mean stratiform rain rate /mm h-1 2.7 2.4 2.8 2.7 2.3 2.8 2.5 3.0 2.9 2.3 

Area with ZHmax ≥ 45 dBZ within the largest PF / km2 791 862 850 617 563 54 56 57 47 42 

PF mean convective 20-dBZ echo-top height / km 6.6 6.2 7.2 6.1 5.0 6.5 6.1 7.0 6.2 5.0 

Area of the largest CCF / km2 2,094 2,081 2,317 1,754 1,392 339 355 333 337 347 

Major axis length of the largest CCF / km 95 96 99 88 82 29 30 28 29 30 

Max 30-dBZ echo-top height of the largest CCF / km 12.7 12.2 13.9 11.6 9.4 7.0 6.4 7.6 6.5 5.0 

Max 40-dBZ echo-top height of the largest CCF / km 10.4 10.2 11.4 8.9 7.1 5.4 5.0 5.9 5.0 3.7 

1 Refer to Section 4.4 in the main manuscript for the new MCS definition. 90 
 91 
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Table S6. Annual mean precipitation amounts and intensities for different types of precipitation in different regions of the US for 92 
2004 – 2017 by using the new MCS definition 93 

 
Precipitation amount / mm Precipitation intensity / mm h-1 

Total MCS IDC StratiformNC Total MCS IDC StratiformNC 

NGP 515 280 89 145 3.3 4.2 3.2 2.4 

SGP 613 344 113 156 4.1 5.1 4.4 2.9 

SE 1,156 602 227 327 4.5 5.3 5.3 3.3 

NE 889 371 181 337 3.2 3.7 3.5 2.6 

 94 



11 

Table S7. Annual mean seasonal precipitation amounts and intensities for different types of precipitation in different regions of the 95 
US for 2004 – 2017 by using the new MCS definition 96 

 
Precipitation amount / mm Precipitation intensity / mm h-1 

Total MCS IDC StratiformNC Total MCS IDC StratiformNC 

NGP 

spring 150 83 26 41 2.9 3.5 2.8 2.2 

summer 214 130 34 50 4.2 5.0 4.5 3.0 

autumn 109 50 20 39 2.9 3.8 3.0 2.3 

winter 42 17 9 16 1.9 2.4 1.9 1.7 

SGP 

spring 176 126 20 30 4.2 5.0 3.9 2.9 

summer 200 102 51 47 4.7 5.5 5.2 3.2 

autumn 150 70 28 52 4.1 5.2 4.5 3.0 

winter 87 47 13 27 2.8 3.5 2.6 2.2 

SE 

spring 275 170 39 66 4.6 5.2 4.8 3.3 

summer 367 153 115 99 5.2 5.8 6.1 3.7 

autumn 249 122 42 85 4.6 5.4 5.5 3.5 

winter 265 156 31 78 3.8 4.6 3.7 2.8 

NE 

spring 230 108 44 78 2.9 3.5 3.1 2.4 

summer 276 99 66 111 4.2 4.9 5.0 3.3 

autumn 218 85 39 94 3.2 3.8 3.5 2.6 

winter 165 79 31 55 2.4 2.9 2.3 2.1 
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 98 
Figure S1. Schematic of the FLEXTRKR algorithm. 99 
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 100 

Figure S2S1. Schematic of CCS merging and splitting. 101 
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 102 

Figure S3S2. An example of CCS merging and splitting from 2005-05-07T4:00:00Z – 103 
T9:00:00Z. Cloud 1 and Cloud 2 at 5:00:00Z merged into Cloud 1 at 6:00:00Z. And Cloud 1 at 104 
7:00:00Z at least split to Cloud 1 and Cloud 3 at 8:00:00Z. 105 
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 107 

Figure S4S3. Schematic of “merge” tracks and “split” tracks. 108 
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 109 
Figure S5. Definition of MCSs and IDC. 110 
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 111 

Figure S6S4. Seasonal cumulative distribution functions (CDFs) of PF-based lifetimes for (a) 112 
MCSs and (b) IDC in the data product domain for 2004 – 2017. Red lines denote spring, blue 113 
lines denote summer, green lines denote autumn, and black lines denote winter. 114 
 115 
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 116 

Figure S7S5. Annual mean monthly diurnal cycles of initiated MCS (left panel) and IDC (right 117 
panel) numbers in the data product domain for 2004 – 2017. Here, we define that an MCS or 118 
IDC event initiates when the first PF appears. Therefore, we can derive the initiated time of all 119 
MCS and IDC events, which is the basis of this figure. For example, on average, more than 7 120 
MCSs initiated at 14:00 Local Time (LT) every June between 2004 and 2017. 121 
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 124 

Figure S8S6. Distributions of the fractions of different types of precipitation in each season. Here, precipitation refers to 125 
annual mean seasonal amounts for 2004 – 2017. We exclude hourly data with precipitation ≤ 1 mm h-1 in the calculation. The 126 
first row is for total precipitation, the second for MCS precipitation, the third for IDC precipitation, and the fourth for 127 
stratiform NC precipitation. The first column shows spring precipitation, the second for summer, the third for autumn, and the 128 
fourth for winter. 129 
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 131 
Figure S9S7. Distributions of annual mean seasonal precipitation intensities for different types of precipitation for 2004 – 132 
2017. The first row is for total precipitation, the second for MCS precipitation, the third for IDC precipitation, and the fourth 133 
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for stratiform NC precipitation. The first column shows spring precipitation, the second for summer, the third for autumn, and 134 
the fourth for winter. We exclude hourly data with precipitation ≤ 1 mm h-1 in the calculation. 135 
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 137 
Figure S10S8. Monthly mean diurnal cycles of precipitation intensities for MCSs (a, d, g, j), 138 
IDC (b, e, h, k), and stratiform NC (c, f, i, l) in the NGP (a, b, c), SGP (d, e, f), SE (g, h, i), and 139 
NE (j, k, l) during 2004 – 2017. 140 
 141 
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 142 
Figure S11S9. An example of Stage IV erroneous precipitation. Stage IV shows a large area of 143 
intense precipitation suddenly appearing at 2011-05-02T12:00:00Z, which then unexpectedly 144 
disappears at 13:00:00Z, comes back abruptly at 14:00:00Z, and finally goes away immediately 145 
at 17:00:00Z. 146 
 147 
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 148 

Figure S12S10. Distribution of the fraction of valid Stage IV precipitation data for 2004 – 149 
2017. Here, “valid” means that precipitation data are available and reasonable. The erroneous 150 
precipitation discussed in the main manuscript is unreasonable and invalid. 151 
 152 
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 153 
Figure S13S11. Distributions of the fractions of available radar reflectivity data for 2004 – 154 
2017 at different vertical levels. As long as radars scan a grid cell, we think it as “available” 155 
even though there is no echo. 156 
 157 
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