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Abstract, Land Surface Temperature (LST) plays an important role in the research of climate change and various land surface 

processes. Before 2000, global LST products with relatively high temporal and spatial resolutions are scarce, despite of a 10 

variety of operational satellite LST products. In this study, a global 0.05°×0.05° historical LST product is generated from 

NOAA AVHRR data (1981-2000), which includes three data layers: (1) instantaneous LST, a product generated by integrating 

several Split-Window Algorithms with a Random Forest (RF-SWA); (2) orbital drift corrected (ODC) LST, a drift corrected 

version of RF-SWA LST; (3) monthly averages of ODC LST. For an assumed maximum uncertainty in emissivity and column 

water vapour content of 0.04 and 1.0 g/cm2, respectively and evaluated against the simulation data set, the RF-SWA method 15 

has a Mean Bias Error (MBE) of less than 0.10 K and a Standard Deviation (STD) of 1.10 K. To compensate the influence of 

orbital drift on LST, the retrieved RF-SWA LST was normalized with an improved ODC method. The RF-SWA LST were 

validated with in-situ LST from Surface Radiation Budget (SURFRAD) sites and water temperatures obtained from the 

National Data Buoy Center (NDBC). Against the in-situ LST, the RF-SWA LST has a MBE of 0.03 K with a range of -1.59 

K – 2.71 K and STD is 1.18 K with a range of 0.84 K – 2.76 K. Since water temperature only changes slowly, the validation 20 

of ODC LST was limited to SURFRAD sites, for which the MBE is 0.54 K with a range of -1.05 K to 3.01 K and STD is 3.57 

K with a range of 2.34 K to 3.69 K, indicating a good product accuracy. As global historical datasets, the new AVHRR LST 

products are useful for filling the gaps in long-term LST data. Furthermore, the new LST products can be used as input to 

related land surface models and environmental applications. Furthermore, in support of the scientific research community, the 
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datasets are freely available at https://doi.org/10.5281/zenodo.3934354 for RF-SWA LST (Ma et al., 2020a); 25 

https://doi.org/10.5281/zenodo.3936627 for ODC LST (Ma et al., 2020c); https://doi.org/10.5281/zenodo.3936641 for 

monthly averaged LST (Ma et al., 2020b). 

1. Introduction 

Land surface temperature (LST) is an important parameter for energy exchange between Earth’s surface and the atmosphere 

and, thus, an important indicator for global climate change. Therefore, LST has been widely used in research and applications 30 

of land surface processes and models, e.g. climate and meteorology, hydrology, and disaster monitoring (Anderson et al., 2011; 

Jin and Dickinson, 2002; Van Der Werf et al., 2017). Compared to traditional ground observations, retrieving LST from remote 

sensing is an effective way of taking advantage of the spatio-temporal coverage offered by satellites. Since the 1970s, the 

accurate retrieval of LST from satellite has been an active area of research in quantitative remote sensing. The main sources 

for retrieving LST from satellite data are thermal-infrared (TIR) remote sensing and passive microwave (MW) remote sensing 35 

(Holmes et al., 2009; Li et al., 2013a), which both are effective means for obtaining the radiance emitted by Earth’s surface. 

Although MW remote sensing is less affected by cloud and fog, compared to TIR remote sensing, it is limited by factors such 

as coarser spatial resolution, higher thermal sampling depth, and higher uncertainty in emissivity, which results in a lower 

retrieval accuracy (Zhou et al., 2017). Therefore, retrieving LST from TIR remote sensing is still the dominant approach, since 

it offers a better physical definition and higher retrieval accuracy. LST retrieval from satellite TIR remote sensing is based on 40 

the simplification of the radiative transfer model. A variety of algorithms have been proposed for retrieving LST from TIR 

data, e.g. Split-Windows Algorithms (SWA), Mono-window Algorithms/Single Channel Algorithms and Temperature-

Emissivity separation algorithms (TES) (Gillespie et al., 1998; Li et al., 2013a; Wan and Dozier, 1996). Selecting a suitable 

algorithm for retrieving LST depends on the sensor’s number of TIR channels and their spectral specifications, as well as the 

available auxiliary input data. 45 

The SWA is a good choice for retrieving LST from sensors with two or more TIR channels centred at 11 μm and 12 μm, 

e.g. Terra/Aqua MODIS, NOAA AVHRR, ENVISAT AATSR, and Sentinel-3 SLSTR. Based on the idea that the atmospheric 

absorption in the thermal band can be related to the brightness temperature (BT) difference between two adjacent channels, 
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McMillin (1975) initially proposed the SWA for retrieving sea surface temperature (SST) from NOAA/AVHRR. SWAs for 

retrieving SST from various sensors were developed, which were based on different assumptions (Llewellyn-Jones et al., 1984; 50 

Niclòs et al., 2007). Inspired by the success of the SST algorithm, the first SWA for retrieving LST was proposed by Price 

(1984). However, in contrast to nearly homogeneous and isothermal water bodies, LST is affected by multiple additional 

factors, e.g. land cover type (LCT), material dependent emissivity, terrain, and viewing geometry. Therefore, one or more 

terms were added to the basic SWA to describe these effects, e.g. land surface emissivity (Wan, 2014), vegetation cover fraction 

(Prata, 2002), view zenith angle (Becker and Li, 1990a), and water vapour (Sobrino et al., 1991). Nevertheless, there are still 55 

limitations in LST retrieval with SWAs (Li et al., 2013a), e.g. the requirement for a priori knowledge of emissivity and a 

dependence of LST retrieval accuracy on SW coefficients, which in turn depend on observation and atmospheric conditions. 

Furthermore, due to the variation of land surface and atmospheric conditions, no single SWA performs the best under all 

conditions (Yang et al., 2020; Yu et al., 2009; Zhou et al., 2019b). 

Currently, several LST products derived from satellite TIR remote sensing are available. Global LST products for 60 

Terra/Aqua MODIS are available since 2000, e.g. MOD11/MYD11 (Wan, 2008, 2014; Wan et al., 2002) and MOD21/MYD21 

(Hulley and Hook, 2011). Similarly, a JPSS-VIIRS LST product is available since 2012 (Guillevic et al., 2014) and China 

FengYun-VIRR LST is available since 2009 (Dong et al., 2012). The aforementioned sensors observe Earth’s surface twice 

per day with a spatial resolution of ~1 km at nadir. For the user’s convenience, some LST products are processed into different 

temporal and spatial resolutions, e.g. daily / monthly and 1 km×1 km / 0.05°×0.05°. The operational LST product retrieved 65 

from the (A)ATSR series between 1995 and 2012 is a typical SWA LST product (Prata, 2002). AATSR’s nadir spatial 

resolution onboard ENVISAT was approximately 1 km and its temporal resolution 3 days. Since 2016, its successor, SLSTR 

onboard Sentinel-3 A and B, provides daily temporal resolution and a consistent spatial resolution (Ghent et al., 2017). Global 

LSTs retrieved from satellite TIR also include Landsat LST (Parastatidis et al., 2017) and ASTER LST (Hulley and Hook, 

2011), which have significantly higher spatial resolutions (e.g. about 100 m), but considerably lower temporal resolutions (e.g. 70 

every 16 days). LST products from geostationary satellites are generated at lower spatial resolution (3-5 km) but considerably 

higher temporal resolution (10 – 60 min), e.g. GOES-ABI LST for the Americas and Africa (Yu et al., 2009), MSG-

MVIRI/SEVIRI LST for Europe, Africa, and the Atlantic Ocean (Duguay-Tetzlaff et al., 2015; Trigo et al., 2008), FY- 
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SVISSR/AGRI LST and Himawari-AHI LST for the Asian-Pacific region (Choi and Suh, 2018; Jiang and Liu, 2014). Dech et 

al. (1998) and Pinheiro et al. (2006) provide African and European LST for NOAA-14 AVHRR, Zhou et al. (2019a) provide 75 

an all-weather LST product retrieved from combined TIR and MW data over the Tibetan plateau from 2003 to 2018. There are 

also a few LST products from MW (e.g. for SSM/I and AMSR-E) (Aires et al., 2001; Jiménez et al., 2017), and LST for land 

surface models (e.g. ECMWF and GLDAS) (Fang et al., 2009; Viterbo and Beljaars, 1995); however, these LST products have 

lower spatial resolutions and slightly different meanings than TIR LST. In summary, from 1991 onwards, many global and 

regional satellite LST products are available, but higher spatio-temporal resolutions (e.g. 1 km - daily) are only available after 80 

2000. At the same time, many climate applications urgently need higher spatial-temporal resolution LST products for the time 

before 2000. It has been reported that 1983˗2012 were the warmest 30 years for nearly 1400 years (IPCC, 2014). The warm 

climate change trend has also caused changes in many land surface processes, e.g. most glaciers on the Tibetan Plateau are in 

retreat and the areas covered by them are getting smaller and smaller (Yao et al., 2012). The LST around glaciers is a highly 

useful indicator of this phenomenon and allows predicting trends in glacier status (Steiner et al., 2008). Similar demands for 85 

LST data also exist in global drought monitoring (Sánchez et al., 2018), studies of species distribution (Lembrechts et al., 

2019), and land surface modelling (Bechtel, 2012; Ghent et al., 2017; Reichle et al., 2010). Therefore, it is meaningful to 

extend the global LST time series with a relatively high spatio-temporal resolution (i.e. 5 km - daily) to the historical NOAA 

AVHRR data before 2000. 

A major factor limiting applications of AVHRR LST is orbital drift, which over the lifespan of the NOAA satellites leads 90 

to shifts to later overpass times and, therefore, affects temporal comparability. Two main approaches were developed to remove 

the effect of orbital drift. On the one hand, based on the regular diurnal temperature variation typically observed under clear-

sky, several researchers corrected orbital drift by fitting a diurnal temperature cycle (DTC) model to reanalysis or geostationary 

datasets (Jin and Treadon, 2003; Parton and Logan, 1981) and then normalizing LST to a given time. On the other hand, a 

relationship between LST anomaly and solar zenith angle was used for correcting LST to a given solar zenith angle (Gleason 95 

et al., 2002; Gutman, 1999; Julien and Sobrino, 2012). Various applications made use of the two types of orbital drift correction 

methods for AVHRR LST, but a general method for global application is still missing, i.e. the former method suffers from the 

low spatial resolution of its input datasets, while latter leads to inconsistent times. Liu et al. (2019a) proposed another method 
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for correcting AHVRR LST orbital drift, which fits a DTC model to component temperatures of neighbourhood pixels and 

was reported to achieve good accuracy. 100 

As a part of the Global LAnd Surface Satellite (GLASS) product suite (Liang et al., 2020), the objective of this study is 

to develop a long-term global LST product (1981-2000) from historical NOAA AVHRR datasets. Section 2 describes the 

simulation datasets used for developing consistent SWAs, the input datasets for LST product generation, and the in-situ datasets 

for validating the retrieved LST. In section 3, a practical approach for generating a single optimized LST product is proposed, 

which integrates several well-established SWAs through the Random Forest, which is termed RF-SWA. Finally, the retrieved 105 

RF-SWA LST is normalized with an improved orbital drift correction method. Furthermore, emissivity estimation for bare soil 

is improved by using ASTER Global Emissivity Dataset (GED) and yields more accurate estimates of land surface emissivity 

in section 3.3. Section 4 describes the results and provides implementation details of the LST retrieval method, LST validation, 

and give an example of the LST product. Data availability shows in section 5. Conclusions and outlooks are provided in section 

6. 110 

2. Datasets 

2.1 Satellite remote sensing datasets 

2.1.1 AVHRR datasets 

The advanced very-high-resolution radiometer (AVHRR) is a sensor onboard NOAA polar-orbiting satellite series. The orbital 

period is 101.4 minutes and designed over-pass time at the equator is between 13:30 and 14:30 (solar time) depending on the 115 

satellite. The second AVHRR version (AVHRR/2) has five spectral channels, including a visible band (0.55-0.68 μm), a near-

infrared band (0.75-1.1 μm), a middle-infrared band (3.55-3.93 μm), and two thermal bands (10.5-11.3 μm and 11.5-12.5μm). 

Figure 1 shows the spectral responses of the two AVHRR thermal channels of NOAA-07/09/11/14. Nadir spatial resolution of 

the TIR channels is 1.1 km×1.1 km, and scan angles range between -55° and 55°. AVHRR covers the Earth’s surface twice 

daily and has been widely used to generate various local or global land/sea surface parameters, e.g. the normalized difference 120 

vegetation index (NDVI) and SST (Casey et al., 2010). In this study, the AVHRR datasets from Long-Term Datasets Records 
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(Pedelty et al., 2007) (LTDR, https://ltdr.modaps.eosdis.nasa.gov/) are used, including AVH02C1 and AVH13C1, for which 

spatial resolution has been processed to 0.05°×0.05° (Table 1). Those two datasets include the top-of-atmosphere BT of the 

TIR channels, NDVI, view zenith angle (VZA), view time, and quality control (QC) flags, which provide a reference for 

distinguishing pure and cloudy pixels. 125 

2.1.2 ASTER Global Emissivity Dataset (GED) 

ASTER onboard the Terra satellite and has five TIR channels (Fig. 1). The ASTER GED used in this study was generated from 

clear sky ASTER TIR data between 2000 and 2008 with the TES algorithm and the water vapour scaling atmosphere correction 

method (Hulley et al., 2015). The products are output at 3″ (~100 m) and 30″ (~1 km) spatial resolution on 1°×1° tiles. Channel 

temporal mean emissivity, LST, and NDVI, as well as their standard deviation, global DEM, and land-sea mask, are part of the 130 

GED. In this study, the ASTER GEDv3 with a 1-km spatial resolution was used to determine the global background emissivity 

of bare land. 

2.2 Atmospheric profiles and forward simulation datasets 

Global forward simulation datasets with good representativeness are necessary for developing and evaluating LST retrieval 

algorithms. This requires a reliable atmospheric profile dataset as input. In this study, the well-established SeeBor V5.0 (Borbas 135 

et al., 2005) and TIGR2000 V1.2 (Chedin et al., 1985) atmospheric profiles were used to construct the forward simulation 

datasets. Zhou et al. (2019b) derived a global atmospheric profile dataset (GAPD) by screening the SeeBor V5.0 atmospheric 

profiles and removing cloud-contaminated and redundant profiles. The GAPD dataset has been used for developing the LST 

retrieval algorithm for NOAA-20/VIIRS and Sentinel-3/SLSTR (Liu et al., 2019b; Yang et al., 2020): it contains 549 global 

profiles with a column water vapour content (CWVC) range of 0.014 – 7.939 g/cm2 and near-surface air temperature (NSAT) 140 

range of 224.25 K – 309.05 K. Here, the GAPD was used to generate a training dataset (TRA-G): globally representative 

observation conditions were simulated by varying the viewing geometry and land surface characteristics over a realistic range 

for a limited profile dataset (Zhou et al,2019b), i.e. for each profile 10 surface temperatures (Ts), 15 view zenith angles (VZA), 

and 48 land surface emissivities (LSE, ε) were set. Specifically, Ts was set relative to NSAT with the difference (Ts-NSAT) 
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covering the range of -16 K to +20 K at an interval of 4 K; VZA was set to values from 0° to 70° at an interval of 5°; emissivity 145 

was obtained from Johns Hopkins University (JHU) spectral emissivity library by convolving the emissivity spectra with the 

spectral response functions of NOAA-07/09/11/14 AVHRR (Fig. 1); the corresponding emissivity ranges are provided in Table 

2. For the remaining 4761 SeeBor clear-sky profiles (ATP-S) and 506 TIGR clear-sky profiles (ATP-T), the corresponding 

simulations were performed and used as evaluation datasets VAL-S and VAL-T, respectively. In contrast to GAPD, for each 

profile in ATP-S (ATP-T), we randomly set 10 (10) VZAs between 0° and 70°. The corresponding LSE has been assigned 150 

according to the LCT over which a profile is located (Snyder et al., 1998) and Ts for VAL-S and VAL-T was set to the 

corresponding NSAT. Table 3 summarizes the three profile datasets and the corresponding simulation datasets. More details 

can be found in Zhou et al. (2019b) and Yang et al. (2020). 

2.3 Ancillary data used for LST retrieval 

Four ancillary datasets were used for LST retrieval: NSAT, CWVC, LCT, and soil type. The MERRA-2 reanalysis dataset 155 

(M2T1NXSLV) provides NSAT and CWVC (variables in datasets: T2M and TQV, respectively) with 0.5°×0.625° spatial 

resolution and hourly temporal resolution; nearest neighbour sampling was used to match up with AVHRR pixel and over-pass 

time. AVHRR LCTs were obtained from the University of Maryland (UMD) dataset (Defries and Hansen, 2010), which 

provides 14 LCTs (0:Water; 1:Evergreen Needleleaf Forest; 2:Evergreen Broadleaf Forest; 3:Deciduous Needleleaf Forest; 

4:Deciduous Broadleaf Forest; 5:Mixed Forest; 6:Woodland; 7:Wooded Grassland; 8:Closed Shrubland; 9:Open Shrubland; 160 

10:Grassland; 11:Cropland; 12:Bare Ground; 13:Urban and Built). The spatial resolution of the UMD LCT dataset is 1 km × 

1 km. To adapt its resolution of AVHRR, the dominant LCT within each 0.05° grid was used as the LCT for AVHRR. The soil 

type dataset employed for estimating AVHRR LSE is provided by the United States Department of Agriculture, which is 

mainly based on the world soil map of FAO-UNESCO. Its spatial resolution is 2′ (~ 0.03°) and the soil type of each AVHRR 

pixel was also set to the dominant type.  165 

2.4 In-situ datasets 

In-situ measurements from the Surface Radiation Budget (SURFRAD) network and the National Data Buoy Center (NDBC) 
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were used to validate the retrieved AVHRR LST. The details and geographical distribution of the selected in-situ sites are 

provided in Table 4 and Fig. 2. SURFRAD was established in 1993 and focuses on validating Earth’s radiation budget. Quality 

control is an integral part of the design and operation of the SURFRAD network, which results in datasets of high quality and 170 

well-defined measurement uncertainties (https://www.esrl.noaa.gov/gmd/grad/surfrad/). Therefore, SURFRAD data have been 

widely used for validating satellite-retrieved LST products (Guillevic et al., 2014; Liu et al., 2019b; Martin et al., 2019; Wang 

and Liang, 2009) and other fields. Six sites providing in-situ data between 1995 and 2000 were selected. At these sites, 

upwelling and downwelling longwave radiances are measured with highly accurate Eppley Precision Infrared Radiometers 

(PIR; wavelength: 4-50 μm) at an observation interval of 3 minutes. The PIRs were set up ~10 m above the ground, giving 175 

them a field of view (FOV) covering approximately 70×70 m2 (Guillevic et al., 2014). Historical data from the NDBC 

(https://www.ndbc.noaa.gov/historical_data.shtml) provide hourly samples of bulk water temperature, it is measured with 

electronic thermistors and highly accurate and quality controlled by NDBC (https://www.ndbc.noaa.gov/qc.shtml). 

Considering the thermal homogeneity of the water surface, buoy temperatures are usually representative of the satellite pixel 

scale, even if it covers large areas. To avoid mixed land-water pixels, only buoys at least 20 km from the coastline were selected. 180 

3. Methodology 

LST retrieval algorithm from TIR remote sensing, especially with SWAs, is a well established and validated method. However, 

no single algorithm performs best under all conditions, even if it generally achieves good accuracy (Yu et al., 2009). This 

suggests that a more stable and robust LST retrieval algorithm may be obtained by integrating various individual LST retrieval 

algorithms. In this study, the Random Forest (RF) ensemble method (Breiman, 2001) was utilized for integrating multi-LSTs 185 

(mLSTs) obtained with several-SWAs into a global AVHRR LST product. First, widely used candidate SWAs were trained and 

evaluated; these SWAs have been studied in previous work (Yang et al., 2020; Zhou et al., 2019b), and are shown in Table 5 

for readers’ convenience. Second, estimates of land surface emissivity were improved by combining the NDVI threshold 

method and ASTER GED. Third, the LSTs from the trained candidate SWAs were integrated with the RF method: thus, the 

approach is termed RF-SWA. Then, the instantaneous RF-SWA LST was normalized to 14:30 (solar time) using an improved 190 

orbital drift correction (ODC) method and the RF-SWA LST and ODC LST products were validated against in-situ LST. Finally, 
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for the user’s convenience of users, a monthly averaged LST was also generated from the ODC LST with a sample averaging 

procedure. 

3.1 Refining the Candidate Algorithms 

Forward radiative transfer simulations with PMODTRAN (Berk et al., 2005; Huang et al., 2016) were performed on a high-195 

performance computing platform (2*Intel @Xeon E5-2650 2.00GHz (8Cores), 64GB 1600MHz) for the datasets GAPD, ATP-

S, and ATP-T described in section 2.2; the corresponding simulated datasets were labelled as TRA-G, VAL-S, and VAL-T. 

Each forward simulation yields channel-specific top-of-atmosphere radiances and BTs in dependence of NSAT, CWVC, and 

VZA. To simulate BTs measured by satellites more realistically, Gaussian-distributed noise with a noise equivalent differential 

temperature (NE∆T) of 0.12 K, of which is the design goals for the AVHRR TIR channels, was added to the simulated BTs. 200 

More details on the simulations are provided in Zhou et al. (2019b). 

Multiple regression was performed on the simulated training datasets, TRA-G, to determine the coefficients of the 

candidate SWAs in Table 5. The TRA-G dataset was divided into 480 groups based on NSAT, CWVC, VZA, and Ts-NSAT as 

follows: (i) the atmospheres were divided into Cold-ATM and Warm-ATM with a NSAT threshold of 280 K; (ii) the data were 

divided into CWVC classes with an interval of 0.5 g/cm2. This resulted in 3 subgroups of Cold-ATM and 13 subgroups of 205 

Warm-ATM; (iii) the VZAs were divided into intervals of 5°; (iv) based on Ts-NSAT, the data were divided into two subgroups 

e.g. [-16,4] K and [-4, 20] K, approximately representing daytime and nighttime cases, respectively. Based on regression 

against these training datasets, look-up tables (LUT) with coefficients for each candidate SWA were established. The candidate 

algorithms were then analyzed w.r.t. the standard error of the estimate (SEE) and coefficient of determination (R2) and a 

sensitivity analysis was performed for the main input parameters, e.g. LSE and CWVC, to test the stability and accuracy of 210 

the trained SWAs. Being consistent with the uncertainty level in Zhou et al. (2019b), the various uncertainty sources were 

grouped into 2 levels: (i) L1: |δε11|max≤ 0.02, |δε12|max≤ 0.02, and |δCWVC |max≤1.0 g/cm2; (ii) L2: |δε11|max≤ 0.04, |δε12|max≤ 0.04, 

and |δCWVC |max≤1.0 g/cm2. These uncertainties will be added to ε11, ε12, and CWVC as random noises. Datasets without 

added uncertainty were labelled as L0. All trained candidate algorithms were evaluated against the simulation datasets VAL-S 

and VAL-T. 215 
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3.2 Multi-LSTs ensemble 

Based on the training and evaluation results (see section 4.1), a multi-LST ensemble method is proposed, which hopefully 

achieves a more stable retrieval by integrating the most robust and stable SWAs. The method used to integrate the selected 

SWAs is the Random Forest (RF) method proposed by Breiman (2001). Compared to detailed analytic expressions for 

explaining complicated nonlinear relationships, the RF method has several advantages, including the ability to process large 220 

databases with high efficiency, unbiased estimation, and especially minimizing the risk of overfitting (Hutengs and Vohland, 

2016). Therefore, the RF method has been widely used in remote sensing applications, e.g. land cover classification 

(Rodriguez-Galiano et al., 2012), land surface parameter downscaling (Zhao et al., 2018), and estimating vegetation cover 

parameters (Mutanga et al., 2012).  

The RF method utilizes an ensemble of many decision trees. In the implementation of the RF ensemble method, a random 225 

vector Θk is selected from the input training datasets (mLSTs, LST) with the Bootstrap sampling method. Here, k is the number 

of samplings; mLSTs are the LSTs retrieved with the individual SWAs, i.e. the predictors; LST, i.e. the target variable is known 

from the forward simulations. The sample size of each sampling is two-thirds of the observations; for each sampling, a tree is 

grown using the training set and Θk, which results in a tree predictor T(Θk). Finally, the LST predicted with the RF is formed 

by averaging over the k trees (Eq. 1), 230 

𝑔 =
1

𝑘
∑ 𝑇(𝛩𝑘)
𝑘
𝑖=1  (1) 

Along with the predicted LST, the importance of each variable can be calculated using the residual sum of squares (RSS), 

which usually has larger values for more influential mLSTs. Additionally, the simple average (SA) method and Bayesian Model 

Averaging (BMA) method are implemented for comparison. To cover the real natural variability as much as possible, datasets 

TRA-G (L0, L1, and L2), VAL-S (L0), and VAL-T (L0) are used as training datasets for the LST ensemble model. The 235 

remaining datasets VAL-S and VAL-T at uncertainty levels L1 and L2 are used for evaluating the ensemble model. For the 

later generation of global LST products, only mLSTs from the selected SWAs are needed. 

3.3 Estimating LSE 

LSE is a key parameter in retrieving LST from TIR remote sensing data. Depending on the spectral channels of the sensor and 
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the available temporal sampling, there are various LSE estimation methods, e.g. the NDVI-threshold method (Sobrino et al., 240 

2008), land cover-based (LC-based) method (Snyder et al., 1998; Wan, 2014), TES method (Gillespie et al., 1998), day-night 

method (Becker and Li, 1990b), and Kalman filter method (Li et al., 2013b; Masiello et al., 2015). The NDVI-threshold and 

LC-based methods are widely used in retrieving LST (Sobrino et al., 2008; Wan, 2014). However, those methods require that 

the emissivity of the land cover or the vegetation and bare (background) soil is known. In the TIR, emissivity spectra of dense 

vegetation are relatively similar and, therefore, can be taken from spectral libraries; these spectra can then be convolved with 245 

the sensor’s spectral response functions to obtain channel effective emissivities. In contrast, the emissivity of bare soil varies 

considerably, mainly due to variations of its components, roughness, water content, and surface structure. Therefore, this study 

employs a practical and robust method that combines the ASTER GED and the NDVI-threshold method to determine LSE. 

First, the land surface is classified into pure bare soil, mixture of vegetation and bare soil, and pure vegetation. The 

emissivity in mixed areas (ɛλ) is obtained as the weighted sum of vegetation emissivity (ελ,v) and bare soil emissivity (ελ,s), 250 

where the fraction of vegetation cover (fv) determines the weights (Carlson and Ripley, 1997; Hulley et al., 2015): 

𝜀𝜆 = 𝜀𝜆,v𝑓v + 𝜀𝜆,s(1 − 𝑓v) (2) 

here, the fv can be calculated as Eq. (3), 

𝑓v = {

0, 𝑁𝐷𝑉𝐼 ≤ NDVImin

1 −
NDVImax−𝑁𝐷𝑉𝐼

NDVImax−NDVImin
, NDVImin < 𝑁𝐷𝑉𝐼 < NDVImax

1, 𝑁𝐷𝑉𝐼 ≥ NDVImax

  (3) 

where NDVImax and NDVImin are the thresholds for separating into vegetation areas, mixed areas, and bare soil areas. In order 255 

to obtain globally consistent fv values, NDVImax and NDVImin were set to 0.5 and 0.2 (Sobrino et al., 2001), respectively. 

According to Eqs. (2) and (3), the ASTER thermal channel emissivity of bare soil can be calculated as, 

𝜀𝑗,s
AST =

𝜀𝑗
AST−𝜀𝑗,v

AST𝑓v

1−𝑓v
 (4) 

where 𝜀𝑗
AST ,𝜀𝜆,v

AST  and 𝜀𝜆,s
AST  are the ASTER emissivity for the observation, dense vegetation, and bare soil in channel j 

(j=10,…,14), respectively. The ASTER thermal channel emissivities for dense vegetation is given in Meng et al. (2016). 260 

In order to convert bare soil emissivities from ASTER spectral channels to AVHRR spectral channels, the following 

linear relationship is fitted to channel emissivities obtained from the JHU bare soil spectral library (Salisbury, 1991): 
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𝜀𝑖,s
𝐴𝑉𝐻 = 𝑎0 + 𝑎1𝜀10,s

AST + 𝑎2𝜀11,s
AST + 𝑎3𝜀12,s

AST + 𝑎4𝜀13,s
AST + 𝑎5𝜀14,s

AST (5) 

where 𝜀𝑖,s
AVH (i=11, 12) is the AVHRR bare soil emissivity in channel centred at i and

 
𝑎𝑘 (k=0,…,5) are coefficients (Table 

6). 265 

Figure 3 illustrates LSE estimation, which consists of two main parts: 

Part I describes how static bare soil emissivity is obtained. After preparing the ASTER GED datasets, global mean NDVI 

and channel emissivity maps are obtained and mean fv is calculated via Eq. (3). In combination with the LUT for ASTER 

vegetation emissivity from Meng et al. (2016), an initial global ASTER bare soil emissivity map is obtained via Eq. (4). 

However, due to regions with persistent cloud cover and over areas with dense vegetation (i.e. no visible bare soil fraction), 270 

the obtained global emissivity maps for bare soil still have considerable data gaps. These missing values in the bare soil 

emissivity maps are filled with the average emissivity of the same soil type within the 3×3 neighbourhood pixels. If there is 

no neighbour valid pixel for averaging, the neighbourhood is enlarged until all data gaps are filled. 

Part II describes the estimation of the daily dynamic emissivity. Firstly, the global ASTER background bare soil spectral 

channel emissivities are converted to AVHRR spectral channels via Eq. (5). Then, AVHRR channel emissivities are obtained 275 

via Eq. (2) with NDVI values from the AVH13C1 dataset. Vegetation emissivities are taken from a look-up table (Table 7), 

which is based on AVHRR LCTs and vegetation emissivities from Pinheiro et al. (2006). Furthermore, emissivities of built-up 

areas and water are used for separating these areas from other non-vegetated areas. 

3.4 Orbital Drift Correction 

The orbital drift of the NOAA-series satellites is a serious limitation for applications of AVHRR LST. Therefore, an orbital 280 

drift correction (ODC) would be highly useful and beneficial for many users. The actual overpass times of the NOAA-series 

afternoon satellites are between 13:00-17:30. In order to include the four-afternoon satellites (Table 1), the target time for ODC 

is set to 14:30 (solar time). According to the ODC method proposed by Liu et al. (2019a), the LST relationship between 

overpass time and ODC target time (14:30) can be written as: 

𝑇s(𝑡) = 𝑇s(14.5) + 𝑇a {cos (
𝜋

𝜔
(𝑡 − 𝑡m)) − cos (

𝜋

𝜔
(14.5 − 𝑡m))} (6) 285 

where t is the time of the day in hours; Ta is the diurnal amplitude of LST in K; ɷ is the length of daytime and tm is the time of 
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maximum LST in hours (Göttsche and Olesen, 2001). Here, ɷ is determined by the duration of daytime: 𝜔 =

2

15
cos−1 (

cos 85°

cos𝜙 cos 𝛿
− tan𝜙 tan 𝛿), where 𝜙 is the latitude of the pixel in degree and 𝛿 is the solar declination. 𝛿 can be 

expressed as a function of the day of the year (DOY): 𝛿 = 23.45 sin (
360°

365
(284 + DOY)) (Elagib et al., 1998). 

Similar to the component emissivity in Eq. (2), LST can be approximated as the weighted sum of the component 290 

temperatures of the vegetation and bare soil areas (Quan et al., 2018): 

𝑇 ≈ 𝑓v𝑇veg + (1 − 𝑓v)𝑇soil (7) 

where Tveg and Tsoil are the component temperatures of vegetation and bare soil, respectively. 

Starting with the approach by Liu et al. (2019a), we further divide the diurnal temperature amplitude Ta into two 

components (i.e., vegetation and soil). Thus, Eq. (6) can then be rewritten as: 295 

𝑇s(𝑡) = 𝑓v𝑇s,veg(14.5) + (1 − 𝑓v)𝑇s,soil(14.5) + (𝑓v𝑇a,veg + (1 − 𝑓v)𝑇a,soil) {cos (
𝜋

𝜔
(𝑡 − 𝑡m)) − cos (

𝜋

𝜔
(14.5 − 𝑡m))} (8) 

where Ts,veg(14.5), Ts,soil(14.5) are the component temperatures of vegetation and bare soil at target time 14:30, respectively; 

Ta,veg, Ta,soil are the component of diurnal temperature amplitude Ta, respectively. 

In Eq. (8), the parameters Ts, fv, and t are available for each pixel. To obtain the other five parameters Ts,veg(14.5), 

Ts,soil(14.5), Ta,veg, Ta,soil, and tm, it is assumed that the component temperatures and the shape of the diurnal temperature cycle 300 

are approximately the same in a 3×3 pixel neighbourhood. With this assumption, there are nine equations to solve for the five 

unknown parameters. To constrain the solution, boundaries are set for each parameter. The boundaries for Ts,veg(14.5) and 

Ts,soil(14.5) are [Tcenter-10, Tcenter+15] K, and Tcentre is the LST for the centre pixel in the 3×3 neighbourhood. The boundaries for 

Ta,veg and Ta,soil are [5, 40] K and Ta,soil must be larger than Ta,veg. The boundary for tm is [12, 15] in hours. In order to obtain 

more stable parameters, the pixel’s ODC parameters obtained with an averaged value from the neighbourhood when Eq. (8) 305 

cannot be fitted, e.g. fv are similar to each other (e.g. fv=0, 1) in the 3×3 pixel neighbourhood. If there is no neighbour valid 

pixel for averaging, the neighbourhood area is enlarged from 3×3 to 9×9. Once the parameters are determined, the LST at 

14:30 can be calculated via Eq. (9).  

𝑇s(14.5) = 𝑇s(𝑡) + (𝑓v𝑇a,veg + (1 − 𝑓v)𝑇a,soil) {cos (
𝜋

𝜔
(14.5 − 𝑡m)) − cos (

𝜋

𝜔
(𝑡 − 𝑡m))} (9) 
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3.5 Generation of LST products 310 

The product generation executable (PGE) code includes four Modules. Module I is for generating the multi-LST with the 

selected SWAs. Three different types of input data enter this module: (i) the satellite data: BTs from AVH02C1, NDVI from 

AVH13C1, bare soil emissivity (see section 3.3), and AVHRR LCTs from UMD; (ii) look-up tables: coefficients of the SWAs 

(see section 3.1), emissivities of vegetation, water, and built-up areas (see Table 7); and (iii) ancillary data: NSAT and CWVC 

from MERRA and land-sea mask. The QC flags in AVHR02C1 are also used to identify cloudy pixel. If a pixel contains cloud 315 

or cloud shadow, its LST is not calculated. Therefore, the output of Module I is multi-LST under clear sky conditions. 

Module II is for integrating the multi-LST with the trained RF ensemble model. The inputs include the multi-LST from 

Module I and the RF ensemble model; the output is the ensemble LST, which is termed RF-SWA LST. Module III is for 

normalizing the LST affected by orbital drift to 14:30 solar time. In this Module, the input datasets include the RF-SWA LST 

and NDVI; the latter is used for calculating the fraction of vegetation. The output of Module III is orbital drift corrected LST, 320 

which is termed OCD LST. Module IV is for generating monthly average LST: the module first groups ODC LST by month, 

sums the valid LST in each month up, and divides them by the respective number of valid LST. The output from this Module 

is monthly averaged ODC LST. All LST data are stored in standard HDF-EOS format. Table 8 shows the variables provided 

in the three types of LST data files. 

3.6 LST product validation based on in-situ LST 325 

At the surface, in-situ LST can be estimated from measurements of broadband hemispherical upwelling radiance (Lu) and 

atmospheric downwelling radiance (Ld) using Stefan-Boltzmann’s law:  

𝑇s = √
𝐿u−(1−𝜀)𝐿d

𝜀𝜎

4
 (10) 

where Ts is in-situ LST; broadband emissivity ɛ is obtained from AVHRR LSE in AVHRR LSE for channel centred at 11μm 

and 12μm via the empirical relationship ɛ=0.2489+0.2386ɛ11+0.4998ɛ12 (Liang, 2005); σ (=5.67×10-8 W/(m2K4)) is the Stefan-330 

Boltzmann constant. 

Before the validation was performed, in-situ LST and AVHRR LST were accurately matched up in terms of geolocation 

and acquisition time (nearest-neighbour interpolation and, depending on the site, time differences of less than 3 min, 15 min 
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or 30 min). Furthermore, VZAs were limited to less than 40°. Additionally, three-sigma (3σ) filtering (Eq. 11) was employed 

to remove the samples contaminated by undetected clouds (Göttsche et al., 2016; Pearson, 2002). 335 

𝑆 = 1.4826 ∗ 𝑚𝑒𝑑𝑖𝑎𝑛{|𝑥𝑘 − 𝑥med|} (11) 

where xk are the LST differences between the retrieved and in-situ values; xmed is the median of the residuals. Matchups with 

residuals greater than xmed +3S or less than xmed - 3S are regarded as outliners. 

4. Results and discussion 

4.1 Training results and selection of SWAs  340 

For NOAA-07/11 AVHRR, the candidate SWAs in Table 5 were already trained and evaluated by Zhou et al. (2019b). Here, 

the SWAs are additionally trained and evaluated for NOAA-09/14 AVHRR. Generally, the SWA training results for the four 

sensors are consistent with each other. Therefore, only the result for NOAA-14 AVHRR is listed here. The candidate algorithms 

OV1992, FO1996, and FOW 1996 show the worst regression accuracy regardless of atmospheric conditions with standard 

errors of the estimate (SEE) higher than 1.49 K, 1.48 K, and 1.32 K, respectively. For Warm-ATM, the SEE of PP1991 increases 345 

rapidly with increasing CWVC, while it shows good accuracy for Cold-ATM with SEE between 0.33 K and 0.75 K. The SEE 

values for UC1985 and MT2002 were larger than those of most other SWAs, even though they are still lower than for OV1992, 

FO1996, FOW1996, and PP1991: therefore, these six SWAs were disregarded in the further analysis. For the remaining 11 

SWAs, a sensitivity analysis was performed for the TRA-G simulation dataset with uncertainties levels L1 and L2. The results 

showed that SO1991 and CO1994 are sensitive to uncertainties in LSE and CWVC. Consequently, these two SWAs were also 350 

excluded from the candidate algorithm list. More details on the training and sensitivity analysis are provided in Zhou et al. 

(2019b). 

The nine remaining SWAs for NOAA-09/14 AVHRR were then tested with the simulation datasets VAL-S and VAL-T. 

For completeness, Fig. 4 shows these results together with those obtained for NOAA-07/11. It can be seen that the retained 

nine SWAs have low RMSE values, which range between 0.38 K and 0.49 K for VAL-S and between 0.47 K and 0.68 K for 355 

VAL-T. Since the atmospheric profiles used to generate VAL-S and VAL-T are globally distributed, we conclude that these 
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nine SWAs should perform well globally. The results for VAL-S in Fig. 4 reveal that BL-WD and WA2014 show the highest 

overall accuracy, followed by BL1995, PR1984, and VI1991. The RMSE values of these four SWAs are ~0.48 K. For VAL-T, 

BL1995 and BL_WD show the highest accuracy, followed by WA2014, VI1991, and PR1984; in this case, the RMSE of these 

four SWAs is ~0.60 K. For all nine SWAs, the accuracy decreases as the VZA increases. While BL-WD achieves the highest 360 

accuracy, no obvious differences between the other eight SWAs are observed. From the 17 LCTs over which the atmospheric 

profiles are located, taking VAL-T for NOAA-14 AVHRR as an example, BL-WD performs best for nine LCTs, VI1991 and 

BL1995 for three LCTs. In contrast, there is no LC type over which PR1984, SR2000, GA2008, and UL1994 perform best. It 

is because those SWAs show different sensitivity to the emissivity, of which was set by the LCTs of profiles located. When 

assessing the effect of different atmospheric conditions, in Cold-ATM the highest accuracy is found for BL1995 and BL-WD. 365 

In Warm-ATM, when Ts-NSAT is within [-4, 20] K, BL-WD performs the best for CWVC below 2.5 g/cm2, while PR1984 

performs the best when CWVC exceeds 4.5 g/cm2. When Ts-NSAT is within [-16,4] K, WA2014 shows the best performance 

for CWVC below 3.5 g/cm2; with increasing CWVC, BL1995 and BL-WD show the highest accuracy. Overall, it is found that 

no single SWA achieves the highest accuracy under all conditions. 

4.2 Multi-LSTs ensemble 370 

The nine SWAs were integrated with the RF ensemble method. For comparison, the simple averaging (SA) method and 

Bayesian Model Averaging (BMA) method were also employed. In contrast to Zhou et al. (2019b), here we used LST retrieved 

with SWAs trained with TRA-G (L0, L1, and L2) and VAL-S/T (L0) to simulate a more realistic situation with uncertainty. 

Generally, the MBE of the RF ensemble method and the BMA model method is negligible (of the order of 10-4 K or less), 

while the MBE of SA method and single SWA is larger (of the order of 0.1 K). It can be concluded that the two ensemble 375 

methods (i.e. RF and BMA) similarly reduce systematic error. In terms of training accuracy, the RF model shows obvious 

advantages with a STD of less than 0.50 K for the four NOAA AVHRR sensors while the STD of SA and BMA is larger and 

varies between 1.27 and 1.35 K. Figure 5 highlights the importance of variance for forming the RF ensemble: the most 

important SWA is BL1995 with an importance value of 0.67, 0.64, 0.68, and 0.83 for NOAA-07, 09, 11, and 14, respectively. 

The second most important SWA for NOAA-07, 09, and 11 is ULW1994, while WA2014 is the second most important SWA 380 
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for NOAA-14. SR2000 is also of some importance for the ensemble process. Figure 5 confirms that the most important SWA, 

i.e. BL1995, is consistent with the most accurate SWA under different atmospheric conditions. 

Figure 6 shows the SEEs of the three ensemble methods for different CWVC zones and VZA subranges for NOAA-14 

AVHRR. Compared to the BMA and SA models for all atmospheric conditions and VZAs, the RF ensemble model achieves 

an obvious improvement in LST accuracy. For Cold-ATM, the SEE of RF increases slowly with increasing CWVC and VZA 385 

and varies from 0.21 K to 0.45 K. In contrast, the SEEs of BMA and SA show larger variations for both, increasing CWVC 

and VZA, and range from 0.72 K to 1.23 K. For Warm-ATM and CWVC less than 3.0 g/cm2, there is no obvious increase in 

SEE with increasing CWVC or VZA. However, SEE increases noticeably with increasing VZA when CWVC exceeds 3.0 

g/cm2, especially at VZA larger than 35°. However, the SEE of RF is always smaller than that of BMA and SA: RF SEE only 

exceeds 1.0 K when CWVC is larger than 5.0 g/cm2 and VZA exceeds 60°. Under the same conditions, the SEE of BMA and 390 

SA is larger than 2.0 K. Therefore, it is concluded that the RF ensemble method achieves a higher training accuracy than the 

BMA and SA methods, with a RF training accuracy of less than 1.0 K under most conditions. 

To assess the stability and sensitivity of the RF model, the LST estimated with RF, BMA, and SA method were evaluated 

against the VAL-T and VAL-S datasets at uncertainty levels L1 and L2. Figure 7 shows the evaluation of the three methods for 

NOAA-14 AVHRR. For VAL-S at L1, STD and RMSE of about 0.7 K are found for all three methods; however, the biases of 395 

RF (MBE=-0.04 K) and BMA (MBE=-0.03 K) are smaller than that of SA (MBE=-0.11 K) and negligible (i.e. less than ±0.1 

K). For VAL-S at L2, the bias for all three methods is negligible. However, considerable improvements are obtained with the 

RF method in terms of STD/RMSE, which is about 0.25K lower than for BMA and SA. For VAL-T at L1, the RF method has 

a slightly larger bias (MBE=-0.1 K) than the SA/BMA methods; however, its STD/RMSE is smaller. For VAL-T at L2, the 

three methods have a similar bias. However, RF has a significantly smaller STD/RMSE of 1.02/1.03 K than SA (1.41/1.42 K) 400 

and BMA (1.38/1.39 K). Similar results were found for NOAA-07/09/11 AVHRR.  

4.3 Validation of RF-SWA LST against in-situ LST 

First, the generated RF-SWA LST was validated against in-situ LST from SURFRAD sites. Figure 8 shows a scatterplot 

between RF-SWA LST and SURFRAD in-situ LST and some statistic indicators, i.e. MBE, RMSE, STD, R2, and N (i.e. sample 
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size). High correlations are found between RF-SWA LST and in-situ LST with a R2 range of 0.91-0.96. MBE varies between 405 

-1.59 K and 2.71 K and RMSE between 2.25 K and 3.86 K. Compared to LST products for MODIS, AATSR, and VIIRS, 

which were also validated against SURFRAD in-situ LST (Duan et al., 2019; Liu et al., 2019b; Martin et al., 2019), RF-SWA 

LST shows a similar accuracy and precision. It should be noted that the large MBE at BND, GWN, and TBL are probably due 

to a lack of in-situ LST representativeness at the satellite scale, e.g. BND, a seasonal bias variation is observed. During the 

dormancy season, the surface within the ground radiometer’s FOV and the corresponding AVHRR pixel are both fairly 410 

homogeneously covered by bare soil and grassland, which leads to smaller LST differences. In contrast, during the growing 

season, most of the area within the AVHRR pixel is covered by cropland and the fraction of vegetation cover depends on the 

crop’s growth stage: especially in the early growing and harvesting season, there are many bare areas between crop rows, 

which causes larger LST differences. If only BND matchups during the dormancy season are considered, the corresponding 

MBE and RMSE between RF-SWA LST and in-situ LST reduce to 1.56 K and 2.58 K, respectively. At GWN, the land cover 415 

within the ground radiometer’s FOV is also grassland; however, the corresponding AVHRR pixel includes several nearby 

forest areas. Therefore, the daytime LST observed on the pixel scale tends to lower than the in-situ LST. At TBL, RF-SWA 

LST is lower than in-situ LST for in-situ LST larger than 300 K: this may be explained by a larger vegetation area southeast 

of the site, which is included in the AVHRR pixel, while the ground radiometer’s entire FOV is covered by bare soil.  

Figure 9 shows scatterplots between RF-SWA LST and NDBC lake surface water temperature (LSWT) and some statistic 420 

indicators for buoys in the East Pacific, the Big Lakes, Gulf of Mexico, and western Atlantic. As shown in Table 4, the number 

of buoys for each area differs. The RF-SWA LST shows a good correlation with in-situ LSWT with R2 ranging from 0.94 to 

0.98. The plots also show low systematic errors and high precision, e.g. MBEs are less than 0.26 K and RMSE ranges from 

0.77 K to 0.89 K. Overall, the validation results resemble those obtained for the simulation datasets in section 4.2. Furthermore, 

the validation results meet WMO’s requirements for applications of LST/LSWT in different fields, e.g. an uncertainty of 2.0 425 

K for Agricultural Meteorology and of 1.0 K for Climate Monitoring (WMO, 2020).  

4.4 Orbital Drift Correction 

The retrieved RF-SWA LST were normalized for the orbital drift of the NOAA-series satellites using the orbital drift correction 
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method described in section 3.4. Since water surface temperature varies relatively slowly, only the retrieved surface 

temperatures over land were normalized. The orbital drift corrected LST (ODC LST) was then validated against the same in-430 

situ data as in section 4.3. Figure 10 shows a boxplot of the residuals (TAVHRR-Tin-situ) for the ODC LST and RF-SWA LST. The 

plot shows that the bias of the ODC LST over the 6 sites is similar to that of the uncorrected RF-SWA LST. From the six 

SURFRAD sites, BND has the highest positive bias, while GWN and TBL show negative biases. Following the explanation 

in section 4.3, this is probably due to less representative in-situ measurements. The standard deviations (STD) of the ODC 

LST residuals at the six SURFRAD sites are 3.62 K (BND), 2.34 K (DRA), 3.38 K (FPK), 3.45 K (GWN), 2.57 K (PSU), and 435 

3.69 K (TBL). The STD variations (ODC LST – RF-SWA LST) ranges from 0.06 K to 1.15 K. This indicates that the ODC 

LST maintains the good accuracy of RF-SWA LST and its performance primarily depends on surface conditions. This is 

understandable because the improved ODC method uses adjacent pixels to compensate for the lack of temporal information. 

Nevertheless, the improved ODC method provides a practical way to correct the effect of orbital drift on LST retrieved from 

NOAA AVHRR data. 440 

4.5 Global ODC LST product examples 

Figure 11 shows monthly averaged ODC LST for March, June, September, and December 1999 normalized to 14:30 solar time. 

The LST show an obvious annual variation as seasons change with Earth’s revolution around the Sun. In March and September 

(Fig. 11 a and c), the Sun is overhead near the equator, which then receives most of the solar energy. However, the highest LST 

are observed north and south of the equator, i.e. over the Sahara and Australia. This is due to the equatorial regions’ dense 445 

coverage with tropical rainforests, e.g. in the Amazon and Congo basins. The lowest LST are observed in the northern 

hemisphere around 45°N and around the Qinghai-Tibet Plateau. In June (Fig. 11 b), the Sun is more overhead in the northern 

hemisphere and the area with the highest LST is located around 30°N, e.g. over the Sahara Desert, the Arabian Peninsula, and 

the Iran-Pamir Plateau. At the same time, LST also increases north of 45°N. In December (Fig. 11 d), the area with the highest 

LST is mainly located over Oceania and parts of South America. It should be noted that the large areas with invalid data, which 450 

are mainly observed at latitudes larger than 45°, are caused by the strict cloud filtering algorithms, which frequently recognize 

snow and ice as cloud, and polar night when no visible data are available to calculate NDVI (related to LSE). Furthermore, in 
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June there are many invalid pixels over southern and southwestern China, which is regularly affected by cloudy weather. 

In order to demonstrate the temporal consistency between satellites, Figure 12 shows time series of monthly averaged 

ODC LST from 1981-2000 for the Amazon basin, the Arctic pole, and the Tibetan plateau (areas are shown in Fig. 1): no 455 

significant orbital drift or inconsistencies can be seen, indicating that the ODC method adequately normalized the retrieved 

AVHRR LST. The larger annual variations over the North pole (Fig. 12 b) are related to the specific variation of solar radiation 

in high latitude areas, i.e. polar day and polar night. For the Amazon basin (Fig. 12 a), the North Arctic pole (Fig. 12 b), and 

the Tibetan plateau (Fig. 12 c), the linear regressions (blue lines) show different trends with rates of 0.048±0.024 K/year (p-

value=0.046), 0.087±0.221 K/year (p-value=0.695), and 0.081±0.103 K/year (p-value=0.433), respectively. However, these 460 

rates may be affected by averaging over large areas and by the frequently missing data due to clouds. Therefore, more in-depth 

analyses, especially with in-situ observations and reanalysis data, are needed (Liu et al., 2008; Rigor et al., 2000; Schneider 

and Hook, 2010; Wu et al., 2013). 

5. Data availability 

Global LST products retrieved from NOAA/AVHRR data between 1981 to 2000 are freely available at 465 

https://doi.org/10.5281/zenodo.3934354 for RF-SWA LST (Ma et al., 2020a); https://doi.org/10.5281/zenodo.3936627 for 

ODC LST (Ma et al., 2020c); https://doi.org/10.5281/zenodo.3936641 for monthly averaged LST (Ma et al., 2020b). The 

dataset is also available at the National Earth System Science Data Center, National Science & Technology Infrastructure of 

China (http://www.geodata.cn/thematicView/GLASS.html) and the University of Maryland (http://glass.umd.edu/LST/). 

6. Conclusion and Outlook 470 

Three global LST products with a spatial resolution of 0.05°×0.05° have been generated from historical NOAA-7/9/11/14 

AVHRR data (1981-2000). These LST products are obtained in four steps: (1) training and evaluation of 17 AVHRR SWAs, 

(2) integrating nine selected SWAs with the Random Forest method (RF-SWA), (3) correcting the effect of orbital drift by 

normalising RF-SWA LST to 14:30 solar time, and (4) validating the retrieved LST against in-situ LST data. 
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The 17 trained candidate SWAs generally showed consistent results for the four sensors. The candidate algorithms 475 

OV1992, FO1996, FOW1996, PP1991, UC1985, and MT2002 had larger SEE than the other SWAs while SO1991 and 

CO1994 were sensitive to uncertainties in LSE and CWVC. Therefore, these SWAs were rejected. The nine remaining SWAs 

were evaluated based on the simulation datasets VAL-S and VAL-T. The results show that the trained nine SWAs have RMSE 

ranging between 0.38 K and 0.55 K for VAL-S and between 0.53 K and 0.69 K for VAL-T. Since the atmospheric profiles used 

to simulate and evaluate were chosen to be globally representative, we conclude that these nine SWAs should perform well 480 

globally. 

The RF ensemble method was then been applied to the nine selected SWAs. Compared to individual SWAs, sample 

averaging, and the BMA ensemble method, the RF ensemble method showed the best accuracy when evaluated against the 

simulation datasets. The RF ensemble algorithm yielded an accuracy better than 0.8 K for a maximum LSE uncertainty of 0.02 

and a maximum CWVC uncertainty of 1.0 g/cm-2; the accuracy was still better than 1.10 K when the maximum LSE uncertainty 485 

increased to 0.04. Based on these results, the algorithm theoretically satisfies the target accuracy requirement of WMO, i.e. an 

accuracy better than 1.0 K at a spatial resolution of 5 km. Furthermore, it is concluded that the RF method outperforms the SA 

and BMA methods and has the greatest potential for improving LST retrieval accuracy. 

The RF-SWA LST and ODC LST are validated against in-situ LST from SURFRAD sites and NDBC buoys. Against 

SURFRAD LST, the MBE of RF-SWA LST varies from -1.59 K to 2.71 K and its STD varies from 2.26 K to 2.76 K, which 490 

is similar to LST products retrieved from other sensors, e.g. MODIS. Against NDBC data from 1981-2000, RF-SWA LST also 

shows good accuracy and precision: with its small MBE (less than 0.10 K) and a STD ranging from 0.84 to 1.05 K, its 

performance against in-situ water temperature is similar to that for the simulated datasets. When validated against the same 

SURFRAD LST, the MBE of ODC LST ranges from -1.05 K to 3.01 K, which is similar to the MBE obtained for RF-SWA 

LST; its STD increases and ranges from 2.34 K to 3.69 K. Overall, it is concluded that both RF-SWA LST and ODC LST 495 

achieve similar accuracy. 

The generated global AVHRR LST is well suited to meet the needs of many applications and studies, e.g. global climate 

change, radiation budget, and energy balance, mapping of land cover change. However, further research should address the 

following points: first, the developed LST products were validated against in-situ LST data from North America, while they 
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need to be validated globally, e.g. against AsiaFlux measurements, historical air temperature, reanalysis data, etc. Second, 500 

ODC LST is obtained at a single overpass time, which required using prior knowledge on temporal parameters. If additional 

information on LST would be available, e.g. from modelling datasets, geostationary satellite datasets, and AVHRR nighttime 

datasets. Third, over some areas, there are many invalid values, e.g. southwest China, which frequently experiences cloudy 

and rainy weather. It is expected that future work can utilize recent progress in generating global all-weather LST products 

(Martins et al., 2019; Zhang et al., 2020) to help integrating multi-source data, e.g. passive microwave brightness temperature 505 

and reanalysis data. 
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Tables 

Table 1 Details of the selected AVHRR datasets 

Name Satellite Start Date End Date Spatial resolution Temporal resolution 

AVH02C1.465 

AVH13C1.465 

NOAA-07 1981/06/24 1985/02/02 

0.05°×0.05° Daily daytime 
NOAA-09 1985/01/04 1988/11/07 

NOAA-11 1988/11/07 1994/12/31 

NOAA-14 1995/01/01 2000/10/31 

 

Table 2 Global LSE ranges determined from JHU spectral emissivity library for AVHRR channel centred at 11μm and 12μm 

Satellite and sensor LSE at 11 μm (ε11) LSE at 12 μm (ε12) 

NOAA-07 AVHRR 0.674 – 0.996 0.692 – 0.991 

NOAA-09 AVHRR 0.665 – 0.996 0.713 – 0.991 

NOAA-11 AVHRR 0.670 – 0.996 0.697 – 0.991 

NOAA-14 AVHRR 0.672 – 0.994 0.661 – 0.991 
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Table 3 Atmospheric profile datasets and corresponding simulation datasets 

Sources Name 
CWVC 

(g/cm2) 

NSAT 

(K) 

Number 

of 

profiles 

VZA Ts LSE Sample size 

Name of 

dataset 

SeeBor V5.0 
GAPD 0.014 – 7.939 224.25 – 309.05 549 15 10 48 3952800 TRA-G 

ATP-S 0.005 – 4.999 201.96 – 313.50 4761 10 1 1 47610 VAL-S 

TIGR2000 V1.2 ATP-T 0.058 – 8.199 233.85 – 314.16 506 10 1 1 5060 VAL-T 
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Table 4 SURFRAD sites and NDBC buoys used for LST validation 

ID Site Network Elevation Latitude Longitude Sensor LC type Valid period 

BND Bondville, Illinois SURFRAD 230 40.0519 -88.3731 Eppley PIR Cropland 1995.01-2000.10 

DRA 
Desert Rock, 

Nevada 
SURFRAD 1007 36.6237 -116.0195 Eppley PIR 

Open 

Shrubland 
1998.03-2000.10 

FPK Fort Peck, Montana SURFRAD 634 48.3078 -105.1017 Eppley PIR Grassland 1995.01-2000.09 

GWN 
Goodwin Creek, 

Mississippi 
SURFRAD 98 34.2547 -89.8729 Eppley PIR 

Wooded 

Grassland 
1995.01-2000.10 

PSU 
Penn. State Univ., 

Pennsylvania 
SURFRAD 376 40.7201 -77.9309 Eppley PIR 

Deciduous 

Broadleaf 

Forest 

1998.07-2000.10 

TBL 
Table Mountain, 

Boulder, Colorado 
SURFRAD 1689 40.1250 -105.2368 Eppley PIR Cropland 1995.08-2000.08 

BEP 
46025, 46027, 

46053, 46054 
NDBC 0 

33.763 

– 60.587 

-119.053 

– 146.833 
thermistors Water 1982.04-2000.10 

BGL 

45001, 45002, 

45003, 45004, 

45005, 45006, 

45007, 45008 

NDBC 175 
41.677 

– 48.061 

-82.398 

– -89.793 
thermistors Water 1981.07-2000.10 

BGM 
42007, 42020, 

42035 
NDBC 0 

26.968 

– 30.09 

-88.32 

– -96.693 
thermistors Water 1990.05-2000.10 

BWA 

41008, 41009, 

44007, 44013, 

44025 

NDBC 0 
28.508 

– 43.525 

-70.141 

– -80.868 
thermistors Water 1982.02-2000.10 
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Table 5 Initial candidate Split Window Algorithms (SWAs) 

Name Formula Reference 

OV1992 
𝑇𝑠 = 𝐴0 + 𝐴1𝑇11 + 𝐴2(𝑇11 − 𝑇12) 

Ottlé and Vidal-Madjar 

(1992) 

FO1996 𝑇𝑠 = 𝐴0 + 𝐴1𝑇11 + 𝐴2(𝑇11 − 𝑇12) + 𝐴3(𝑇11 − 𝑇12)
2 Francois and Ottle (1996) 

PR1984 𝑇𝑠 = 𝐴0 + 𝐴1𝑇11 + 𝐴2(𝑇11 − 𝑇12) + 𝐴3𝑇11𝜀11 + 𝐴4(𝑇11 − 𝑇12)(1 − 𝜀11)

+ 𝐴5𝑇12∆𝜀 
Price (1984) 

UC1985 
𝑇𝑠 = 𝐴0 + 𝐴1𝑇11 + 𝐴2(𝑇11 − 𝑇12) + 𝐴3(1 − 𝜀) 

Ulivieri and Cannizzaro 

(1985) 

BL-WD 
𝑇𝑠 = 𝐴0 + (𝐴1 + 𝐴2

1 − 𝜀

𝜀
+ 𝐴3

∆𝜀

𝜀2
) (𝑇11 + 𝑇12)

+ (𝐴4 + 𝐴5
1 − 𝜀

𝜀
+ 𝐴6

∆𝜀

𝜀2
) (𝑇11 − 𝑇12) 

Becker and Li (1990a) 

Wan and Dozier (1996) 

PP1991 
𝑇𝑠 = 𝐴0 + 𝐴1

𝑇11 − 𝑇0
𝜀11

+ 𝐴2
𝑇12 − 𝑇0
𝜀12

+ 𝐴3
1 − 𝜀11
𝜀11

+ 𝑇0 Prata and Platt (1991) 

VI1991 
𝑇𝑠 = 𝐴0 + 𝐴1𝑇11 + 𝐴2(𝑇11 − 𝑇12) + 𝐴3

1 − 𝜀

𝜀
+ 𝐴4

∆𝜀

𝜀
 Vidal (1991) 

UL1994 𝑇𝑠 = 𝐴0 + 𝐴1𝑇11 + 𝐴2(𝑇11 − 𝑇12) + 𝐴3(1 − 𝜀) + 𝐴4∆𝜀 Ulivieri et al. (1994) 

WA2014 
𝑇𝑠 = 𝐴0 + (𝐴1 + 𝐴2

1 − 𝜀

𝜀
+ 𝐴3

∆𝜀

𝜀2
) (𝑇11 + 𝑇12)

+ (𝐴4 + 𝐴5
1 − 𝜀

𝜀
+ 𝐴6

∆𝜀

𝜀2
) (𝑇11 − 𝑇12) + 𝐴7(𝑇11 − 𝑇12)

2 

Wan (2014) 

FOW1996 𝑇𝑠 = 𝐴0 + (𝐴1𝑤 + 𝐴2𝑤
2 + 𝐴3)𝑇11 + (𝐴4𝑤 + 𝐴5𝑤

2 + 𝐴6)𝑇12 + 𝐴7𝑤 + 𝐴8𝑤
2 Francois and Ottle (1996) 

SO1991 𝑇𝑠 = 𝐴0 + 𝐴1𝑇11 + [𝐴2𝑤 + 𝐴3 + (𝐴4𝑤 + 𝐴5)(1 − 𝜀11) + (𝐴6𝑤 + 𝐴7)∆𝜀](𝑇11

− 𝑇12) +
1 − 𝜀11
𝜀11

𝑇11[𝐴8𝑤 + 𝐴9(𝐴10𝑤 + 𝐴11)∆𝜀]

−
1 − 𝜀12
𝜀12

𝑇12[𝐴12𝑤 + 𝐴13(𝐴14𝑤 + 𝐴15)∆𝜀] 

Sobrino et al. (1991) 

ULW1994 𝑇𝑠 = 𝐴0 + 𝐴1𝑇11 + (𝐴2𝑤 + 𝐴3)(𝑇11 − 𝑇12) + (𝐴4𝑤 + 𝐴5)(1 − 𝜀)

+ (𝐴6𝑤 + 𝐴7)∆𝜀 
Ulivieri et al. (1994) 

CO1994 𝑇𝑠 = 𝐴0 + 𝐴1𝑇11 + 𝐴2(𝑇11 − 𝑇12) + 𝐴3(𝑇11 − 𝑇12)
2

+ [(𝐴4𝑤 + 𝐴5)𝑇11 + (𝐴6𝑤 + 𝐴7)](1 − 𝜀)

− [(𝐴8𝑤 + 𝐴9)𝑇11 + (𝐴10𝑤 + 𝐴11)]∆𝜀 

Coll et al. (1994) 

SR2000 𝑇𝑠 = 𝐴0 + 𝐴1𝑇11 + 𝐴2(𝑇11 − 𝑇12) + 𝐴3(𝑇11 − 𝑇12)
2 + (𝐴4𝑤 + 𝐴5)(1 − 𝜀)

− (𝐴6𝑤 + 𝐴7)∆𝜀 

Sobrino and Raissouni 

(2000) 

MT2002 
𝑇𝑠 = 𝐴0 + 𝐴1𝑇11 + 𝐴2(𝑇11 − 𝑇12) + 𝐴3(𝑇11 − 𝑇12)

2 + (𝐴4𝑤 + 𝐴5)(1 − 𝜀) 
Ma and Tsukamoto 

(2002) 
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BL1995 𝑇𝑠 = 𝐴0 + 𝐴1𝑤 + [𝐴2 + (𝐴3𝑤𝑐𝑜𝑠𝜃 + 𝐴4)(1 − 𝜀11) − (𝐴5𝑤 + 𝐴6)∆𝜀](𝑇11

+ 𝑇12)

+ [𝐴7 + 𝐴8𝑤 + (𝐴9 + 𝐴10𝑤)(1 − 𝜀11)

− (𝐴11𝑤 + 𝐴12)∆𝜀](𝑇11 − 𝑇12) 

Becker and Li (1995) 

GA2008 𝑇𝑠 = 𝐴0 + 𝐴1𝑇11 + 𝐴2(𝑇11 − 𝑇12) + 𝐴3(𝑇11 − 𝑇12)
2

+ (𝐴4 + 𝐴5𝑤 + 𝐴6𝑤
2)(1 − 𝜀) + (𝐴7 + 𝐴8𝑤)∆𝜀 

Galve et al. (2008) 

Note: subscripts 11 and 12 denote channels centred at approximately 11μm and 12μm, respectively, while T11 and T12 and ε11 

and ε12 are their associated BTs and LSEs; ε= (ε11+ε12)/2, Δε=(ε11-ε12); Ai are coefficients; T0 in PP1991 is 273.15 K; w is 

CWVC and θ is VZA. 785 
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Table 6 Coefficients for converting bare soil emissivity from ASTER to AVHRR (see section 3.3). 

Sensor Channel 

centred at 

a0 a1 a2 a3 a4 a5 RMSE R2 

NOAA-07 
11μm 0.0000 0.0049 -0.0071 0.0006 0.7749 0.2267 0.0001 0.99 

12μm 0.3064 -0.1484 0.2676 -0.0657 -0.7622 1.3984 0.0016 0.91 

NOAA-09 
11μm 0.0005 0.0041 -0.0085 0.0029 0.8228 0.1781 0.0001 0.99 

12μm 0.2513 -0.1392 0.2572 -0.0757 -0.7070 1.4102 0.0014 0.94 

NOAA-11 
11μm 0.0007 0.0053 -0.0091 0.0020 0.7895 0.2115 0.0001 0.99 

12μm 0.2944 -0.1473 0.2666 -0.0699 -0.7404 1.3929 0.0016 0.92 

NOAA-14 
11μm 0.0013 -0.0083 0.0068 0.0042 0.8045 0.1912 0.0001 0.99 

12μm 0.3945 -0.1591 0.2756 -0.0467 -0.8340 1.3647 0.0021 0.84 

 

Table 7 Emissivities of different vegetation types, water, and built-up surfaces for AVHRR channel centred at 11μm and 12μm. 

LCTs NO. 
NOAA-07 AVHRR NOAA-09 AVHRR NOAA-11 AVHRR NOAA-14 AVHRR 

11μm 12μm 11μm 12μm 11μm 12μm 11μm 12μm 

Evergreen forest 1, 2 0.989  0.988  0.990  0.987  0.989  0.988  0.990  0.987  

Deciduous forest 3, 4 0.974  0.971  0.975  0.970  0.974  0.971  0.975  0.970  

Mixed forest 5 0.982  0.979  0.983  0.979  0.982  0.979  0.983  0.979  

Woodland 6 0.982  0.979  0.983  0.979  0.982  0.979  0.983  0.979  

Wooded grassland 7 0.982  0.979  0.983  0.979  0.982  0.979  0.983  0.979  

Closed shrubland 8 0.982  0.979  0.983  0.979  0.982  0.979  0.983  0.979  

Open shrubland 9 0.982  0.979  0.983  0.979  0.982  0.979  0.983  0.979  

Grassland 10 0.982  0.986  0.983  0.985  0.982  0.986  0.983  0.985  

Cropland 11 0.982  0.986  0.983  0.985  0.982  0.986  0.983  0.985  

Water 0 0.991 0.987 0.991 0.987 0.991 0.987 0.991 0.987 

Built-up surface 12 0.948 0.953 0.948 0.953 0.948 0.953 0.948 0.953 
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Table 8 Variables in the LST files. 

LST Name Variable Description Unit 
Data 

type 
Scale Offset Dimension 

RF-SWA 

(instantaneous) 

LST 

LST Land surface temperature  K Uint16 0.02 - 3600*7200 

View_time 
Time of LST observation 

(UTC) 
hrs Uint8 0.1 - 3600*7200 

View_angle View zenith angle degree Uint8 - - 3600*7200 

QA LST quality flag - Uint8 - - 3600*7200 

Latitude Latitude degree Uint8 - - 3600*1 

Longitude Longitude degree Uint8 - - 7200*1 

ODC LST 

LST 
Land surface temperature at 

14:30 solar time 
K Uint16 0.02 - 3600*7200 

Latitude Latitude degree Uint8 - - 3600*1 

Longitude Longitude degree Uint8 - - 7200*1 

monthly 

averaged LST 

LST 

Land Surface Temperature 

averaged monthly at 14:30 

solar time 

K Uint16 0.02 - 3600*7200 

Count 
the number of available 

pixels in a month 
- Uint8 - - 3600*7200 

Latitude Latitude degree Uint8 - - 3600*1 

Longitude Longitude degree Uint8 - - 7200*1 
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Figures 
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Figure 1 Spectral response functions of NOAA-07/09/11/14 AVHRR and Terra ASTER. 

 

 

Figure 2 Locations of SURFRAD sites and NDBC buoys, and the three sample areas. Blue squares indicate pyrgeometers; Red 

circles indicate contact thermistors. 800 
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Figure 3 Estimation of AVHRR LSE from ASTER GED, JHU spectral emissivity library data, LCT, and vegetation cover fraction. 

 

Figure 4. Performance of the nine selected SWAs for simulation datasets VAL-S and VAL-T 805 

 

 

Figure 5. Importance of the nine SWAs for the RF ensemble model 
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 810 

Figure 6. SEE values of the three ensemble methods for NOAA-14 AVHRR under different atmospheric and VZA conditions. (a) 

Cold-ATM, for Ts–NSAT within [–4, 20] K (top) and [–16, 4] K (centre); (b) Warm-ATM, for Ts–NSAT within [–4, 20] K; (c) Warm-

ATM, for Ts–NSAT within [–16, 4] K (bottom). 
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Figure 7. LST retrieved with the three ensemble methods for NOAA-14 against true LST. Results are based on simulation datasets 815 

VAL-T and VAL-S with added Gaussian noise (uncertainty levels L1 and L2). 
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Figure 8. RF-SWA LST against in-situ LST from SURFRAD sites. 

 820 

 

Figure 9. RF-SWA LST against in-situ LSWT from four NDBC sites (buoy data) and corresponding statistics. 
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Figure 10. Residuals w.r.t. in-situ LST for ODC and RF-SWA LST for six SURFRAD sites (BND, DRA, FPK, GWN, PSU, and TBL). 825 

Details on the sites are provided in Table 4. 

 

 

Figure 11. Monthly averaged ODC LST retrieved from NOAA 14 data for 1999 normalized to 14:30: (a) March; (c) June; (c) 

September; (d) December. 830 
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Figure 12 Monthly averaged ODC LST time series normalized to 14:30 solar time for 1981-2000 over the Amazon basin (a), the 

North pole (b), and the Tibet plateau (c). 


