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Kristian Bär1, Thomas Reinsch2, Judith Bott2 

Reviewer comments and author responses 

Anonymous Referee #1 5 

Received and published: 17 March 2020 

Bär et al. have curated an excellent database that is of high value to the scientific community. The database structure is well 

organised, thorough, and I commend the authors for the attention to detail and retention of a large amount of information from 

the original sources, which is often difficult to organize and standardize when dealing with such varied data formats. The 

manuscript is well written and extensive in its description of the methods and organisation. 10 

A couple of clarifications/amendments that are required: 

• Line 28, page 8: "The petrographic classification of a sample in P3 is based on the sample description within the original 

literature reference" - can this be clarified a bit more? Sometimes the recorded petrographic term is vague but their 

classifications vary. For example, petrographic terms of "?" or "Sediment" exist, but these have rock classification ranks 

ranging from 2 up to 6. Is there any original comments for these types of samples preserved from the original publication? 15 

What was the information you used to determine these varied classifications beyond just the "?" or "Sediment"? 

• Calculation type 2 for radiogenic heat production seems ambiguous at best and I wouldn’t suggest it’s inclusion in this 

database when compared to the quality of the rest of the database. That being said, from a quick check of one of the type 2 

heat production entries, it doesn’t seem to use that method in the original paper anyway? e.g. for Ashwal1987_1 – P3 

database: Ashwal1987_1, HP: 6.09e-06, Uncertainty: 1.40e-07, 1 measurement, GRS, type 2 method – Original paper: 20 

Sample no 1, Leucogranite, ’granitic’, 6.09+-0.14uW/m³, method used seems to be a variant similar to, but not the same as, 

method 3. 

Some more minor suggestions and technical changes: 

• A compressed version of the database would be good for download, as these sparse spreadsheets can often be very amenable 

to it. Additionally I think the inclusion of the PDF version is not required as I doubt anyone will use it due to both its file 25 

size and ability to extract the data. 
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• Have you done any QC for duplicate entries? This can often be an issue when compiling various sources 

• You suggest a number of extensions and inclusions in the manuscript - how long will this database be supported into the 

future? What kind of time scale would the online portal discussed be seen? I think this will do a lot for its longevity and 

accessibility. 

• Line 20, page 2, close bracket 5 

• Figure 1 resolution, although not of particular importance, is too low. This may just be a result of the draft version though? 

• Line 15 page 3 - I’d suggest moving the extensive bracketed section to the end of the sentence rather than 4 words from the 

end 

• Line 6 page 4 - Suggest reword to: "This shall ensure a reduction in bias introduced by : : :" or "This shall reduce bias 

introduced by : : :" 10 

• Line 14, page 11 - I find this sentence very confusing, I think it needs rewriting entirely. Sometimes along the lines of "In 

addition to the primary option of manual database quality control whereby/through … , an automatic process of quality 

control was implemented" or similar. You may even want to delete this paragraph entirely as the second paragraph with 

some modification seems sufficient as an opening statement for this subheading. 

Authors response to reviewer comments #1 15 

Received and published: 24 March 2020 

We would like to thank the anonymous referee #1 very much for the valuable comments and helpful suggestions to our 

manuscript. In the following, we would like to address the individual comments in detail. 

Comment 1, Line 28, page 8: In the following section 2.5 quality control, page 12, Line 10ff we describe in more detail how 

the original petrographic description is transferred into our petrographic terms. Furthermore we describe, that the petrographic 20 

description of a sample has to allow at least for an allocation of a petrographic term of rank larger or equal to 2. Therefore, 

measurements of samples with undefined petrography (’?’) or poorly defined petrography as ’Sediment’ are not included in 

the database. 

Additionally, the database itself contains a column to include the original petrographic description or classification 

’Petrography (in detail, original)’ (cf. Figure 2). In few cases, where ’?’ or ’Sediment’ was given as petrographic term in the 25 

original reference together with more detailed description in other sections of the reference or with an exact location, which 

allowed to identify the geological units on geological maps, we have allocated a rock classification reflecting this additional 

information. We did not document any samples or literature data which did not make it into the database due to quality control 

restrictions. 
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Comment on calculation type 2 for radiogenic heat production: Thank you very much for this valuable comment. We are 

currently in discussion about how to include radiogenic heat production and if we include it at all in future versions of P³. With 

the newest publication of Gard et al. (2019) in ESSD and their ’Global whole-rock geochemical database’ with more than 1.3 

Mio. entries worldwide, which also includes the calculation of the radiogenic heat production based on the geochemistry, the 

values included in P³ might be obsolete in the future. But up to know, it is beyond us to check for double entries between P³ 5 

and Gard et al. (2019) and we would leave it to the experienced researcher which database to refer to. Referring to the manual 

quality check of Ashwal1987, it will always be possible, that some entries in P³ are not fully correct since errors as presented 

here are only to be found manually and not with our semiautomatic quality control implemented. Additionally, we needed to 

compile different specific methods into the more general methods described in the P³ Readme. We have checked this entry 

and would be happy to get notice about any other obvious error by the readers and users of our database to enhance the quality 10 

of future releases of P³. 

Comment on compressed database version for download: We have created a .zip compressed version of the P³ excel version 

which is now also available for download with the submission of the revised manuscript. Additionally, we corrected the CSV 

version of the database with “;” as separator and “.” instead of “,” as decimal marker. The PDF version of the database has 

been removed according to the comments of both referees.  15 

Comment on QC for double entries: We only quality checked duplicate entries by documenting both primary and secondary 

sources and additionally by geographic comparison of sample locations. So far, we are quite certain, that if at all, only a small 

number of duplicate entries might be included, e.g. where the coordinates were not given in sufficient detail in the references. 

It might well be that different authors sampled the same location. Such samples were not considered as duplicates. 

Comment on suggested future extensions and inclusions of P³ and future support: The database in its current version will 20 

be permanently available and accessible via the doi and GFZ data services. The future development and extensions of the 

database as almost everywhere in the scientific world strongly depends on ongoing project funding and successful research 

proposals in the future. Funding for extensions is currently available until the end of 2022. The online portal is planned to be 

developed within the next four years. A research proposal for a project where this will be developed is currently under review. 

We additionally would like to thank the anonymous referee #1 for pointing out some typos and sentences with problematic 25 

grammar and changed these in revised version of the manuscript. 
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Anonymous Referee #2 

Received and published: 2 April 2020 

In this paper the authors describe the P3 petrophysical database they developed thanks to the support of a EU funded project 

i.e., IMAGE. How the data were collected and organised and the content of the database are well described in the manuscript. 

This topic is of interest for the scientific community aimed to a quick search for rocks petrophysical properties for different 5 

purposes. Moreover, the authors report about pre-upload data selection criteria and provide an interesting way to classify the 

content data in term of quality. 

However, there are some general questions and others more related to the text and consequently in the dataset that have to be 

clarified: 

- Did the authors consider the possibility to use the GeoSciML model of geological features to build the database? GeoSciML 10 

is a recognised international standard frame work aligned on INSPIRE. GeoSciML is useful for basic data exchange and it 

allows to easily extend the model to address more complex scenarios. Did the author consider a possible INSPIRE 

compliance of the database? If yes how? If no why? 

- The dataset presented by the authors, follows almost all the FAIR (Findable Accessible Interoperable Reusable) requirements 

(i.e., I checked the dataset with this online tool: https://www.ands-nectar-rds.org.au/fair-tool). It is worthwhile that this 15 

important fact is mentioned in the text. 

- Regarding the datasets provided together with the manuscript, I would put more emphasis on the interoperable file format. 

Although a txt file is provided (which is readable by different computer machines), it would be formally better to have the 

database in a comma separated format (.csv) as specified in the file 

“Reeadme_P__Petrophysical_Property_Database_V1_Release_2019.pdf” available in the repository. The pdf version can 20 

be avoided because it is a too large file and in my case it wasn’t visible. 

- In the appended file named: “Reeadme_P__Petrophysical_Property_Database_V1_Release_2019.pdf”, downloadable from 

the repository reported in the manuscript (ftp://datapub.gfzpotsdam. de/download/10.5880.GFZ.4.8.2019.P3.s/) in the 

section 4. ‘File format’ is mentioned that the dataset is published in comma separated ASCII file (csv, MS-DOS) with 

columns delimited by “;”. However, there is no csv file in the linked repository (cfr. point above). It exists a txt file where 25 

column are separated by TABs. In the same txt file (but also in the xls spreadsheet) the decimal marker seems to be a comma 

“,” and not the dot “.” as stated. Please check it out and in adjust accordingly. 

- Page 4 – Line 24 to 35 – The authors explain the choice to use a flat file instead of a relational database with the pros and 

cons. They built the database following a relational database system (Line 27), but this statement is not clear. I recommend 

the rewording in order to clarify that point. What does it mean the sentence at Line 27? Did the author create an Entity-30 

Relation (ER) model? The ER model is highly recom mended even if a flat file database is developed, so it would be good 
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to add the ER model into the paper describing at least the cardinalities among the different entities. At Line 30 the authors 

describe the positive aspects to have a relational database. Among them there are: i) data is uniquely stored just once and ii) 

eliminating data duplication that they can be referred to the important property named “referential integrity constraint”. How 

the authors guarantee this property? Did they perform any check on the xls file to guarantee the database consistency? 

- Page 7 – Line 7 – It is mentioned that the latitude/longitude coordinates are UTM based. The UTM system is a projected 5 

system that implies planar coordinates (i.e., easting and northing). In the database the field related to coordinates report 

geographical coordinates as decimal degree. It is not clear which is finally the used coordinate system or why there is this 

difference between the text and the database. This has to be sort out. Beside that it would be good to explain also how the 

coordinates retrieved from literature were treated if samples had different coordinate typology. 

Some more minor suggestions and technical changes: 10 

- Page 2 - Line 15-16 - a closing bracket is missing to the citation 

- Page 2 - Line 18 – substitute ‘hosted by the United States Geological Survey’ with ‘hosted by a federate infrastructure 

including national organization and academia (e.g., the United States Geological Survey, Southern Methodist University, 

Association of American State Geologists, U.S. Department of Energy’s Geothermal Data Repository,… )’ 

- Page 3 – Figure 1 – the text inside the pictures are not well readable (mainly those where the text has a white border) – 15 

suggestion: if the text goes inside the picture, put text in filled white, black if text is located outside the picture. 

- Page 6 - Figure 2 (structure) – in the table Magnetic susceptibility the blue is to dark and it hard to read the content of the 

box 

- Page 15 – Line 6 – probably a comma is missing after the word ‘rocks’ 

In the conclusions and perspectives the plan to develop a public accessible web-based interface is highly recommended for the 20 

future and should be prioritized, because the high number of rows (more than 75000 ) and columns (around 300) doesn’t make 

the database so easily query-able and browsable, even in the excel software package. 

Authors response to reviewer comments #2 

Received and published: 16 May 2020 

We would like to thank the anonymous referee #2 very much for the valuable comments and helpful suggestions to our 25 

manuscript. In the following, we would like to address the general questions and questions more related to the text and 

consequently to the dataset and hope that our answers provide the requested clarification. 
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Referee question 1: Did the authors consider the possibility to use the GeoSciML model of geological features to build 

the database? (...) 

Thank you very much for this question. We did indeed consider the possibility to use the GeoSciML model of geological 

features to build the database. However, the initial database of our own measurements was already based on the petrographic 

and stratigraphic classification schemes as published by Bär et al. (2019). Reason for that is the direct link to the well database 5 

of the federal Geological Survey of Hessen, Germany, where the majority of our initial samples originated from. Additionally, 

these classifications with their internal hierarchical structure allows for a much more detailed classification compared to the 

GeoSciML petrographic terms. For the next release of the P³ database however, we prioritize to implement a direct link of our 

classifications to the GeoSciML geological features to allow for the proposed future compliance with INSPIRE. Since for both 

classifications, our own and the GeoSciML the terms are defined by geological vocabularies, such a link is possible but will 10 

have no direct impact on the main contents of P³ - the petrophysical properties. For single entries, however, the conversion 

would have to be corrected on a case by case basis, as different vocabularies might not match one to one. 

Referee comment 2: It is worthwhile to mention the important fact in the text, that the dataset presented by the authors, 

follows almost all the FAIR (Findable Accessible Interoperable Reusable) requirements (...). 

Thank you for this comment. We fully agree and adapted the text accordingly.  15 

New text: Page 3 line 13 (adapted): P³ is a publicly accessible database containing physical rock properties measured in 

laboratory experiments. It is licensed under a creative commons (CC-BY 4.0) license and its structure follows the FAIR guiding 

principles for scientific data management and stewardship (Wilkinson, M., Dumontier, M., Aalbersberg, I. et al. The FAIR 

Guiding Principles for scientific data management and stewardship. Sci Data 3, 160018 (2016). 

https://doi.org/10.1038/sdata.2016.18). 20 

Referee comment 3 and 4: Regarding the datasets provided together with the manuscript, I would put more emphasis 

on the interoperable file format (...). 

Thank you very much for this comment. We will remove the pdf-file of P³ since both referees have mentioned that it is not 

useable. Additionally, we have provided a new .csv file as interoperable file format with “;” as separator as specified in the P³ 

Readme. We have removed the TAB separated txt file and checked and implemented the correct use of the decimal marker as 25 

dot "." instead of ",". 

Referee comment 5: Page 4 – Line 24 to 35 – The authors explain the choice to use a flat file instead of a relational 

database with the pros and cons. (...) Did the author create an Entity-Relation (ER) model? (...) Did they perform any 

check on the xls file to guarantee the database consistency? 

Thank you very much for this comment.  30 
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We reworded the sentence in order to clarify this point. We did create an Entity-Relation (ER) model already during the 

development of P³ but did not change the file format for this first release from excel to another one. In the revised manuscript, 

we added an Entity-Relationship-Diagram as Appendix.  

We checked for duplicate entries manually and adjusted the paragraph in the manuscript accordingly:  

’The database was developed as flat-file format using Microsoft Excel to keep it as simple and easy to handle even by the 5 

unexperienced user as possible. While other database structures are in comparison much more efficient, their database 

management schemes may render it too difficult for users not familiar with SQL to recover the desired data. However, the 

internal design of P³ with multiple sub-entities and tables is structured following a relational database management system 

(RDBMS, Codd, 1970) with an Entity-Relation (ER) model (see Appendix 1), so that it could easily be transferred to e.g. the 

well-established structured query language (SQL, Chamberlin and Boyce, 1974). Following this ERM the database could 10 

easily be organised into multiple tables using the names of the tables as unique keys as links to other sub-tables. The main 

advantages of a relational database over a flat file format are that data is uniquely stored just once, eliminating data duplication, 

as well as performance increases due to greater memory efficiency and easy filtering and rapid queries (Gard et al., 2019). 

However, the current flat-file structure allows for easy modification and extensions as new requirements emerge, as for 

example by adding more sub-tables for newly developed property measurements not fitting to any of the already included 15 

properties could be added at later stages. On the other hand, filtering and quality control to ensure that data is entered into the 

database only once and that no duplicates exist had to be done manually. In our case data duplicates where removed by checking 

the coordinates of each data point with a radius of uncertainty of 1 km and, if necessary, manually removing every double 

entry identified.’ 

Referee comment 6: - Page 7 – Line 7 – It is mentioned that the latitude/longitude coordinates are UTM based. The UTM 20 

system is a projected system that implies planar coordinates (i.e., easting and northing). In the database the field related to 

coordinates report geographical coordinates as decimal degree. It is not clear which is finally the used coordinate system or 

why there is this difference between the text and the database. This has to be sort out. Beside that it would be good to explain 

also how the coordinates retrieved from literature were treated if samples had different coordinate typology. 

Thank you very much for this valuable comment. Indeed the manuscript text is misleading at this point. It was planned in an 25 

earlier version to use UTM. However, in the final version we used latitude/longitude in decimal degrees with a WGS84 

reference system. For a conversion from literature, we used either Google Earth (Web Mercator Projection) or ArcGIS to 

allocate a latitude/longitude value in decimal degrees and the associated uncertainty to each data point. We are aware that this 

’Google maps method’ is not accurate but exact geographic information is quite often not provided in the literature used for 

this compilation. Typically in this case, only location names are provided. For all literature where both the exact coordinates 30 

and the reference system was given, or where the location of the datapoints was given on a georeferenced map with the required 

information on the coordinate system used, we used ArcGIS to digitize the position of the individual samples. Therein, we 
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used the same geographic projection as given in the original literature and either included the points as tabular values or we 

georeferenced the given maps accordingly and picked the points on the maps. Afterwards, the resulting coordinates were 

transferred to decimal degrees in the WGS84 reference with the transformation as suggested by ArcGIS. We have not 

documented the exact coordinate transformation used in each case in the database however. 

We additionally would like to thank the anonymous referee #2 for pointing out some typos and sentences with problematic 5 

grammar as well as suggestions for improvements of the figures and we have changed these in the revised version of the 

manuscript. 

Last referee comment: In the conclusions and perspectives the plan to develop a public accessible web-based interface is 

highly recommended for the future and should be prioritized, because the high number of rows (more than 75,000 ) and 

columns (around 300) doesn’t make the database so easily query-able and browsable, even in the excel software package. 10 

Thank you for the remark. We will prioritize this work in the future as recommended. Please be referred here to our answers 

to the comments of the first anonymous referee: ’The database in its current version will be permanently available and 

accessible via the doi and GFZ data services. The future development and extensions of the database as almost everywhere in 

the scientific world strongly depends on ongoing project funding and successful research proposals in the future. Funding for 

extensions is currently available until the end of 2022. The online portal is planned to be developed within the next four years. 15 

A research proposal for a project where this will be developed is currently under review.’ 
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P³ - PetroPhysical Property Database – a global compilation of lab 

measured rock properties 

Kristian Bär1, Thomas Reinsch2, Judith Bott2 

1Department of Geothermal Science and Technology, Institute of Applied Geosciences, Technische Universität Darmstadt, 

Schnittspahnstr. 9, Darmstadt, 64287, Germany 5 
2GFZ German Research Centre for Geosciences, Telegrafenberg, Potsdam, 14473, Germany 

Correspondence to: Kristian Bär (baer@geo.tu-darmstadt.de) 

Abstract. Petrophysical properties are key to populate local and/or regional numerical models and to interpret results from 

geophysical investigation methods. Searching for rock property values measured on samples from a specific rock unit at a 

specific location might become a very time-consuming challenge given that such data are spread across diverse compilations 10 

and that the number of publications on new measurements is continuously growing and data are of heterogeneous quality. 

Profiting from existing laboratory data to populate numerical models or interpret geophysical surveys at specific locations or 

for individual reservoir units is often hampered if information on the sample location, petrography, stratigraphy, measuring 

method and conditions are sparse or not documented.  

Within the framework of the EC funded project IMAGE (Integrated Methods for Advanced Geothermal Exploration, EU grant 15 

agreement No. 608553), an open-access database of lab measured petrophysical properties has been developed (Bär et al., 

20182019: P³ - Database, http://dx.doi.org/10.5880/GFZ.4.8.2019.P3. The goal of this hierarchical database is to provide easily 

accessible information on physical rock properties relevant for geothermal exploration and reservoir characterization in a single 

compilation. Collected data include ‘classical’ petrophysical, thermophysical and mechanical properties and, in addition, 

electrical conductivity and magnetic susceptibility. Each measured value is complemented by relevant meta-information such 20 

as the corresponding sample location, petrographic description, chronostratigraphic age, if available, and original citation. The 

original stratigraphic and petrographic descriptions are transferred to standardized catalogues following a hierarchical structure 

ensuring inter-comparability for statistical analysis (Bär et al., 2019: P³ - Petrography, 

http://dx.doi.org/10.5880/GFZ.4.8.2019.P3.p, Bär et al., 20182019: P³ - Stratigraphy, 

http://dx.doi.org/10.5880/GFZ.4.8.2019.P3.s). In addition, information on the experimental setup (methods) and the 25 

measurement conditions are listed for quality control. Thus, rock properties can directly be related to in-situ conditions to 

derive specific parameters relevant for simulating subsurface processes or interpreting geophysical data. 

We describe the structure, content and status quo of the database and discuss its limitations and advantages for the end-user.  

 

Keywords: relational database, rock physical properties, laboratory measurements, global data compilation. 30 
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1 Introduction 

The characterisation and utilisation of subsurface reservoirs generally relies on applying geophysical investigation methods 

and/or numerical simulation codes – both requiring, in turn, the knowledge of physical rock properties at depth. The strategy 

of populating numerical models with petrophysical properties can differ. For local-scale models, laboratory data from 

individual samples collected from the geological unit of interest may exist. In this case, this direct information should be used 5 

together with sophisticated (physical and empirical) laws to populate the entire geological unit. For regional and continental-

scale models, in contrast, parameters have to be generalised with respect to the spatial and physical variability of the 

investigated lithological units.  

Individual rock types or petrographies typically exhibit a great variability in related properties due to heterogeneous mineral 

compositions, variable textures and differing porosity distribution (Schön, 2015). Existing rock properties compilations are 10 

both an example for the high variability and for the different purposes of such databases (e.g. Cermak and Rybach, 1982, 

Clark, 1966, Clauser and Huenges, 1995, Landolt-Börnstein, PetroMod, Schön, 2004, 2011, 2015, Mortimer, 2005, Hantschel 

and Kauerauf, 2009, Lilios and Exadaktylos, 2011, Descamps et al., 2013, Aretz et al., 2015). Since such compilations are 

mostly published with limited meta-information, it is difficult to extract data for formations of interest. This is even aggravated 

due to additional limitations like the focused coverage of certain rock types or geographic areas (e.g. Germany: FIS Petrophysik 15 

hosted by the Leibniz Institute of Applied Geophysics (LIAG) (http://www.fis-geophysik.de), Great Britain: BritGeothermal 

(http://www.britgeothermal.org) hosted by the British Geological Survey (BGS), USA: National Geothermal Data System 

(NGDS) hosted by a federate infrastructure including national organizations and academia (e.g., the United States Geological 

Survey, Southern Methodist University, Association of American State Geologists, U.S. Department of Energy’s Geothermal 

Data Repository, hosted by the United States Geological Survey (USGS) (http://geothermaldata.org), Ireland: IRETherm 20 

project (http://www.iretherm.ie/), Australia: Rock Properties Explorer (http://www.ga.gov.au/explorer-web/rock-

properties.html), New Zealand: PETLAB: National Rock and Geoanalytical database (http://pet.gns.cri.nz/#/), and many 

more).  

In addition, different compilations do not provide a homogenised set of meta-information. Furthermore, exploration data 

availability often depends on national legislation. In some countries industrial resource exploration data, including 25 

petrophysical properties measured on cores of deep wells, may be public after a certain time period and then usually is 

incorporated in national information systems. In other cases exploration data remains confidential for longer time periods or 

even infinitely resulting in scarce data availability for the respective countries.  

Due to the current publication policy of international research institutions where a high number of peer-reviewed publications 

become more and more important for the individual scientific career, the amount of petrophysical data recorded worldwide 30 

increased dramatically. These publications however are spread among many different geoscientific journals and dispersed in 

many hundreds of publications. Given the rate of newly published property data combined with the multitude of publishing 

journals, countries and authors, the research for and collection of data can be incredibly time-consuming. Recent studies show 

http://pet.gns.cri.nz/#/
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that domain experts spend nearly 80% of their working hours into collecting, cleansing and managing their domain specific 

data (CrowdFlower, 2016). An effective, comprehensive collection, collation and dissemination of this data is deemed critical 

to promote rapid, creative and accurate research (Gard et al., 2019). 

To facilitate (i) efficient search for and research on measured rock physical properties, (ii) further evaluation of the property 

data using complementing meta-information, and (iii) adequate property generalisation for specific units, a comprehensive 5 

database was developed within the framework of the EC funded project IMAGE (Integrated Methods for Advanced 

Geothermal Exploration, Grant Agreement No. 608553). The aim of this database is to compile, store and publicly provide 

petrophysical property data from published laboratory test results on rock samples of any kind including as much meta-

information as possible. So far, literature data relevant for the IMAGE project and laboratory data collected during the IMAGE 

project were fed into this novel PetroPhysical Property Database (P3). Here, we present the current state of P³ and release 10 

version 1.0 in excel format (Bär et al., 2019: P³ - Database, http://dx.doi.org/10.5880/GFZ.4.8.2019.P3).  
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Figure 1: Concept of multiscale characterisation of geological reservoirs with (examples of) integrated petrological, petrophysical or 

geophysical methods bridging outcrop analogue studies to numerical reservoir simulations. 

2 Contents and Structure of the Database 

P³ is publicly accessible and contains physical rock properties measured in laboratory experiments. It is licensed under a 5 

creative commons (CC-BY 4.0) license and its structure follows the FAIR guiding principles for scientific data management 

and stewardship (Wilkinson et al. (2016). All data are selected to represent the characteristic scale of rock samples of few 

centimetres to decimetres, depending on the measurement methods (as described by numerous norming institutions or 

committees as e.g. the International Society for Rock Mechanics and Rock Engineering (ISRM), European Committee for 

Standardization (C)EN, International Organization for Standardization (ISO), American Society for testing and Materials 10 

(ASTM international) and many more) for the different properties. Within P³ we aimed at homogenising measurement method 

descriptions to increase the inter-comparability between individual reported values. Larger-scale data from geophysical well 

logging, hydraulic well testing, integrating geophysical methods or other field-scale measurements, which integrate over larger 

rock volumes or several rock types are not yet included in the database (Figure 1). This shall reduce bias introducedThis shall 

ensure to reduce bias introduced by heterogeneities within larger geobodies including open or partly open discontinuities like 15 
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fissures, fractures, bedding or schistosity. In addition, judged based on the lithological description, we did not include data 

from very small scale samples, where the volume of interest is likely smaller than the minimum representative elementary 

volume (REV) (e.g. Ringrose and Bentely, 2015) for the investigated rock type. The full range of the scale-dependency of 

petrophysical properties as described in previous studies (e.g. Enge et al., 2007, Rühaak et al., 2015) is thus not yet reflected 

by the database but is planned to be incorporated in future versions. 5 

To ensure that source data is publicly available to researchers, only data from scientific publications (books or peer reviewed 

journals) or proceedings (e.g. IGA Geothermal Papers/Conference Database) as well as published research reports (e.g. 

dissertations or publicly available student’s theses, project reports) were included in P³. The database only contains 

measurements with a minimum amount of meta-information to allow for reasonable interpretations, generalisations, or 

simulations based on the collected data. The minimum associated meta-information is the reference to the data origin (citation) 10 

and information about the petrography to allow for a classification according to a certain lithotype. If available, additional 

meta-data were included, such as the sampling location (potentially including its type, e.g. outcrop, abandoned or active quarry, 

vertical or deviated well), the affiliation to a registered sample set (e.g. International Geo Sample Number (IGSN, cf. Devaraju 

et al., 2016, Lehnert et al., 2006)), stratigraphy, sample dimensions, measurement method or device and measurement 

conditions (pressure, temperature, stress) including degree of saturation and type of saturating fluid. Conversion of published 15 

values to SI units as well as correction of some minor errors from published data or omissions from previous databases as they 

are identified is an ongoing process during the data curation.  

The database was developed as flat-file format using Microsoft Excel to keep it as simple and easy to handle even by the 

unexperienced user as possible. While other database structures are in comparison much more efficient, their database 

management schemes may render it too difficult for users not familiar with SQL to recover the desired data. However, the 20 

internal design of P³ with multiple sub-entities and tables is structured following a relational database management system 

(RDBMS, Codd, 1970) with an Entity-Relation (ER) model (see Appendix 2), so that it could easily be transferred to e.g. the 

well-established structured query language (SQL, Chamberlin and Boyce, 1974). Following this relational structureERM the 

database could easily be organised into multiple tables using the names of the tables as unique keys as links to other sub-tables. 

The main advantages of a relational database over a flat file format are that data is uniquely stored just once, eliminating data 25 

duplication, as well as performance increases due to greater memory efficiency and easy filtering and rapid queries (Gard et 

al., 2019). This However, the current flat-file structure allows for easy modification and extensions as new requirements 

emerge, as for example by adding more sub-tables for newly developed property measurements not fitting to any of the already 

included properties could be added at later stages. On the other hand, filtering and quality control to ensure that data is entered 

into the database only once and that no duplicates exist had to be done manually. In our case data duplicates where removed 30 

by checking the coordinates of each data point with a radius of uncertainty of 1 km and, if necessary, manually removing every 

double entry identified. 

Following the minimum requirements, the database is structured into three main sections or super entities (Figure 2), which 

are sets of data tables (described in more detail in the following parts of the paper). The first, named ‘meta information’, 
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contains all meta-information on the sample including the sampling location, the sample type and dimensions as well as 

information on its petrography and stratigraphy and thus acts as primary table for unique sample identification. The second 

section or super entity contains the measured property value(s) of the unique rock samples. This section is sub-grouped into 

thermophysical properties, ‘classical’ petrophysical properties, mechanical properties as well electrical and magnetic 

properties and fields for property specific remarks. Finally, the third section or super entity named ‘quality control’ includes 5 

all information relevant for the quality assessment of each data record (property measurement of the unique samples). Here, 

especially information on the measurement conditions (methodology, pressure and temperature conditions, degree of saturation 

etc.) are documented and used for the implemented semi-automatic quality control and assessment.  

The first super-entity ‘meta-information’ consist of five tables or entities: sample ID, reference, sampling location, sample 

information, petrography and stratigraphy. A description of each of these tables is included in the following sub-chapters. The 10 

tables for petrography and stratigraphy are available separately. The super-entity ‘rock properties’ contains 28 separate sub-

tables for all properties included so far into the database each following a similar internal structure (see chapter 2.4). For many 

samples measurements of multiple properties were available and included into the database, which results in multiple 

documentation of the ‘meta-information’ of these samples in the current file structure. The super-entity ‘quality control’ 

contains two tables or entities, the first one for documentation of the measurement conditions and the second one for the 15 

automated quality assessment of the entries (see chapter 2.5). 

2.1 Sample Information 

To distinguish measurements of different properties on a single sample or of the same properties performed at varying 

measurement conditions, every measurement is listed in a separate row. To group measurement data from individual samples, 

every sample receives a unique sample ID, which acts the primary key of each record and links multiple measurements 20 

conducted on a single rock sample. The sample ID consists of the surname of the first author and the year of publication, 

together with a sequential number for the particular rock sample presented in the respective publication. In case of several 

references per author and year an additional letter (a,b,…) is introduced after the year.  

For example, Fourier1822_1 stands for sample 1 within a publication of Fourier, J.B.J. (1822). In case of more than one 

publication per year Fourier1822a_1 would represent sample 1 within a publication of Fourier, J.B.J. (1822a). The sample ID 25 

is linked to an accompanying reference database, compatible to all major reference management tools (e.g. EndNote, Citavi, 

BibTeX, JabRef, etc.), which contains the full information (Co-Authors, full title, journal, volume, pages, etc.) on the reference. 

The references are abbreviated in a Bibtexkey according to the terminology used for individual samples. At best, only primary 

references are given. In case the primary reference is unavailable, while the data point is published as part of a review (or the 

like), a secondary reference was introduced.  30 

Additionally, the date of input and the name of the person who generated the entry into the database (the editor, listed as 

contributors in chapter 6 team list) is documented. 
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Figure 2: Schematic structure of P³ illustrating the three sections or super entities: ‘meta information’, ‘rock properties’ and ‘quality 

control’. Different input parameters (small font) are grouped according to entities or property sub-tables (italics) they belong to. 

 

2.1.1 Sampling Location 5 

The sub-section ‘sampling location’ contains all relevant information on the location where a sample was obtained. Generally, 

rock samples can be sampled in an outcrop, a quarry or a well. In case neither the sampling location is given as outcrop, quarry 

or well, nor any exact coordinates are given in the corresponding publication, the location type “area” is selected. Furthermore, 
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for every location type, a name, a country and state is given (e.g. location type: outcrop, location name: Fontainebleau, location 

country: France, location state/department: Seine-et-Marne). 

2.1.2 Location Coordinates 

The location coordinates describe the latitude and longitude based on the UTM-System (Universal Transverse Mercator) with 

the reference system WGS84 of the sampling point at the surface in decimal degrees. Another category of entry is the elevation 5 

given in metres above sea level (m.a.s.l.). In the case of a core sample taken from a well, the latitude and longitude of the 

wellhead is given. In case of an area with undefined sampling point, e.g. “sample from the Rhenish Massif”, a midpoint from 

this geological province has been assessed and a radius of uncertainty (in km) for the sampling location is givenestimated. For 

elongated areas (e.g. the Red Sea, the Upper Rhine Graben etc.) the choice of a circular radius of uncertainty artificially 

increases the uncertainty. The introduction of polygons for the definition of an area is discussed to be included in future releases 10 

of the database. If no information is given for the location, the longitude and latitude are noted as 999 to avoid wrong map 

displays and half the circumference of the earth is used as uncertainty. 

For a conversion of the sample coordinates retrieved from the literature we used either Google Earth (Web Mercator Projection) 

or ArcGIS to allocate a latitude/longitude value in decimal degrees and a rough estimation of the associated uncertainty to 

each data point. We are aware that this 'Google maps method' is not accurate but exact geographic information is quite often 15 

not provided in the literature used for this compilation. Most common are the provision of location names or maps only. For 

all literature data points where both the exact coordinates and the reference system was given, or where the location was given 

on a georeferenced map with the required information on the coordinate system used, we used ArcGIS for transformation. 

Therein, we used the same geographic projection as given in the original literature and either included the points as tabular 

values or we georeferenced the given maps accordingly and picked the points on the maps. Afterwards, the resulting 20 

coordinates were transferred to decimal degrees in the WGS84 reference with the transformation method for the specific 

projected coordination system as suggested by ArcGIS. We have not documented the exact coordinate transformation used in 

each case. 

2.1.3. Original Sample ID 

To allow for reviewing original publications, the primarily given sample identification numbers or names are documented in 25 

addition to the P³ sample ID. This makes it easier to search for a specific sample in a publication, which might have been used 

for further measurements or more detailed descriptions by other authors subsequently or individual users of the database. 

2.1.4 International Geo Sample Number 

The International Geo Sample Number (IGSN, cf. Devaraju et al., 2016, Lehnert et al., 2006) is a unique identifier for samples 

and specimens collected from the natural environment (http://www.igsn.org/). In order to enable locating, identifying, and 30 

citing physical samples, the IGSN number was listed if available. Furthermore, entries allow for cross-linking both, the P³ as 
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well as the IGSN database in order to ensure access to more meta-information like sampling methods, project related 

information, etc., currently not implemented in P³. As described by Strong et al. (2016) the adoption of IGSNs will ensure 

compatibility and interoperability with other international databases, including the promotion of standard methods to locate, 

identify and cite physical samples. 

2.1.5 Sample Type 5 

Samples can have different shapes that are particularly relevant for the measurement technique. Core samples do have different 

characteristics than rock blocks or drill cuttings, etc. so that P³ reserves a separate column for the sample type.  

2.1.6 Sample Dimensions [m] 

Together with the documentation of the sample type, if available, information about its length, height, width and for cores, 

diameter, all given in meters, are documented. If the rock property “density” is measured for any sample where the dimensions 10 

are given, sample volume and weight might be calculated as well. This additional information together with its petrography 

was essential to evaluate whether a sample reaches a Representative Elementary Volume (REV) or not. 

2.1.7 Sample Coordinates 

For several samples taken at a single sampling location (e.g. a large outcrop or quarry), eventually individual sample 

coordinates are given (longitude, latitude and elevation). For samples from a cored well, additionally, the depth of the sample 15 

is given in measured depth (MD) and, if available, in true vertical depth (TVD) referenced to the ground level (i.e. meters 

below ground level, m b.g.l.). If data on the geometry of deviated wells are available, it is optional to either enter the sample 

location relative to the wellhead or with its exact location and elevation (with respect to the sea level). 

2.2 Petrography or Rock Type 

The petrography or rock type classification scheme is defined in a complementary database (Bär et al., 2019: P³ - Petrography, 20 

http://dx.doi.org/10.5880/GFZ.4.8.2019.P3.p) directly published together with P³. Its internal structure is based on a 

hierarchical subdivision of rock types, where the rock description generally becomes more detailed with increasing rank of 

petrographic classification (based on the well database of the Geological Survey of Hessen, Germany: Hessisches Landesamt 

für Umwelt, Naturschutz, Umwelt und Geologie (HLNUG)). This hierarchical subdivision is based on international 

conventions (e.g. Bates and Jackson, 1987, Gillespie and Styles, 1999, Robertson, 1999, Hallsworth and Knox, 1999, Bas and 25 

Streckeisen, 1991, Schmid, 1981, Fisher and Smith, 1991). Furthermore, the classification corresponds to the subdivision 

provided by existing property data compilations such as e.g. Hantschel and Kauerauf (2009), Schön (2011), Rybach (1984) 

and Clauser and Huenges (1995).  

Petrographic classifications from rank 1 to rank 4 can usually be identified from macroscopic descriptions of well logs, cores 

and geological mapping (Figure 3). The petrographic classifications from rank 5 to rank 9 require additional information on 30 
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the texture or grain size, the modal composition or the geochemistry etc., which can usually only be acquired by microscopic 

or comparable special investigations. Overall, there are nine ranks covering a total of 1494 petrographies. The petrographic 

classification of a sample in P³ is based on the sample description within the original literature reference. A petrographic ID 

and a corresponding petrographic parental ID directly correlate the different classifications and their ranks (Table 1). This 

allows for example, to integrate all petrographies with higher ranks to a corresponding general term of lower rank and 5 

statistically analyse the associated physical rock property values across petrographic definition boundaries (Figure 3). 

 

 

Figure 3: Hierarchical system of standardised petrographic terms used for the database. White boxes are an exemplarily chosen 

extract to illustrate the structure of the petrography classification. Black boxes document the number of rock type categories per 10 
rank for the entire classification scheme. These interconnected standardised terms allow for the connection of certain 

lithologies/petrographies to specific petrophysical properties and are thus the basis for statistical analysis. Black arrows show direct 

connections, while grey arrows indicate that there are additional terms not displayed here. 

 

In P³, the petrographic ID, the petrographic parent ID and the simplified petrographic term are documented. Additionally, for 15 

each sample original petrographic descriptions of the primary references can be presented if available. Details on the texture, 

homogeneity, layering, consolidation state of the sample and the direction of measurement with regard to internal structural 

features (such as bedding etc.) as well as degree of alteration or weathering can be documented together with specific remarks. 
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Table 1: Excerpt from the rock classification table used for P³. Different ranks and their interconnection by petrographic ID and 

petrographic parent ID as well as their connection to international definitions as indicated. QAPF = Quartz-Alkali feldspar-

Plagioclase-Foids (Le Maitre and Streckeisen, 2003). 

Petro-

graphic 

ID 

Petro-

graphic 

parent 

ID 

Rank Petrographic term Definition 

10102  1 Consolidated rock  

10104 10102 2 Magmatic rock Rock formed from magma 

10105 10104 3 Plutonic rock Igneous rock with phaneritic texture 

52349 10105 4 Plutonic rock, modal (QAPF) Intrusive igneous rock, nomenclature by QAPF-

classification for plutonic rocks 

10107 52349 5 Quartzolite (QAPF) QAPF-classification for plutonic rocks, field 1a, Qz > 90 

vol% 

10110 52349 5 Granite (QAPF) QAPF-classification for plutonic rocks, field 2, 3a, 3b, 

colour index < 90 % 

10111 10110 6 Alkali-Feldspar-Granite QAPF- classification for plutonic rocks field 2 

10112 10110 6 Syenogranite QAPF- classification for plutonic rocks field 3a 

10113 10110 6 Monzogranite QAPF- classification for plutonic rocks field 3b 

10114 52349 5 Granodiorite (QAPF) QAPF-classification for plutonic rocks, field 4, colour 

index < 90 % 

10115 52349 5 Tonalite (QAPF) QAPF-classification for plutonic rocks, field 5, colour 

index < 90 % 

10127 52349 5 Syenite (QAPF) QAPF-classification for plutonic rocks, field 7, colour 

index < 90 % 

10128 52349 5 Monzonite (QAPF) QAPF-classification for plutonic rocks, field 8, colour 

index < 90 % 

10129 52349 5 Monzodiorite (QAPF) QAPF-classification for plutonic rocks, field 9, An (PL) < 

50 mol%, colour index < 90 % 

10130 52349 5 Monzogabbro (QAPF) QAPF-classification for plutonic rocks, field 9, An (PL) > 

50 mol%, colour index < 90 % 

10131 52349 5 Diorite (QAPF) QAPF-classification for plutonic rocks, field 10, An (PL) 

< 50 mol%, 10 % < colour index < 90 % 

10132 52349 5 Gabbro (QAPF) QAPF-classification for plutonic rocks, field 10, An (PL) 

> 50 mol%, 10 % < colour index < 90 % 

 

2.3 Stratigraphy 5 

The stratigraphy of each sample was inserted into the database in two complementary ways. The first way is to use the 

definitions of the international chronostratigraphic chart of the IUGS v2016/04 (Cohen et al., 2013, updated) according to 

international standardisation. These chronostratigraphic units are also compiled in a complementary database (Bär et al., 2019: 

P³ - Stratigraphy, http://dx.doi.org/10.5880/GFZ.4.8.2019.P3.s) to ensure that formations of a certain age are connected to the 

corresponding stratigraphic epoch, period or erathem. Thus, the chronostratigraphic units are directly correlated to each other 10 

by their stratigraphic ID and stratigraphic parent ID, allowing for statistical analysis of the properties of certain stratigraphic 
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units (Table 2). In contrast, a more detailed description of the local stratigraphic unit can also be documented if provided in 

the primary reference. 

 

Table 2: Excerpt from the stratigraphic classification table used for P³ (based on Cohen et al., 2013, updated). Different ranks and 

their interconnection by stratigraphic ID and stratigraphic parental ID are indicated. Num. = numerical; SD = standard deviation; 5 
Phan. = Phanerozoic 

Strati-

graphic 

ID 

Strati-

graphic 

parent 

ID 

Eon Era Period 
Series / 

Epoch 
Stage / Age 

Num. 

Age 

[Ma] 

SD 

num. 

Age 

[Ma] 

Chronostrati-

graphical unit 

129 102 Phan. Mesozoic Cretaceous   145  Cretaceous 

130 129 Phan. Mesozoic Cretaceous Lower  145  Lower Cretaceous 

131 130 Phan. Mesozoic Cretaceous Lower Berriasian 145  Berriasian 

132 130 Phan. Mesozoic Cretaceous Lower Valanginian 139.8  Valanginian 

133 130 Phan. Mesozoic Cretaceous Lower Hauterivian 132.8  Hauterivian 

134 130 Phan. Mesozoic Cretaceous Lower Barremian 129.4  Barremian 

135 130 Phan. Mesozoic Cretaceous Lower Aptian 125  Aptian 

136 130 Phan. Mesozoic Cretaceous Lower Albian 113  Albian 

137 129 Phan. Mesozoic Cretaceous Upper  100.5  Upper Cretaceous 

138 137 Phan. Mesozoic Cretaceous Upper Cenomanian 100.5  Cenomanian 

139 137 Phan. Mesozoic Cretaceous Upper Turonian 93.9  Turonian 

140 137 Phan. Mesozoic Cretaceous Upper Coniacian 89.8 0.3 Coniacian 

141 137 Phan. Mesozoic Cretaceous Upper Santonian 86.3 0.5 Santonian 

142 137 Phan. Mesozoic Cretaceous Upper Campanian 83.6 0.2 Campanian 

143 137 Phan. Mesozoic Cretaceous Upper Maastrichtian 72.1 0.2 Maastrichtian 

2.4 PetroPhysical Properties 

The properties included in P³ can be grouped into ‘classical’ petrophysical properties, thermophysical properties, mechanical 

properties as well as electrical and magnetic properties (Figure 2). Overall, 28 different rock properties are included so far and 

documented in separate sub-tables of the database following a similar internal structure. Based on the original reference, the 10 

measurement is given as a value, which if available is complemented by a standard deviation, a minimum and maximum value 

and the number of measurements. Thus, it is possible to either include single measurements or mean values while still offering 

the opportunity of statistical evaluation by incorporating the number of measurements corresponding to a mean value. 

Furthermore, the measurement method for each property value is presented by means of a common nomenclature documented 

in the supplementary report (Bär et al., 2019: P³ - Data Description, http://dx.doi.org/10.5880/GFZ.4.8.2019.P3). This is 15 

important for statistical analysis and comparability of the results of different methods. Particularly, the type of method might 

have a large impact on the quality and device-specific error of any measurement. Finally, specific remarks can be made for 

each value separately. 
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2.5 Quality Control 

In addition to the primary option of manual database quality controlAs addition of the primary option of manual database 

quality control, which is by providing the information of the original data source, an automatic process of quality control was 

implementedan automatic quality control was implemented in P³. Therefore minimum requirements for a value to be included 

in the database were defined as already described in section 2. 5 

To provide a quality estimate for each data entry in terms of provided meta-information, a set of key criteria is automatically 

analysed: (i) uncertainty of the geographic location, (ii) the rank of petrographic classification, (iii) the rank of stratigraphic 

classification, (iv) the completeness of information on measurement conditions and, (v) the statistical type of a value (e.g. 

single value, mean value etc.). For each key criterion, four different quality classes (excellent =1, average =2, poor = 3; and 

minimum) are defined and computed to numerical quality indices (qi, Table 3). A bulk quality index is calculated according to 10 

the arithmetic mean of the quality indices of the different criteria, where values < 1.5 are considered excellent, values ≥ 1.5 < 

2.5 are considered average and values ≥ 2.5 are considered poor and values > 3.5 only meet the minimum requirements.  

2.5.1 Geographic Uncertainty 

Concerning the location of the sample, a geodetic accuracy of less than 100 m is considered to be excellent quality, which 

should always be the case for outcrop samples or drill cores. If the information on the location only contains a description of 15 

a geological unit in a certain region or area, the related size of this area is considered for the definition of the quality indices. 

If the location can be constrained to a region with a radius of less than 1 km the quality is considered average whereas if the 

radius of uncertainty is between 1 km and 100 km, it is considered poor. Larger radius of uncertainty is considered as quality 

class 4. 

2.5.2 Petrography or Rock Type 20 

If the original petrographic or lithological description allows for the allocation of a petrographic term with a rank of 6 or higher, 

the quality is considered excellent, for a rank of 5 it is considered average because these petrographic terms usually allow for 

a distinction of petrographies as used for reservoir- or site-scale geological models. For a rank of ≤ 4 the quality is considered 

poor (compare Figure 3 and Table 1). To enter the database at all, the petrographic description of a sample has to allow for an 

allocation of a petrographic term of rank ≥2. This classification at least allows for a distinction of petrographies on a level used 25 

for continental-scale geological models. 

2.5.3 Stratigraphy 

Concerning the stratigraphy of the sample, (i) information on the chronostratigraphic Stage or Age is considered to be excellent, 

(ii) information on the stratigraphic Series or Epoch is defined as average and (iii) if only the chronostratigraphic System or 

Period is given, it is considered poor. To enter the database, there is no minimum requirement for the information on the 30 
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stratigraphic age, since (i) stratigraphy does not directly control physical properties and (ii) scientific users might 

retrospectively derive stratigraphic information from the sampling location in combination with the petrography of the sample 

and additional information such as geological maps.  

2.5.4 Measurement Conditions 

For every data point, the measurement conditions can be entered. These are the temperature (K), pressure (Pa), saturating fluid 5 

and the degree of saturation (%) as well as for the mechanical properties additional information about the ambient stress field, 

σ1, σ2, σ3 (MPa), and the pore pressure of the sample (MPa). For the sonic velocities (vp and vs) the frequency of the sonic 

pulse and, for the uniaxial compressive strength and related mechanical properties, the strain rate can be given as additional 

measurement conditions.  

The quality assessment of the measurement conditions is based on both the measurement conditions and the measurement 10 

device, which is needed to be able to quantify the specific measurement error typical for a certain method. Excellent quality is 

only provided if information is available on all these points. If only the measurement device and the temperature and pressure 

conditions or the degree of saturation is available, the data quality is defined as average. If only the device, or the temperature 

and pressure conditions, or the degree of saturation is described in the original reference the quality is considered to be poor.  

 15 

Table 3: Quality indices defined by the input data available. (n = numbers of measurements, NA = not available) 

Parameter 1 = excellent 2 = average 3 = poor 
4 = minimum 

requirement 

Geographic 

uncertainty 
≤ 100 m > 100m ≤ 1 km > 1 km ≤ 100 km > 100 km  

Petrography  Rank ≥ 6 Rank = 5 Rank = 4 Rank ≥ 2 

Stratigraphy 
Stage / Age or lower or 

numerical age  

(Rank ≥ 5) 

Series / Epoch  

(Rank = 4) 

System / Period or higher 

(Rank ≤ 3) 
NA 

Measurement 

conditions 

Measurement device 

AND 

temperature and 

pressure AND 

degree of saturation 

available 

Measurement device AND 

temperature and pressure 

OR 

degree of saturation 

available 

Measurement device OR 

temperature and pressure 

OR 

degree of saturation 

available 

NA 

Parameter value Single measurement 

Mean value and number n 

of measurements 

AND  

standard deviation or 

Minimum and Maximum 

Mean value and number n 

of measurements 

(Value), 

NA 
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2.5.5 Measurement Parameter 

The last criterion for the quality control is the type of value representing the property. In general, single measurement values 

for a sample are ranked higher in quality than mean values of various measurements applied to a sample. Accordingly, single 

measurements are considered as excellent and mean values as average or poor. If the mean value is not only accompanied by 

the number of measurements to calculate the mean value, but also by the minimum and maximum as well as the standard 5 

deviation from this set of measurements, the quality is defined as average. In contrast, a mean value accompanied only by a 

number of measurements is defined as poor. Values resulting from an unspecified number of measurements are not considered 

for quality control but still included into the database with NA (“not available”) in the respective column for number of 

measurements to enable the user to exclude these values in statistical analyses.  

3 Status of the Database, Data Availability and Quality 10 

Up to now, data that entered the database are either from published data collections, scientific papers, student’s theses and 

scientific project or technical reports (316 references altogether, see Appendix 1). So far, 75,573 data points from all over the 

world (Figure 4Figure 4 and Figure 5Figure 5), were collected. The data are not reasonably well around the globe but rather 

show a strong dominance of samples sourced from central Europe and the United States. This reflects the original purpose of 

the IMAGE project as well as public availability of existing databases. Data is only scarcely available for Africa, South 15 

America, Australia, Russia and China.  
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Figure 4: Locations of all data points currently included in P3 (for references see Appendix 1). Topographic map is the ETOPO1 

map (Amante and Eakins, 2009) 
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Figure 5: Locations of data points currently included in P3 for the Europe (for references see Appendix 1). Topographic map is the 

ETOPO1 map (Amante and Eakins, 2009) 

 

The amount of data entries for different petrographies shows that all main consolidated rock types are well represented. With 5 

38,219 property measurements from sedimentary rocks, 25,261 from magmatic rocks, 9,235 from metamorphic rocks, and 

1,308 from unconsolidated rocks, petrographies usually considered as reservoir rocks are dominant making up more than 75% 

of the data.  

Since P³ was collected to serve the goals of the IMAGE project and will always represent work in progress, its data entries are 

unevenly distributed among the different properties (Table 4) as well as regions. In its current version, the entries for some 10 

properties derive from only a few sources. For example, radiogenic heat production values contained in the database have 

mainly been derived from the compilation of Vilà et al. (2010). This compilation, which is based on many secondary references, 



28 

 

includes more than 2,100 representative U, Th and K concentrations from all over the world (originally published in 102 

studies). Based on this chemical composition database, Vilà et al. (2010) calculated values of radiogenic heat production for a 

large variety of rock types. Of the original compilation (of Vilà et al., 2010), we have incorporated into the database only those 

values that were associated with sufficient metadata and based on actual lab investigations and not on spectral gamma ray and 

density data of borehole geophysical logs. Newer compilation on radiogenic heat production (e.g. Hasterock & Webb, 2017 5 

and Hasterock et al., 2017) have not yet been included. 

 

Table 4: Number of measurements of the different properties in P3. 

Property Number of Measurements 

Grain and bulk density 12.615 

Porosity 8.821 

Permeability 5.299 

Thermal conductivity 19.622 

Specific heat capacity 5.684 

Thermal diffusivity 3.167 

Radiogenic heat production 2.049 

P and S wave velocities 4.985 

Electric conductivity 6.564 

Uniaxial compressive strength 987 

Tensile strength 318 

Poisson Ratio 1850 

Additional properties … 

Total 75.573 
 

Concerning the data quality, the quality indices both for the bulk index as well as for the five indices defined in Table 3 show 10 

a wide dispersion over all quality classes. The quality indices for the petrography, the geographic uncertainty and the 

measurement parameter show mainly quality values of 1 to 3 representing a good quality of input data documentation in 

average. Only the quality indices for measurement conditions and for the stratigraphy, where quality index values of 3 and 4 

are dominant show that the documentation of these metadata is not satisfactory for a large share of the compiled data.  

 15 
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Figure 6: Overview of the quality indice distribution of the P³ input data quality assessment. For the definition of the quality indices 

see Table 3. 

4. Discussion 

The current status of the database already shows a lot of benefits that such a compilation has automatically brings along, but 5 

also some limitations, which have to be addressed in future amendments. The defined minimum requirements for a datum to 

be integrated into P³ guarantee its usability in terms of statistical, spatial, petrographic and stratigraphic analyses. Since it also 

contains multiple properties measured on a single sample, direct correlations with other data and properties are facilitated. This 

may help identifying new relationships (formal, causal or statistical correlations), and contribute to a better understanding of 

the limitations of generalisation or possibilities for upscaling approaches. The automatic quality assessment allows for a quick 10 

evaluation of a single datum within a group of selected entries. The possibility of correlating data also simplifies and accelerates 

the identification of key references for rock parameters in specific regions, for specific rock types, or stratigraphic units. 

Furthermore, the database allows to systematically analyse the dependency of property values on the corresponding 

measurement conditions. Thus, the most important added value of P³ compared to existent databases is its dimension (large 

number of entries corresponding to a large number of petrophysical properties) as well as the documented meta-information.  15 

Despite all benefits, such a database can never be complete and is always prone to uncertainties. To identify errors in original 

publications (in terms of property values and meta-information, e.g. sample preparation, accuracy of measurements, sampling 

bias, lab worker bias, measurement methods, reference standards and many more) is beyond the scope of this compilation. In 

addition, data-input errors, errors concerning the interpretation or the petrographic and stratigraphic classification cannot be 
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excluded. We assume that the quality check of the original publications and the data therein has already been done by skilled 

reviewers or editors of the corresponding scientific journals, respectively theses. In addition to that, the quality indices 

developed as part of P³ allow the user to quickly evaluate the quality of each data point and thus help with the decision whether 

the original reference should be re-assessed or not.  

Additionally, P³ includes values generated with different established or newly developed measurement methods, delivering 5 

data of different quality and uncertainty. Hence, data comparability is not necessarily granted and a statistic assessment can 

only be representative if these effects are considered. Due to the documentation of the original source, however, the related 

detailed information of a chosen sample set can be verified if necessary. For subsequent applications, such as modelling, the 

spatial distribution of the data has to be considered as well as the origin of the samples. Due to diverse effects (such as 

temperature, pressure, weathering, diagenetic history, etc.), properties measured from outcrop analogue samples might differ 10 

considerably in quality from those of the same formation at in-situ conditions within a deep reservoir formation. It remains to 

the experienced user to evaluate if the tabulated datum is applicable and if sufficient meta-information is given. In case of 

doubt, the users are referred to the original publications. 

5 Conclusions and Perspectives 

We developed the P³ database of petrophysical rock properties measured on rock samples in various laboratories. P³ is designed 15 

to be as transparent and useful for various purposes as possible through the integration of multiple meta-information (including 

the original reference) for each data point. The database already comprises a great variety of properties, petrographies, 

stratigraphies etc. from samples investigated all over the world. In this first release, 75.,573 data points from 316 publications 

were included. The current compilation of samples mainly reflects the project goals of the geothermal project IMAGE (van 

Wees et al., 2015), while the applicability of P³ certainly can be seen in various geoscientific fields focusing on subsurface 20 

utilisation (e.g. oil and gas, CCS, hydrogeology, subsurface storage of radioactive waste etc.). The collected data will help 

researchers and users particularly in the early stages of new geothermal or any other projects to make a first assessment of the 

subsurface geothermal rock properties. This will help planning future exploration needs and, in areas where the existing data 

density is sufficient, even support direct modelling or exploitation projects. Additionally, the database will help improving 

local and regional geoscientific studies with different focus on utilisation of the subsurface. A first release of this database (Bär 25 

et al 2019: P³ - Database, http://dx.doi.org/10.5880/GFZ.4.8.2019.P3) including a report and a reference list of all included 

publications is available as supplementary data to this publication.  

Compiling the data from various sources, however, has shown that the general documentation of measured petrophysical 

properties is very heterogeneous and often the minimum requirements defined for our P³ were not fulfilled. We therefore 

appeal to the reviewers and editors of scientific journals to ensure that any publication containing original measurements of 30 

petrophysical properties should come along with all the helpful and necessary meta-information as described here. Only if 
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these requirements are fulfilled, a published dataset is of added value for the scientific community and can be used for 

subsequent investigations or applications. 

Since a database like P³ can never be complete, a further extension based on not yet considered publications, newly published 

data or own measurements is foreseen. Furthermore, we both hope to collaborate with existing compilation authors in the 

future to combine the collations into one more useful systems but also support the use of this version of the P³ database for 5 

other database initiatives as supplement of their own records. We plan to develop a publicly accessible web-based interface to 

facilitate external users to perform specific queries on petrophysical properties. In addition, such queries shall be feasible based 

on a web-based geographic information system, which may be connected to additional information such as worldwide 

geological maps (e.g. OneGeology, www.onegeology.org). With this system, external users shall be given the opportunity to 

contribute to the database and thereby simplifying the access to measurements, which may improve their visibility 10 

considerably. Thus, the database will be continuously updated and at certain stages newly released by the editors. For this 

purposes the database will be implemented using a relational database management system (RDBMS) following the third 

normal form (3NF) according to Codd (1970) and Maier (1983) to reduce the volume of stored data by elimination of multiple 

storage of the same information for a sampling location, which will strongly increase its flexibility, durability and applicability 

especially for the SQL-experienced user. This will facilitate to link P³ to similar databases in the future. 15 

To broaden the applicability of P³ for reservoir characterisation in the future, the integration of lab measurement or geophysical 

exploration methods aiming at the determination of petrophysical reservoir properties on smaller or larger scale is currently in 

discussion and will allow to include information on the scale-dependence of petrophysical properties (e.g. Enge et al., 2007) 

which are of paramount importance for understanding of reservoir behaviour. This could include properties derived from 

geophysical well logging (Hartmann et al., 2005, Fuchs et al., 2015), hydraulic testing in wells (Achtziger-Zupančič et al., 20 

2017 and references therein) or other integrating geophysical exploration methods e.g. seismics (Gu et al., 2017), gravimetry 

or electromagnetic methods (e.g. Munoz et al., 2010, Meqbel and Ritter, 2015). Furthermore, additional information on the 

sample like their geochemical or modal composition from XRF, ICP-MS or ICP-OES analyses, point counting of thin sections 

or electron microscopic investigation of e.g. cementation, pore geometry or microfractures, which can all act as controlling 

factors of petrophysical properties would be a helpful extension of the database. Therefore existing databases could be easily 25 

implemented (e.g. Lehnert et al., 2000, Mortimer et al., 2005, Strong et al., 2015 and Gard et al., 2019 and references therein). 

This will extend the opportunity to also use the database to derive phenomenological constitutive models for petrophysical 

rock properties from their chemical or mineralogical composition (Chopra et al., 2018, Gard et al., 2019) or from their 

microstructure (Pimienta et al., 2014) or to develop empirical correlations between distinct properties of certain rock types 

(Gegenhuber and Schön, 2012, Esteban et al., 2015, Mielke et al., 2017). 30 

http://www.onegeology.org/
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6 Appendix 1: List of references for Figures 4 and 5 

Adelinet et al. (2013), Alam et al. (2011), Altherr et al. (2000), Aretz (2015), Ashwal et al. (1987), Aswathanarayana (1986), 

Atal et al. (1978), Attoh (2000), Babaie et al. (2001), Bär (2008, 2012), Baker et al. (1997), Balakrishna & Ramana (1968), 

Ballard et al. (1987), Barrett & Aumento (1970), Bauluz et al. (2000), Bea & Montero (1999), Bemmlott (2014), Best & 

Christiansen (2002), Betten (2015), Bhatia & Crook (1986), Biewer (2014, 2017), Birch & Clark (1940), Birch (1942), 5 

Blackwell & Richards (2004), Brady et al. (2006), Brandt et al. (2004), Brehme et al. (2016a, b), Brettreich (2016), Bridgman 

(1924), Brigaud et al. (1992), Brown et al. (1981), Bullard (1939), Bultitude et al. (1978), Buntebarth (1980), Carroll (1969), 

Cebriá et al. (2000), Ceryan (2008), Ceryan et al. (2008), Chapman & Pollack (1977), Chappell (1999), Chung (1999), Chung 

et al. (1995, 2001), Clark (1957, 1961, 1966), Clauser (2001), Cocherie (1984), Cocherie et al. (1994), Condie (1993), Coster 

(1948), Côté & Konrad (2005), Crecraft et al. (1981), Creutzburg, H. (1965), Dahmani& Sawyer (2001), Damm et al. (1990), 10 

Dickson & Scott (1997), Diment (1964), Dodge et al. (1986), Dongmo (2016), Ducea & Saleeby (1998), Dupré & Echeverría 

(1984), Eberhard (2005), El Dakak (2015), Ensor (1931), Esteban et al. (2015), Ewart et al. (1973, 1977), Faridfar (2010), 

Farmer (2003), Farmer et al. (2002), Farquharson et al. (2016a, b), Förster & Förster (2000), Fountain et al. (1987), Fourcade 

& Allegre (1981), Fowler et al. (2005), Francois & Lemmet  (1999), Franzson et al. (2010, 2011), Fridleifson & 

Vilmundardottir (1998), Fuji-ta et al. (2004, 2007, 2011), Gärtner (2017), Galán et al. (1996), Gangadharam & 15 

Aswathanarayana (1969), Gao et al. (1998), Garcia-Gutierrez & Contreras (2007), Gaunt et al. (2014), Gehlin (2002), Gehlin 

& Hellstrom (2003), Geist (2011), GeORG-Projektteam (2013), Ghazi & Hassanipak (1999),Gill (1981), Gill & Whelan 

(1989), Glover (1989), Glover & Vine (1992, 1994, 1995), Grecksch et al. (2003), Grunert (2007), Gu (2010), Gudmundsson 

et al. (1995), Gühne (2016), Guillot & Fort (1995), Guillou-Frottier et al. (1995), Gupta et al. (1991), Haack (1983), Haffen et 

al. (2012, 2013), Hartmann et al. (2005), Hauff et al. (2000), Heap et al. (2009, 2011, 2012, 2014a, b, 2015a, b, c, 2016), Herrin 20 

& Clark (1956), Hesse (2011), Hill et al. (1981), Hoffmann (2011, 2015), Hofmann (1988), Homuth (2014), Hooper & 

Hawkesworth (1993), Huber et al. (2001), Hückel & Kappelmeyer (1966), Hurtig & Brugger (1970), Hutt & Berg (1968), 

Hyndman & Jessop (1971), Inger & Harris (1993),  Innocent et al. (1994), Islam (2010), Iyer et al. (1984), Jaupart et al. (1982), 

Jaya et al. (2010), Jensen (2014), Jeong et al. (2007), Jochum et al. (1983), Jodocy & Stober (2011), Johannes et al. (2003), 

John & Wooden (1990), Jones (1987, 1988), Kahraman (2007), Kalsbeek et al. (2001), Kappelmeyer & Haenel (1974), Kassab 25 

& Weller (2011, 2015), Kawada (1964, 1966), Kay & Kay (1994), Kay et al. (1990), Keen & Lewis (1982), Kelemen et al. 

(2007), Kemp & Hawkesworth (2003), Kendrick et al. (2013a, b), Kennedy & Russell (2012), Kennedy et al. (2009), Kerr 

(2003), Khitarov et al. (1959), Kidder et al. (2003), Kläske (2010), Klein (2003), Klug & Cashman (1996), Klumbach (2008, 

2010), Knopoff (1968), Königsberger & Weiss (1911), Kolzenburg et al. (2012), Konzack (2015), Kramers et al. (2001), Kraus 

(2009), Kristinsdóttir et al. (2010), Kukkonen et al. (1997), Kumar & Reddy (2004), Kumari et al. (2017), Lambert (2016), 30 

Laštovičková et al. (1993), Ledesert (1993), Leonidov (1967), Leonidov et al. (1966), Lesquer et al. (1983), Leu et al. (2006), 

Linsel (2014), Loaiza et al. (2012), Luais & Hawkesworth (1994), Lucazeau & Mailhe (1986), Mack (2007), Mahood (1981), 

Maire (2014), Manghnani & Woollard (2013), Mareschal et al. (2000), Mariucci et al. (2008), Marzán Blas (2000), McDermott 
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et al. (1996), McDonough (1990), McKenna & Sharp (1998), McLaren et al. (1999), McLennan et al. (1990), Mengel et al. 

(2001), Mielke (2009), Mielke et al. (2015), Milicevic (2015), Milord et al. (2001), Misener et al. (1951), Mitchell (1995), 

Moiseenko (1968), Moiseenko & Sokolova (1965, 1968), Moiseenko et al. (1965, 1967), Montanini & Tribuzio (2001), 

Mossop & Gafner (1951), Mottaghy et al. (2005), Müller (2014), Munck et al. (1979), Murti (1980), Nabawy et al. (2009), 

Nabawy et al. (2010), Narayanaswamy & Venkatasubramanian (1969), Nehler (2011), Nicolaysen et al. (1981), Noritomi & 5 

Asada (1955), Nyblade et al. (1990), Oelsner (1981), Orendt (2014), Pannike et al. (2006), Pannike (2005), Parkhomenko & 

Bondarenko (1972), Paslick et al. (1995), Peate (1997), Peccerillo & Taylor (1976), Pei (2009), Pereira et al. (1986), Pickett 

& Saleeby (1993), Plank & Langmuir (1998), Pola et al. (2012, 2014), Popov et al. (1999), Pribnow et al. (2000), Price et al. 

(1997), Priebs (2011), Rao & Rao (1979, 1983), Rao et al. (1972), Ray et al. (2015), Rebay & Spalla (2001), Reyer & Philipp 

(2014), Reynaud et al. (1999), Roberts et al. (2000), Rogers et al. (1998), Rolandone et al. (2002), Rosener (2007), Rudnick 10 
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Appendix 2: Relational structure of the PetroPhysical Property database P³ as Entity-Relation-Diagram (ERD). Sub-

entities are linked through the sample id, the Petrographic id or Stratigraphic id. 
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