

Interactive comment on “SoilKsatDB: global soil saturated hydraulic conductivity measurements for geoscience applications” by Surya Gupta et al.

Anonymous Referee #1

Received and published: 9 August 2020

Review of SoilKsatDB: global soil saturated hydraulic conductivity measurements for geoscience applications by Surya Gupta et al.

The saturated hydraulic conductivity Ksat dataset that the authors compiled is extremely useful and highly needed. The paper describes the dataset clearly and is well written and easy to follow. The initial analyses done with the new dataset are interesting as well. Some of the figures in the paper can easily be used in lectures on soil hydrology. I checked the csv file of the database (from the website given at the end of the paper) and it contains more columns than described in the paper. This is a bit confusing. I have very few comments on the paper itself and highly recommend publication of the paper after some minor revisions.

Dataset:

C1

*) I checked the csv file of the database and found the use of the ? to indicate missing data a bit annoying (even though it can be easily replaced by NaN or some other identifier). In column “hzn_desgn” both “no data” and “?” are used for no data. This is a bit confusing. Also, there are columns that seem to only have missing data and aren’t defined in Table 2a: “usiteid”, “labsampnum”, “layer_sequence”, “db_13b”, “COLEws”, “w15bfm”, “adod wrd_ws13”, “cec7_cly”, “w15cly”, “ph_kcl”, “cec_sum”, “cec_nh4”. The column “site_obsdate” isn’t defined and explained in Table 2a and it isn’t clear what this is as it clearly isn’t a date. Similarly, the columns “hzn_desgn”, “w15bfm”, “wpg2” are not described in Table 2a, nor shown in Table 2b.

*) I would find it very useful if the database also contained a column with your classification of the climate and the calculated texture % based on the Nemes et al. method. This would mean less double work for other researchers who want to use the data (and possible errors).

*) I would find it useful if the headers contained not only the name but also the units but this is just a personal preference that helps to avoid errors when reusing the data.

Paper:

*) In the introduction, the authors argue that it is important to have accurate information on the location of the data points but this argument is not clearly supported by examples. The authors invested a lot of effort in obtaining this data for sites that were already included in other databases but for which the database didn’t have the location information. I think that this is highly useful but the argument could be stronger. The PTF example for the use of the database doesn’t use any detailed information on the location of the measurements. The paper would be stronger if examples were given or if there was (more) discussion of applications for which this spatial precision is indeed necessary.

*) In addition to the compilation of existing (national-scale) databases, the authors also actively searched for data from underrepresented areas. This is very useful but it

C2

is, however, not fully clear how underrepresented areas were defined or how exactly they searched for these additional data points. Was there a certain cutoff in terms of publication date? Did they search for data from specific countries or was it based solely on soil type or climate? A bit more information on how they searched for these studies and thus which studies were included (and which were not included) would be useful.

*) The paper contains several very useful figures that compare Ksat values for different soil types. It would be useful if it was indicated on these figures for which soil types the mean values are statistically significant different.

*) On P3L26, it is mentioned that the sand silt clay fractions were estimated based on the method of Nemes et al. but from the text and Venn diagram in Figure 2, it appears that these data were available for most of the papers/databases. Were they only estimated when they were not available already from the database? This is not so clear. How well did the Nemes method estimate the fractions when data were available?

*) The authors develop a subjective accuracy score based on the location accuracy and the method. They state (P9L8) that they consider lab measurements more accurate than field measurements. Even though I understand what they mean, this was still a bit surprising to me as samples may be disturbed, suffer from compaction or smearing and are generally too small to contain a network of macropores. This is partly addressed in the discussion but some discussion (perhaps with a focus on accuracy vs precision?) and acknowledgements of the issues with soil samples in this part of the paper would be useful

*) I know that there are different ways to use the word "sample" but here it is confusing to use the word for different things. I therefore suggest not to use the word sample for a datapoint, and to only use it to mean a soil sample (and thus for the laboratory measurements). In particular, "field measured soil samples" is a confusing use of the

C3

word sample. Also "temperate soil samples" seems to be used to indicate both field and lab (sample based) values from sites in a temperate climate. It would be better to reword these types of sentences to avoid any confusion.

*) The annotated pdf contains some additional suggestions (all minor) and highlights where the text can perhaps be improved a bit (these are just suggestions though, the paper is well written as it is).

Please also note the supplement to this comment:

<https://essd.copernicus.org/preprints/essd-2020-149/essd-2020-149-RC1-supplement.pdf>

Interactive comment on Earth Syst. Sci. Data Discuss., <https://doi.org/10.5194/essd-2020-149>, 2020.

C4