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Abstract. Petrophysical properties are key to populate local and/or regional numerical models and to interpret results from
geophysical investigation methods. Searching for rock property values measured on samples from a specific rock unit at a
specific location might become a very time-consuming challenge given that such data are spread across diverse compilations
and that the number of publications on new measurements is continuously growing and data are of heterogeneous quality.
Profiting from existing laboratory data to populate numerical models or interpret geophysical surveys at specific locations or
for individual reservoir units is often hampered if information on the sample location, petrography, stratigraphy, measuring
method and conditions are sparse or not documented.

Within the framework of the EC funded project IMAGE (Integrated Methods for Advanced Geothermal Exploration, EU grant
agreement No. 608553), an open-access database of lab measured petrophysical properties has been developed (Bér et al.,
20182019: P3 - Database, http://dx.doi.org/10.5880/GFZ.4.8.2019.P3. The goal of this hierarchical database is to provide easily
accessible information on physical rock properties relevant for geothermal exploration and reservoir characterization in a single
compilation. Collected data include ‘classical’ petrophysical, thermophysical and mechanical properties and, in addition,
electrical conductivity and magnetic susceptibility. Each measured value is complemented by relevant meta-information such
as the corresponding sample location, petrographic description, chronostratigraphic age, if available, and original citation. The
original stratigraphic and petrographic descriptions are transferred to standardized catalogues following a hierarchical structure
ensuring  inter-comparability ~ for  statistical ~ analysis (Bar et al, 2019: P3 - Petrography,
http://dx.doi.org/10.5880/GFZ.4.8.2019.P3.p, Bér et al., 20182019: ps3 - Stratigraphy,
http://dx.doi.org/10.5880/GFZ.4.8.2019.P3.s). In addition, information on the experimental setup (methods) and the
measurement conditions are listed for quality control. Thus, rock properties can directly be related to in-situ conditions to
derive specific parameters relevant for simulating subsurface processes or interpreting geophysical data.

We describe the structure, content and status quo of the database and discuss its limitations and advantages for the end-user.

Keywords: relational database, rock physical properties, laboratory measurements, global data compilation.
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1 Introduction

The characterisation and utilisation of subsurface reservoirs generally relies on applying geophysical investigation methods
and/or numerical simulation codes — both requiring, in turn, the knowledge of physical rock properties at depth. The strategy
of populating numerical models with petrophysical properties can differ. For local-scale models, laboratory data from
individual samples collected from the geological unit of interest may exist. In this case, this direct information should be used
together with sophisticated (physical and empirical) laws to populate the entire geological unit. For regional and continental-
scale models, in contrast, parameters have to be generalised with respect to the spatial and physical variability of the
investigated lithological units.

Individual rock types or petrographies typically exhibit a great variability in related properties due to heterogeneous mineral
compositions, variable textures and differing porosity distribution (Schon, 2015). Existing rock properties compilations are
both an example for the high variability and for the different purposes of such databases (e.g. Cermak and Rybach, 1982,
Clark, 1966, Clauser and Huenges, 1995, Landolt-Bdrnstein, PetroMod, Schén, 2004, 2011, 2015, Mortimer, 2005, Hantschel
and Kauerauf, 2009, Lilios and Exadaktylos, 2011, Descamps et al., 2013, Aretz et al., 2015). Since such compilations are
mostly published with limited meta-information, it is difficult to extract data for formations of interest. This is even aggravated
due to additional limitations like the focused coverage of certain rock types or geographic areas (e.g. Germany: FIS Petrophysik
hosted by the Leibniz Institute of Applied Geophysics (LIAG) (http://www.fis-geophysik.de), Great Britain: BritGeothermal
(http://www.britgeothermal.org) hosted by the British Geological Survey (BGS), USA: National Geothermal Data System
(NGDS) hosted by a federate infrastructure including national organizations and academia (e.g., the United States Geological
Survey, Southern Methodist University, Association of American State Geologists, U.S. Department of Energy’s Geothermal
Data Repository, http://geothermaldata.org), Ireland: IRETherm project (http://www.iretherm.ie/), Australia: Rock Properties
Explorer (http://www.ga.gov.au/explorer-web/rock-properties.html), New Zealand: PETLAB: National Rock and
Geoanalytical database (http://pet.gns.cri.nz/#/), and many more).

In addition, different compilations do not provide a homogenised set of meta-information. Furthermore, exploration data
availability often depends on national legislation. In some countries industrial resource exploration data, including
petrophysical properties measured on cores of deep wells, may be public after a certain time period and then usually is
incorporated in national information systems. In other cases exploration data remains confidential for longer time periods or
even infinitely resulting in scarce data availability for the respective countries.

Due to the current publication policy of international research institutions where a high number of peer-reviewed publications
become more and more important for the individual scientific career, the amount of petrophysical data recorded worldwide
increased dramatically. These publications however are spread among many different geoscientific journals and dispersed in
many hundreds of publications. Given the rate of newly published property data combined with the multitude of publishing
journals, countries and authors, the research for and collection of data can be incredibly time-consuming. Recent studies show

that domain experts spend nearly 80% of their working hours into collecting, cleansing and managing their domain specific
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data (CrowdFlower, 2016). An effective, comprehensive collection, collation and dissemination of this data is deemed critical
to promote rapid, creative and accurate research (Gard et al., 2019).

To facilitate (i) efficient search for and research on measured rock physical properties, (ii) further evaluation of the property
data using complementing meta-information, and (iii) adequate property generalisation for specific units, a comprehensive
database was developed within the framework of the EC funded project IMAGE (Integrated Methods for Advanced
Geothermal Exploration, Grant Agreement No. 608553). The aim of this database is to compile, store and publicly provide
petrophysical property data from published laboratory test results on rock samples of any kind including as much meta-
information as possible. So far, literature data relevant for the IMAGE project and laboratory data collected during the IMAGE
project were fed into this novel PetroPhysical Property Database (P%). Here, we present the current state of P3 and release
version 1.0 in excel format (Bér et al., 2019: P3 - Database, http://dx.doi.org/10.5880/GFZ.4.8.2019.P3).

Electron Thin Section
Microscopy

1-10-1°

Figure 1: Concept of multiscale characterisation of geological reservoirs with (examples of) integrated petrological, petrophysical or
geophysical methods bridging outcrop analogue studies to numerical reservoir simulations.
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2 Contents and Structure of the Database

P3 is publicly accessible and contains physical rock properties measured in laboratory experiments. It is licensed under a
creative commons (CC-BY 4.0) license and its structure follows the FAIR guiding principles for scientific data management
and stewardship (Wilkinson et al. (2016). All data are selected to represent the characteristic scale of rock samples of few
centimetres to decimetres, depending on the measurement methods (as described by numerous norming institutions or
committees as e.g. the International Society for Rock Mechanics and Rock Engineering (ISRM), European Committee for
Standardization (C)EN, International Organization for Standardization (ISO), American Society for testing and Materials
(ASTM international) and many more) for the different properties. Within P2 we aimed at homogenising measurement method
descriptions to increase the inter-comparability between individual reported values. Larger-scale data from geophysical well
logging, hydraulic well testing, integrating geophysical methods or other field-scale measurements, which integrate over larger
rock volumes or several rock types are not yet included in the database (Figure 1). This shall reduce bias introduced by
heterogeneities within larger geobodies including open or partly open discontinuities like fissures, fractures, bedding or
schistosity. In addition, judged based on the lithological description, we did not include data from very small scale samples,
where the volume of interest is likely smaller than the minimum representative elementary volume (REV) (e.g. Ringrose and
Bentely, 2015) for the investigated rock type. The full range of the scale-dependency of petrophysical properties as described
in previous studies (e.g. Enge et al., 2007, Rihaak et al., 2015) is thus not yet reflected by the database but is planned to be
incorporated in future versions.

To ensure that source data is publicly available to researchers, only data from scientific publications (books or peer reviewed
journals) or proceedings (e.g. IGA Geothermal Papers/Conference Database) as well as published research reports (e.g.
dissertations or publicly available student’s theses, project reports) were included in P3. The database only contains
measurements with a minimum amount of meta-information to allow for reasonable interpretations, generalisations, or
simulations based on the collected data. The minimum associated meta-information is the reference to the data origin (citation)
and information about the petrography to allow for a classification according to a certain lithotype. If available, additional
meta-data were included, such as the sampling location (potentially including its type, e.g. outcrop, abandoned or active quarry,
vertical or deviated well), the affiliation to a registered sample set (e.g. International Geo Sample Number (IGSN, cf. Devaraju
et al., 2016, Lehnert et al., 2006)), stratigraphy, sample dimensions, measurement method or device and measurement
conditions (pressure, temperature, stress) including degree of saturation and type of saturating fluid. Conversion of published
values to Sl units as well as correction of some minor errors from published data or omissions from previous databases as they
are identified is an ongoing process during the data curation.

The database was developed as flat-file format using Microsoft Excel to keep it as simple and easy to handle even by the
unexperienced user as possible. While other database structures are in comparison much more efficient, their database
management schemes may render it too difficult for users not familiar with SQL to recover the desired data. However, the

internal design of P3 with multiple sub-entities and tables is structured following a relational database management system
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(RDBMS, Codd, 1970) with an Entity-Relation (ER) model (see Appendix 2), so that it could easily be transferred to e.g. the
well-established structured query language (SQL, Chamberlin and Boyce, 1974). Following this ERM the database could
easily be organised into multiple tables using the names of the tables as unique keys as links to other sub-tables. The main
advantages of a relational database over a flat file format are that data is uniquely stored just once, eliminating data duplication,
as well as performance increases due to greater memory efficiency and easy filtering and rapid queries (Gard et al., 2019).
However, the current flat-file structure allows for easy modification and extensions as new requirements emerge, as for
example by adding more sub-tables for newly developed property measurements not fitting to any of the already included
properties could be added at later stages. On the other hand, filtering and quality control to ensure that data is entered into the
database only once and that no duplicates exist had to be done manually. In our case data duplicates where removed by checking
the coordinates of each data point with a radius of uncertainty of 1 km and, if necessary, manually removing every double
entry identified.

Following the minimum requirements, the database is structured into three main sections or super entities (Figure 2), which
are sets of data tables (described in more detail in the following parts of the paper). The first, named ‘meta information’,
contains all meta-information on the sample including the sampling location, the sample type and dimensions as well as
information on its petrography and stratigraphy and thus acts as primary table for unique sample identification. The second
section or super entity contains the measured property value(s) of the unique rock samples. This section is sub-grouped into
thermophysical properties, ‘classical’ petrophysical properties, mechanical properties as well electrical and magnetic
properties and fields for property specific remarks. Finally, the third section or super entity named ‘quality control’ includes
all information relevant for the quality assessment of each data record (property measurement of the unique samples). Here,
especially information on the measurement conditions (methodology, pressure and temperature conditions, degree of saturation
etc.) are documented and used for the implemented semi-automatic quality control and assessment.

The first super-entity ‘meta-information’ consist of five tables or entities: sample ID, reference, sampling location, sample
information, petrography and stratigraphy. A description of each of these tables is included in the following sub-chapters. The
tables for petrography and stratigraphy are available separately. The super-entity ‘rock properties’ contains 28 separate sub-
tables for all properties included so far into the database each following a similar internal structure (see chapter 2.4). For many
samples measurements of multiple properties were available and included into the database, which results in multiple
documentation of the ‘meta-information’ of these samples in the current file structure. The super-entity ‘quality control’
contains two tables or entities, the first one for documentation of the measurement conditions and the second one for the

automated quality assessment of the entries (see chapter 2.5).

2.1 Sample Information

To distinguish measurements of different properties on a single sample or of the same properties performed at varying
measurement conditions, every measurement is listed in a separate row. To group measurement data from individual samples,

every sample receives a unique sample 1D, which acts the primary key of each record and links multiple measurements
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conducted on a single rock sample. The sample ID consists of the surname of the first author and the year of publication,
together with a sequential number for the particular rock sample presented in the respective publication. In case of several
references per author and year an additional letter (a,b,...) is introduced after the year.

For example, Fourier1822_1 stands for sample 1 within a publication of Fourier, J.B.J. (1822). In case of more than one
publication per year Fourier1822a_1 would represent sample 1 within a publication of Fourier, J.B.J. (1822a). The sample 1D
is linked to an accompanying reference database, compatible to all major reference management tools (e.g. EndNote, Citavi,
BibTeX, JabRef, etc.), which contains the full information (Co-Authors, full title, journal, volume, pages, etc.) on the reference.
The references are abbreviated in a Bibtexkey according to the terminology used for individual samples. At best, only primary
references are given. In case the primary reference is unavailable, while the data point is published as part of a review (or the
like), a secondary reference was introduced.

Additionally, the date of input and the name of the person who generated the entry into the database (the editor, listed as

contributors in chapter 6 team list) is documented.



META INFORMATION

sample ID

reference
primary reference
secondary reference
date of input
editor

sampling location
loc. type (area, outcrop, well)
loc. name
loc. country
loc. state/region
loc. longitude
loc. latitude
loc. elevation (m a.s.l.)
radius of uncertainty (km)

sample information
original sample ID
int. geo sample no. (IGSN)
sample type (drillcore, etc.)
sample length (m)
sample height (m)
sample width (m)
sample diameter (m)
sample longitude
sample latitude
sample elevation (m a.s.l.)
sample depth (m b.g.l.)
Petrography
petrographic ID
petrographic parent ID
pet. term (simplified)
petrography (in detail)
sample texture
sample homogeneity
sample layering
direction of measurement
sample consolidation
remarks on sample
Stratigraphy
stratigraphic ID
stratigraphic parent ID
chronostratigraphic unit
local stratigraphic unit

Figure 2: Schematic structure of P2 illustrating the three sections or super entities: ‘meta information’, ‘rock properties’ and ‘quality
control’. Different input parameters (small font) are grouped according to entities or property sub-tables (italics) they belong to.

2.1.1 Sampling Location

The sub-section ‘sampling location’ contains all relevant information on the location where a sample was obtained. Generally,
rock samples can be sampled in an outcrop, a quarry or a well. In case neither the sampling location is given as outcrop, quarry

or well, nor any exact coordinates are given in the corresponding publication, the location type “area” is selected. Furthermore,
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for every location type, a name, a country and state is given (e.g. location type: outcrop, location name: Fontainebleau, location

country: France, location state/department; Seine-et-Marne).

2.1.2 Location Coordinates

The location coordinates describe the latitude and longitude with the reference system WGS84 of the sampling point at the
surface in decimal degrees. Another category of entry is the elevation given in metres above sea level (m.a.s.l.). In the case of
a core sample taken from a well, the latitude and longitude of the wellhead is given. In case of an area with undefined sampling
point, e.g. “sample from the Rhenish Massif”, a midpoint from this geological province has been assessed and a radius of
uncertainty (in km) for the sampling location is estimated. For elongated areas (e.g. the Red Sea, the Upper Rhine Graben etc.)
the choice of a circular radius of uncertainty artificially increases the uncertainty. The introduction of polygons for the
definition of an area is discussed to be included in future releases of the database. If no information is given for the location,
the longitude and latitude are noted as 999 to avoid wrong map displays and half the circumference of the earth is used as
uncertainty.

For a conversion of the sample coordinates retrieved from the literature we used either Google Earth (Web Mercator Projection)
or ArcGIS to allocate a latitude/longitude value in decimal degrees and a rough estimation of the associated uncertainty to
each data point. We are aware that this '‘Google maps method' is not accurate but exact geographic information is quite often
not provided in the literature used for this compilation. Most common are the provision of location names or maps only. For
all literature data points where both the exact coordinates and the reference system was given, or where the location was given
on a georeferenced map with the required information on the coordinate system used, we used ArcGIS for transformation.
Therein, we used the same geographic projection as given in the original literature and either included the points as tabular
values or we georeferenced the given maps accordingly and picked the points on the maps. Afterwards, the resulting
coordinates were transferred to decimal degrees in the WGS84 reference with the transformation method for the specific
projected coordination system as suggested by ArcGIS. We have not documented the exact coordinate transformation used in

each case.

2.1.3. Original Sample ID

To allow for reviewing original publications, the primarily given sample identification numbers or names are documented in
addition to the P3 sample ID. This makes it easier to search for a specific sample in a publication, which might have been used

for further measurements or more detailed descriptions by other authors subsequently or individual users of the database.

2.1.4 International Geo Sample Number

The International Geo Sample Number (IGSN, cf. Devaraju et al., 2016, Lehnert et al., 2006) is a unique identifier for samples
and specimens collected from the natural environment (http://www.igsn.org/). In order to enable locating, identifying, and

citing physical samples, the IGSN number was listed if available. Furthermore, entries allow for cross-linking both, the P23 as
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well as the IGSN database in order to ensure access to more meta-information like sampling methods, project related
information, etc., currently not implemented in P3. As described by Strong et al. (2016) the adoption of IGSNs will ensure
compatibility and interoperability with other international databases, including the promotion of standard methods to locate,

identify and cite physical samples.

2.1.5 Sample Type

Samples can have different shapes that are particularly relevant for the measurement technique. Core samples do have different

characteristics than rock blocks or drill cuttings, etc. so that P3 reserves a separate column for the sample type.

2.1.6 Sample Dimensions [m]

Together with the documentation of the sample type, if available, information about its length, height, width and for cores,
diameter, all given in meters, are documented. If the rock property “density” is measured for any sample where the dimensions
are given, sample volume and weight might be calculated as well. This additional information together with its petrography

was essential to evaluate whether a sample reaches a Representative Elementary Volume (REV) or not.

2.1.7 Sample Coordinates

For several samples taken at a single sampling location (e.g. a large outcrop or quarry), eventually individual sample
coordinates are given (longitude, latitude and elevation). For samples from a cored well, additionally, the depth of the sample
is given in measured depth (MD) and, if available, in true vertical depth (TVD) referenced to the ground level (i.e. meters
below ground level, m b.g.l.). If data on the geometry of deviated wells are available, it is optional to either enter the sample

location relative to the wellhead or with its exact location and elevation (with respect to the sea level).

2.2 Petrography or Rock Type

The petrography or rock type classification scheme is defined in a complementary database (Bér et al., 2019: P2 - Petrography,
http://dx.doi.org/10.5880/GFZ.4.8.2019.P3.p) directly published together with P3. Its internal structure is based on a
hierarchical subdivision of rock types, where the rock description generally becomes more detailed with increasing rank of
petrographic classification (based on the well database of the Geological Survey of Hessen, Germany: Hessisches Landesamt
fur Umwelt, Naturschutz, Umwelt und Geologie (HLNUG)). This hierarchical subdivision is based on international
conventions (e.g. Bates and Jackson, 1987, Gillespie and Styles, 1999, Robertson, 1999, Hallsworth and Knox, 1999, Bas and
Streckeisen, 1991, Schmid, 1981, Fisher and Smith, 1991). Furthermore, the classification corresponds to the subdivision
provided by existing property data compilations such as e.g. Hantschel and Kauerauf (2009), Schén (2011), Rybach (1984)
and Clauser and Huenges (1995).

Petrographic classifications from rank 1 to rank 4 can usually be identified from macroscopic descriptions of well logs, cores

and geological mapping (Figure 3). The petrographic classifications from rank 5 to rank 9 require additional information on
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the texture or grain size, the modal composition or the geochemistry etc., which can usually only be acquired by microscopic
or comparable special investigations. Overall, there are nine ranks covering a total of 1494 petrographies. The petrographic
classification of a sample in P3 is based on the sample description within the original literature reference. A petrographic ID
and a corresponding petrographic parental ID directly correlate the different classifications and their ranks (Table 1). This
allows for example, to integrate all petrographies with higher ranks to a corresponding general term of lower rank and

statistically analyse the associated physical rock property values across petrographic definition boundaries (Figure 3).
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Figure 3: Hierarchical system of standardised petrographic terms used for the database. White boxes are an exemplarily chosen
extract to illustrate the structure of the petrography classification. Black boxes document the number of rock type categories per
rank for the entire classification scheme. These interconnected standardised terms allow for the connection of certain
lithologies/petrographies to specific petrophysical properties and are thus the basis for statistical analysis. Black arrows show direct
connections, while grey arrows indicate that there are additional terms not displayed here.

In P3, the petrographic 1D, the petrographic parent ID and the simplified petrographic term are documented. Additionally, for
each sample original petrographic descriptions of the primary references can be presented if available. Details on the texture,
homogeneity, layering, consolidation state of the sample and the direction of measurement with regard to internal structural

features (such as bedding etc.) as well as degree of alteration or weathering can be documented together with specific remarks.
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Table 1: Excerpt from the rock classification table used for P3. Different ranks and their interconnection by petrographic 1D and
petrographic parent ID as well as their connection to international definitions as indicated. QAPF = Quartz-Alkali feldspar-

Plagioclase-Foids (Le Maitre and Streckeisen, 2003).

Petro-
Petro- .
. graphic . A
graphic Rank Petrographic term Definition
D parent
ID
10102 1 Consolidated rock
10104 10102 2 Magmatic rock Rock formed from magma
10105 10104 3 Plutonic rock Igneous rock with phaneritic texture
52349 10105 4 Plutonic rock, modal (QAPF)  Intrusive igneous rock, nomenclature by QAPF-
classification for plutonic rocks
10107 52349 5 Quartzolite (QAPF) QAPF-classification for plutonic rocks, field 1a, Qz > 90
vol%
10110 52349 5 Granite (QAPF) QAPF-classification for plutonic rocks, field 2, 3a, 3b,
colour index <90 %
10111 10110 6 Alkali-Feldspar-Granite QAPF- classification for plutonic rocks field 2
10112 10110 6 Syenogranite QAPF- classification for plutonic rocks field 3a
10113 10110 6 Monzogranite QAPF- classification for plutonic rocks field 3b
10114 52349 5 Granodiorite (QAPF) QAPF-classification for plutonic rocks, field 4, colour
index <90 %
10115 52349 5 Tonalite (QAPF) QAPF-classification for plutonic rocks, field 5, colour
index <90 %
10127 52349 5 Syenite (QAPF) QAPF-classification for plutonic rocks, field 7, colour
index <90 %
10128 52349 5 Monzonite (QAPF) QAPF-classification for plutonic rocks, field 8, colour
index <90 %
10129 52349 5 Monzodiorite (QAPF) QAPF-classification for plutonic rocks, field 9, An (PL) <
50 mol%, colour index < 90 %
10130 52349 5 Monzogabbro (QAPF) QAPF-classification for plutonic rocks, field 9, An (PL) >
50 mol%, colour index < 90 %
10131 52349 5 Diorite (QAPF) QAPF-classification for plutonic rocks, field 10, An (PL)
<50 mol%, 10 % < colour index < 90 %
10132 52349 5 Gabbro (QAPF) QAPF-classification for plutonic rocks, field 10, An (PL)

5 2.3 Stratigraphy

> 50 mol%, 10 % < colour index < 90 %

10

The stratigraphy of each sample was inserted into the database in two complementary ways. The first way is to use the
definitions of the international chronostratigraphic chart of the IUGS v2016/04 (Cohen et al., 2013, updated) according to
international standardisation. These chronostratigraphic units are also compiled in a complementary database (Bér et al., 2019:
Ps - Stratigraphy, http://dx.doi.org/10.5880/GFZ.4.8.2019.P3.s) to ensure that formations of a certain age are connected to the
corresponding stratigraphic epoch, period or erathem. Thus, the chronostratigraphic units are directly correlated to each other

by their stratigraphic ID and stratigraphic parent 1D, allowing for statistical analysis of the properties of certain stratigraphic

11



10

15

units (Table 2). In contrast, a more detailed description of the local stratigraphic unit can also be documented if provided in

the primary reference.

Table 2: Excerpt from the stratigraphic classification table used for P3 (based on Cohen et al., 2013, updated). Different ranks and
their interconnection by stratigraphic ID and stratigraphic parental ID are indicated. Num. = numerical; SD = standard deviation;
Phan. = Phanerozoic

Strati- Srgaftwii_c Series / Num. nia Chronostrati-
graphic grap Eon Era Period Stage / Age Age ' . .
D parent Epoch [Ma] Age graphical unit
ID [Ma]

129 102 Phan. Mesozoic Cretaceous 145 Cretaceous

130 129 Phan. Mesozoic Cretaceous Lower 145 Lower Cretaceous

131 130 Phan. Mesozoic ~ Cretaceous Lower  Berriasian 145 Berriasian

132 130 Phan. Mesozoic  Cretaceous Lower  Valanginian 139.8 Valanginian

133 130 Phan. Mesozoic Cretaceous Lower  Hauterivian 132.8 Hauterivian

134 130 Phan. Mesozoic Cretaceous Lower  Barremian 129.4 Barremian

135 130 Phan. Mesozoic Cretaceous Lower  Aptian 125 Aptian

136 130 Phan. Mesozoic Cretaceous Lower  Albian 113 Albian

137 129 Phan. Mesozoic Cretaceous  Upper 100.5 Upper Cretaceous

138 137 Phan. Mesozoic ~ Cretaceous Upper  Cenomanian 100.5 Cenomanian

139 137 Phan. Mesozoic ~ Cretaceous Upper  Turonian 93.9 Turonian

140 137 Phan. Mesozoic  Cretaceous Upper  Coniacian 89.8 0.3  Coniacian

141 137 Phan. Mesozoic ~ Cretaceous Upper  Santonian 86.3 0.5  Santonian

142 137 Phan. Mesozoic ~ Cretaceous Upper  Campanian 83.6 0.2  Campanian

143 137 Phan. Mesozoic  Cretaceous Upper  Maastrichtian 72.1 0.2  Maastrichtian

2.4 PetroPhysical Properties

The properties included in P3 can be grouped into ‘classical’ petrophysical properties, thermophysical properties, mechanical
properties as well as electrical and magnetic properties (Figure 2). Overall, 28 different rock properties are included so far and
documented in separate sub-tables of the database following a similar internal structure. Based on the original reference, the
measurement is given as a value, which if available is complemented by a standard deviation, a minimum and maximum value
and the number of measurements. Thus, it is possible to either include single measurements or mean values while still offering
the opportunity of statistical evaluation by incorporating the number of measurements corresponding to a mean value.
Furthermore, the measurement method for each property value is presented by means of a common nomenclature documented
in the supplementary report (Bér et al., 2019: P3 - Data Description, http://dx.doi.org/10.5880/GFZ.4.8.2019.P3). This is
important for statistical analysis and comparability of the results of different methods. Particularly, the type of method might
have a large impact on the quality and device-specific error of any measurement. Finally, specific remarks can be made for

each value separately.
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2.5 Quality Control

In addition to the primary option of manual database quality control, which is by providing the information of the original data
source, an automatic process of quality control was implemented in P3. Therefore minimum requirements for a value to be
included in the database were defined as already described in section 2.

To provide a quality estimate for each data entry in terms of provided meta-information, a set of key criteria is automatically
analysed: (i) uncertainty of the geographic location, (ii) the rank of petrographic classification, (iii) the rank of stratigraphic
classification, (iv) the completeness of information on measurement conditions and, (v) the statistical type of a value (e.g.
single value, mean value etc.). For each key criterion, four different quality classes (excellent =1, average =2, poor = 3; and
minimum) are defined and computed to numerical quality indices (q;, Table 3). A bulk quality index is calculated according to
the arithmetic mean of the quality indices of the different criteria, where values < 1.5 are considered excellent, values > 1.5 <

2.5 are considered average and values > 2.5 are considered poor and values > 3.5 only meet the minimum requirements.

2.5.1 Geographic Uncertainty

Concerning the location of the sample, a geodetic accuracy of less than 100 m is considered to be excellent quality, which
should always be the case for outcrop samples or drill cores. If the information on the location only contains a description of
a geological unit in a certain region or area, the related size of this area is considered for the definition of the quality indices.
If the location can be constrained to a region with a radius of less than 1 km the quality is considered average whereas if the
radius of uncertainty is between 1 km and 100 km, it is considered poor. Larger radius of uncertainty is considered as quality

class 4.

2.5.2 Petrography or Rock Type

If the original petrographic or lithological description allows for the allocation of a petrographic term with a rank of 6 or higher,
the quality is considered excellent, for a rank of 5 it is considered average because these petrographic terms usually allow for
a distinction of petrographies as used for reservoir- or site-scale geological models. For a rank of < 4 the quality is considered
poor (compare Figure 3 and Table 1). To enter the database at all, the petrographic description of a sample has to allow for an
allocation of a petrographic term of rank >2. This classification at least allows for a distinction of petrographies on a level used

for continental-scale geological models.

2.5.3 Stratigraphy

Concerning the stratigraphy of the sample, (i) information on the chronostratigraphic Stage or Age is considered to be excellent,
(ii) information on the stratigraphic Series or Epoch is defined as average and (iii) if only the chronostratigraphic System or
Period is given, it is considered poor. To enter the database, there is no minimum requirement for the information on the

stratigraphic age, since (i) stratigraphy does not directly control physical properties and (ii) scientific users might
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retrospectively derive stratigraphic information from the sampling location in combination with the petrography of the sample

and additional information such as geological maps.

2.5.4 Measurement Conditions

For every data point, the measurement conditions can be entered. These are the temperature (K), pressure (Pa), saturating fluid

5 and the degree of saturation (%) as well as for the mechanical properties additional information about the ambient stress field,
o1, 62, 03 (MPa), and the pore pressure of the sample (MPa). For the sonic velocities (v, and vs) the frequency of the sonic
pulse and, for the uniaxial compressive strength and related mechanical properties, the strain rate can be given as additional
measurement conditions.

The quality assessment of the measurement conditions is based on both the measurement conditions and the measurement
10 device, which is needed to be able to quantify the specific measurement error typical for a certain method. Excellent quality is
only provided if information is available on all these points. If only the measurement device and the temperature and pressure
conditions or the degree of saturation is available, the data quality is defined as average. If only the device, or the temperature
and pressure conditions, or the degree of saturation is described in the original reference the quality is considered to be poor.
15 Table 3: Quality indices defined by the input data available. (n = numbers of measurements, NA = not available)
4 = minimum
Parameter 1 = excellent 2 = average 3 = poor .
requirement
Geographic
. <100 >100m<1k >1km<100k >
uncertainty - m m=1xm m= m 100 km
Petrography Rank > 6 Rank = 5 Rank = 4 Rank >2
Stage / Age or lower or . . .
Stratigraphy numerical age SE’E;ZSHI/(EF)E; h System (/RF;irllog 30; higher NA
(Rank > 5) -
Measur;nlllegt device Measurement device AND ~ Measurement device OR
Measurement temperature and temperatur% %nd pressure temperatur((a) aRnd pressure NA
conditions pressure AND. degree of saturation degree of saturation
degree of saturation - .
. available available
available
Mean value and number n
of measurements V
. alue
Parameter value | Single measurement AND Mean value and number n ( ),
L of measurements NA
standard deviation or
Minimum and Maximum
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2.5.5 Measurement Parameter

The last criterion for the quality control is the type of value representing the property. In general, single measurement values
for a sample are ranked higher in quality than mean values of various measurements applied to a sample. Accordingly, single
measurements are considered as excellent and mean values as average or poor. If the mean value is not only accompanied by
the number of measurements to calculate the mean value, but also by the minimum and maximum as well as the standard
deviation from this set of measurements, the quality is defined as average. In contrast, a mean value accompanied only by a
number of measurements is defined as poor. Values resulting from an unspecified number of measurements are not considered
for quality control but still included into the database with NA (“not available™) in the respective column for number of

measurements to enable the user to exclude these values in statistical analyses.

3 Status of the Database, Data Availability and Quality

Up to now, data that entered the database are either from published data collections, scientific papers, student’s theses and
scientific project or technical reports (316 references altogether, see Appendix 1). So far, 75,573 data points from all over the
world (Figure 4 and Figure 5), were collected. The data are not reasonably well around the globe but rather show a strong
dominance of samples sourced from central Europe and the United States. This reflects the original purpose of the IMAGE
project as well as public availability of existing databases. Data is only scarcely available for Africa, South America, Australia,

Russia and China.
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Figure 4: Locations of all data points currently included in P2 (for references see Appendix 1). Topographic map is the ETOPO1
map (Amante and Eakins, 2009)
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Figure 5: Locations of data points currently included in P? for the Europe (for references see Appendix 1). Topographic map is the
ETOPO1 map (Amante and Eakins, 2009)

The amount of data entries for different petrographies shows that all main consolidated rock types are well represented. With
38,219 property measurements from sedimentary rocks, 25,261 from magmatic rocks, 9,235 from metamorphic rocks, and
1,308 from unconsolidated rocks, petrographies usually considered as reservoir rocks are dominant making up more than 75%
of the data.

Since P3 was collected to serve the goals of the IMAGE project and will always represent work in progress, its data entries are
unevenly distributed among the different properties (Table 4) as well as regions. In its current version, the entries for some
properties derive from only a few sources. For example, radiogenic heat production values contained in the database have

mainly been derived from the compilation of Vila et al. (2010). This compilation, which is based on many secondary references,
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includes more than 2,100 representative U, Th and K concentrations from all over the world (originally published in 102
studies). Based on this chemical composition database, Vila et al. (2010) calculated values of radiogenic heat production for a
large variety of rock types. Of the original compilation (of Vila et al., 2010), we have incorporated into the database only those
values that were associated with sufficient metadata and based on actual lab investigations and not on spectral gamma ray and
density data of borehole geophysical logs. Newer compilation on radiogenic heat production (e.g. Hasterock & Webb, 2017

and Hasterock et al., 2017) have not yet been included.

Table 4: Number of measurements of the different properties in P3.

Property Number of Measurements
Grain and bulk density 12.615
Porosity 8.821
Permeability 5.299
Thermal conductivity 19.622
Specific heat capacity 5.684
Thermal diffusivity 3.167
Radiogenic heat production 2.049
P and S wave velocities 4.985
Electric conductivity 6.564
Uniaxial compressive strength 987
Tensile strength 318
Poisson Ratio 1850
Additional properties ...
Total 75.573

Concerning the data quality, the quality indices both for the bulk index as well as for the five indices defined in Table 3 show
a wide dispersion over all quality classes. The quality indices for the petrography, the geographic uncertainty and the
measurement parameter show mainly quality values of 1 to 3 representing a good quality of input data documentation in
average. Only the quality indices for measurement conditions and for the stratigraphy, where quality index values of 3 and 4
are dominant show that the documentation of these metadata is not satisfactory for a large share of the compiled data.
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Figure 6: Overview of the quality indice distribution of the P3 input data quality assessment. For the definition of the quality indices
see Table 3.

4. Discussion

The current status of the database already shows a lot of benefits that such a compilation has automatically brings along, but
also some limitations, which have to be addressed in future amendments. The defined minimum requirements for a datum to
be integrated into P3 guarantee its usability in terms of statistical, spatial, petrographic and stratigraphic analyses. Since it also
contains multiple properties measured on a single sample, direct correlations with other data and properties are facilitated. This
may help identifying new relationships (formal, causal or statistical correlations), and contribute to a better understanding of
the limitations of generalisation or possibilities for upscaling approaches. The automatic quality assessment allows for a quick
evaluation of a single datum within a group of selected entries. The possibility of correlating data also simplifies and accelerates
the identification of key references for rock parameters in specific regions, for specific rock types, or stratigraphic units.
Furthermore, the database allows to systematically analyse the dependency of property values on the corresponding
measurement conditions. Thus, the most important added value of P® compared to existent databases is its dimension (large
number of entries corresponding to a large number of petrophysical properties) as well as the documented meta-information.

Despite all benefits, such a database can never be complete and is always prone to uncertainties. To identify errors in original
publications (in terms of property values and meta-information, e.g. sample preparation, accuracy of measurements, sampling
bias, lab worker bias, measurement methods, reference standards and many more) is beyond the scope of this compilation. In

addition, data-input errors, errors concerning the interpretation or the petrographic and stratigraphic classification cannot be
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excluded. We assume that the quality check of the original publications and the data therein has already been done by skilled
reviewers or editors of the corresponding scientific journals, respectively theses. In addition to that, the quality indices
developed as part of P3 allow the user to quickly evaluate the quality of each data point and thus help with the decision whether
the original reference should be re-assessed or not.

Additionally, P3 includes values generated with different established or newly developed measurement methods, delivering
data of different quality and uncertainty. Hence, data comparability is not necessarily granted and a statistic assessment can
only be representative if these effects are considered. Due to the documentation of the original source, however, the related
detailed information of a chosen sample set can be verified if necessary. For subsequent applications, such as modelling, the
spatial distribution of the data has to be considered as well as the origin of the samples. Due to diverse effects (such as
temperature, pressure, weathering, diagenetic history, etc.), properties measured from outcrop analogue samples might differ
considerably in quality from those of the same formation at in-situ conditions within a deep reservoir formation. It remains to
the experienced user to evaluate if the tabulated datum is applicable and if sufficient meta-information is given. In case of

doubt, the users are referred to the original publications.

5 Conclusions and Perspectives

We developed the P database of petrophysical rock properties measured on rock samples in various laboratories. P3 is designed
to be as transparent and useful for various purposes as possible through the integration of multiple meta-information (including
the original reference) for each data point. The database already comprises a great variety of properties, petrographies,
stratigraphies etc. from samples investigated all over the world. In this first release, 75,573 data points from 316 publications
were included. The current compilation of samples mainly reflects the project goals of the geothermal project IMAGE (van
Wees et al., 2015), while the applicability of P3 certainly can be seen in various geoscientific fields focusing on subsurface
utilisation (e.g. oil and gas, CCS, hydrogeology, subsurface storage of radioactive waste etc.). The collected data will help
researchers and users particularly in the early stages of new geothermal or any other projects to make a first assessment of the
subsurface geothermal rock properties. This will help planning future exploration needs and, in areas where the existing data
density is sufficient, even support direct modelling or exploitation projects. Additionally, the database will help improving
local and regional geoscientific studies with different focus on utilisation of the subsurface. A first release of this database (Bér
et al 2019: P3 - Database, http://dx.doi.org/10.5880/GFZ.4.8.2019.P3) including a report and a reference list of all included
publications is available as supplementary data to this publication.

Compiling the data from various sources, however, has shown that the general documentation of measured petrophysical
properties is very heterogeneous and often the minimum requirements defined for our P2 were not fulfilled. We therefore
appeal to the reviewers and editors of scientific journals to ensure that any publication containing original measurements of

petrophysical properties should come along with all the helpful and necessary meta-information as described here. Only if
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these requirements are fulfilled, a published dataset is of added value for the scientific community and can be used for
subsequent investigations or applications.

Since a database like P2 can never be complete, a further extension based on not yet considered publications, newly published
data or own measurements is foreseen. Furthermore, we both hope to collaborate with existing compilation authors in the
future to combine the collations into one more useful systems but also support the use of this version of the P3 database for
other database initiatives as supplement of their own records. We plan to develop a publicly accessible web-based interface to
facilitate external users to perform specific queries on petrophysical properties. In addition, such queries shall be feasible based
on a web-based geographic information system, which may be connected to additional information such as worldwide

geological maps (e.g. OneGeology, www.onegeology.org). With this system, external users shall be given the opportunity to

contribute to the database and thereby simplifying the access to measurements, which may improve their visibility
considerably. Thus, the database will be continuously updated and at certain stages newly released by the editors. For this
purposes the database will be implemented using a relational database management system (RDBMS) following the third
normal form (3NF) according to Codd (1970) and Maier (1983) to reduce the volume of stored data by elimination of multiple
storage of the same information for a sampling location, which will strongly increase its flexibility, durability and applicability
especially for the SQL-experienced user. This will facilitate to link P3 to similar databases in the future.

To broaden the applicability of P2 for reservoir characterisation in the future, the integration of lab measurement or geophysical
exploration methods aiming at the determination of petrophysical reservoir properties on smaller or larger scale is currently in
discussion and will allow to include information on the scale-dependence of petrophysical properties (e.g. Enge et al., 2007)
which are of paramount importance for understanding of reservoir behaviour. This could include properties derived from
geophysical well logging (Hartmann et al., 2005, Fuchs et al., 2015), hydraulic testing in wells (Achtziger-Zupanci¢ et al.,
2017 and references therein) or other integrating geophysical exploration methods e.g. seismics (Gu et al., 2017), gravimetry
or electromagnetic methods (e.g. Munoz et al., 2010, Megbel and Ritter, 2015). Furthermore, additional information on the
sample like their geochemical or modal composition from XRF, ICP-MS or ICP-OES analyses, point counting of thin sections
or electron microscopic investigation of e.g. cementation, pore geometry or microfractures, which can all act as controlling
factors of petrophysical properties would be a helpful extension of the database. Therefore existing databases could be easily
implemented (e.g. Lehnert et al., 2000, Mortimer et al., 2005, Strong et al., 2015 and Gard et al., 2019 and references therein).
This will extend the opportunity to also use the database to derive phenomenological constitutive models for petrophysical
rock properties from their chemical or mineralogical composition (Chopra et al., 2018, Gard et al., 2019) or from their
microstructure (Pimienta et al., 2014) or to develop empirical correlations between distinct properties of certain rock types
(Gegenhuber and Schén, 2012, Esteban et al., 2015, Mielke et al., 2017).
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6 Appendix 1: List of references for Figures 4 and 5

Adelinet et al. (2013), Alam et al. (2011), Altherr et al. (2000), Aretz (2015), Ashwal et al. (1987), Aswathanarayana (1986),
Atal et al. (1978), Attoh (2000), Babaie et al. (2001), Bér (2008, 2012), Baker et al. (1997), Balakrishna & Ramana (1968),
Ballard et al. (1987), Barrett & Aumento (1970), Bauluz et al. (2000), Bea & Montero (1999), Bemmlott (2014), Best &
Christiansen (2002), Betten (2015), Bhatia & Crook (1986), Biewer (2014, 2017), Birch & Clark (1940), Birch (1942),
Blackwell & Richards (2004), Brady et al. (2006), Brandt et al. (2004), Brehme et al. (20163, b), Brettreich (2016), Bridgman
(1924), Brigaud et al. (1992), Brown et al. (1981), Bullard (1939), Bultitude et al. (1978), Buntebarth (1980), Carroll (1969),
Cebria et al. (2000), Ceryan (2008), Ceryan et al. (2008), Chapman & Pollack (1977), Chappell (1999), Chung (1999), Chung
et al. (1995, 2001), Clark (1957, 1961, 1966), Clauser (2001), Cocherie (1984), Cocherie et al. (1994), Condie (1993), Coster
(1948), C6té & Konrad (2005), Crecraft et al. (1981), Creutzburg, H. (1965), Dahmani& Sawyer (2001), Damm et al. (1990),
Dickson & Scott (1997), Diment (1964), Dodge et al. (1986), Dongmo (2016), Ducea & Saleeby (1998), Dupré & Echeverria
(1984), Eberhard (2005), El Dakak (2015), Ensor (1931), Esteban et al. (2015), Ewart et al. (1973, 1977), Faridfar (2010),
Farmer (2003), Farmer et al. (2002), Farquharson et al. (20164, b), Forster & Forster (2000), Fountain et al. (1987), Fourcade
& Allegre (1981), Fowler et al. (2005), Francois & Lemmet (1999), Franzson et al. (2010, 2011), Fridleifson &
Vilmundardottir (1998), Fuji-ta et al. (2004, 2007, 2011), Gartner (2017), Galan et al. (1996), Gangadharam &
Aswathanarayana (1969), Gao et al. (1998), Garcia-Gutierrez & Contreras (2007), Gaunt et al. (2014), Gehlin (2002), Gehlin
& Hellstrom (2003), Geist (2011), GeORG-Projektteam (2013), Ghazi & Hassanipak (1999),Gill (1981), Gill & Whelan
(1989), Glover (1989), Glover & Vine (1992, 1994, 1995), Grecksch et al. (2003), Grunert (2007), Gu (2010), Gudmundsson
etal. (1995), Gihne (2016), Guillot & Fort (1995), Guillou-Frottier et al. (1995), Gupta et al. (1991), Haack (1983), Haffen et
al. (2012, 2013), Hartmann et al. (2005), Hauff et al. (2000), Heap et al. (2009, 2011, 2012, 20144, b, 20153, b, ¢, 2016), Herrin
& Clark (1956), Hesse (2011), Hill et al. (1981), Hoffmann (2011, 2015), Hofmann (1988), Homuth (2014), Hooper &
Hawkesworth (1993), Huber et al. (2001), Hickel & Kappelmeyer (1966), Hurtig & Brugger (1970), Hutt & Berg (1968),
Hyndman & Jessop (1971), Inger & Harris (1993), Innocent etal. (1994), Islam (2010), lyer et al. (1984), Jaupart et al. (1982),
Jaya et al. (2010), Jensen (2014), Jeong et al. (2007), Jochum et al. (1983), Jodocy & Stober (2011), Johannes et al. (2003),
John & Wooden (1990), Jones (1987, 1988), Kahraman (2007), Kalsbeek et al. (2001), Kappelmeyer & Haenel (1974), Kassab
& Weller (2011, 2015), Kawada (1964, 1966), Kay & Kay (1994), Kay et al. (1990), Keen & Lewis (1982), Kelemen et al.
(2007), Kemp & Hawkesworth (2003), Kendrick et al. (2013a, b), Kennedy & Russell (2012), Kennedy et al. (2009), Kerr
(2003), Khitarov et al. (1959), Kidder et al. (2003), Klaske (2010), Klein (2003), Klug & Cashman (1996), Klumbach (2008,
2010), Knopoff (1968), Konigsberger & Weiss (1911), Kolzenburg et al. (2012), Konzack (2015), Kramers et al. (2001), Kraus
(2009), Kristinsdattir et al. (2010), Kukkonen et al. (1997), Kumar & Reddy (2004), Kumari et al. (2017), Lambert (2016),
Lastovickova et al. (1993), Ledesert (1993), Leonidov (1967), Leonidov et al. (1966), Lesquer et al. (1983), Leu et al. (2006),
Linsel (2014), Loaiza et al. (2012), Luais & Hawkesworth (1994), Lucazeau & Mailhe (1986), Mack (2007), Mahood (1981),
Maire (2014), Manghnani & Woollard (2013), Mareschal et al. (2000), Mariucci et al. (2008), Marzan Blas (2000), McDermott
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et al. (1996), McDonough (1990), McKenna & Sharp (1998), McLaren et al. (1999), McLennan et al. (1990), Mengel et al.
(2001), Mielke (2009), Mielke et al. (2015), Milicevic (2015), Milord et al. (2001), Misener et al. (1951), Mitchell (1995),
Moiseenko (1968), Moiseenko & Sokolova (1965, 1968), Moiseenko et al. (1965, 1967), Montanini & Tribuzio (2001),
Mossop & Gafner (1951), Mottaghy et al. (2005), Miiller (2014), Munck et al. (1979), Murti (1980), Nabawy et al. (2009),
Nabawy et al. (2010), Narayanaswamy & Venkatasubramanian (1969), Nehler (2011), Nicolaysen et al. (1981), Noritomi &
Asada (1955), Nyblade et al. (1990), Oelsner (1981), Orendt (2014), Pannike et al. (2006), Pannike (2005), Parkhomenko &
Bondarenko (1972), Paslick et al. (1995), Peate (1997), Peccerillo & Taylor (1976), Pei (2009), Pereira et al. (1986), Pickett
& Saleeby (1993), Plank & Langmuir (1998), Pola et al. (2012, 2014), Popov et al. (1999), Pribnow et al. (2000), Price et al.
(1997), Priebs (2011), Rao & Rao (1979, 1983), Rao et al. (1972), Ray et al. (2015), Rebay & Spalla (2001), Reyer & Philipp
(2014), Reynaud et al. (1999), Roberts et al. (2000), Rogers et al. (1998), Rolandone et al. (2002), Rosener (2007), Rudnick
& Fountain (1995), Rudnick et al. (1998), Rudnick (1992), Riither (2011), Rummel (1991, 1992), Rummel & Schreiber (1993),
Russell et al. (2001), Rybach et al. (2003), Sakvarelidze (1973), Salters et al. (1992), Salton (1999), Sandiford et al. (1 2002),
Sandkihler (2015), Sanner & Anderson (2001), Sanner et al. (2000), Sass et al. (1971), Sawka & Chappell (1988), Schéffer
(2012), Scharli & Kohl (2002), Schintgen (2015), Schén (1983, 1996, 1998), Schopflin (2013), Schubert (2011), Schumann
(2008), Schiitz (2013), Schwalb (2012, 2014), Shimojuku et al. (2012), Sighinolfi et al. (1981), Sikora (2015), Sims et al.
(1984), Siratovich (2010), Siratovich et al. (2014, 2016), Sizun (1995), Smith & Johnson (1981), Smith et al. (2011), Stober
& Bucher (2007), Stober & Jodocy (2009), Sun & McDonough (1989), Sundberg (1988), Surma (2003), Surma & Geraud
(2003), Swanberg (1972), Taylor et al. (1983, 1994), Tchameni et al. (2000), Tejada et al. (1996, 2002), Thompson et al.
(2001), Trautwein (2005), Ucok (1979), Ufondu (2012), VDI 4640 Blatt 1 (2010), Verdoya et al. (1998), Vernoux & Lambert
(1993), Vernoux et al. (1995), Vila et al. (2010), Villaseca et al. (1999), Violay et al. (2010), Violay et al. (2012a, b), Vogel
(2016), Volarovich (1968), Walters & Combs (1991), Wang et al. (2009), Weaver et al. (1987), Weber (2014, 2016), Weinert
(2014), Welsch (2011, 2012), Welsch et al. (2015), Wenk & Wenk (1969), Weydt (2016), Whitford (1975), Wicke (2009),
Wickham (1987), Wiesner (2014), Winkler (1952), Wittig (2017), Zhao et al. (2016), Zhu et al. (2011, 2016), Zilch (2011),
Zoth (1986)
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Appendix 2: Relational structure of the PetroPhysical Property database P23 as Entity-Relation-Diagram (ERD). Sub-
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