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Abstract. The saturated soil hydraulic conductivity (Ksat) is a key parameter in many hydrological and climate models. Ksat

values are primarily determined from soil basic properties and may vary over several orders of magnitude. Despite the avail-

ability of Ksat datasets in the literature, significant efforts are required to combine the data before it can be used for specific

applications. In this work, a total of 13,258 Ksat measurements from 1,908 sites were assembled from the published literature

and other sources, standardized (i.e., units made identical), and quality-checked in order to obtain a global database of soil sat-5

urated hydraulic conductivity (SoilKsatDB). The SoilKsatDB covers most regions across the globe, with the highest number

of Ksat measurements from North America, followed by Europe, Asia, South America, Africa, and Australia. In addition to

Ksat, other soil variables such as soil texture (11,584 measurements), bulk density (11,262 measurements), soil organic carbon

(9,787 measurements), moisture content at field capacity (7,382) and wilting point (7,411) are also included in the dataset.

To show an application of SoilKsatDB, we derived Ksat pedotransfer functions (PTFs) for temperate regions and laboratory-10

based soil properties (sand and clay content, bulk density). Accurate models can be fitted using a Random Forest machine

learning algorithm (best concordance correlation coefficient (CCC) equal to 0.74 and 0.72 for measurements from temperate

areas and for laboratory measurements, respectively). However, when these Ksat PTFs are applied to soil samples obtained

from tropical climates and field measurements, respectively, the model performance is significantly lower (CCC = 0.49 for

tropical and CCC = 0.10 for field measurements). These results indicate that there are significant differences between Ksat data15

collected in temperate and tropical regions and Ksat measured in the laboratory or field. The SoilKsatDB dataset is available

at https://doi.org/10.5281/zenodo.3752721 (Gupta et al., 2020) and the code used to extract the data from the literature and the

applied random forest machine learning approach are publicly available under an open data license.

1 Introduction

The soil saturated hydraulic conductivity (Ksat) describes the rate of water movement through saturated soils and is defined20

as the ratio between water flux and hydraulic gradient (Amoozegar and Warrick, 1986). It is a key variable in a number
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of hydrological, geomorphological, and climatological applications, such as rainfall partitioning into infiltration and runoff

(Vereecken et al., 2010), optimal irrigation design (Hu et al., 2015), as well as the prediction of natural hazards including

catastrophic floods and landslides (Batjes, 1996; Gliński et al., 2000; Zhang et al., 2018). Accurate measurements of Ksat in

the laboratory and field are laborious and time consuming and are often scale dependent (Youngs, 1991). Using infiltrometer

measurements in the field enables the measurement of Ksat also in forests and other types of structured soils; however, so far5

Ksat values have been measured mainly for agricultural soils (Romano and Palladino, 2002).

Efforts to produce reliable and spatially refined datasets of hydraulic properties date back to the 1970’s with the proliferation

of distributed hydrologic and climatic modeling. These early notable works also provided basic databases (some of which are

used in this study) for Australia (McKenzie et al., 2008; Forrest et al., 1985), Belgium (Vereecken et al., 2017; Cornelis et al.,

2001), Brazil (Tomasella et al., 2000, 2003; Ottoni et al., 2018), France (Bruand et al., 2004), Germany (Horn et al., 1991;10

Krahmer et al., 1995), Hungary (Nemes, 2002), the Netherlands (Wösten et al., 2001), Poland (Glinski et al., 1991), and the

USA (Rawls et al., 1982). A detailed discussion of the available datasets for Ksat and other hydro-physical properties is pro-

vided in Nemes (2011). Collaborative efforts have resulted in the compilation of multiple databases, including the Unsaturated

Soil Hydraulic Database (UNSODA) (Nemes et al., 2001), the Grenoble Catalogue of Soils (GRIZZLY) (Haverkamp et al.,

1998), and the Mualem catalogue (Mualem, 1976). These databases however, focused on soil types and not on the spatial15

context of Ksat mapping. In an effort to provide spatial context, Jarvis et al. (2013), and Rahmati et al. (2018) published global

databases for soil hydraulic and soil physical properties. Likewise, the European soil data center also started projects such as

SPADE (Hiederer et al., 2006) and HYPRES (Wösten et al., 2000), for generating spatially referenced soil databases for several

countries. Since HYPRES only includes western European countries, Weynants et al. (2013) gathered data from 18 countries

and developed the European HYdropedological Data Inventory (EU-HYDI) database. This dataset is, however, not publicly20

available and was not included in this compilation. The datasets mentioned above cover almost all climatic zones except trop-

ical regions, where Ksat values can be significantly different due to the strong local weathering processes and different clay

mineralogy (Hodnett and Tomasella, 2002). Recently, Ottoni et al. (2018) published a dataset named HYBRAS (Hydrophysical

Database for Brazilian Soils) improving the coverage of South American tropical regions. In addition, Rahmati et al. (2018)

recently published the Soil Water Infiltration Global database (SWIG) with information on Ksat for the whole globe. In the25

SWIG database, some Ksat values were extracted from the literature and other Ksat values were deduced from infiltration

time series. In contrast to laboratory measurements that determine Ksat as the ratio of flux density to gradient, infiltration-

based methods determine Ksat by fitting infiltration dynamics to parametric models of the infiltration process; for a review on

analytical models characterizing the infiltration process see Kutílek et al. (1988), Youngs (1991), and Vereecken et al. (2019).

The increasing demand for highly resolved descriptions of surface processes requires commensurate advances in represen-30

tation of Ksat in modern Earth System Model (ESM) applications. Several existing Ksat datasets miss either coordinates or

these are provided with an unknown accuracy thus limiting their applications for spatial modeling. For example, the SWIG

dataset misses information on soil depth and assigns entire watersheds to a single coordinate. Similarly, the UNSODA dataset

does not provide coordinates and soil texture information for all samples. For a few locations, HYBRAS uses a different coor-
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dinate system. Taken together, these limitations imply that, to prepare spatially referenced global Ksat datasets for large scale

applications, it requires serious effort to compile, standardize, and quality check all (publicly available) literature.

The objective of the work here is to provide a new global standardized Ksat database (SoilKsatDB) that can be used for

geoscience applications. To do so, a total of 13,258 Ksat measurements was compiled, standardized, and cross-checked to

produce a harmonized compilation which is analysis-ready (i.e., it can directly be used to test various Machine Learning5

algorithms for spatial analysis). We compiled data from existing datasets and, to improve the spatial coverage in regions with

sparse data, we conducted a literature search to include Ksat measurements in geographic areas that were not yet included in

other existing databases. In the manuscript, we first describe the data compilation process and then describe methodological

steps used to spatially reference, filter, and standardize the existing datasets. As an illustrative application of the dataset, we

derive pedotransfer functions (PTFs) for different climatic regions and measurement methods and discuss their transferability10

to other regions/measurement methodologies. We fully document all importing, standardization, and binding steps using the

R environment for statistical computing (R Core Team, 2013), so that we can collect feedback from other researchers and

increase the speed of further updates and improvements. The newly created data set (SoilKsatDB) can be accessed via https:

//doi.org/10.5281/zenodo.3752721.

2 Methods and materials15

2.1 Data sources

To locate and obtain all compatible datasets, a literature search was conducted using different search engines, including Science

Direct (https://www.sciencedirect.com/), Google Scholar (https://scholar.google.com/) and Scopus (https://www.scopus.com).

We searched soil hydraulic conductivity datasets using “saturated hydraulic conductivity database”, “Ksat”, and “hydraulic

conductivity curves” as keywords. The collected datasets are listed in Table 1 together with the number of Ksat observations20

for each study. They can be classified into three main categories, namely: i) existing datasets (in form of tables) published

and archived with a DOI in peer-reviewed publications, ii) legacy datasets in paper/document format (e.g., legacy reports, PhD

theses, and scientific studies) and iii) on-line materials.

Existing datasets include published datasets such as HYBRAS (Ottoni et al., 2018), UNSODA (Nemes et al., 2001), SWIG

(Rahmati et al., 2018), and the soil hydraulic properties over the Tibetan Plateau (Zhao et al., 2018), from which we extracted25

the required information as described in Table 2a. The major challenge with making the existing datasets compatible for

binding (standardization, removing redundancy) was to obtain the locations for a particular sample as well as the corresponding

measurement depths. For instance, the UNSODA database does not provide information on the geographical locations. To fill

the gaps and make the data suitable also for spatial analysis, we used Google Earth to find the coordinates based on the

given location (generally an address or a location name). Moreover, all datasets were cross-checked to avoid redundancy. For30

example, the UNSODA data includes the data of Vereecken et al. (2017) and Richard and Lüscher (1983/87) while the SWIG

database includes the measurements of Zhao et al. (2018). Hence we removed these from UNSODA and SWIG database and

used the original sources.
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Table 1. List of articles and digitized Ksat datasets, and number of points (N) per data set used to generate the SoilKsatDB.

Reference N Reference N Reference N

Rycroft et al. (1975) 1 Habel (2013) 3 Wang et al. (2008) 19

Waddington and Roulet (1997) 1 Nyman et al. (2011) 3 Deshmukh et al. (2014) 19

Takahashi (1997) 1 Bhattacharyya et al. (2006) 4 Price et al. (2010) 20

Katimon and Hassan (1997) 1 Lopes et al. (2020) 4 Bonsu and Masopeh (1996) 24

El-Shafei et al. (1994) 1 Yasin and Yulnafatmawita (2018) 4 Bambra (2016) 24

Lopez et al. (2015) 1 Daniel et al. (2017) 6 Verburg et al. (2001) 26

Kramarenko et al. (2019) 1 Arend (1941) 7 Southard and Buol (1988) 27

Zakaria (1992) 1 Helbig et al. (2013) 7 Chang (2010) 30

Ramli (1999) 1 Gwenzi et al. (2011) 7 Yao et al. (2013) 33

Singh et al. (2011) 1 Päivänen et al. (1973) 9 Becker et al. (2018) 34

Campbell et al. (1977) 1 Mahapatra and Jha (2019) 9 Baird et al. (2017) 50

Chief et al. (2008) 1 Amer et al. (2009) 9 Keisling (1974) 56

Conedera et al. (2003) 1 Radcliffe et al. (1990) 10 Rahimy (2011) 56

Ebel et al. (2012) 1 Vogeler et al. (2019) 10 Hao et al. (2019) 57

Ferreira et al. (2005) 1 Singh et al. (2006) 10 Kanemasu (1994) 60

Imeson et al. (1992) 1 Kelly et al. (2014) 10 Tete-Mensah (1993) 60

Johansen et al. (2001) 1 Elnaggar (2017) 11 Zhao et al. (2018) 65

Lamara and Derriche (2008) 1 Ganiyu et al. (2018) 12 Hinton (2016) 77

Parks and Cundy (1989) 1 Cisneros et al. (1999) 12 Vieira and Fernandes (2004) 86

Ravi et al. (2017) 1 Niemeyer et al. (2014) 12 Houghton (2011) 88

Smettem and Ross (1992) 1 Sharratt (1990) 14 Tian et al. (2017) 91

Boike et al. (1998) 2 Habecker et al. (1990) 14 Li et al. (2017) 118

Andrade (1971) 2 Nielsen et al. (1973) 14 Forrest et al. (1985) 118

Beyer et al. (2015) 2 Robbins (1977) 15 Richard and Lüscher (1983/87) 121

Blake et al. (2010) 2 Sonneveld et al. (2005) 15 Sanzeni et al. (2013) 127

Bonell and Williams (1986) 2 Quinton et al. (2008) 16 Vereecken et al. (2017) 145

Kutiel et al. (1995) 2 Simmons (2014) 16 Coelho (1974) 176

Martin and Moody (2001) 2 Ouattara (1977) 17 Kool et al. (1986) 240

Mott et al. (1979) 2 Hardie et al. (2011) 17 Nemes et al. (2001) 283

Rab (1996) 2 Baird (1997) 17 Ottoni et al. (2018) 326

Soracco et al. (2010) 2 Kirby et al. (2001) 17 Rahmati et al. (2018) 3637

Varela et al. (2015) 2 Yoon (2009) 17 Grunwald (2020) 6532

Sayok et al. (2007) 3 Jabro (1992) 18

Abagandura et al. (2017) 3 Greenwood and Buttle (2014) 18
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In the case of legacy datasets (non-digital tabular format, non-peer-reviewed data), we invested a significant effort to digitize,

clean and cross-check the data to extract Ksat values. Two datasets were also collected directly from project websites such as

the NASA project providing data on hydraulic and thermal conductivity (retrieved from https://daac.ornl.gov/FIFE/guides/

Soil_Hydraulic_Conductivity_Data.html and described in Kanemasu (1994)) and the Florida database (http://soils.ifas.ufl.edu)

from Grunwald (2020).5

There are many biomes and climatic regions, such as desert dunes, peatlands and frozen soils, for which very few Ksat

measurements were publicly available. We have intensively searched for additional data for these areas and found 39 studies

(each contains less than 5 Ksat measurements) to cover these regions. We thus digitized Ksat values from these studies (shown

either in bar charts or line plots), georeferenced the maps where necessary, and then converted the data into tabular form. In

some cases, we also contacted colleagues that worked in these regions to retrieve additional data.10

Figure 1. Spatial distribution of Ksat measurements based on (red) laboratory and (blue) field measurements, respectively, in the SoilKsatDB.

A total of 1,908 locations are shown on the map.

2.2 Georeferencing Ksat values and definition of spatial accuracy

Georeferencing of Ksat measurements is important for using the data for local, regional, or global hydrological and land surface

models. Although many studies provided information on the geographical location of the measurements, studies conducted

particularly in the 70’s and 80’s only provided the name of the locations and approximate distance from a reference location. A

limited accuracy of the position value may affect the application of the Ksat value in a spatially distributed model. For example,15

in case of a location with contrasting hydraulic properties, it must be known to which subregion the measured value can be

assigned and the user must know if the given location is accurate enough. For that purpose we assigned an accuracy value
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(‘accuracy classes’) to each measurement as explained next. We assigned each Ksat value to one of seven ‘accuracy classes’

ranging from highest (0–100 m) to lowest (more than 10,000 m or non available information (NA)) accuracy. For example,

Forrest et al. (1985), Zhao et al. (2018), and Ottoni et al. (2018) provided exact coordinates of the locations, thus we assigned

a location accuracy of 0–100 m (i.e., highly accurate; see Table 3 for more details). For other references, we digitized provided

maps or sketches with locations of the points. We first georeferenced these maps using ESRI ArcGIS software (v10.3) and then5

digitized the coordinates from georeferenced images. Some of the documents we digitized (e.g. Nemes et al. (2001)) provided

the names of specific locations, and hence we used Google Earth to obtain the coordinates. We estimate that the spatial location

accuracy of these points is roughly between 0 and 5 km. Similarly, spatial maps in jpg format (e.g. Becker et al. (2018)) were

geo-referenced with 100–500 m location accuracy. In contrast, few studies (e.g. Yoon (2009)) provided the exact location of the

sampling with assumed location accuracy of 10–20 m. In the SWIG database, the information related to location (coordinates10

for each point) was missing, so we went through each publication referenced in Rahmati et al. (2018) and added coordinates.

2.3 Standardization

The database was cleaned to remove 716 unrealistic low Ksat values as outliers deduced from infiltration time series in SWIG

database. Moreover, in the SWIG database, soil depth information was not available, so we assumed that infiltration experi-

ments were conducted in the topsoil and assigned a depth of 0–20 cm. Furthermore, we computed sand (particles > 50 µm),15

silt (2-50 µm), and clay fraction (< 2 µm) for the UNSODA database based on the available particle-size data, assuming a

log-normal distribution, as described in Nemes et al. (2001).

After data extraction from literature, geo-referencing, and standardization (conversion of all values to the same units), all

information was collected in tabulated form in the new database SoilKsatDB (https://doi.org/10.5281/zenodo.3752721). The

database consists of 23 columns (various sample properties) and 13,259 rows (a header and 13,258 samples). An excerpt of the20

database with all 23 columns is shown in Table 2b.

2.4 Statistical modeling of Ksat

To show a possible application of the database, we computed various PTFs. The PTF models were fitted using a random forest

(RF) machine learning algorithm (Breiman, 2001) in the R environment for statistical computing (R Core Team, 2013). We

fitted the RF model for log-transformed (log10) Ksat values as a function of primary soil properties. In this application, PTFs25

for Ksat were built based on bulk density and sand and clay content. The observed correlation between these primary soil

properties and Ksat motivates their use as key variables for the estimation of PTFs. Organic carbon (OC) was not used to build

the PTFs because (i) this information was missing for 15% of measurements and (ii) the correlation between OC and Ksat was

poor (i.e. 0.005, Pearson’s correlation coefficient). We derived two PTFs for Ksat:

1. PTF for temperate regions: the map of Ksat locations were overlaid on the Köppen-Geiger climate zone map (Rubel30

and Kottek, 2010; Hamel et al., 2017) and then divided the measurements based on climatic regions (temperate, tropical,

boreal, and arid) to account for differences in climate and related weathering processes (Hodnett and Tomasella, 2002). A
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Table 2a. Description and units of some key variables listed in the database. The list can be found in the readme-file (table 1) and dataset

’sol_ksat.pnts_horizons’ on Zenodo (https://doi.org/10.5281/zenodo.3752721). We used the same codes as in the National Cooperative Soil

Survey (NCSS) Soil Characterization Database (National Cooperative Soil Survey, 2016).

Headers Description Units

ID Unique ID —

site_key Data set identifier —

longitude_decimal_degrees Ranges up to +180 degrees down to -180 degrees Decimal degree

latitude_decimal_degrees Ranges up to +90 degrees down to -90 degrees Decimal degree

location_accuracy_min Minimum value of location accuracy m

location_accuracy_max Maximum value of location accuracy m

hzn_top Top of soil sample cm

hzn_bot Bottom of soil sample cm

hzn_desgn Designation of soil horizon —

db Bulk density g cm−3

w3cld Soil water content at 33 kPa (field capacity) vol %

w15l2 Soil water content at 1500 kPa (wilting point) vol %

tex_psda Soil texture classes based on USDA —

clay_tot_psa Mass of soil particles, < 0.002 mm %

silt_tot_psa Mass of soil particles, > 0.002 and < 0.05 mm %

sand_tot_psa Mass of soil particle, > 0.05 and < 2 mm %

oc_v Soil organic carbon content %

ph_h2o_v Soil acidity —

Ksat_lab Soil saturated hydraulic conductivity from lab cm day−1

Ksat_field Soil saturated hydraulic conductivity from field cm day−1

source_db Source of the data —

location_id Combination of latitude and longitude —

hzn_depth Mean depth of soil horizon —

total of 8,296 Ksat values for measurements in temperate-climate that contain information on sand, clay, and bulk density,

were used to develop the PTF. The data set was randomly divided into a training (6,637 samples, 80%) and testing dataset

(1,659 samples, 20%). PTFs for temperate regions include all depths of Ksat measurements (40% Ksat values from top

soil 0-20 cm). In a validation step, we applied the PTF determined for temperate regions to tropical regions. Compared to

temperate regions, the tropics are affected by different soil formation processes resulting in different clay mineral types.5

With such validation, we intend to discuss the transferability of PTFs across different regions.
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Table 2b. Example of Ksat database structure with key variables (from left to right: unique ID, reference, longitude and latitude (decimal

degree), minimum and maximum accuracy (m), top and bottom of soil sample (cm), horizon designation, bulk density (g cm−3), moisture

content at field capacity and wilting point (%), soil textural class, clay, silt and sand content (%), soil organic carbon content (%), soil acidity,

saturated hydraulic conductivity measured in lab or field (cm day−1), source of the data, location id and mean soil depth). NA is ‘no value’.

Column names are explained in Table 2a. The dataset file ’sol_ksat.pnts_horizons’ can be found on Zenodo (https://doi.org/10.5281/zenodo.

3752721).

ID site_key
longitude_

decimal_

degrees

latitude_

decimal_

degrees

location_

accuracy_

min

location_

accuracy_

max

hzn_

top

hzn_

bot

hzn_

desgn
db w3cld w15l2

tex_

psda

clay_

tot_

psa

silt_

tot_

psa

sand_

tot_

psa

oc_

v

ph_

h20_

v

ksat_

lab

ksat_

field

source_

db
location_ id

hzn_

depth

1 Becker_2018 -110.13 31.73 0 100 0 15 NA NA NA NA Sandy loam NA NA NA NA NA NA 26.40 ETH_literature ID_-110.13_31.73 7.5

2 Becker_2018 -110.09 31.72 0 100 0 15 NA NA NA NA Sandy loam NA NA NA NA NA NA 27.84 ETH_literature ID_-110.09_31.72 7.5

3 Becker_2018 -110.09 31.69 0 100 0 15 NA NA NA NA Sandy loam NA NA NA NA NA NA 21.60 ETH_literature ID_-110.09_31.69 7.5

4 Becker_2018 -110.05 31.74 0 100 0 15 NA NA NA NA Loam NA NA NA NA NA NA 23.76 ETH_literature ID_-110.05_31.74 7.5

5 Becker_2018 -110.04 31.72 0 100 0 15 NA NA NA NA Sandy loam NA NA NA NA NA NA 39.12 ETH_literature ID_-110.04_31.72 7.5

6 Becker_2018 -110.04 31.69 0 100 0 15 NA NA NA NA Sand NA NA NA NA NA NA 102.96 ETH_literature ID_-110.04_31.69 7.5

7 Becker_2018 -110.02 31.67 0 100 0 15 NA NA NA NA Sand NA NA NA NA NA NA 111.36 ETH_literature ID_-110.02_31.67 7.5

8 Becker_2018 -110.01 31.72 0 100 0 15 NA NA NA NA Sand NA NA NA NA NA NA 63.36 ETH_literature ID_-110.01_31.72 7.5

9 Becker_2018 -110.00 31.72 0 100 0 15 NA NA NA NA Sand NA NA NA NA NA NA 133.44 ETH_literature ID_-110.00_31.72 7.5

10 Becker_2018 -109.99 31.71 0 100 0 15 NA NA NA NA Sandy loam NA NA NA NA NA NA 9.84 ETH_literature ID_ -109.99_31.71 7.5

Table 3. Number of samples (N) assigned to each spatial accuracy class. NA are samples without information on spatial accuracy.

Minimum loca-

tion error

Maximum

location error
N

0 m 100 m 9801

100 m 250 m 972

250 m 500 m 623

500 m 1000 m 499

1000 m 5000 m 959

5000 m 10000 m 263

10000 m NA 141

Total 13,258

2. PTF for laboratory-based Ksat values: in a second application, the dataset (total 13,258) was divided into laboratory

and field based Ksat values. A total of 9,155 Ksat measurements belongs to laboratory and 4,131 Ksat measurements

belong to field. The laboratory dataset (8,491 Ksat measurements with information on soil texture and bulk density

information) was used for training (6,793) and testing (1,698) following the same method as used for the PTF for the

temperate climate (i.e., 80% for training and 20% for testing). Lab-based PTFs include all depths of Ksat measurements5

(30% Ksat values from top soil 0-20 cm). Similar to the application of PTF from temperate region for the tropics, we

apply the PTF deduced from laboratory data for prediction of Ksat measured in the field. We expect differences because

field measurements scan larger soil volumes that may contain soil structural pores.

8
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Table 4. Instruments and methods used to estimate Ksat. A key reference with further details is given for all methods. The field

methods are subdivided in different subcategories (in some cases, ‘ponding’ in the filed methods or ‘permeameter’ in the lab meth-

ods were listed in original studies without specification). Information on the applied method for each sample is provided in file

’sol_ksat.pnts_metadata_cl_pedo.csv’ (https://doi.org/10.5281/zenodo.3752721).

Lab Ksat methods N Field Ksat methods N

Constant head method (Klute and Dirksen, 1986) 8055 Single (Bagarello and Sgroi, 2004) 460

Falling head method (Klute, 1965) 765 Ring (N = 1,282) Double (Bodhinayake et al., 2004) 625

Triaxial cell (ASTM D 5084) (Purdy and Suryasasmita, 2006) 99 BEST (Lassabatere et al., 2006) 197

Pressure plate (Sharratt, 1990) 14 Mini Disc (Naik et al., 2019) 773

Oedometer test (ASTM D2435-96) (Sutejo et al., 2019)
12 Tension (Reynolds et al., 2000) 720

Permeameter 10 Infiltrometer (N = 2,207) Disc (Soracco et al., 2010) 551

Oedometer test (UNI CEN ISO/TS 17892-5) (Terzaghi, 2004) 9 Guelph (Gupta et al., 1993) 87

Hood (Schwärzel and Punzel, 2007) 41

Micro (Sepehrnia et al., 2016) 35

Guelph (Reynolds and Elrick, 1985) 153

Aardvark (Hinton, 2016) 142

Permeameter (N = 349) Disc (Mohanty et al., 1994) 27

Constant head (Amoozegar, 1989) 20

Philip–Dunne (Muñoz-Carpena et al., 2002) 7

Piezometer slug test (Baird et al., 2017) 72

Tensiometers Nielsen et al. (1973) 70

Rainfall simulator (Gupta et al., 1993) 55

Others (N = 226) Steady infiltration (Scotter et al., 1982) 16

Ponding 8

Auger method (Mohsenipour and Shahid, 2016) 5

Unknown 191 Unknown 67

Total 9,155 4,131

The ‘ranger’ package version 0.12.1 (Wright and Ziegler, 2015) was used to build the PTFs. The PTFs developed for tem-

perate regions and for laboratory data were then applied to test their ability to predict the result for the measurements in

tropical climate (1,111 Ksat measurements) and for field measurements (1,998 Ksat measurements with information on soil

texture and bulk density information), respectively. The code for generating and testing the PTFs is provided in the supplemen-

tary information. ANOVA (Analysis of Variance) with post-hoc Tukey’s HSD (Honestly Significance Difference) test (Hilton5

and Armstrong, 2006; Abdi and Williams, 2010) was used to test the significant difference in Ksat between texture classes.

ANOVA test indicates that at least one group differs from the other groups but does not explain the patterns of differences be-

tween means. Then, the Tukey HSD test was used to compute the significant difference between two means using a statistical

distribution as shown in the results in Appendix A. This analysis was important to understand and check whether Ksat values

between soil texture classes are significantly different or not.10

The relative importance of the covariates for modeling Ksat was assessed by the node impurity, which, for RF regression

problems, is computed as the decrease of residual sum of squares (RSS) when a particular covariate splits the data at the nodes

of a tree (Hastie et al., 2009, sections 10.13.1, 15.3.2). The variable that provides maximum decline in RSS (and consequently

9
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Table 5. Mean values of soil hydro-physical properties for each soil textural class. The number of samples (N) is given in parenthesis under

each soil variable for each soil texture classes.N values marked with ∗ correspond to undefined soil texture class. BD = bulk density (g/cm3),

OC = soil organic carbon content (%), FC = moisture content at field capacity (% vol), WP = moisture content at wilting point (% vol), Ksatl

and Ksatf is laboratory and field Ksat (cm/day), respectively. For Ksat the geometric mean is reported (due to the sensitivity to a few extreme

values for the arithmetic mean). For all other properties the arithmetic mean is provided.

Texture Classes Clay

(N)

Silt

(N)

Sand

(N)

BD

(N)

OC

(N)

FC

(N)

WP

(N)

Ksatl

(N)

Ksatf

(N)

Clay 56.3 23.6 20.0 1.27 2.00 43.2 30.0 8.22 110.07

(830) (830) (830) (639) (448) (447) (449) (499) (331)

Silty Clay 45.2 45.1 9.6 1.18 3.83 49.9 30.2 3.63 196.65

(181) (181) (181) (175) (116) (46) (46) (85) (96)

Sandy Clay 39.3 8.1 52.5 1.52 0.23 34.7 23.4 14.16 —–

(176) (176) (176) (172) (140) (158) (158) (172) (4)

Clay Loam 31.4 38.6 29.9 1.27 2.49 37.2 22.1 13.34 60.56

(544) (544) (544) (382) (360) (76) (76) (127) (417)

Silty Clay Loam 33.1 57.1 9.7 1.24 2.67 46.2 23.9 1.57 48.45

(335) (335) (335) (283) (227) (57) (56) (113) (222)

Sandy Clay Loam 26.3 12.1 61.6 1.53 1.26 28.7 17.1 19.43 14.23

(1148) (1148) (1148) (966) (950) (805) (759) (876) (272)

Silt 7.7 84.6 7.6 1.16 1.65 51.4 7.5 13.27 —-

(25) (25) (25) (19) (11) (12) (11) (25)

Silt Loam 15.2 66.8 17.9 1.34 3.65 35.2 15.6 5.87 44.63

(810) (810) (810) (618) (498) (148) (138) (447) (364)

Loam 19.0 39.1 41.7 1.29 2.16 32.07 14.2 45.62 34.21

(685) (685) (685) (593) (561) (94) (97) (219) (464)

Sandy Loam 13.5 16.8 69.7 1.49 1.33 24.2 11.0 39.71 74.57

(1601) (1601) (1601) (1492) (1337) (806) (792) (1078) (523)

Loamy Sand 7.3 8.5 84.0 1.55 1.13 17.3 6.5 95.37 132.33

(736) (736) (736) (711) (674) (582) (586) (637) (99)

Sand 2.2 3.1 94.6 1.51 0.62 8.2 2.5 488.46 209.55

(4513) (4513) (4513) (4437) (4179) (4063) (4062) (4409) (106)

Total
11,584 11,584 11,584

10,487 9,501 7,294 7,229 8,687 2,900

(17∗) (0∗) (38∗) (775∗) (286∗) (88∗) (182∗) (468∗) (1,231∗)
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increase in node purity) is considered as the most important variable; the variable with the second largest RSS decrease is

considered the second most important variable, and so on. Furthermore, the accuracy of the predictions was evaluated using

bias, root mean square error (RMSE, in log-transformed Ksat measurement), and concordance correlation coefficient (CCC)

(Lawrence and Lin, 1989).

Bias and RMSE are defined as:5

bias=

n∑
i=1

(ŷi − yi)

n
(1)

RMSE =

√√√√ n∑
i=1

(ŷi − yi)2

n
(2)

where y and ŷ are observed and predicted Ksat values, respectively, and n is the total number of cross-validation points.

The CCC is a measure of the agreement between observed and predicted Ksat value and is computed as

CCC =
2 · ρ ·σŷ ·σy

σ2
ŷ +σ2

y +(µŷ −µy)2
(3)10

where µŷ and µy are predicted and observed means, σŷ and σy are predicted and observed variances and ρ is the Pearson

correlation coefficient between predicted and observed values. CCC is equal to 1 for a perfect model.

3 Results

3.1 Data coverage of SoilKsatDB

Based on the literature search and data compilation, we have assembled a total of 13,258 values of Ksat from 1,908 locations15

(each location has a unique location_id) across the globe. Moreover, the database contains a total of 13,286 Ksat values

because a few studies have reported both field and lab measurements for the same location. Figure 1 shows the global distribu-

tion of the sites used in this study. Most data originate from North America, followed by Europe, Asia, South America, Africa,

and Australia. With respect to climatic regions, 10,093 Ksat measurements were taken in temperate regions (8,296 contained

texture and bulk density information and were used to build PTF) and 1,443, 1,106, 580, and 36 in tropical, arid, boreal, and20

polar regions, respectively, as shown in Figure 2b. The points are often spatially clustered with the biggest cluster of points

(1,103 locations with 6,532 Ksat measurements) in Florida (Grunwald, 2020). The Ksat database includes 4,131 values from

field measurement and 9,155 values from laboratory measurements. In particular, different types of infiltrometers (e.g., Mini

disc infiltrometer, Tension infiltrometer) and permeameters (e.g., Guelph permeameter, Aardwark permeameter) were used for

the field measurements, whereas constant or falling head methods were mainly used in laboratory analyses (Table 4).25
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Figure 2. Description of Ksat measurements. (a) Venn diagram illustrating the number of Ksat measurements in the SoilKsatDB for which

bulk density, soil texture, and soil organic carbon data were also available. Note that the size of the intersecting areas does not represent the

correct fractions. (b) Distribution of Ksat measurements among climatic regions.

Out of the 13,258 Ksat measurements, 11,584 had information on soil texture, 11,262 on bulk density, 9,787 on organic car-

bon, 7,382 on field capacity, and 7,411 on wilting point, while for 8,994 measurements information for all soil basic properties

(bulk density, soil texture, and organic carbon) was available (Figure 2a).

The methods used to compute these soil properties (as much as we could extract from the literature and existing databases)

are listed in the CSV file sol_ksat.pnts_metadata_cl_pedo.csv available at https://doi.org/10.5281/zenodo.3752721.5

Note that in addition to 11,584 soil texture values, 75 measurements have soil texture information with total (sand+silt+clay)

less than 98% or greater than 102%. We did not use these values in the PTF development but included it in the database as

“Error” class in the soil texture column.

3.2 Statistical characteristics of SoilKsatDB

The distribution of measurements based on soil texture classes is shown on the USDA soil texture triangle in Figure 3a. The10

database covers all textural classes, with a high clustering in sandy soils due to the numerous samples from Florida (Grunwald,

2020), while only few measurements belong to the silt textural class. The increase in Ksat values in clayey and loamy soils for

field methods (compared to laboratory methods) is likely due to the effect of soil structure. ANOVA with post-hoc Tukey’s HSD

test showed that the mean values for all broad soil texture classes are significantly different from each other, except for clayey

soils field Ksat values and sandy soils field Ksat values (see Table A1). The violin distribution plot in Figure 3c shows the15

range of Ksat values for the different databases. Most of the datasets report Ksat values between 10−2 and 102.5 cm/day, with

a wider range of Ksat values observed in measurements from theses and reports (including studies with extreme values from

sandy desert soils and low conductive clay soils) and from the SWIG database (databases 9 and 6 in Figure 3c, respectively).

Likewise, Figure 3d shows the violin distribution of Ksat based on soil texture classes. The arithmetic mean of Ksat was highest
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Figure 3. Characterization of collected Ksat values: (a) distribution of soil samples on the USDA soil texture triangle, (b) distribution of Ksat

values using broad soil texture classes (sandy soils: sand and loamy sand; loamy soils: sandy loam, loam, silt loam, silt, clay loam and sandy

clay loam; clayey soils: sandy clay, silty clay and clay) based on laboratory and field measurements (the number of measurements is shown

on the top of the figure). Figure (c) shows the range of Ksat values spanned by each data source. The database numbers 1–9 refer to different

sources and databases: 1 = Australia (Forrest et al., 1985), 2 = Belgium (Vereecken et al., 2017), 3 = China (Tian et al., 2017; Li et al., 2017),

4 = Florida (Grunwald, 2020), 5 = HYBRAS (Ottoni et al., 2018), 6 = SWIG (Rahmati et al., 2018), 7 = Tibetan Plateau (Zhao et al., 2018),

8 = UNSODA (Nemes et al., 2001), 9 = all other databases in Table 1. (d) Distribution of Ksat based on soil textural classes with the number

of measurements shown on the top of the figure. In the violin diagrams (c and d) the dot represents the mean value, and the line represents

the standard deviation for each data set.

for the sand and loamy sand soils (i.e., 2.68 and 1.99, respectively in log10 cm/day), while the lowest mean values were found

for silt and silty loam (i.e., 1.12 and 1.15, respectively in log10 cm/day). Table A2 shows that the Ksat values in sand and loamy

sand soil texture classes are significantly different from all other soil texture classes. However, silt, silty clay, and silty clay

loam classes are not significantly different from clay, sandy clay, and sandy clay loam Ksat values.
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Figure 4. Partial correlation between Ksat and a) soil organic carbon OC (%), b) bulk density (g/cm3), c) clay (%) and d) sand content (%)

as heat maps. Ksat decreases with increasing clay content and bulk density, and increases with sand content. The color of each hexagonal

cell shows the number of the measurements in each cell.

Average values of Ksat and other hydro-physical properties are shown in Table 5. Higher average organic carbon and bulk

density values were observed in clayey and loamy soils compared to sandy soils. Ksat values obtained from field measurements

were on average higher than those obtained from laboratory Ksat values. Particularly, for the clay texture class much lower

Ksat values were observed for laboratory (mean Ksat ≈ 8 cm/day) compared to field (mean Ksat ≈ 110 cm/day) measurements

(Table 5). Figure 3b further illustrates the higher range of Ksat values obtained for finer texture soils (clay and loam) compared5

to coarser soils (sand).

3.3 Ksat PTFs derivation

As a test application of SoilKsatDB, two PTFs were derived for Ksat (i.e., for measurements taken in temperate regions and

based on laboratory measurements) using basic soil properties as covariates. General trends between Ksat and soil properties

are shown in partial correlation plots in Figure 4. The figure indicates that Ksat decreases with clay content and bulk density,10

and increases with sand content.

Figure A1 shows the list of relative importance of the covariates to build PTFs for the measurements from temperate regions

and laboratory-based measurements. Clay content was found to be the most important variable followed by sand and bulk

density for the temperate climate PTF. On the other hand, sand content was the most important variable followed by clay and

14



Figure 5. The correlation between observed and predicted Ksat values obtained from random forest (RF) models. The RF-based Pedotransfer

function (PTF) model was fitted using data for laboratory measurements of Ksat and tested on both laboratory (a) and field (b) measure-

ments. Results showed reasonable agreement (CCC = 0.72) using RF algorithms for laboratory measurements, but low CCC (0.10) for field

measurements. PTFs developed based on laboratory measurements do not provide accurate estimates of Ksat measured in the field.

bulk density for the laboratory-based Ksat PTF. CCC, bias, and RMSE were respectively equal to 0.74, -0.006, and 0.64, for

the temperate-based PTF, and 0.72, -0.02, and 0.66 for laboratory-based PTF.

As we will discuss in more detail in the next section, PTF models derived for temperate and laboratory-based Ksat values

underestimated Ksat for tropical- and field-based Ksat values, respectively (see Figure 6b and Figure 5b). CCC, bias, and

RMSE values were respectively equal to 0.49, -0.2, and 0.94 for tropical Ksat values, and to 0.10, -0.22, and 1.2 for field5

measured Ksat values.

4 Discussion

4.1 Laboratory vs field estimated Ksat: effect of soil structure

The Ksat values were, on average, higher for the field measurements compared to laboratory measurements for most soil texture

classes (Table 5 and Figures 3b and 5). The difference in laboratory and field based Ksat values and larger range of Ksat values10

for fine textured soil is probably related to the effect of biologically-induced soil structure that might be neglected in laboratory

measurements. The omission of soil structures in many laboratory samples limits the possibility to properly reproduce field

observations that are likely to be more affected by the presence of biopores (Fatichi et al., 2020) and other soil structural

characteristics, such a cracks. In other words, variability in the Ksat values depends on the consideration (and existence) of

soil structure by the measurement methods. Soil structural pores change the pore size distribution and subsequently affect Ksat15
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Figure 6. Correlation between observed and predicted Ksat values obtained from the random forest (RF) model. The RF-based Pedotransfer

function (PTF) model was obtained by fitting 6,637 training points measured in a temperate-climate and tested on (a) data from temperate

climate (1,659 measurements) and (b) data from tropical areas (1,111 measurements). PTFs showed good performance (CCC = 0.74) for the

measurements taken in the temperate climate (including both laboratory and field measurements), but lower CCC values were obtained for

tropical soil measurements (0.49 for RF). PTFs determined for temperate regions cannot be easily transferred to tropical regions because of

the different soil forming processes.

values (Tuller and Or, 2002). Such an effect is more likely to be neglected in laboratory measurements rather than in field

studies due to the small size of most laboratory samples. Presence or absence of large structural pores depends on the scale

of measurements (that is usually larger in the field). Mohanty et al. (1994), for example, compared three field methods and

one laboratory method and found that the sample size affects the measurement of Ksat due to the presence and absence of

open-ended pores. Similarly, Ghanbarian et al. (2017) showed that the sample dimensions (e.g., internal diameter and height)5

also impact Ksat. The authors further developed a sample dimension-dependent PTF, which performed better than other PTFs

available in the literature. Likewise, Braud et al. (2017) used three field methods for Ksat measurements and found significant

variation between these measurement methods. Davis et al. (1996) also highlighted the necessity to choose the most appropriate

scale of measurement for a particular soil sample when undertaking conductivity measurements. They tested small cores (73

mm wide and 63 mm high) and large cores (223 mm wide and 300 mm high) using the constant head method in the laboratory10

and found a difference of 1 to 3 orders of magnitude.

4.2 Temperate vs tropical soils: effect of soil formation processes

PTFs obtained for temperate soils performed poorly for tropical soils (Figure 6), with Ksat being underestimated by the

temperate-based PTFs. This result is in agreement with Tomasella et al. (2000) who derived PTFs using data from tropical
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Brazilian soils, which did not properly capture observations in temperate soils. We argue that the significant differences for

tropical and temperate soils are due to the differences in the soil-forming processes that also define the clay type and mineralogy.

In fact, Oxisols (highly weathered clay soils as a result of high rainfall and temperature in tropical regions) are characterised by

inactive (non-swelling) clay minerals. In contrast to tropical soils, active (smectite) and moderately active clay minerals (illite)

are the dominant clay minerals in temperate regions. These swelling clay minerals retain water within internal structures with5

very low hydraulic conductivity. Therefore, such a difference in clay mineralogy is likely responsible for the underestimation

of Ksat in tropical soils from PTFs based on measurements in temperate areas. In addition, soil structure formation processes

may be different in tropical and temperate regions (perennial activities of vegetation in the tropics) which would also lead to

differences between measured Ksat values for the two climatic regions.

4.3 Limitations of SoilKsatDB10

We put an effort to combine laboratory and field data from across the globe. However, we acknowledge that there are still gaps

in some regions, such as Russia and higher northern latitudes in general, which may result in uncertainties in Ksat estimates

in such regions. The SoilKsatDB could also be of limited use for fine-resolution applications because many data points were

characterized by limited spatial accuracy and missing soil depth information. Specifically, the spatial accuracy of many points

is between tens of meters and several kilometers (see the methodology sections regarding the extraction of the spatial locations15

using Google Earth). Many of the records in the SoilKsatDB come from legacy scientific reports and the original authors could

not be traced and contacted, hence we advise to use this data with caution. In addition, in the SWIG database, the soil depth and

measurement method information were not provided, and often one location was used to represent an entire watershed. We tried

to revisit each publication and extract the most accurate coordinates of assumed sampling locations. In addition, we assumed

that most of the samples were obtained from field measurements as authors used different infiltrometers to compute Ksat, so20

there might be a few points in our SoilKsatDB that belong to laboratory measurements and that we have incorrectly assigned

to field measurements. Moreover, the field measurements in the database are a mix of many Ksat measurement methods.

For each measurement, a location accuracy (0-100 m = highly accurate, >10,000 m = least accurate) was assigned based on

the sampling location accuracy. The location accuracy can be used as a weight or probability argument in Machine Learning

for Ksat mapping. We are aware that this was a rather subjective decision; a more objective way to assign weights would be25

to use the actual spatial positioning errors. Because these were not available for most of the datasets, we have opted for the

definition of a location accuracy estimated from the available documentation.

4.4 Further developments

The advancement in remote sensing technology opens the doors to link the hydraulic properties with global environmental

data. Satellite-based maps of environmental characteristics such as local information on vegetation, climate, and topography30

for specific areas, which are often ignored by basic PTFs, can be incorporated. For example, Sharma et al. (2006) developed

PTFs using environmental variables such as topography and vegetation and concluded that these attributes, at fine spatial scales,

were useful to capture the observed variations within the soil mapping units. Likewise, Szabó et al. (2019) used a random forest
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machine learning algorithm for mapping soil hydraulic properties and incorporated local environmental information such as

vegetation, climate, and topography.

5 Data availability

All collected data and related soil characteristics are provided online for reference and are available at https://doi.org/10.5281/

zenodo.3752721 (Gupta et al., 2020). Please note that our zenodo collection of files contains more than is described in the5

manuscript.

6 Summary and conclusions

We compiled a comprehensive global dataset of Ksat measurements (N = 13,258) by importing, quality controlling, and

standardizing tabular data from existing soil profile databases and legacy reports, as well as scientific literature. The SoilKsatDB

covers a broad range of soil types and climatic regions and hence is useful in global models. A larger variation in Ksat values10

was observed for fine-textured soils compared to coarse-textured soils, indicating the effect of soil structure on Ksat. Moreover,

Ksat values obtained from field measurements were generally higher than those from laboratory measurements, likely due to

the impact of soil structural pores in field measurements.

The new database was used to develop PTFs using RF algorithms for Ksat values obtained for temperate climates and for

laboratory measurements. PTFs developed for a certain climatic region (temperate) or measurement method (laboratory) could15

not be satisfactorily applied to estimate Ksat for other regions (tropical) or measurement method (field) due to the role of

different soil forming processes (inactive clay minerals in tropical soils and impact of biopores in field measurements).

There are still some gaps in the geographical representation of the data, especially in Russia and the higher northern latitudes,

that could induce uncertainty in global modeling. Therefore, the data set can be further improved by covering the missing areas

thus allowing better accuracy in modeling applications.20

The SoilKsatDB was developed in R software and is available via https://doi.org/10.5281/zenodo.3752721. We have made

code and data publicly available to enable further developments and improvements.
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Appendix A

Table A1. Listed p-values under 95 percent confidence interval for each class to show the significant difference in Ksat between texture

classes (see Figure 3b). The significant difference was computed using ANOVA (Analysis of Variance) with post-hoc Tukey’s HSD (Honestly

Significance Difference). The values highlighted in yellow show the significant difference in Ksat between two soil texture classes.

Broad soil texture classes Lab Loamy soils Lab Sandy soils Lab Clayey soils Field Loamy soils Field Sandy soils Field Clayey soils

Lab Loamy soils 1 <0.05 <0.05 <0.05 <0.05 <0.05

Lab Sandy soils <0.05 1 <0.05 <0.05 <0.05 <0.05

Lab Clayey soils <0.05 <0.05 1 <0.05 <0.05 <0.05

Field Loamy soils <0.05 <0.05 <0.05 1 <0.05 <0.05

Field Sandy soils <0.05 <0.05 <0.05 <0.05 1 0.1

Field Clayey soils <0.05 <0.05 <0.05 <0.05 0.1 1

Table A2. Listed p-values under 95 percent confidence interval for each class to show the significant difference in Ksat between texture

classes for Figure 3d. The significant difference was computed using ANOVA (Analysis of Variance) with post-hoc Tukey’s HSD (Honestly

Significance Difference) test. The values highlighted show the significant difference in Ksat between two soil texture classes.

Texture Classes C SiC SC CL SiCL SCL Si SiL L SL LS S

C 1 0.4 <0.05 <0.05 0.1 0.06 0.4 <0.05 <0.05 <0.05 <0.05 <0.05

SiC 0.4 1 <0.05 0.1 0.06 0.06 0.2 <0.05 0.5 0.09 <0.05 <0.05

SC <0.05 <0.05 1 <0.05 0.8 0.3 0.8 0.8 <0.05 <0.05 <0.05 <0.05

CL <0.05 0.1 <0.05 1 <0.05 <0.05 0.051 <0.05 <0.05 0.9 <0.05 <0.05

SiCL 0.1 0.06 0.8 <0.05 1 0.6 0.7 0.6 <0.05 <0.05 <0.05 <0.05

SCL 0.06 0.06 0.3 <0.05 0.6 1 0.6 0.1 <0.05 <0.05 <0.05 <0.05

Si 0.4 0.2 0.8 0.051 0.8 0.6 1 0.9 0.1 0.051 <0.05 <0.05

SiL <0.05 <0.05 0.8 <0.05 0.6 0.1 0.9 1 <0.05 <0.05 <0.05 <0.05

L <0.05 0.5 <0.05 <0.05 <0.05 <0.05 0.1 <0.05 1 <0.05 <0.05 <0.05

SL <0.05 0.09 <0.05 0.9 <0.05 <0.05 0.051 <0.05 <0.05 1 <0.05 <0.05

LS <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 1 <0.05

S <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 1
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Figure A1. Importance of the variables for developing the PTFs for Ksat using random forest algorithm. The x-axis displays the average

increase in node purity (the larger the value, the more important is a covariate). (a) Clay content was the most important variable followed by

sand and bulk density for the Random Forest model built on data from temperate regions. (b) Sand content was the most important variable

followed by clay and bulk density for the Random Forest model based on laboratory measurements.
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