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Abstract. In this paper we run the EMEP air quality model with 3 different emission inventories at 2015, that is to say using 

CAMS, EMEP emissions, and EDGAR. The EMEP model has been run for the entire year 2015, and resulting concentration 

results have been compared with ‘background’ monitoring stations. Results show that the air quality model, run with the 3 10 

emission inventories, provide similar results despite the emission differences. More in details, EDGAR is providing slightly 

better validation results for PM2.5, while the EMEP emissions are slightly better to model yearly average NO2. The main 

differences among the model applications arise in the Eastern part of Europe, where the values between the officially 

estimated emissions and those independently estimated by EDGAR are higher. Results suggest that EDGAR, despite being a 

methodology aimed at global coverage, with independent sources for activity level, technologies and emission factors and 15 

generic gridding practices, can be effectively used for air quality modelling in Europe. The EDGAR dataset (v5.0) used in 

this paper is available at: https://data.europa.eu/doi/10.2904/JRC_DATASET_EDGAR (link: EDGAR v5.0 Global Air 

Pollutant Emissions, Crippa et al., 2020a). 

1 Introduction 

Air quality modelling is a key tool to inform policymaking, because it represents the only available methodology to provide 20 

insights on (1) the potential impacts of emission abatement measures on air quality and (2) concentration levels reached over 

territories where no monitoring station are operating (EEA, 2019). While models are continuously being improved (e.g. 

better representation of the atmospheric chemical processes, finer grid resolution to capture explicitly smaller scale features, 

etc.), they also keep depending on specific inputs. Emission inventories are generally identified as the key input to the air 

quality modelling chain, and many studies point to emission inventories as the most uncertain factor among the different 25 

components of air quality models (e.g. meteorology, boundary conditions, model parameters) (Russell and Dennis, 2000; 

Davison et al., 2011; Viaene et al., 2016, Pisoni et al., 2018). This uncertainty can be especially large for some activity 

sectors due to the lack of knowledge on the activities producing emissions (e.g. agriculture, waste, etc.) and/or on the 

technological and abatement measures penetration influencing the identification of adequate emission factors. In their inter-
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comparison of six aggregated top-down inventories, Trombetti et al. (2018) showed that uncertainties could reach more than 30 

100% for some sectors. Representative emission inventories are hence crucial to air quality applications as they will 

determine to a large extent the accuracy of the subsequent air quality modelling results (Georgiou et al., 2020).  

In literature, numerous studies have assessed the sensitivity of this particular model input on the modelled concentrations and 

related indicators. Zhu et al. (2019) simulated the changes in ozone and fine particulate matter (PM2.5) due to an improved 

estimation of VOC emissions in California. Results showed that simulated daily maximum 8-hr ozone concentrations could 35 

increase by 17.4 ppb in summer and by 15.6 ppb in winter, and the 24-hr maximum PM2.5 could increase by 7.8 μg/m3 in 

winter. In another paper, and from a global perspective (Crippa et al., 2019), the authors investigated emission inventory 

uncertainties and their propagation to PM2.5 concentrations. They estimated 2.1 million premature deaths per year due to 

PM2.5 concentrations, with an uncertainty (due to emission variability) of more than 1 million premature deaths per year.  

In any case, because of the continuous evolution of the air quality models but also of emission inventories, it is important to 40 

repeat these sensitivity analysis, to understand how recent updates have changed our representation and our understanding of 

the air quality processes. With this work, we contribute to this process. In particular, we use the EMEP regulatory air quality 

model (Simpson et al., 2012) and feed it with three EU wide emission inventories: EMEP own emissions, CAMS and 

EDGAR. We use here (and in the rest of the paper) the ‘EMEP’ label to refer to the emissions as used in the EMEP model 

for their policy applications (EMEP, 2019; see 45 

https://www.ceip.at/ms/ceip_home1/ceip_home/webdab_emepdatabase/emissions_emepmodels/), ‘CAMS’ to refer to the 

recently released v2.2.1, as part of the Copernicus Atmospheric Services  (Kuenen et al., 2014; 

https://atmosphere.copernicus.eu/); while EDGAR refers to the recently released v5.0 (Crippa et al., 2018; 

https://edgar.jrc.ec.europa.eu/overview.php?v=50_AP). In Section 2, we briefly describe the modelling tools and data 

applied to perform the simulations, as well as the tools used to analyse the results; we also present the main features of the 50 

recently released EDGAR emission inventory, stressing key differences with EDGAR previous versions. In Section 3, we 

compare the emission inventories and identify the main differences among them, while the resulting modelled concentrations 

are discussed in Section 4 and Section 5 (with validation against observations, and focusing on PM2.5, PM10, NO2 and O3). 

Finally, in Section 6, we discuss the main assumptions and limitations of the approach. 

2 Modelling setup 55 

In this section we briefly describe the EMEP air quality model applied for the simulations and the three emission inventories 

used. Only the main properties of the emission inventories and air quality model applied are detailed here (for more 

information, we suggest the reader to look at the related references).  
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2.1 Air Quality Model 

The EMEP model (Simpson et al., 2012) version rv_33 (https://github.com/metno/emep-ctm) is used over continental 60 

Europe to study the sensitivity of different emission inventories on calculated gas and PM2.5/PM10 concentrations. The 

domain stretches from -15.05° to 36.95° longitude and 30.05° to 71.45° latitude with a horizontal resolution of 0.1° x 0.1° 

longitude/latitude. The model has 20 vertical levels, with the first level at around 7 m. The model uses meteorological initial 

and lateral boundary conditions from the European Centre for Medium Range Weather Forecasting Integrated Forecasting 

System (ECMWF-IFS). The considered meteorological year is 2015. Detailed information on the meteorological driver, land 65 

cover, model physics are described in Simpson et al. (2012) and in the EMEP Status Report 2017 (EMEP, 2017). 

2.2 Emission inventories 

In terms of emission inventories, we test 3 ‘candidates’ as input to the EMEP air quality model: EDGAR, EMEP and 

CAMS-REG-AP emissions. In the next sections of the manuscript, both a comparison of the emissions themselves and their 

impact on concentrations (as produced by the EMEP model based on the different emissions) are presented. In this section, 70 

on the contrary, we briefly detail the key features of the three emission inventories.  

The EDGAR database (Emissions Database for Global Atmospheric Research, Crippa et al., 2018) is a bottom-up global 

database providing historic emission time series and grid maps for all countries from 1970 until 2015, for both air pollutants 

and greenhouse gases, calculated in a consistent and transparent way and therefore allowing comparability amongst 

countries. EDGAR incorporates a full differentiation of emission processes with technology-specific emission factors and 75 

additional end-of-pipe abatement measures. 

The EMEP emissions (Mareckova et al., 2017) are compiled within the “UNECE co-operative programme for monitoring 

and evaluation of the long-range transmission of air pollutants in Europe” (unofficially 'European Monitoring and Evaluation 

Programme', EMEP). EMEP is a scientifically based and policy driven programme under the Convention on Long-range 

Transboundary Air Pollution (CLRTAP) for international co-operation, that has the final aim of solving transboundary air 80 

pollution problems. More specifically, the EMEP emissions are built from officially reported data provided to CEIP (Centre 

of Emission Inventory and Projection, a body of EMEP) by the Convention Parties (Member States, in Europe); emissions 

are gap-filled with gridded TNO data from CAMS and EDGAR (upgraded by point source information available under E-

PRTR), if needed, for use in the EMEP air quality model. 

The CAMS-REG-AP (CAMS regional anthropogenic emission inventory, Granier et al, 2019) covers emissions for the 85 

UNECE-Europe for the main air pollutants and greenhouse gases.  The CAMS-REG-AP methodology starts from the 

emissions reported by European countries to UNFCCC (for greenhouse gases) and to EMEP/CEIP (for air pollutants), 

aggregated into different combinations of sectors and fuels. Then, these emissions are gridded using ad-hoc proxies, that 

differ from the ones used in the EMEP emissions.  

A summary of the information for the three considered emission inventories is provided in Table 1. 90 
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Table 1: Overview of the main characteristics for the three emission inventories. 

 EDGAR EMEP CAMS-REG-AP 

TIME COVERAGE 1970-2015 1990-2017 2000-2016 

SPATIAL 

COVERAGE 

World Europe Europe 

SPATIAL 

RESOLUTION 

0.1 x 0.1 deg 0.1 x 0.1 deg 0.05 x 0.1 deg 

TEMPORAL 

RESOLUTION 

Monthly Yearly Yearly 

POLLUTANTS CH4, CO2, N20, NMVOC, CO, 

SO2, NOx, NH3, PM10, BC, OC, 

PM2.5 

NMVOC, CO, Nox, NH3, TPM, 

PM10, PM2.5, Hg, Cd, Pb 

CH4, NMVOC, CO, SO2, NOx, 

NH3, PM10, PM2.5 

METHODOLOGY Independent activity and 

technology estimation, own 

gridding 

Official emission estimation and 

gridding (when available) 

Official emission estimation and 

own gridding 

REFERENCES Crippa et al., 2018 Mareckova et al., 2017 Granier et al., 2019 

LINK TO 

DOWNLOAD 

https://data.europa.eu/doi/10.2904

/JRC_DATASET_EDGAR 

https://www.ceip.at/the-emep-

grid/gridded-emissions 

https://eccad.aeris-data.fr/catalogue/ 
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3. EDGAR v5.0 and its comparison with other emission inventories 

As mentioned above, we consider 3 emission inventories as input to the EMEP air quality model: ‘EDGAR’, ‘EMEP’ and 

‘CAMS’ emissions. While we refer to other publications for details on EMEP and CAMS (i.e. see EMEP, 2010; Mareckova 95 

et al., 2017; Granier et al, 2019) we focus here on the most recent update of the EDGAR, that is now in its version 5.0. The 

Emissions Database for Global Atmospheric Research (EDGAR) is a global inventory providing greenhouse gas and air 

pollutant emissions estimates for all countries from 1970 till now, covering all IPCC reporting categories. EDGAR emissions 

are computed using a consistent methodology across countries, making use of international statistics for activity data (e.g. 

energy balances from IEA, FAO data from agriculture, USGS for clinker and mineral production, IFA for fertiliser 100 

production). If required, this activity data is technologically disaggregated, for example for energy industries and road 

transport, using the most up to date information from installed capacity such as the UDI Platts (S & P, 2018) database and 

fleet distribution data from the ‘Emisia’ company (EMISIA, 2018).  When possible, regional or country based technological 

Tier 21 emission factors are used.  EDGAR methodology is further described in Janssens-Maenhout et al., 2019, Oreggioni et 

al., 2020a, 2020b. EDGAR also provides spatially distributed data with 0.1 x 0.1 degree resolution and temporarily 105 

disaggregate emissions down to hourly values (Crippa et al. 2020b).  EDGAR’s completeness, time coverage and robust 

methodology has allowed EDGAR to be a benchmark for the emission inventory scientific community, being also a useful 

tool to complete the global picture in terms of global carbon budget and air pollutant emissions, enabling its use for the 

monitoring of progress of abatement measures and the identification of sector of concern (Oreggioni et al., 2020a). In this 

work, we use the latest EDGAR air pollutant dataset (EDGARv5.0) which includes several updates compared to the former 110 

releases (Crippa et al. 2018): 

 new spatial proxies to distribute population-related emissions based on the Global Human Settlements Layer 

product (Pesaresi et al., 2019; Crippa et al., in prep.); 

 updates in the technologies, emission factors and end-of-pipe reductions for the power generation sector (for the 27 

Members of the European Union, UK and China) based on the UDI  Platts database 2018 release, and the 115 

implementation of the regulation taking place in these region (Oreggioni et al., 2020b); 

 updates in the technologies, emission factors and end-of-pipe reductions for the road transport sector ((EU27+UK). 

These updates are based on the EMISIA 2018 data (Emisia 2018); 

 Estimates of particulate matter emissions from road surface wear and road vehicle tyre and break wear, based on the 

EMEP/EEA guidebook 2019 (EMEP/EEA, 2019) Tier 1 approach; 120 

 new high resolution temporal profiles, although not used in this work to keep consistent temporal disaggregation 

within all inventories (Crippa et al., 2020b). 

                                                           
1 For Tier 2 definition, see EMEP/EEA air pollutant emission inventory guidebook 2019. 
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3.1 Comparison strategy 

Comparing emission inventories is a challenging task as many dimensions are involved on activity sectors, technological 

information, implementation of abatement measures, geographical coverage, spatial disaggregation of the emissions, 125 

pollutants, etc. In the following sections, we structure the comparison geographically and address first a comparison at the 

EU-wide and country scales before zooming in at the regional scales. For each of these geographical scales, we then analyse 

how consistent the three inventories are (1) in terms of their EU sectorial share (i.e. for a given pollutant and a given sector, 

do the inventories distribute similarly the emissions across the EU countries?) and (2) in terms of their national share (i.e. for 

a given country and a given pollutant, do the inventories distribute similarly the emissions across the different sectors?).  To 130 

synthetize the information, we use the EMEP inventory as reference and compare the correlations obtained between CAMS 

and EMEP with those obtained between EDGAR and EMEP. In the context of emission comparison, the use of EMEP as 

reference is meant as a reference point but has no implication on the quality of the inventory itself, as we do not know the 

‘true’ emission value.  

In the GNFR (Gridded Nomenclature for Reporting) classification, used for the 3 inventories, emissions are initially 135 

categorized into 13 sectors: power plants, industrial facilities, other combustion, fugitive emissions, solvents, road transport, 

shipping, aviation, off-road transport, waste, agriculture livestock, other agriculture and other. For convenience, we 

aggregated these emissions into 8 sectors: (1) Industry (first three original sectors), (2) Fugitive and solvents, (3) Road 

transport, (4) Shipping, (5) Aviation, (6) Off-road, (7) Agriculture (sum of two original agriculture related sectors) and (8) 

Other (containing the remaining sectors). 140 

3.2 Comparison at EU scale 

We first compare the three inventories from a continental perspective (considering the countries in a domain that span from 

15.05° to 36.95° longitude and 30.05° to 71.45° latitude2). In terms of totals over all covered countries (Figure 1), all 

inventories agree well among themselves with the exception of VOC for which EDGAR provides a larger estimate and 

CAMS a smaller estimate, in comparison to EMEP. 145 

                                                           
2 In particular, these are the countries considered (using international labelling system): AT, BE, BG, CH, CY, CZ, DE, DK, 

EE, EL, ES, FI, FR, HR, HU, IE, IS, IT, LI, LT, LU, LV, ME, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, TR, UK. 
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Figure 1: Comparison of the total emissions for the three emission inventories (unit: kton/year). 

If we look at how the emissions are distributed among the countries for each pollutant, Figure 2 (top-right) compares the 

CAMS-EMEP correlation with the EDGAR-EMEP correlation for the 6 pollutants considered. For this comparison, 

emissions have been summed up sector-wise.  The figure therefore provides information on the level of agreement between 150 

the distribution of total emissions among the EU countries. We note that both correlations are very high (larger than 85%) 

with the exception of the PM coarse fraction (‘PMco’, the part of PM between PM2.5 and PM10) for which EMEP agrees 

well with CAMS but not with EDGAR. The sectorial details (Figure 2 top-left) indicate that this issue with ‘PMco’ mostly 

originates from the industrial and agricultural sectors. NOx emissions from shipping and NH3 emissions from the industrial 

sector also show quite low correlations. This can be explained by the fact that the different inventories have different level of 155 

emission completeness for the international components for shipping and aviation. EDGAR, for example, do not include 

international shipping and aviation in total national emissions because it uses IEA Fuel Balances (IEA, 2017) as data source 

for fuel consumption and fuel burned in international shipping and aviation are supplied at total global levels. 

Obviously, the correlations between the country shares of the different inventories are influenced by the size of the countries, 

and even more by its population. The differences in terms of population and associated emissions drive the correlation 160 

coefficients. To prevent this problem, we provide the same emission comparison, but per capita (Figure 2 bottom). 

Correlations drop significantly with the exception of NH3 and PM2.5. Differences generally become larger between EMEP 

and EDGAR than between EMEP and CAMS, reflecting the independent process followed to generate the EDGAR 

inventory, and therefore the use of independent procedures to estimate the EDGAR emissions. 
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 165 

Figure 2: (top-right) comparison between the EMEP-CAMS and EMEP-EDGAR correlations for each pollutant. The correlations 

indicate how coherent the distribution of the emissions are among countries for two inventories. Emissions are summed up sector 

wise. (top-left) same as top-right but with the sectorial details. Note that only the sectors that represent at least 5% of the total 

emissions for one pollutant are displayed. (Bottom) same as top figures but country emissions are normalized by capita. 

3.3 Comparison at country scale 170 

Figure 3 provides a breakdown of the emissions in terms of countries. Both biases and correlations are provided. The 

correlation informs on how well models agree with the allocation of emissions among different sectors for a given country 

and sector. From Figure 3, we note the following points: 

 All inventories agree well for NOx and PM2.5 emissions for which the bias is limited (Figure 3 top-right); 

 For the coarse fraction of PM and SO2 (Figure 3 bottom-right), the CAMS and EMEP inventories agree well but 175 

differ from the EDGAR estimates, that shows larger emission  in several countries. For PM coarse (PMco), this bias 

is mostly occurring in Eastern countries but countries such as Italy or Spain are also concerned, being these 

differences mostly coming from small combustion sources. Combustion and end of pipe technologies are currently 

in the process of being updated in EDGAR, being the methodology for emission quantification reviewed, as shown 

in Muntean et al (2020); 180 

 Differences for SOx between EDGAR and other inventories were also observed, especially in Eastern European 

countries. Main sources for SOx emissions are power and heat plants, especially those ones fuelled with coal. Two 
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reasons can explain the observed differences. On one hand, EDGAR SOx emissions for this sector are calculated 

using a capacity and regulatory based methodology, considering the power plant inventory in UDI Platts database 

(S&P, 2018). It may be the case that this data source overestimates the shares of plants with low thermal capacities, 185 

for example not considering that they may have been retired. Smaller thermal capacity units are required to fulfil 

with less strict emission limits thus being equipped with lower removal rate desulfurization processes, consequently 

leading to higher SOx emissions. On the other hand, in EDGAR, plants are all assumed to respect the limits of the 

2001 Large Combustion Plant Directive, even if this legislation was updated in 2016. Plants are currently in the 

process of implementing the new regulatory changes and this could not still well captured in EDGAR; 190 

 For VOC (Figure 3 bottom-left), the EDGAR overestimation (with respect to EMEP) is the largest in countries like 

Belgium, Austria, Switzerland, Germany or Finland while for NH3, it is the largest in Austria, Belgium, Denmark, 

the Netherlands, Poland or Sweden. In the case of VOC emissions, the differences take place in industrial 

combustion sources and fugitive emissions, for which natural gas play a key role; this shows that VOC emissions 

from natural gas in EDGAR are higher than in the other inventories; 195 

In terms of correlation (Figure 3 top-left), i.e. in terms of consistency between the country sectorial share in two inventories, 

the comparison shows again a more consistent picture between CAMS and EMEP than between EMEP and EDGAR. The 

largest differences occur for PMco and VOC.  The differences in the sectorial allocation can be important. If we take 

Denmark as an example, CAMS distributes VOC in equal shares on the industrial, shipping and off-road, EMEP mostly 

allocates it to industry and off-road (but in a lesser proportion), while EDGAR puts two thirds of emissions into off-road and 200 

the remaining to the fugitive and solvents sectors. It is important to stress that these sectorial emission differences could 

impact the modelling of the current atmospheric levels (because sectors are distributed differently geographically) but could 

also impact the modelling of emission abatement measures that are directly attached to specific sectors. 
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Figure 3: (top-left) comparison between the EMEP-CAMS and EMEP-EDGAR correlations for all pollutants and country. The 205 
correlations indicate how coherent the distribution of the emissions are among sectors for each country between two inventories. 

(top-right) PM2.5 and NOx comparison between the EMEP-CAMS and EMEP-EDGAR biases for each country. (Bottom) same as 

top right figure but for NH3, VOC, PMco and SOx. 

At the country level, more important differences are seen between EDGAR and the other two inventories, while CAMS and 

EMEP do have a higher level of agreement. Results are quite similar for PM2.5 and NOx, but larger differences are found 210 

for the other compounds. It is important to note that these differences are not generalized geographically and they will 

therefore lead to different pollutant ratios (e.g. NOx/VOC) in some countries and not in others. These differences might 

affect the chemical regimes and therefore the concentrations in the air, as explained in Section 4 and Section 5. In the 

following section, we analyse in more details the situation in three regional areas where the reported pollutant concentrations 

generally exceed the EU thresholds: the so-called ‘black triangle’, the Benelux and the Po-Valley in Northern Italy.  215 

3.4 Comparison at regional and city scales 

In this section, we compare the inventories in three EU regions that regularly suffer from high pollution levels. The three 

regional domains: the Po Valley, the “black triangle” (covering the southern part of Poland, Eastern Part of Czech Republic 

and Slovakia), and the Benelux are depicted in Figure 4 (top left). The following points can be highlighted: 
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 With the exception of PM coarse (PMco), the CAMS and EMEP inventories agree relatively well for all pollutants 220 

(orange columns close to 1). For PMco, CAMS largely underestimate the values with regards to EMEP; 

 Differences between inventories are much larger over the “black triangle” area than over the two other regions. This 

is visible for all pollutants, excepted NOx and SOx.  

For these three regions, we also analyse the emission share between urban and rural emissions. We fix a minimum (arbitrary) 

threshold of 300 inhabitants3 per km2 to define urban cells and calculate the emissions percentage allocated to these urban 225 

cells. This is depicted by the circles on top of the bars in Figure 4 that provide a quantification of the ratio of the urban 

emission between inventories (a value of 1.2 for the blue circle will indicate that the CAMS inventory allocates 20% more 

emissions to the urban areas than the EMEP inventory). For the Benelux and the Po-Valley, all three inventories allocate the 

emissions similarly while major differences are observed over the black triangle area. EDGAR and CAMS in a lesser 

measure allocate much more emissions to the urban areas than EMEP. For EDGAR, the differences reach or exceed 50% for 230 

VOC and PM. This is likely to have an impact on the modelled concentrations as many stations are located in or around 

urban areas. 

 

Figure 4: Comparison of the emission totals for the three regional domains depicted in the top-left panel. Values are given as ratios 

between the total emissions over the domain between the CAMS and EMEP (blue columns) and EDGAR and EMEP (orange 235 

                                                           
3 For the choice of this value, please refer to Eurostat: https://ec.europa.eu/eurostat/statistics-

explained/index.php?title=Archive:Urban-rural_typology&oldid=78848.  
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columns) inventories. The orange and blue bullets correspond to the same ratios but for the share of emissions allocated to the 

urban areas (see text for details). 

4. Comparison of the PM, O3 and NO2 concentration 

Feeding the EMEP model with the three emission inventories (EMEP, CAMS and EDGAR) leads to the spatial yearly mean 

concentration fields presented in Figure 5. For O3, the differences among models are minor over the entire domain whereas 240 

EDGAR tends to produce larger values than EMEP (differences reach 3 to 5 ug/m3) especially in the Benelux, southern UK, 

and Paris, but they are also widespread over Germany. These differences are well correlated with lower estimates of the NO2 

concentrations in the same regions. Differences are more important for PM, especially for PM2.5. Differences are high 

(reaching 5 ug/m3) in a wide part of Eastern Europe while they remain minor in other EU regions. 

 245 

Figure 5: comparison of yearly averaged concentration fields for O3, NO2, PM2.5 and PM coarse between CAMS and EMEP (top 

row) and EDGAR and EMEP (bottom row). Results are expressed as differences in ug/m3. 

While these differences are significant in some parts of Europe, it is worth to see how they impact the evaluation of the 

model results with measurements. In the next section, we analyse how different emission input impact the quality of the 

modelling results. In particular, we apply specific statistical indicators that inform on their quality for the specific purpose of 250 

supporting policy decisions.  
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5. Model validation 

5.1. Approach 

For the evaluation of the model results against measurements, we apply the benchmarking methodology developed in the 

frame of the FAIRMODE 4  network (https://fairmode.jrc.ec.europa.eu/). This methodology is primarily based on the 255 

calculation of Modelling Quality Indicators (MQI), which compare modelled and measured data, taking the measurement 

uncertainty into account. The underlying principle of this approach is to consider that measurements are not error-free and 

allow therefore the model results a margin of tolerance that is proportional to the measurement uncertainty. In other words, 

the more uncertain the measurement, the larger the tolerance on model results (larger model-observation bias are allowed). 

The measurement uncertainty depends on the pollutant and on the concentration level, with larger uncertainties 260 

characterising the lower concentration levels. Here, we only briefly summarize the main points of the approach and refer to 

Thunis et al. (2013a, 2013b) for the complete derivation.  

For a single pair of measured-modelled values, the MQI is defined as the ratio of the model (Mi) and measured (Oi) bias to a 

quantity proportional to the measurement uncertainty, and is calculated as: 

 
MQI =  

|Oi − Mi|

β𝑈(Oi)
 (1) 

 265 

where the index i denotes a given time (hour or day), U(Oi) is the measurement uncertainty and β is a coefficient of 

proportionality arbitrarily set to 2, thus allowing the deviation between modelled and measured concentrations to be twice 

the measurement uncertainty in the current formulation. A modelling application is considered to deliver results of sufficient 

quality when the MQI is less than unity.  

 270 

Applied to a complete time series, Equation (1) can be generalized to: 

 

 
𝑀𝑄𝐼 =  

RMSE

𝛽𝑅𝑀𝑆𝑈

    (2) 

 

With this formulation, the RMSE (Root Mean Squared Error) between observed and modelled values (numerator) is 

compared to a value (RMSU) representative of the maximum allowed measurement uncertainty (denominator). In equation 275 

(2), the full expression of RMSU, its simplified parametrization and the necessary input parameters are available in Thunis et 

al. (2013a). 

 

                                                           
4  FAIRMODE is a Forum for Air Quality Modelling created for exchanging experience and results from air quality 

modelling in the context of the Air Quality Directives and for promoting the use of modelling for air quality assessment and 

management in a harmonized manner between EU Member States. 
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For yearly averaged pollutant concentrations, the MQI formula is adapted so that the mean bias between modelled and 

measured concentrations is normalised by the uncertainty of the mean measured concentration: 280 

 
𝑀𝑄𝐼 =  

|�̅� − �̅�|

βU(O̅)
          (3) 

 

The uncertainty of the averaged concentration [U(O̅)] is lower than the uncertainty of an individual measurement [𝑈(Oi)]  

because it accounts for the compensation of errors due to random noise and other factors like periodic re-calibration of the 

instruments, between measurements. The full expression of the uncertainty of the average concentration is also available in 

Thunis et al. (2013a).  285 

 

For the evaluation of the model results against measurements, we apply the following two rules: 

 Generally, condition (3) is more stringent than condition (2). The current recommendation of FAIRMODE is that 

both conditions must be fulfilled; 

 Follow the requirements prescribed by the EU Ambient Air Quality Directives (AAQD), equations (2) and (3) must 290 

be fulfilled for at least 90% of the available measurement stations.  

For the evaluation, we used the Airbase stations as available for 2015 from the EEA website, considering only background 

stations with at least 75% data available (we do not consider other type of stations as i.e. traffic stations, as for such 

observations this type of model and spatial resolution is not sufficient). The following indicators have been analysed in this 

work: daily and yearly averaged NO2, the 8h daily maximum O3 and its average over the summer time (April to October) 295 

and daily and yearly PM10 and PM2.5. In total we used 1764 stations for NO2, 1698 stations for Ozone, 877 stations for 

PM2.5 and 1732 stations for PM10. 

5.2. Evaluation at country scale 

Although only one model is used with three inventories, we will refer to three models in the following, for convenience. 

These three models correspond to three model configurations: EMEP fed with the CAMS, EDGAR and EMEP inventories, 300 

respectively. We analyse the behaviour of the three models for daily average or daily maximum concentrations as well as for 

yearly or summer (for O3) averages and assess their performance with respect to the MQIs defined by equation (2) and (3). 

The Target diagrams (Figure 6 to Figure 9) are designed to visualize the daily maximum (NO2), 8 hours daily maximum (for 

O3) or daily (PM) MQI and its components. The MQI represents the distance between the origin and a given station 

(represented by a point on the diagram). This distance should be less than unity, i.e. fall within the green area for at least 305 

90% of the available stations. In the Target diagram, the X and Y axis correspond to the unbiased root mean square error 

(𝐶𝑅𝑀𝑆𝐸) and to the bias, normalized by the measurement uncertainty, 𝑅𝑀𝑆𝑈. For each point on the diagram, the ordinate is 

then 𝐵𝐼𝐴𝑆 /𝛽𝑅𝑀𝑆𝑈  and the abscissa 𝐶𝑅𝑀𝑆𝐸 /𝛽𝑅𝑀𝑆𝑈  while the radius is equal to 𝑅𝑀𝑆𝐸/𝛽𝑅𝑀𝑆𝑈 . Because 𝐶𝑅𝑀𝑆𝐸  is 

always positive only the right hand side of the diagram would in theory be needed in the Target plot. The negative X axis 
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section is then used to provide additional information. When the correlation component dominates the standard deviation 310 

component in the CRMSE, a station is represented on the left (and vice-versa). The diagram allows therefore to distinguish 

stations according to their type of error, whether dominated by bias (either negative or positive), by correlation or by 

standard deviation. 

The MQI for the yearly (PM2.5, PM10 and NO2) or summer (O3) averaged results are generally more challenging to fulfil. 

Equation (3) is based on bias only and is used as the main model quality indicator for averaged concentrations. In the scatter 315 

plots of Figure 6 to Figure 9, the MQI is used to represent the distance from the 1:1 line. As mentioned above it is expected 

to be fulfilled (points are in the green area) by at least 90% of the available stations.  

To avoid over plotting the entire set of stations on a single diagram, we classify stations into country groups. For all stations 

within a country group, we then calculate their MQI values, rank them and identify the 90th percentile station which we 

represent on the Target and scatter diagrams. The mean bias and mean CRMSE of the stations composing the country group 320 

are used to position the point according to the X and Y axis of the Target diagram. For a country group, its right/left location 

is based on the behaviour of the majority of the stations within that group. If this 90th percentile station for one given country 

group falls within the green areas, this means that 90% of the available stations for that country fulfil the MQI criteria (see 

details in Thunis et al. (2013, 2013b)). 

5.2.1 NO2 325 

With the exception of EMEP for Greece, the hourly MQI for the background NO2 concentrations are satisfactorily modelled, 

regardless of the emission inventory. In general, the yearly MQI is more challenging to fulfil. The analysis of the following 

Figure 6 confirms this and all three models fail to fulfil the yearly MQI in most countries. From the country detailed 

information provided in the supplementary material, all models face important issues In Spain, Slovakia or Norway. In 

general, CAMS shows the largest overestimation against measurements, especially in countries like Italy, Luxemburg or 330 

Slovenia. It is interesting to note that although no major difference is seen in terms of total NOx emissions in that country 

(Figure 3), the EMEP shows a very large overestimation in Greece that the other two models do not show. The number of 

countries for which both the hourly and yearly MQIs are fulfilled is 7, 11 and 12 for CAMS, EMEP and EDGAR, 

respectively.  
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 335 

Figure 6: Target (left column) and scatter (right column) diagrams for NO2 for the EU country groups. These two type of 

diagrams provide info on the daily maximum and yearly MQIs, respectively. Each point represents a country group that is located 

at a distance from the origin that corresponds to the MQI value of the 90th percentile worst station. In the target diagram, each 

point’s ordinate corresponds to the mean country group normalized bias whereas its abscissa corresponds to the mean normalized 

CRMSE. Each point is located on the right or left side when correlation or standard deviation dominates the CRME error (see text 340 
for details). The green area represents the MQI fulfilment zone. 

5.2.2 Particulate matter (PM10 and PM2.5) 

While modelled PM2.5 are generally in good agreement (Figure 7), this is not the case for PM10 (Figure 8) indicating an 

issue with the modelling of the coarse fraction of PM. Part of the worsening for PM10, compared to PM2.5, can be explained 

by the higher measurement uncertainty assumed for PM2.5 than for PM10 in the MQI Equations (2) and (3) therefore 345 
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allowing for less stringency on the model results when calculating the MQI for PM2.5. The EDGAR emission inventory 

leads to better performances for PM, especially for PM2.5, in the Eastern countries. The number of countries for which both 

the hourly and yearly MQIs are fulfilled is 22 for PM2.5 for all inventories whereas this number for PM10 drops to 3, 4 and 

5 for the EMEP, CAMS and EDGAR models, respectively. 

 350 

Figure 7: Target (left column) and scatter (right column) diagrams for PM2.5 for the EU country groups. These two type of 

diagrams provide info on the daily and yearly MQIs, respectively. See additional explanations in caption of Figure 6. 
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Figure 8: Target (left column) and scatter (right column) diagrams for PM10 for the EU country groups. These two type of 

diagrams provide info on the daily and yearly MQIs, respectively. See additional explanations in caption of Figure 6. 355 

5.2.3 Ozone 

For the summer 8h daily maximum O3 concentrations, all models fulfil the 8h daily max MQI (target diagram) for the 

summer period, with the exception of the same three countries: Ireland, Malta and Romania.  For the averaged 

concentrations (scatter plot), the models do not fulfil the MQI in three additional countries: Greece, Hungary and Norway. 

Regardless of the emission inventory use to feed the EMEP model, all models show a large overestimation with respect to 360 

the measured values, in countries characterised by low-ozone concentrations and show an underestimation in countries 
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where the measured ozone concentrations are the highest. This results in a “flat scatter” with modelled values that almost do 

not show any concentration difference among countries whereas the measured signal is strong. While spatial resolution is 

sometimes a limitation to the correct modelling of O3, we believe that the current resolution of 7km should be sufficient to 

capture spatial variations across the domain. Despite the fulfilment of the two MQIs in many countries, these results indicate 365 

the need for substantial improvements, other than emissions, before the model delivers results of a sufficient level to support 

policy applications for this pollutant. 

 

Figure 9: Target (left column) and scatter (right column) diagrams for O3 for the EU country groups. These two type of diagrams 

provide info on the 8h max daily and yearly MQIs, respectively. See additional explanations in caption of Figure 6. 370 
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5.3. Evaluation at regional scale 

In this section, we analyse the concentration modelled in the three regions introduced in section 3.4: The Benelux, the Po-

valley and the Black triangle. Figure 10 to Figure 12 show the Target (for daily values) and scatter diagrams (for 

yearly/seasonal values) for PM2.5, NO2 and O3, respectively, while the detailed numbers for each group are summarized in 

Table 2. Regarding PM2.5, the Benelux (blue symbols) and the Po-valley region (orange symbols) are well modelled by the 375 

three models (all fulfil both the daily and yearly MQIs). Although EDGAR shows better performances with the fulfilment of 

the daily criteria over the Black Triangle region (Table 2), all models face issues in fulfilling the yearly MQI. In particular, 

models do not succeed to distinguish high and low concentration stations (all modelled values lie on the same horizontal line 

in the scatter diagram). For this region, the left/right position of each station in the target diagram informs on whether the 

model-observed discrepancy is dominated by correlation (i.e. the timing between model and measured peaks) or by the 380 

standard deviation (i.e. the compared amplitude of modelled and observed concentration variations). While for the Benelux 

and the Po valley, correlation is the main issue, standard deviation is the main issue for most stations located in the Black 

Triangle. 
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Figure 10: Target (left column) and scatter (right column) diagrams for PM2.5 for all stations in the three selected regions (red: 385 
black triangle, orange: Po valley and blue: Benelux). These two type of diagrams provide info on the daily and yearly MQIs, 

respectively. See additional explanations in caption of Figure 6. 

In terms of NO2 (Figure 11), all models fulfil the daily MQI but do fail to satisfy the yearly MQI. This is due to an overall 

model underestimation, especially in the Po-Valley and in the Black Triangle. This overall similar behaviour of the three 

models for that pollutant is coherent with the small differences observed in terms of NOx emissions in the three regions 390 

(Figure 4). 
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Figure 11: Target (left column) and scatter (right column) diagrams for NO2 for all stations in the three selected regions (red: 

black triangle, orange: Po valley and blue: Benelux). These two type of diagrams provide info on the hourly and yearly MQIs, 

respectively. See additional explanations in caption of Figure 6. 395 

As noted in the country analysis (Section 2), the EMEP model does not satisfactorily reproduce the O3 concentrations 

(Figure 9), regardless of the emission inventory used to feed it. The model overestimate in low-level O3 countries and 

underestimate in high-level O3 countries, resulting in a “flat scatter” (points aligned along a horizontal line in the scatter 

plots). This behaviour is also visible in the three selected regions, with an overestimation in the Benelux and an 

underestimation in the Po-valley while the measured levels are best reproduced in the black triangle area. Again all models 400 

show very similar patterns despite the noted differences in terms of emissions, especially VOC  (Figure 4). This seems to 
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indicate a low sensitivity of the model to VOC emissions. Note that these unsatisfactory results are in line with previous 

model evaluation (MACC, 2013), in terms of underestimation and flat signal. 

 

Figure 12: Target (left column) and scatter (right column) diagrams for O3 for all stations in the three selected regions (red: black 405 
triangle, orange: Po valley and blue: Benelux). These two type of diagrams provide info on the 8h max daily and summer MQIs, 

respectively. See additional explanations in caption of Figure 6. 

Table 2 shows that the results obtained for PM10 (target and scatter not shown here for lack of space) are not as good as for 

PM2.5, especially over the Black triangle where the coarse fraction of PM is largely underestimated. Despite the much larger 

PM coarse (PMco) emissions included in EDGAR (factor 2 compared to EMEP) and the larger allocation of these emissions 410 

to urban areas (Figure 4), the impact on modelled PM10 concentrations remains limited. 
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Table 2: MQI hourly/daily and yearly/summer MQI’s Values for the three regions. 

 

To assess how these emission-induced model differences reflect in terms of concentrations according to the station types, we 

divided the available measurement background stations into three groups: urban, suburban and rural. For NO2 (Figure 13, top 415 

left), the EMEP inventory leads to slightly better results in the Benelux, especially for the urban background stations, while 

results are very similar among models for the other two regions. For O3 all model results are similar and lead to good results, 

regardless of the station type. 

For PM, EDGAR leads to improved results, especially in the Black Triangle and in a lesser measure in the Po Valley. The 

improvement is larger in urban areas, probably because of the larger amount of total emissions as compared to the other 420 

inventories but also because of the increased share of emissions allocated to the urban areas in this inventory. The larger 

amount of SOx emissions in the EDGAR inventory might also play a role on the formation of secondary inorganic aerosols. 
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Figure 13: Concentrations of NO2, O3 (MAX8H), PM10, PM2.5 and obtained with the three inventories for three types of stations. 

Regions are distinguished by different colours (as in Figure 10, 11 and 12) whereas symbols are used to differentiate the 425 
inventories. No distinction is made between urban, suburban and rural but these three groups are systematically found from right 

to left. 

6. Data availability 

The EDGAR dataset (v5.0) used in this paper is available at: https://data.europa.eu/doi/10.2904/JRC_DATASET_EDGAR 

(link: EDGAR v5.0 Global Air Pollutant Emissions, Crippa et al., 2020a). 430 

7. Discussion and conclusions 

Given the regular updates and improvements made to the air quality models themselves, but also to their associated input 

data (in particular emissions), it is important to regularly perform sensitivity analysis to understand how these improvements 

impact the model results. However, emissions cannot be compared directly to a true value (as it does not exist) and the only 

available approach is indirect, i.e. compare measured and modelled concentrations obtained with different emission 435 
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inventories. Given the complexity of approach and because of technical requirements, additional limitations are present. For 

example, only one air quality model and one meteorological year could be tested in this study. Moreover, the comparison 

only addresses ground-level concentrations while some impacts would probably be noticed on vertical concentration profiles 

as well. Given the type of model (and spatial resolution) tested, the comparison is also limited to background stations. 

Despite these limitations, we believe that some findings of this work can be useful to trigger further tests and improvements. 440 

One important issue is related to O3 modelled patterns, which could be addressed by checking the behaviour of other models. 

While the important differences in terms of PM emissions observed in some regions (e.g. Black triangle) need to be 

discussed, they do not explain all of the large underestimation remaining in terms of concentrations. Therefore, either an 

important emission underestimation remains, either some processes is lacking within the model.           

In this work, we applied the evaluation methodology proposed by FAIRMODE. It clearly illustrates the strengths and 445 

weaknesses of the modelling applications, in view of their use to support policy applications. As already said and clearly 

marked by the FAIRMODE evaluation methodology applied, Important progress remains necessary with regards to O3 

modelling, for which emission inventories do not seem to be the crucial lever to play with. Indeed, differences in NOx and 

particularly VOC emissions have a marginal impact on concentrations and spatial concentration gradients are missed by the 

model. While the model behaves better for NO2, issues remain the fulfilment of the yearly MQI. For PM, the situation is 450 

much better for PM2.5 than for PM10 for which an important underestimation persists. While these conclusions are general, 

the MQI based approach can also be used to distinguish the areas where a model behaves better than another one. The 

analysis performed over three regions (Po Valley, Black Triangle, and Benelux) shows that the emission differences and 

modelling issues are not geographically similar. The better results obtained over the Benelux, with regards to the other two 

regions is a clear illustration of this. 455 

It is important to stress the fact that most of the modelling issues raised above are not primarily depending on emissions. 

While this may be counter-intuitive as many publications point to emissions as the most uncertain model input and often as 

the key responsible for erratic modelled concentrations, we find in this work that important differences in terms of emissions 

do not always lead to large changes in terms of concentrations. Obviously, enlarging the tests to other models would allow 

obtaining a more robust conclusion.  460 

One of the main purposes of this work was also to assess how the EDGAR inventory compares to other reference inventories 

for air quality modelling. It is indeed one of the first applications of EDGAR to air quality modelling at European scale, as 

this inventory is primarily developed for air quality global simulations and green-house gas emission global estimation.  The 

analyse shows that this inventory leads to results that are very comparable to the other two inventories, even leading to 

improved results in some regions, especially in Eastern Europe. This is an important finding as the EDGAR inventory relies 465 

on an independent approach to estimate emissions, some of the differences being highlighted in this work.      

Finally, to enrich the analysis performed in this manuscript, it would be useful to collect also bottom-up (local) emission 

inventories, that could provide a useful benchmark to be used to evaluate the quality of EU-wide emission inventories. As a 
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final product, in this way we would improve EU-wide emission inventories, to be used to design policies and evaluate their 

impact on air quality. 470 
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