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Response to Referee 1 

Jin Ma, Ji Zhou, Frank-Michael Göttsche, Shunlin Liang, Shaofei Wang, Mingsong Li 

Correspondence to: J. Zhou (jzhou233@uestc.edu.cn) 

We would like to thank Referee 1 for her/his careful review of the manuscript and her/his constructive criticism and 

valuable comments. Comments by the referee are colored in black, our replies or comments are colored in blue. 5 

 

This is an interesting manuscript described a processed AVHRR LST dataset that is very useful for long-term study of land 

surface temperature variation. Specifically, the dataset can be referred as a base for the climatological study of surface 

temperature since 2000: variation analyses between the LSTs derived from recent/current and the AVHRR LSTs can be a solid 

evidence of the global climate change. The method described in the manuscript can also be applied for producing long-term 10 

LST data record from other satellite missions, such as EOS MODIS and JPSS VIIRS. 

The manuscript provides details of the LST algorithms being applied, multiple datasets being used, which are all good for 

readers to use the data, or to process their own long-term record of LST data. 

 

Thank you for the positive evaluation and for stressing the usefulness of the data record. 15 

 

Improvements suggested: 

How the in-situ LST is estimated? Quality control/noise reduction in the process?  

In this study, the in-situ LST were collected from SURFRAD sites and NDBC. The NDBC data consisted of water surface 

temperatures measured directly by buoys: since these are highly accurate and quality controlled by NDBC 20 

(https://www.ndbc.noaa.gov/qc.shtml), we used the water temperatures as they were distributed. 

The SURFRAD in-situ LST were calculated from measured broadband hemispherical upwelling radiance (Lu) and 

atmospheric downwelling radiance (Ld) using Stefan-Boltzmann’s law:  

𝑇s = √
𝐿u − (1 − 𝜀)𝐿d

𝜀𝜎

4

 

where broadband emissivity ɛ is obtained from AVHRR LSE in channels 4 and 5 via the empirical relationship 25 

ɛ=0.2489+0.2386ɛ4+0.4998ɛ5 (Liang, 2005) and σ (=5.67×10-8 W/(m2K4)) is the Stefan-Boltzmann constant. 

Quality control is an integral part of the design and operation of the SURFRAD network, which results in datasets of high 

quality and well-defined measurement uncertainties (https://www.esrl.noaa.gov/gmd/grad/surfrad/). SURFRAD data have 

been directly used in satellite retrieved LST validation (Liu et al., 2019; Martin et al., 2019; Wang and Liang, 2009); therefore, 

we did not perform additional quality control or noise reduction. However, the in-situ LST and the satellite retrieved LST may 30 

still contain outliers, e.g. samples contaminated by undetected clouds. Therefore, three-sigma (3σ) filtering was employed to 



2 

remove such possible outliers from the match-ups(Göttsche et al., 2016; Pearson, 2002). Please see section 3.5 for the 

corresponding description for the in-situ LST estimation and validation, and section 2.4 for the description of quality control 

in the revised manuscript. 

Reference: 35 

Göttsche, F.-M., Olesen, F.-S., Trigo, I., Bork-Unkelbach, A. and Martin, M.: Long Term Validation of Land Surface 

Temperature Retrieved from MSG/SEVIRI with Continuous in-Situ Measurements in Africa, Remote Sens., 8(5), 410, 

doi:10.3390/rs8050410, 2016. 

Liang, S.: Estimation of Surface Radiation Budget: I. Broadband Albedo, in Quantitative Remote Sensing of Land Surfaces, 

pp. 310–344, John Wiley & Sons, Inc., Hoboken, NJ, USA., 2005. 40 

Liu, X., Tang, B. H., Yan, G., Li, Z. L. and Liang, S.: Retrieval of global orbit drift corrected land surface temperature from 

long-term AVHRR data, Remote Sens., 11(23), 2843, doi:10.3390/rs11232843, 2019a. 

Martin, M., Ghent, D., Pires, A., Göttsche, F.-M., Cermak, J. and Remedios, J.: Comprehensive In Situ Validation of Five 

Satellite Land Surface Temperature Data Sets over Multiple Stations and Years, Remote Sens., 11(5), 479, 

doi:10.3390/rs11050479, 2019.  45 

Pearson, R. K.: Outliers in process modeling and identification, IEEE Trans. Control Syst. Technol., 10(1), 55–63, 

doi:10.1109/87.974338, 2002. 

Wang, K. and Liang, S.: Evaluation of ASTER and MODIS land surface temperature and emissivity products using long-term 

surface longwave radiation observations at SURFRAD sites, Remote Sens. Environ., 113(7), 1556–1565, 

doi:10.1016/j.rse.2009.03.009, 2009. 50 

 

Cloud pixel exclusion (how cloud information was provided in the original data?) process?  

Thanks for your comment. In this study, we used the LTDR AVHRR dataset as the source data to produce the LST products. 

The dataset provides quality control (QC) flags for each pixel and contains information on clouds as well as other conditions, 

e.g. cloud shadow, water, etc. When generating the LST products, we used the QC flags to identify pixel containing cloud and 55 

cloud shadow and excluded them from the processing. Please see line 316-317 in the revised manuscript. 

 

The final 0.05 deg resolution data – Is this the resolution from the original AVHRR dataset?  If not how about the 

compositing/aggregation process applied?  

In this study, the LTDR AVHRR dataset served as the source data of the LST product. The spatial resolution of the LTDR 60 

AVHRR dataset is 0.05°×0.05° (already processed from AVHRR’s native resolution; please see Table 1). In order to clarify 

this, we added the following sentence to the revised manuscript (line 123-125): 

“In this study, the AVHRR datasets from Long-Term Datasets Records (Pedelty et al., 2007) (LTDR, 

https://ltdr.modaps.eosdis.nasa.gov/) are used, including AVH02C1 and AVH13C1, for which spatial resolution has been 

processed to 0.05°×0.05° (Table 1).” 65 

Reference: 

Pedelty, J., Devadiga, S., Masuoka, E., Brown, M., Pinzon, J., Tucker, C., Vermote, E., Prince, S., Nagol, J., Justice, C., Roy, 

D., Ju, J., Schaaf, C., Liu, J., Privette, J. and Pinheiro, A.: Generating a long-term land data record from the AVHRR and 
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MODIS instruments, Int. Geosci. Remote Sens. Symp., (May), 1021–1024, doi:10.1109/IGARSS.2007.4422974, 2007. 

 70 

How the monthly average data set is generated? Details about the compositing/aggregation process? 

The monthly average data are obtained from daily orbital drift corrected LST as follows: the program first searches the 

date labels of the daily LST data files to identify the data within the month to be processed. Then the sum of all valid LST 

within this month is calculated and divided by the number of valid LST. We added some text explaining this and other LST 

processing steps in a new section (section 3.5) of the revised manuscript: 75 

“3.5 Generation of LST products 

The product generation executable (PGE) code includes four Modules. Module I is for generating the multi-LST with the 

selected SWAs. Three different types of input data enter this module: (i) the satellite data: BTs from AVH02C1, NDVI from 

AVH13C1, bare soil emissivity (see section 3.3), and AVHRR LCTs from UMD; (ii) look-up tables: coefficients of the SWAs 

(see section 3.1), emissivities of vegetation, water, and built-up areas (see Table 7); and (iii) ancillary data: NSAT and CWVC 80 

from MERRA and land-sea mask. The QC flags in AVHR02C1 are also used to identify cloudy pixel. If a pixel contains cloud 

or cloud shadow, its LST is not calculated. Therefore, the output of Module I is multi-LST under clear sky conditions. 

Module II is for integrating the multi-LST with the trained RF ensemble model. The inputs include the multi-LST from 

Module I and the RF ensemble model; the output is the ensemble LST, which is termed RF-SWA LST. Module III is for 

normalizing the LST affected by orbital drift to 14:30 solar time. In this Module, the input datasets include the RF-SWA LST 85 

and NDVI; the latter is used for calculating the fraction of vegetation. The output of Module III is orbital drift corrected LST, 

which is termed OCD LST. Module IV is for generating monthly average LST: the module first groups ODC LST by month, 

sums the valid LST in each month up, and divides them by the respective number of valid LST. The output from this Module 

is monthly averaged ODC LST. All LST data are stored in standard HDF-EOS format. Table 8 shows the variables provided 

in the three types of LST data files.” 90 
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Response to Referee 2 

Jin Ma, Ji Zhou, Frank-Michael Göttsche, Shunlin Liang, Shaofei Wang, Mingsong Li 

Correspondence to: J. Zhou (jzhou233@uestc.edu.cn) 

We would like to thank Referee 2 for her/his careful review of the manuscript and her/his constructive criticism and 

valuable comments. Comments by the referee are colored in black, our replies or comments are colored in blue. 5 

 

This manuscript reports a global land surface temperature dataset derived from the historical NOAA AVHRR data. According 

to my understanding, the most important contribution is that this global dataset was built over a long period of time from 1981 

to 2000, and is needed by the scientific community in the field of geoscience. The second contribution is that the authors also 

conducted orbit-drift correction for the land surface temperature. With this dataset, I believe that the scientific community in 10 

the field of geoscience can better address the issues associated with climate change, hydrology, environment, etc. Therefore, 

this manuscript is definitely within the scope of ESSD. Additionally, this manuscript is well organized and written. 

Nevertheless, I suggest that the authors consider the following comments and then improve the manuscript. 

 

Thank you for the positive evaluation and for stressing the usefulness of the data record. 15 

 

1. Line 38: the authors claim that the coarse resolution and high penetration depth are two main problems, which affect the 

accuracy of surface temperature from passive microwave remote sensing. However, the authors should keep in mind that the 

surface emissivity, as well as other physical mechanisms beyond our understanding, are also the main reasons. The authors 

need to clearly mention these points here. 20 

The uncertainty associated with land surface emissivity is indeed a problem in the LST retrieval from passive microwave 

data. We also agree that some physical mechanisms related to retrieving LST from passive microwaves are still beyond our 

understanding. However, uncertainty in thermal sampling depth is one of the largest sources of uncertainty in LST retrieval 

from passive microwaves. In fact, the physical definitions of land surface temperature (i.e. TIR LST) and the so-called retrieved 

temperature from passive microwave differ (Zhou et al., 2017). In the revised manuscript (line 37-39), we now additional 25 

mention possible uncertainties due to emissivity by writing “: compared to TIR remote sensing, it is limited by factors such as 

coarser spatial resolution, higher thermal sampling depth, and higher uncertainty in emissivity, which results in a lower retrieval 

accuracy (Zhou et al., 2017).”. 

Reference: 

Zhou, J., Zhang, X., Zhan, W., Göttsche, F.M., Liu, S., Olesen, F.S., Hu, W., Dai, F., 2017. A Thermal Sampling Depth 30 

Correction Method for Land Surface Temperature Estimation From Satellite Passive Microwave Observation Over Barren 

Land. IEEE Trans. Geosci. Remote Sens. 55, 4743–4756. https://doi.org/10.1109/TGRS.2017.2698828 

 

2. Line 43-44: according to my experience, I also think that the algorithm selection depends on the availability of the required 
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input parameters. I suggest revising here.  35 

We agree with you. We now state in the revised manuscript that “Selecting a suitable algorithm for retrieving LST depends 

on the sensor’s number of TIR channels and their spectral specifications, as well as the available auxiliary input data.”. Please 

see line 45 in the revised manuscript. 

 

3. Line 46: There are many satellite sensors with both the 11 and 12 microns. I suggest mentioning the NOAA AVHRR and 40 

ENVISAT AATSR before SLSTR.  

Thanks for your suggestion. We have changed the text in the revised manuscript (line 47) to “The SWA is a good choice 

for retrieving LST from sensors with two or more TIR channels centred at 11 μm and 12 μm, e.g. Terra/Aqua MODIS, NOAA 

AVHRR, ENVISAT AATSR, and Sentinel-3 SLSTR.”. 

 45 

4. Line 57: The authors state ‘no single SWA performs the best under all conditions’. How can you obtain such a conclusion? 

Please explain here and add supporting references here. 

Thanks for your suggestion. The conclusion is based on previous research, e.g. Yu et al. (2009), Zhou et al. (2019), Yang 

et al. (2020). The SWA is the simplification of the radiative transfer model, which always depends on the available input 

parameters. Yu et al. (2009) and Zhou et al. (2019) compared seventeen SWAs developed by the scientific community in recent 50 

decades. The results show that some  SWAs achieve lower training accuracies and some are more sensitive to the input 

parameters. In other words, an SWA’s performance depends on the application conditions, e.g. atmosphere conditions. 

Therefore, we concluded that no single SWA performs the best under all conditions. In the revised manuscript, we add the 

references, please see line 59. 

Reference: 55 

Yang, J., Zhou, J., Göttsche, F.-M., Long, Z., Ma, J. and Luo, R.: Investigation and validation of algorithms for estimating land 

surface temperature from Sentinel-3 SLSTR data, Int J Appl Earth Obs Geoinf., 91(April), 102136, 

doi:10.1016/j.jag.2020.102136, 2020. 

Yu, Y., Tarpley, D., Privette, J. L., Goldberg, M. D., Rama Varma Raja, M. K., Vinnikov, K. Y. and Hui Xu: Developing 

Algorithm for Operational GOES-R Land Surface Temperature Product, IEEE Trans. Geosci. Remote Sens., 47(3), 936–951, 60 

doi:10.1109/TGRS.2008.2006180, 2009. 

Zhou, J., Liang, S., Cheng, J., Wang, Y. and Ma, J.: The GLASS Land Surface Temperature Product, IEEE J. Sel. Top. Appl. 

Earth Obs. Remote Sens., 12(2), 493–507, doi:10.1109/JSTARS.2018.2870130, 2019b. 

 

5. Line 58-59: The products cannot be retrieved. Also, cite the following references for the MODIS LST products: Wan, 2002, 65 

RSE; Wan, 2008, RSE. 

Thanks for your comments. We changed the expression and added the suggested references for MODIS LST and now 

write “Currently, several LST products derived from satellite TIR remote sensing are available. Global LST products for 

Terra/Aqua MODIS are available since 2000, e.g. MOD11/MYD11 (Wan, 2008, 2014; Wan et al., 2002) and MOD21/MYD21 

(Hulley and Hook, 2011).”. Please see line 60-60 in the manuscript 70 

Reference: 
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Hulley, G. C. and Hook, S. J.: Generating consistent land surface temperature and emissivity products between ASTER and 

MODIS data for earth science research, IEEE Trans. Geosci. Remote Sens., 49(4), 1304–1315, 

doi:10.1109/TGRS.2010.2063034, 2011. 

Wan, Z.: New refinements and validation of the MODIS Land-Surface Temperature/Emissivity products, Remote Sens. 75 

Environ., 112(1), 59–74, doi:10.1016/j.rse.2006.06.026, 2008. 

Wan, Z.: New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product, Remote 

Sens. Environ., 140, 36–45, doi:10.1016/j.rse.2013.08.027, 2014. 

Wan, Z., Zhang, Y., Zhang, Q. and Li, Z-L: Validation of the land-surface temperature products retrieved from terra moderate 

resolution imaging spectroradiometer data, Remote Sens. Environ., 83(1–2), 163–180, doi:10.1016/S0034-4257(02)00093-7, 80 

2002. 

 

6. Line 65: check the status of Sentinel-3C and make any necessary revision. 

Sentinel-3C is still unavailable, i.e. a revision is currently not required. 

 85 

7. Line 82: I’m confused by ‘cover progressively smaller areas’. 

With this sentence, we wanted to express that most glaciers on the Tibetan Plateau are in retreat and the areas covered by 

them are getting smaller and smaller. We changed the sentence to “…, e.g. most glaciers on the Tibetan Plateau are in retreat 

and the areas covered by them are getting smaller and smaller (Yao et al., 2012).” Please line 84-85 in the revised manuscript. 

Reference: 90 

Yao, T., Thompson, L., Yang, W., Yu, W., Gao, Y., Guo, X., Yang, X., Duan, K., Zhao, H., Xu, B., Pu, J., Lu, A., Xiang, Y., 

Kattel, D. B. and Joswiak, D.: Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings, Nat. 

Clim. Chang., 2(9), 663–667, doi:10.1038/nclimate1580, 2012. 

 

8. Line 97: I would suggest deleting the last sentence. It may appear in the wrong place. It should be in the methodology section 95 

instead of the introduction. 

The respective sentence has been deleted. 

 

9. Line 117: Add references for the SST. 

Thanks for your suggestion: we added a reference for SST in the revised manuscript (line 122). 100 

 

10. Line 139: How did you obtain these 48 land surface emissivities? Please explain. Such information is important for the 

authors. 

In this study, channel-effective emissivity was obtained from the Johns Hopkins University (JHU) spectral emissivity 

library by convolving emissivity spectra with the spectral response functions of NOAA-07/09/11/14 AVHRR, please see lines 105 

146-148 in the revised manuscript. 

 

11. Line 165: many studies use the SURFRAD data to validate the surface temperature derived from satellite data. I would 
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suggest adding more references. 

Thanks for your suggestion; we added more references in the revised manuscript (lines 173-174). 110 

 

12. Line 180: you used the random forest to integrate multiple algorithms. Please explain why you selected this method? 

Thanks for your question. In line 180 we only mention the general method for integrating multiple algorithms, i.e. the 

random forest (RF) method, to inform the reader about the basic concepts used in this study. The RF method is then briefly 

discussed in section 3.2. It has several advantages, including the ability to process large databases with high efficiency, 115 

unbiased estimation, and especially minimizing the risk of overfitting in explaining complicated nonlinear relationships when 

compared with detailed analytic expressions (Hutengs and Vohland, 2016), and it has been used in many studies, e.g land cover 

classification (Rodriguez-Galiano et al., 2012), land surface parameter downscaling (Zhao et al., 2018), and estimating 

vegetation cover parameters (Mutanga et al., 2012). Please see lines 221-226 in the revised manuscript. 

Reference: 120 

Hutengs, C. and Vohland, M.: Downscaling land surface temperatures at regional scales with random forest regression, Remote 

Sens. Environ., 178, 127–141, doi:10.1016/j.rse.2016.03.006, 2016. 

Mutanga, O., Adam, E. and Cho, M. A.: High density biomass estimation for wetland vegetation using worldview-2 imagery 

and random forest regression algorithm, Int. J. Appl. Earth Obs. Geoinf., 18(1), 399–406, doi:10.1016/j.jag.2012.03.012, 2012. 

Rodriguez-Galiano, V. F., Ghimire, B., Rogan, J., Chica-Olmo, M. and Rigol-Sanchez, J. P.: An assessment of the effectiveness 125 

of a random forest classifier for land-cover classification, ISPRS J. Photogramm. Remote Sens., 67(1), 93–104, 

doi:10.1016/j.isprsjprs.2011.11.002, 2012. 

Zhao, W., Sánchez, N., Lu, H. and Li, A.: A spatial downscaling approach for the SMAP passive surface soil moisture product 

using random forest regression, J. Hydrol., 563(June), 1009–1024, doi:10.1016/j.jhydrol.2018.06.081, 2018. 

 130 

13. Line 185: how do you conduct the monthly averaging? 

The monthly data set is simply averaged from the daily orbital drift corrected LST. In detail, the program first searches 

the date labels of the daily LST data files to identify the data within the month to be processed. Then the sum of all valid LST 

within this month is calculated and divided by the number of valid LST. Please see lines 323-325 in the revised manuscript. 

 135 

14. Line 192: please give the reason why you use 0.12 K? 

The design goals for the AVHRR thermal infrared channels were a NE∆T of 0.12K (@ 300K). Therefore, we added a 

Gaussian-distributed noise with a NE∆T of 0.12 K to simulate BTs measured by satellites more realistically. 

 

15. Line 209-210: Please note that here is the method part, so you have not conducted the integration yet. Therefore, from the 140 

logical sequence, you don’t know whether this method can get stable and robust results. 

Thanks for your comment. We agree with you. In the study, we want to develop a more stable method to generate global 

LST. We want to integrate multiple single SWAs to reduce the random error in LST retrieval, which is primarily due to 

uncertainty in the input parameters. The respective sentence in the revised manuscript has been changed accordingly. Please 

see line 219. 145 



8 

16. Line 243: as for the NDVI threshold method, I suggest citing Sobrino et al. (2008). 

Please check this reference. 

Thanks for your suggestion. The NDVI threshold method in Sobrino et al. (2008) uses the square of normalized NDVI to 

calculate the fraction of vegetation. However, in this study, we only use the normalized NDVI instead of its square, which 

refers to method proposed in Carlson and Ripley (1997). 150 

Reference: 

Carlson, T. N. and Ripley, D. A.: On the relation between NDVI, fractional vegetation cover, and leaf area index, Remote Sens. 

Environ., 62(3), 241–252, doi:10.1016/S0034-4257(97)00104-1, 1997 

Sobrino, J. A., Jiménez-Muñoz, J. C., Sòria, G., Romaguera, M., Guanter, L., Moreno, J., Plaza, A. and Martínez, P.: Land 

surface emissivity retrieval from different VNIR and TIR sensors, IEEE Trans. Geosci. Remote Sens., 46(2), 316–155 

327,doi:10.1109/TGRS.2007.904834, 2008 

 

17. Line 315: please simply give the results for NOAA-7 and NOAA-11 AVHRR here or somewhere. 

Thanks for your suggestion. The results for NOAA-7 and NOAA-11 AVHRR are very similar to those obtained for 

NOAA-9 and NOAA-14. Therefore, we did not provide the respective results for NOAA-7 and NOAA-11. However, in the 160 

original manuscript we stated that “Generally, the SWA training results for the four sensors are consistent with each other.”. In 

the revised manuscript, we also added a sentence explaining that the results for NOAA-14 AVHRR are a good example for the 

other sensors, please see line 345. 

 

18. Line 335: why the accuracy depends on the land cover type? 165 

There are two main reasons: on the one hand, the SWAs perform differently over different land covers, i.e. they show 

different training accuracies over the same land cover, even for the same input data. On the other hand, the nine SWAs were 

selected because they are relatively insensitive to the main input parameters, i.e. LSE and CWVC; however, the nine SWAs 

still differ in their sensitivity to uncertainty in the input parameters. In the validation with the simulation data, the LSE was set 

according to the land cover type over which the atmospheric profile was located. Therefore, the accuracy of each SWA depends 170 

on land cover type. The findings from the simulation data motivated us to look for a more suitable optimization method, e.g. 

random forests, in order to reduce dependence on input parameter uncertainty.  

 

19. Line 397: what are the WMO requirements? Please explain. 

Thanks for your suggestion. The WMO provides requirements for LST in several related fields, e.g. the uncertainty 175 

requirement is 2.0 K for Agricultural Meteorology and 1.0 K for Climate Monitoring. In the revised manuscript we added the 

sentence “Furthermore, the validation results meet WMO’s requirements for applications of LST/LSWT in different fields, e.g. 

an uncertainty of 2.0 K for Agricultural Meteorology and of 1.0 K for Climate Monitoring (WMO, 2020).” Please see lines 

427-428. 

Reference: 180 

WMO: Requirements defined for Land surface temperature, [online] Available from: https://www.wmo-

sat.info/oscar/variables/view/96 (Accessed 29 July 2020), 2020. 
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Response to Andreas Baumann 

Jin Ma, Ji Zhou, Frank-Michael Göttsche, Shunlin Liang, Shaofei Wang, Mingsong Li 

Correspondence to: J. Zhou (jzhou233@uestc.edu.cn) 

We would like to thank Andreas Baumann for his careful review of the manuscript and his constructive criticism and 

valuable comments. Comments by the referee are colored in black, our replies or comments are colored in blue. 5 

 

Dear sir or madam, 

thanks for the interesting paper. I have some question regarding your various uncertainty sources described on line 204f: 

(1.) Why do you group them in two levels and what is the meaning/advantages of these levels? (2.) What is the explanation of 

e11, e12, and CWVC? Do they have any physical meaning? (3.) I assume you derived the thresholds for the uncertainty level 10 

in the paper Zhou et al. (2019b)? 

Thank you and best regards, Andreas Baumann 

 

Dear Dr. Andreas Baumann, 

Thank you very much for your comments and questions. 15 

Sorry for the missing explanation of ε11, ε12, and CWVC. In our context, they are the Land Surface Emissivitys (LSE) of 

NOAA AVHRR band centered at 11μm and 12μm, and column water vapour content, respectively. The study is a continuation 

of Zhou et al. (2019b) and, in order to be consistent with our previous study, the uncertainty thresholds were chosen to be 

similar to Zhou et al. (2019b).  

LSEs and CWVC are the main input parameters of the Split-window Algorithm. Therefore, we analyzed the sensitivity 20 

of the candidate SWAs to these input parameters. We used the NDVI-threshold method to determine the LSEs of a given pixel. 

A method comparison performed by Sobrino et al. (2001) yielded root-mean-square errors of 0.020 between the NDVI-

threshold method and the Temperature-Independent Spectral Indices method and of 0.025 between the NDVI-threshold method 

the Thermal Infrared Radiance Ratio Model. Therefore, we increased the uncertainty of the NDVI-threshold method and the 

maximum uncertainty of LSE to 0.020 for level 1 (L1) and 0.040 for level 2 (L2). CWVC was derived from the Modern-Era 25 

Retrospective Analysis for Research and Applications (MERRA) dataset. Validation indicates that CWVC is biased by 0.24 

g∙cm-2 in the tropical zone (Rienecker et al., 2011). Considering the typical inhomogeneity within a MERRA grid, we increased 

maximum CWVC uncertainty to 1.0 g∙cm-2. This results in two combinations of maximum LSE uncertainty and CWVC 

uncertainty, which we grouped into two levels: (i) L1: |δε11|max≤ 0.02, |δε12|max≤ 0.02, and |δCWVC| max≤1.0 g/cm2; (ii) L2: |δε11| 

max≤ 0.04, |δε12|max≤ 0.04, and |δCWVC | max≤1.0 g/cm2. 30 

 

References: 

Sobrino, J. A., Raissouni, N. and Li, Z. L.: A comparative study of land surface emissivity retrieval from NOAA data, Remote 

Sens. Environ., 75(2), 256–266, doi:10.1016/S0034-4257(00)00171-1, 2001. 
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Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., Bosilovich, M. G., Schubert, S. D., Takacs, 35 

L., Kim, G. K., Bloom, S., Chen, J., Collins, D., Conaty, A., Da Silva, A., Gu, W., Joiner, J., Koster, R. D., Lucchesi, R., Molod, 

A., Owens, T., Pawson, S., Pegion, P., Redder, C. R., Reichle, R., Robertson, F. R., Ruddick, A. G., Sienkiewicz, M. and 

Woollen, J.: MERRA: NASA’s modern-era retrospective analysis for research and applications, J. Clim., 24(14), 3624–3648, 

doi:10.1175/JCLI-D-11-00015.1, 2011. 

 40 

Thank you again and Best Regards, 

Jin Ma and co-authors. 
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A global long-term (1981-2000) land surface temperature product for 

NOAA AVHRR 

Jin Ma1, 2, Ji Zhou1 *, Frank-Michael Göttsche2, Shunlin Liang3, Shaofei Wang1, Mingsong Li1 

1School of Resources and Environment, Center for Information Geoscience, University of Electronic Science and Technology 

of China, Chengdu 611731, China 5 

2Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe 76344, Germany 

3Department of Geographical Sciences, University of Maryland, College Park 20742, USA 

Correspondence to: J. Zhou (jzhou233@uestc.edu.cn) 

Abstract, Land Surface Temperature (LST) plays an important role in the research of climate change and various land surface 

processes. Before 2000, global LST products with relatively high temporal and spatial resolutions are scarce, despite of a 10 

variety of operational satellite LST products. In this study, a global 0.05°×0.05° historical LST product is generated from 

NOAA AVHRR data (1981-2000), which includes three data layers: (1) instantaneous LST, a product generated by integrating 

several Split-Window Algorithms with a Random Forest (RF-SWA); (2) orbital drift corrected (ODC) LST, a drift corrected 

version of RF-SWA LST; (3) monthly averages of ODC LST. For an assumed maximum uncertainty in emissivity and column 

water vapour content of 0.04 and 1.0 g/cm2, respectively and evaluated against the simulation data set, the RF-SWA method 15 

has a Mean Bias Error (MBE) of less than 0.10 K and a Standard Deviation (STD) of 1.10 K. To compensate the influence of 

orbital drift on LST, the retrieved RF-SWA LST was normalized with an improved ODC method. The RF-SWA LST were 

validated with in-situ LST from Surface Radiation Budget (SURFRAD) sites and water temperatures obtained from the 

National Data Buoy Center (NDBC). Against the in-situ LST, the RF-SWA LST has a MBE of 0.03 K with a range of -1.59 

K – 2.71 K and STD is 1.18 K with a range of 0.84 K – 2.76 K. Since water temperature only changes slowly, the validation 20 

of ODC LST was limited to SURFRAD sites, for which the MBE is 0.54 K with a range of -1.05 K to 3.01 K and STD is 3.57 

K with a range of 2.34 K to 3.69 K, indicating a good product accuracy. As global historical datasets, the new AVHRR LST 

products are useful for filling the gaps in long-term LST data. Furthermore, the new LST products can be used as input to 

related land surface models and environmental applications. Furthermore, in support of the scientific research community, the 

datasets are freely available at https://doi.org/10.5281/zenodo.3934354 for RF-SWA LST (Ma et al., 2020a); 25 



12 

https://doi.org/10.5281/zenodo.3936627 for ODC LST (Ma et al., 2020c); https://doi.org/10.5281/zenodo.3936641 for 

monthly averaged LST (Ma et al., 2020b). 

1. Introduction 

Land surface temperature (LST) is an important parameter for energy exchange between Earth’s surface and the atmosphere 

and, thus, an important indicator for global climate change. Therefore, LST has been widely used in research and applications 30 

of land surface processes and models, e.g. climate and meteorology, hydrology, and disaster monitoring (Anderson et al., 2011; 

Jin and Dickinson, 2002; Van Der Werf et al., 2017). Compared to traditional ground observations, retrieving LST from remote 

sensing is an effective way of taking advantage of the spatio-temporal coverage offered by satellites. Since the 1970s, the 

accurate retrieval of LST from satellite has been an active area of research in quantitative remote sensing. The main sources 

for retrieving LST from satellite data are thermal-infrared (TIR) remote sensing and passive microwave (MW) remote sensing 35 

(Holmes et al., 2009; Li et al., 2013a), which both are effective means for obtaining the radiance emitted by Earth’s surface. 

Although MW remote sensing is less affected by cloud and fog, compared to TIR remote sensing, it is limited by factors such 

as its coarser spatial resolution,  and its higher thermal sampling depth, and higher uncertainty in emissivity compared to TIR 

remote sensing, which results in a lower retrieval accuracy (Zhou et al., 2017). Therefore, retrieving LST from TIR remote 

sensing is still the dominant approach, since it offers a better physical definition and higher retrieval accuracy. LST retrieval 40 

from satellite TIR remote sensing is based on the simplification of the radiative transfer model. A variety of algorithms have 

been proposed for retrieving LST from TIR data, e.g. Split-Windows Algorithms (SWA), Mono-window Algorithms/Single 

Channel Algorithms and Temperature-Emissivity separation algorithms (TES) (Gillespie et al., 1998; Li et al., 2013a; Wan and 

Dozier, 1996). Selecting a suitable algorithm for retrieving LST depends on the sensor’s number of TIR channels and their 

spectral specifications, as well as the available auxiliary input data. 45 

The SWA is a good choice for retrieving LST from sensors with two or more TIR channels centred at 11 μm and 12 μm, 

e.g. Terra/Aqua MODIS, NOAA AVHRR, ENVISAT AATSR, and Sentinel-3 SLSTR. Based on the idea that the atmospheric 

absorption in the thermal band can be related to the brightness temperature (BT) difference between two adjacent channels, 

McMillin (1975) initially proposed the SWA for retrieving sea surface temperature (SST) from NOAA/AVHRR. SWAs for 
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retrieving SST from various sensors were developed, which were based on different assumptions (Llewellyn-Jones et al., 1984; 50 

Niclòs et al., 2007). Inspired by the success of the SST algorithm, the first SWA for retrieving LST was proposed by Price 

(1984). However, in contrast to nearly homogeneous and isothermal water bodies, LST is affected by multiple additional 

factors, e.g. land cover type (LCT), material dependent emissivity, terrain, and viewing geometry. Therefore, one or more 

terms were added to the basic SWA to describe these effects, e.g. land surface emissivity (Wan, 2014), vegetation cover fraction 

(Prata, 2002), view zenith angle (Becker and Li, 1990a), and water vapour (Sobrino et al., 1991). Nevertheless, there are still 55 

limitations in LST retrieval with SWAs (Li et al., 2013a), e.g. the requirement for a priori knowledge of emissivity and a 

dependence of LST retrieval accuracy on SW coefficients, which in turn depend on observation and atmospheric conditions. 

Furthermore, due to the variation of land surface and atmospheric conditions, no single SWA performs the best under all 

conditions (Yang et al., 2020; Yu et al., 2009; Zhou et al., 2019b). 

Currently, several LST products retrieved derived from satellite TIR remote sensing are available. Global LST products 60 

for Terra/Aqua MODIS are available since 2000, e.g. M*D11/M*D21MOD11/MYD11 (Wan, 2008, 2014; Wan et al., 2002) 

and MOD21/MYD21 (Hulley and Hook, 2011)(Hulley and Hook, 2011; Wan, 2014). Similarly, a JPSS-VIIRS LST product is 

available since 2012 (Guillevic et al., 2014) and China FengYun-VIRR LST is available since 2009 (Dong et al., 2012). The 

aforementioned sensors observe Earth’s surface twice per day with a spatial resolution of ~1 km at nadir. For the user’s 

convenience, some LST products are processed into different temporal and spatial resolutions, e.g. daily / monthly and 1 km×1 65 

km / 0.05°×0.05°. The operational LST product retrieved from the (A)ATSR series between 1995 and 2012 is a typical SWA 

LST product (Prata, 2002). AATSR’s nadir spatial resolution onboard ENVISAT was approximately 1 km and its temporal 

resolution 3 days. Since 2016, its successor, SLSTR onboard Sentinel-3 A and B, provides daily temporal resolution and a 

consistent spatial resolution (Ghent et al., 2017). Global LSTs retrieved from satellite TIR also include Landsat LST 

(Parastatidis et al., 2017) and ASTER LST (Hulley and Hook, 2011), which have significantly higher spatial resolutions (e.g. 70 

about 100 m), but considerably lower temporal resolutions (e.g. every 16 days). LST products from geostationary satellites are 

generated at lower spatial resolution (3-5 km) but considerably higher temporal resolution (10 – 60 min), e.g. GOES-ABI LST 

for the Americas and Africa (Yu et al., 2009), MSG-MVIRI/SEVIRI LST for Europe, Africa, and the Atlantic Ocean (Duguay-

Tetzlaff et al., 2015; Trigo et al., 2008), FY- SVISSR/AGRI LST and Himawari-AHI LST for the Asian-Pacific region (Choi 
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and Suh, 2018; Jiang and Liu, 2014). Dech et al. (1998) and Pinheiro et al. (2006) provide African and European LST for 75 

NOAA-14 AVHRR, Zhou et al. (2019a) provide an all-weather LST product retrieved from combined TIR and MW/Reanalysis 

data over the Tibetan plateau from 2003 to 2018. There are also a few LST products from MW (e.g. for SSM/I and AMSR-E) 

(Aires et al., 2001; Jiménez et al., 2017), and LST for land surface models (e.g. ECMWF and GLDAS) (Fang et al., 2009; 

Viterbo and Beljaars, 1995); however, these temperature LST products have lower spatial resolutions and slightly different 

meanings than TIR LST. In summary, from 1991 onwards, many global and regional satellite LST products are available, but 80 

higher spatio-temporal resolutions (e.g. 1 km - daily) are only available after 2000. At the same time, many climate applications 

urgently need higher spatial-temporal resolution LST products for the time before 2000. It has been reported that 1983˗2012 

were the warmest 30 years for nearly 1400 years (IPCC, 2014). The warm climate change trend has also caused changes in 

many land surface processes, e.g. most glaciers on the Tibetan Plateau are in retreat (Yao et al., 2012) and the areas covered 

by them are getting smaller and smaller (Yao et al., 2012).cover progressively smaller areas. The LST around glaciers is a 85 

highly useful indicator of this phenomenon and allows predicting trends in glacier status (Steiner et al., 2008). Similar demands 

for LST data also exist in global drought monitoring (Sánchez et al., 2018), studies of species distribution (Lembrechts et al., 

2019), and land surface modelling (Bechtel, 2012; Ghent et al., 2017; Reichle et al., 2010). Therefore, it is meaningful to 

extend the global LST time series with a relatively high spatio-temporal resolution (i.e. 5 km - daily) to the historical NOAA 

AVHRR data before 2000. 90 

A major factor limiting applications of AVHRR LST is orbital drift, which over the lifespan of the NOAA satellites leads 

to shifts to later overpass times and, therefore, affects temporal comparability. Two main approaches were developed to remove 

the effect of orbital drift. On the one hand, based on the regular diurnal temperature variation typically observed under clear-

sky, several researchers corrected orbital drift by fitting a diurnal temperature cycle (DTC) model to reanalysis or geostationary 

datasets (Jin and Treadon, 2003; Parton and Logan, 1981) and then normalizing LST to a given time. On the other hand, a 95 

relationship between LST anomaly and solar zenith angle was used for correcting LST to a given solar zenith angle (Gleason 

et al., 2002; Gutman, 1999; Julien and Sobrino, 2012). Various applications made use of the two types of orbital drift correction 

methods for AVHRR LST, but a general method for global application is still missing, i.e. the former method suffers from the 

low spatial resolution of its input datasets, while latter leads to inconsistent times. Liu et al. (2019a) proposed another method 
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for correcting AHVRR LST orbital drift, which fits a DTC model to component temperatures of neighbourhood pixels and 100 

was reported to achieve good accuracy. This approach is used here to generate a time-consistent AVHRR LST product. 

As a part of the Global LAnd Surface Satellite (GLASS) product suite (Liang et al., 2020), The the objective of this study 

is to develop a long-term global LST product (1981-2000) from historical NOAA AVHRR datasets. Section 2 describes the 

simulation datasets used for developing consistent SWAs, the input datasets for LST product generation, and the in-situ datasets 

for validating the retrieved LST. In section 3, a practical approach for generating a single optimized LST product is proposed, 105 

which integrates several well-established SWAs through the Random Forest, which is termed RF-SWA. Finally, the retrieved 

RF-SWA LST is normalized with an improved orbital drift correction method. Furthermore, emissivity estimation for bare soil 

is improved by using ASTER Global Emissivity Dataset (GED) and yields more accurate estimates of land surface emissivity 

in section 3.3. Section 4 describes the results and provides implementation details of the LST retrieval method, LST validation, 

and give an example of the LST product. Data availability shows in section 5. Conclusions and outlooks are provided in section 110 

6. 

2. Datasets 

2.1 Satellite remote sensing datasets 

2.1.1 AVHRR datasets 

The advanced very-high-resolution radiometer (AVHRR) is a sensor onboard NOAA polar-orbiting satellite series. The orbital 115 

period is 101.4 minutes and designed over-pass time at the equator is between 13:30 and 14:30 (solar time) depending on the 

satellite. The second AVHRR version (AVHRR/2) has five spectral channels, including a visible band (0.55-0.68 μm), a near-

infrared band (0.75-1.1 μm), a middle-infrared band (3.55-3.93 μm), and two thermal bands (10.5-11.3 μm and 11.5-12.5μm). 

Figure 1 shows the spectral responses of the two AVHRR thermal channels of NOAA-07/09/11/14. Nadir spatial resolution of 

the TIR channels is 1.1 km×1.1 km, and scan angles range between -55° and 55°. AVHRR covers the Earth’s surface twice 120 

daily and has been widely used to generate various local or global land/sea surface parameters, e.g. the normalized difference 

vegetation index (NDVI) and SST (Casey et al., 2010). In this study, the AVHRR datasets from Long-Term Datasets Records 
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(Pedelty et al., 2007) (LTDR, https://ltdr.modaps.eosdis.nasa.gov/) are used, including AVH02C1 and AVH13C1, for which 

spatial resolution has been processed to 0.05°×0.05° (Table 1). Those two datasets include the top-of-atmosphere BT of the 

TIR channels, NDVI, view zenith angle (VZA), view time, and quality control (QC) flags, which provide a reference for 125 

distinguishing pure and cloudy pixels. 

2.1.2 ASTER Global Emissivity Dataset (GED) 

ASTER onboard the Terra satellite and has five TIR channels (Fig. 1). The ASTER GED used in this study was generated from 

clear sky ASTER TIR data between 2000 and 2008 with the TES algorithm and the water vapour scaling atmosphere correction 

method (Hulley et al., 2015). The products are output at 3″ (~100 m) and 30″ (~1 km) spatial resolution on 1°×1° tiles. Channel 130 

temporal mean emissivity, LST, and NDVI, as well as their standard deviation, global DEM, and land-sea mask, are part of the 

GED. In this study, the ASTER GEDv3 with a 1-km spatial resolution was used to determine the global background emissivity 

of bare land. 

2.2 Atmospheric profiles and forward simulation datasets 

Global forward simulation datasets with good representativeness are necessary for developing and evaluating LST retrieval 135 

algorithms. This requires a reliable atmospheric profile dataset as input. In this study, the well-established SeeBor V5.0 (Borbas 

et al., 2005) and TIGR2000 V1.2 (Chedin et al., 1985) atmospheric profiles were used to construct the forward simulation 

datasets. Zhou et al. (2019b) derived a global atmospheric profile dataset (GAPD) by screening the SeeBor V5.0 atmospheric 

profiles and removing cloud-contaminated and redundant profiles. The GAPD dataset has been used for developing the LST 

retrieval algorithm for NOAA-20/VIIRS and Sentinel-3/SLSTR (Liu et al., 2019b; Yang et al., 2020): it contains 549 global 140 

profiles with a column water vapour content (CWVC) range of 0.014 – 7.939 g/cm2 and near-surface air temperature (NSAT) 

range of 224.25 K – 309.05 K. Here, the GAPD was used to generate a training dataset (TRA-G): globally representative 

observation conditions were simulated by varying the viewing geometry and land surface characteristics over a realistic range 

for a limited profile dataset (Zhou et al,2019b), i.e. for each profile 10 surface temperatures (Ts), 15 view zenith angles (VZA), 

and 48 land surface emissivities (LSE, ε) were set. Specifically, Ts was set relative to NSAT with the difference (Ts-NSAT) 145 
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covering the range of -16 K to +20 K at an interval of 4 K; VZA was set to values from 0° to 70° at an interval of 5°; emissivity 

was obtained from Johns Hopkins University (JHU) spectral emissivity library by convolving the emissivity spectra with the 

spectral response functions of NOAA-07/09/11/14 AVHRR (Fig. 1); the corresponding emissivity ranges are provided in Table 

2. For the remaining 4761 SeeBor clear-sky profiles (ATP-S) and 506 TIGR clear-sky profiles (ATP-T), the corresponding 

simulations were performed and used as evaluation datasets VAL-S and VAL-T, respectively. In contrast to GAPD, for each 150 

profile in ATP-S (ATP-T), we randomly set 10 (10) VZAs between 0° and 70°. The corresponding LSE has been assigned 

according to the LCT over which a profile is located (Snyder et al., 1998) and Ts for VAL-S and VAL-T was set to the 

corresponding NSAT. Table 3 summarizes the three profile datasets and the corresponding simulation datasets. More details 

can be found in Zhou et al. (2019b) and Yang et al. (2020). 

2.3 Ancillary data used for LST retrieval 155 

Four ancillary datasets were used for LST retrieval: NSAT, CWVC, LCT, and soil type. The MERRA-2 reanalysis dataset 

(M2T1NXINT) provides NSAT and CWVC (variables in datasets: T2M and TQV, respectively) with 0.5°×0.625° spatial 

resolution and hourly temporal resolution; nearest neighbour sampling was used to match up with AVHRR pixel and over-pass 

time. AVHRR LCTs were obtained from the University of Maryland (UMD) dataset (Defries and Hansen, 2010), which 

provides 14 LCTs (0:Water; 1:Evergreen Needleleaf Forest; 2:Evergreen Broadleaf Forest; 3:Deciduous Needleleaf Forest; 160 

4:Deciduous Broadleaf Forest; 5:Mixed Forest; 6:Woodland; 7:Wooded Grassland; 8:Closed Shrubland; 9:Open Shrubland; 

10:Grassland; 11:Cropland; 12:Bare Ground; 13:Urban and Built). The spatial resolution of the UMD LCT dataset is 1 km × 

1 km. To adapt its resolution of AVHRR, the dominant LCT within each 0.05° grid was used as the LCT for AVHRR. The soil 

type dataset employed for estimating AVHRR LSE is provided by the United States Department of Agriculture, which is 

mainly based on the world soil map of FAO-UNESCO. Its spatial resolution is 2′ (~ 0.03°) and the soil type of each AVHRR 165 

pixel was also set to the dominant type.  

2.4 In-situ datasets 

In-situ measurements from the Surface Radiation Budget (SURFRAD) network and the National Data Buoy Center (NDBC) 
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were used to validate the retrieved AVHRR LST. The details and geographical distribution of the selected in-situ sites are 

provided in Table 4 and Fig. 2. SURFRAD was established in 1993 and focuses on validating Earth’s radiation budget. Quality 170 

control is an integral part of the design and operation of the SURFRAD network, which results in datasets of high quality and 

well-defined measurement uncertainties (https://www.esrl.noaa.gov/gmd/grad/surfrad/). Therefore, , but SURFRAD data also 

have been widely used for validating satellite-retrieved LST products (Guillevic et al., 2014; Liu et al., 2019b; Martin et al., 

2019; Wang and Liang, 2009) and other fields. Six sites providing in-situ data between 1995 and 2000 were selected. At these 

sites, upwelling and downwelling longwave radiances are measured with highly accurate Eppley Precision Infrared 175 

Radiometers (PIR; wavelength: 4-50 μm) at an observation interval of 3 minutes. The PIRs were set up ~10 m above the 

ground, giving them a field of view (FOV) covering approximately 70×70 m2 (Guillevic et al., 2014). Historical data from the 

NDBC (https://www.ndbc.noaa.gov/historical_data.shtml) provide hourly samples of bulk water temperature, which it is 

measured with electronic thermistors and highly accurate and quality controlled by NDBC 

(https://www.ndbc.noaa.gov/qc.shtml). Considering the thermal homogeneity of the water surface, buoy temperatures are 180 

usually representative of the satellite pixel scale, even if it covers large areas. To avoid mixed land-water pixels, only buoys at 

least 20 km from the coastline were selected. 

3. Methodology 

LST retrieval algorithm from TIR remote sensing, especially with SWAs, is a well established and validated method. However, 

no single algorithm performs best under all conditions, even if it generally achieves good accuracy (Yu et al., 2009). This 185 

suggests that a more stable and robust LST retrieval algorithm may be obtained by integrating various individual LST retrieval 

algorithms. In this study, the Random Forest (RF) ensemble method (Breiman, 2001) was utilized for integrating multi-LSTs 

(mLSTs) obtained with several-SWAs into a global AVHRR LST product. First, widely used candidate SWAs were trained and 

evaluated; these SWAs have been studied in previous work (Yang et al., 2020; Zhou et al., 2019b), and are shown in Table 5 

for readers’ convenience. Second, estimates of land surface emissivity were improved by combining the NDVI threshold 190 

method and ASTER GED. Third, the LSTs from the trained candidate SWAs were integrated with the RF method: thus, the 

approach is termed RF-SWA. Then, the instantaneous RF-SWA LST was normalized to 14:30 (solar time) using an improved 
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orbital drift correction (ODC) method and the RF-SWA LST and ODC LST products were validated against in-situ LST. Finally, 

for the user’s convenience of users, a monthly averaged LST was also generated from the ODC LST with a sample averaging 

procedure. 195 

3.1 Refining the Candidate Algorithms 

Forward radiative transfer simulations with PMODTRAN (Berk et al., 2005; Huang et al., 2016) were performed on a high-

performance computing platform (2*Intel @Xeon E5-2650 2.00GHz (8Cores), 64GB 1600MHz) for the datasets GAPD, ATP-

S, and ATP-T described in section 2.2; the corresponding simulated datasets were labelled as TRA-G, VAL-S, and VAL-T. 

Each forward simulation yields channel-specific top-of-atmosphere radiances and BTs in dependence of NSAT, CWVC, and 200 

VZA. To simulate BTs measured by satellites more realistically, Gaussian-distributed noise with a noise equivalent differential 

temperature (NE∆DT) of 0.12 K, of which is the design goals for the AVHRR TIR channels, was added to the simulated BTs. 

More details on the simulations are provided in Zhou et al. (2019b). 

Multiple regression was performed on the simulated training datasets, TRA-G, to determine the coefficients of the 

candidate SWAs in Table 5. The TRA-G dataset was divided into 480 groups based on NSAT, CWVC, VZA, and Ts-NSAT as 205 

follows: (i) the atmospheres were divided into Cold-ATM and Warm-ATM with a NSAT threshold of 280 K; (ii) the data were 

divided into CWVC classes with an interval of 0.5 g/cm2. This resulted in 3 subgroups of Cold-ATM and 13 subgroups of 

Warm-ATM; (iii) the VZAs were divided into intervals of 5°; (iv) based on Ts-NSAT, the data were divided into two subgroups 

e.g. [-16,4] K and [-4, 20] K, approximately representing daytime and nighttime cases, respectively. Based on regression 

against these training datasets, look-up tables (LUT) with coefficients for each candidate SWA were established. The candidate 210 

algorithms were then analyzed w.r.t. the standard error of the estimate (SEE) and coefficient of determination (R2) and a 

sensitivity analysis was performed for the main input parameters, e.g. LSE and CWVC, to test the stability and accuracy of 

the trained SWAs. Being consistent with the uncertainty level in Zhou et al. (2019b), the various uncertainty sources were 

grouped into 2 levels: (i) L1: |δε11|max≤ 0.02, |δε12|max≤ 0.02, and |δCWVC |max≤1.0 g/cm2; (ii) L2: |δε11|max≤ 0.04, |δε12|max≤ 0.04, 

and |δCWVC |max≤1.0 g/cm2. These uncertainties will be added to ε11, ε12, and CWVC as random noises. Datasets without 215 

added uncertainty were labelled as L0. All trained candidate algorithms were evaluated against the simulation datasets VAL-S 
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and VAL-T. 

3.2 Multi-LSTs ensemble 

Based on the training and evaluation results (see section 4.1), a multi-LST ensemble method is proposed, which hopefully 

achieves a more stable retrieval by integrating the most robust and stable SWAs. The method used to integrate the selected 220 

SWAs is the Random Forest (RF) method proposed by Breiman (2001). Compared to detailed analytic expressions for 

explaining complicated nonlinear relationships, the RF method has several advantagesoutstanding characteristics, including 

the ability to process large databases with high efficiency, unbiased estimation, and especially minimizing the risk of overfitting 

(Hutengs and Vohland, 2016). Therefore, the RF method has been widely used in remote sensing applications, e.g. land cover 

classification (Rodriguez-Galiano et al., 2012), land surface parameter downscaling (Zhao et al., 2018), and estimating 225 

vegetation cover parameters (Mutanga et al., 2012).  

The RF method utilizes an ensemble of many decision trees. In the implementation of the RF ensemble method, a random 

vector Θk is selected from the input training datasets (mLSTs, LST) with the Bootstrap sampling method. Here, k is the number 

of samplings; mLSTs are the LSTs retrieved with the individual SWAs, i.e. the predictors; LST, i.e. the target variable is known 

from the forward simulations. The sample size of each sampling is two-thirds of the observations; for each sampling, a tree is 230 

grown using the training set and Θk, which results in a tree predictor T(Θk). Finally, the LST predicted with the RF is formed 

by averaging over the k trees (Eq. 1), 

𝑔 =
1

𝑘
∑ 𝑇(𝛩𝑘)
𝑘
𝑖=1  (1) 

Along with the predicted LST, the importance of each variable can be calculated using the residual sum of squares (RSS), 

which usually has larger values for more influential mLSTs. Additionally, the simple average (SA) method and Bayesian Model 235 

Averaging (BMA) method are implemented for comparison. To cover the real natural variability as much as possible, datasets 

TRA-G (L0, L1, and L2), VAL-S (L0), and VAL-T (L0) are used as training datasets for the LST ensemble model. The 

remaining datasets VAL-S and VAL-T at uncertainty levels L1 and L2 are used for evaluating the ensemble model. For the 

later generation of global LST products, only mLSTs from the selected SWAs are needed. 



21 

3.3 Estimating LSE 240 

LSE is a key parameter in retrieving LST from TIR remote sensing data. Depending on the spectral channels of the sensor and 

the available temporal sampling, there are various LSE estimation methods, e.g. the NDVI-threshold method (Sobrino et al., 

2008), land cover-based (LC-based) method (Snyder et al., 1998; Wan, 2014), TES method (Gillespie et al., 1998), day-night 

method (Becker and Li, 1990b), and Kalman filter method (Li et al., 2013b; Masiello et al., 2015). The NDVI-threshold and 

LC-based methods are widely used in retrieving LST (Sobrino et al., 2008; Wan, 2014). However, those methods require that 245 

the emissivity of the land cover or the vegetation and bare (background) soil is known. In the TIR, emissivity spectra of dense 

vegetation are relatively similar and, therefore, can be taken from spectral libraries; these spectra can then be convolved with 

the sensor’s spectral response functions to obtain channel effective emissivities. In contrast, the emissivity of bare soil varies 

considerably, mainly due to variations of its components, roughness, water content, and surface structure. Therefore, this study 

employs a practical and robust method that combines the ASTER GED and the NDVI-threshold method to determine LSE. 250 

First, the land surface is classified into pure bare soil, mixture of vegetation and bare soil, and pure vegetation. The 

emissivity in mixed areas (ɛλ) is obtained as the weighted sum of vegetation emissivity (ελ,v) and bare soil emissivity (ελ,s), 

where the fraction of vegetation cover (fv) determines the weights (Carlson and Ripley, 1997; Hulley et al., 2015): 

𝜀𝜆 = 𝜀𝜆,v𝑓v + 𝜀𝜆,s(1 − 𝑓v) (2) 

here, the fv can be calculated as Eq. (3), 255 

𝑓v = {

0, 𝑁𝐷𝑉𝐼 ≤ NDVImin

1 −
NDVImax−𝑁𝐷𝑉𝐼

NDVImax−NDVImin
, NDVImin < 𝑁𝐷𝑉𝐼 < NDVImax

1, 𝑁𝐷𝑉𝐼 ≥ NDVImax

  (3) 

where NDVImax and NDVImin are the thresholds for separating into vegetation areas, mixed areas, and bare soil areas. In order 

to obtain globally consistent fv values, NDVImax and NDVImin were set to 0.5 and 0.2 (Sobrino et al., 2001), respectively. 

According to Eqs. (2) and (3), the ASTER thermal channel emissivity of bare soil can be calculated as, 

𝜀𝑗,s
AST =

𝜀𝑗
AST−𝜀𝑗,v

AST𝑓v

1−𝑓v
 (4) 260 

where 𝜀𝑗
AST ,𝜀𝜆,v

AST  and 𝜀𝜆,s
AST  are the ASTER emissivity for the observation, dense vegetation, and bare soil in channel j 

(j=10,…,14), respectively. The ASTER thermal channel emissivities for dense vegetation is given in Meng et al. (2016). 
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In order to convert bare soil emissivities from ASTER spectral channels to AVHRR spectral channels, the following 

linear relationship is fitted to channel emissivities obtained from the JHU bare soil spectral library (Salisbury, 1991): 

𝜀𝑖,s
𝐴𝑉𝐻 = 𝑎0 + 𝑎1𝜀10,s

AST + 𝑎2𝜀11,s
AST + 𝑎3𝜀12,s

AST + 𝑎4𝜀13,s
AST + 𝑎5𝜀14,s

AST (5) 265 

where 𝜀𝑖,s
AVH (i=411, 512) is the AVHRR bare soil emissivity in channel centred at i and

 
𝑎𝑘 (k=0,…,5) are coefficients (Table 

6). 

Figure 3 illustrates LSE estimation, which consists of two main parts: 

Part I describes how static bare soil emissivity is obtained. After preparing the ASTER GED datasets, global mean NDVI 

and channel emissivity maps are obtained and mean fv is calculated via Eq. (3). In combination with the LUT for ASTER 270 

vegetation emissivity from Meng et al. (2016), an initial global ASTER bare soil emissivity map is obtained via Eq. (4). 

However, due to regions with persistent cloud cover and over areas with dense vegetation (i.e. no visible bare soil fraction), 

the obtained global emissivity maps for bare soil still have considerable data gaps. These missing values in the bare soil 

emissivity maps are filled with the average emissivity of the same soil type within the 3×3 neighbourhood pixels. If there is 

no neighbour valid pixel for averaging, the neighbourhood is enlarged until all data gaps are filled. 275 

Part II describes the estimation of the daily dynamic emissivity. Firstly, the global ASTER background bare soil spectral 

channel emissivities are converted to AVHRR spectral channels via Eq. (5). Then, AVHRR channel emissivities are obtained 

via Eq. (2) with NDVI values from the AVH13C1 dataset. Vegetation emissivities are taken from a look-up table (Table 7), 

which is based on AVHRR LCTs and vegetation emissivities from Pinheiro et al. (2006). Furthermore, emissivities of built-up 

areas and water are used for separating these areas from other non-vegetated areas. 280 

3.4 Orbital Drift Correction 

The orbital drift of the NOAA-series satellites is a serious limitation for applications of AVHRR LST. Therefore, an orbital 

drift correction (ODC) would be highly useful and beneficial for many users. The actual overpass times of the NOAA-series 

afternoon satellites are between 13:00-17:30. In order to include the four-afternoon satellites (Table 1), the target time for ODC 

is set to 14:30 (solar time). According to the ODC method proposed by Liu et al. (2019a), the LST relationship between 285 

overpass time and ODC target time (14:30) can be written as: 
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𝑇s(𝑡) = 𝑇s(14.5) + 𝑇a {cos (
𝜋

𝜔
(𝑡 − 𝑡m)) − cos (

𝜋

𝜔
(14.5 − 𝑡m))} (6) 

where t is the time of the day in hours; Ta is the diurnal amplitude of LST in K; ɷ is the length of daytime and tm is the time of 

maximum LST in hours (Göttsche and Olesen, 2001). Here, ɷ is determined by the duration of daytime: 𝜔 =

2

15
cos−1 (

cos 85°

cos𝜙 cos 𝛿
− tan𝜙 tan 𝛿), where 𝜙 is the latitude of the pixel in degree and 𝛿 is the solar declination. 𝛿 can be 290 

expressed as a function of the day of the year (DOY): 𝛿 = 23.45 sin (
360°

365
(284 + DOY)) (Elagib et al., 1998). 

Similar to the component emissivity in Eq. (2), LST can be approximated as the weighted sum of the component 

temperatures of the vegetation and bare soil areas (Quan et al., 2018): 

𝑇 ≈ 𝑓v𝑇veg + (1 − 𝑓v)𝑇soil (7) 

where Tveg and Tsoil are the component temperatures of vegetation and bare soil, respectively. 295 

Starting with the approach by Liu et al. (2019a), we further divide the diurnal temperature amplitude Ta into two 

components (i.e., vegetation and soil). Thus, Eq. (6) can then be rewritten as: 

𝑇s(𝑡) = 𝑓v𝑇s,veg(14.5) + (1 − 𝑓v)𝑇s,soil(14.5) + (𝑓v𝑇a,veg + (1 − 𝑓v)𝑇a,soil) {cos (
𝜋

𝜔
(𝑡 − 𝑡m)) − cos (

𝜋

𝜔
(14.5 − 𝑡m))} (8) 

where Ts,veg(14.5), Ts,soil(14.5) are the component temperatures of vegetation and bare soil at target time 14:30, respectively; 

Ta,veg, Ta,soil are the component of diurnal temperature amplitude Ta, respectively. 300 

In Eq. (8), the parameters Ts, fv, and t are available for each pixel. To obtain the other five parameters Ts,veg(14.5), 

Ts,soil(14.5), Ta,veg, Ta,soil, and tm, it is assumed that the component temperatures and the shape of the diurnal temperature cycle 

are approximately the same in a 3×3 pixel neighbourhood. With this assumption, there are nine equations to solve for the five 

unknown parameters. To constrain the solution, boundaries are set for each parameter. The boundaries for Ts,veg(14.5) and 

Ts,soil(14.5) are [Tcenter-10, Tcenter+15] K, and Tcentre is the LST for the centre pixel in the 3×3 neighbourhood. The boundaries for 305 

Ta,veg and Ta,soil are [5, 40] K and Ta,soil must be larger than Ta,veg. The boundary for tm is [12, 15] in hours. In order to obtain 

more stable parameters, the pixel’s ODC parameters obtained with an averaged value from the neighbourhood when Eq. (8) 

cannot be fitted, e.g. fv are similar to each other (e.g. fv=0, 1) in the 3×3 pixel neighbourhood. If there is no neighbour valid 

pixel for averaging, the neighbourhood area is enlarged from 3×3 to 9×9. Once the parameters are determined, the LST at 
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14:30 can be calculated via Eq. (9).  310 

𝑇s(14.5) = 𝑇s(𝑡) + (𝑓v𝑇a,veg + (1 − 𝑓v)𝑇a,soil) {cos (
𝜋

𝜔
(14.5 − 𝑡m)) − cos (

𝜋

𝜔
(𝑡 − 𝑡m))} (9) 

3.5 Generation of LST products 

The product generation executable (PGE) code includes four Modules. Module I is for generating the multi-LST with the 

selected SWAs. Three different types of input data enter this module: (i) the satellite data: BTs from AVH02C1, NDVI from 

AVH13C1, bare soil emissivity (see section 3.3), and AVHRR LCTs from UMD; (ii) look-up tables: coefficients of the SWAs 315 

(see section 3.1), emissivities of vegetation, water, and built-up areas (see Table 7); and (iii) ancillary data: NSAT and CWVC 

from MERRA and land-sea mask. The QC flags in AVHR02C1 are also used to identify cloudy pixel. If a pixel contains cloud 

or cloud shadow, its LST is not calculated. Therefore, the output of Module I is multi-LST under clear sky conditions. 

Module II is for integrating the multi-LST with the trained RF ensemble model. The inputs include the multi-LST from 

Module I and the RF ensemble model; the output is the ensemble LST, which is termed RF-SWA LST. Module III is for 320 

normalizing the LST affected by orbital drift to 14:30 solar time. In this Module, the input datasets include the RF-SWA LST 

and NDVI; the latter is used for calculating the fraction of vegetation. The output of Module III is orbital drift corrected LST, 

which is termed OCD LST. Module IV is for generating monthly average LST: the module first groups ODC LST by month, 

sums the valid LST in each month up, and divides them by the respective number of valid LST. The output from this Module 

is monthly averaged ODC LST. All LST data are stored in standard HDF-EOS format. Table 8 shows the variables provided 325 

in the three types of LST data files. 

3.5 6 LST product validation based on in-situ LST 

At the surface, in-situ LST can be estimated from measurements of broadband hemispherical upwelling radiance (Lu) and 

atmospheric downwelling radiance (Ld) using Stefan-Boltzmann’s lawas:  

𝑇s = √
𝐿u−(1−𝜀)𝐿d

𝜀𝜎

4
 (10) 330 
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where Ts is in-situ LST; 𝜀 is the broadband emissivity ɛ is obtained from AVHRR LSE in, which is calculated from AVHRR 

LSE for channel 4 and 5centred at 11μm and 12μm via the empirical relationship ɛ=0.2489+0.2386ɛ114+0.4998ɛ125 (Liang, 

2005); σ (=5.67×10-8 W/(m2K4)) is the Stefan-Boltzmann constant. 

Before the validation was performed, in-situ LST and AVHRR LST were accurately matched up in terms of geolocation 

and acquisition time (nearest-neighbour interpolation and, depending on the site, time differences of less than 3 min, 15 min 335 

or 30 min). Furthermore, VZAs were limited to less than 40°. Additionally, three-sigma (3σ) filtering (Eq. 11) was employed 

to remove the samples contaminated by undetected clouds (Göttsche et al., 2016; Pearson, 2002). 

𝑆 = 1.4826 ∗ 𝑚𝑒𝑑𝑖𝑎𝑛{|𝑥𝑘 − 𝑥med|} (11) 

where xk are the LST differences between the retrieved and in-situ values; xmed is the median of the residuals. Matchups with 

residuals greater than xmed +3S or less than xmed - 3S are regarded as outliners. 340 

4. Results and discussion 

4.1 Training results and selection of SWAs  

For NOAA-07/11 AVHRR, the candidate SWAs in Table 5 were already trained and evaluated by Zhou et al. (2019b). Here, 

the SWAs are additionally trained and evaluated for NOAA-09/14 AVHRR. Generally, the SWA training results for the four 

sensors are consistent with each other. Therefore, only the result for NOAA-14 AVHRR is listed here. The candidate algorithms 345 

OV1992, FO1996, and FOW 1996 show the worst regression accuracy regardless of atmospheric conditions with standard 

errors of the estimate (SEE) higher than 1.49 K, 1.48 K, and 1.32 K, respectively. For Warm-ATM, the SEE of PP1991 increases 

rapidly with increasing CWVC, while it shows good accuracy for Cold-ATM with SEE between 0.33 K and 0.75 K. The SEE 

values for UC1985 and MT2002 were larger than those of most other SWAs, even though they are still lower than for OV1992, 

FO1996, FOW1996, and PP1991: therefore, these six SWAs were disregarded in the further analysis. For the remaining 11 350 

SWAs, a sensitivity analysis was performed for the TRA-G simulation dataset with uncertainties levels L1 and L2. The results 

showed that SO1991 and CO1994 are sensitive to uncertainties in LSE and CWVC. Consequently, these two SWAs were also 

excluded from the candidate algorithm list. More details on the training and sensitivity analysis are provided in Zhou et al. 
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(2019b). 

The nine remaining SWAs for NOAA-09/14 AVHRR were then tested with the simulation datasets VAL-S and VAL-T. 355 

For completeness, Fig. 4 shows these results together with those obtained for NOAA-07/11. It can be seen that the retained 

nine SWAs have low RMSE values, which range between 0.38 K and 0.49 K for VAL-S and between 0.47 K and 0.68 K for 

VAL-T. Since the atmospheric profiles used to generate VAL-S and VAL-T are globally distributed, we conclude that these 

nine SWAs should perform well globally. The results for VAL-S in Fig. 4 reveal that BL-WD and WA2014 show the highest 

overall accuracy, followed by BL1995, PR1984, and VI1991. The RMSE values of these four SWAs are ~0.48 K. For VAL-T, 360 

BL1995 and BL_WD show the highest accuracy, followed by WA2014, VI1991, and PR1984; in this case, the RMSE of these 

four SWAs is ~0.60 K. For all nine SWAs, the accuracy decreases as the VZA increases. While BL-WD achieves the highest 

accuracy, no obvious differences between the other eight SWAs are observed. From the 17 LCTs over which the atmospheric 

profiles are located, taking VAL-T for NOAA-14 AVHRR as an example, BL1995 BL-WD performs best for six nine LCTs,  

and BL-WDVI1991 and BL1995 for three LCTs. In contrast, there is no LC type over which PR1984, VI1991 SR2000, 365 

GA2008, and UL1994 perform best. It is because those SWAs show different sensitivity to the emissivity, of which was set by 

the LCTs of profiles located. When assessing the effect of different atmospheric conditions, in Cold-ATM the highest accuracy 

is found for BL1995 and BL-WD. In Warm-ATM, when Ts-NSAT is within [-4, 20] K, BL-WD performs the best for CWVC 

below 2.5 g/cm2, while PR1984 performs the best when CWVC exceeds 4.5 g/cm2. When Ts-NSAT is within [-16,4] K, 

WA2014 shows the best performance for CWVC below 3.5 g/cm2; with increasing CWVC, BL1995 and BL-WD show the 370 

highest accuracy. Overall, it is found that no single SWA achieves the highest accuracy under all conditions. 

4.2 Multi-LSTs ensemble 

The nine SWAs were integrated with the RF ensemble method. For comparison, the simple averaging (SA) method and 

Bayesian Model Averaging (BMA) method were also employed. In contrast to Zhou et al. (2019b), here we used LST retrieved 

with SWAs trained with TRA-G (L0, L1, and L2) and VAL-S/T (L0) to simulate a more realistic situation with uncertainty. 375 

Generally, the MBE of the RF ensemble method and the BMA model method is negligible (of the order of 10-4 K or less), 

while the MBE of SA method and single SWA is larger (of the order of 0.1 K). It can be concluded that the two ensemble 
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methods (i.e. RF and BMA) similarly reduce systematic error. In terms of training accuracy, the RF model shows obvious 

advantages with a STD of less than 0.50 K for the four NOAA AVHRR sensors while the STD of SA and BMA is larger and 

varies between 1.27 and 1.35 K. Figure 5 highlights the importance of variance for forming the RF ensemble: the most 380 

important SWA is BL1995 with an importance value of 0.67, 0.64, 0.68, and 0.83 for NOAA-07, 09, 11, and 14, respectively. 

The second most important SWA for NOAA-07, 09, and 11 is ULW1994, while WA2014 is the second most important SWA 

for NOAA-14. SR2000 is also of some importance for the ensemble process. Figure 5 confirms that the most important SWA, 

i.e. BL1995, is consistent with the most accurate SWA under different atmospheric conditions. 

Figure 6 shows the SEEs of the three ensemble methods for different CWVC zones and VZA subranges for NOAA-14 385 

AVHRR. Compared to the BMA and SA models for all atmospheric conditions and VZAs, the RF ensemble model achieves 

an obvious improvement in LST accuracy. For Cold-ATM, the SEE of RF increases slowly with increasing CWVC and VZA 

and varies from 0.21 K to 0.45 K. In contrast, the SEEs of BMA and SA show larger variations for both, increasing CWVC 

and VZA, and range from 0.72 K to 1.23 K. For Warm-ATM and CWVC less than 3.0 g/cm2, there is no obvious increase in 

SEE with increasing CWVC or VZA. However, SEE increases noticeably with increasing VZA when CWVC exceeds 3.0 390 

g/cm2, especially at VZA larger than 35°. However, the SEE of RF is always smaller than that of BMA and SA: RF SEE only 

exceeds 1.0 K when CWVC is larger than 5.0 g/cm2 and VZA exceeds 60°. Under the same conditions, the SEE of BMA and 

SA is larger than 2.0 K. Therefore, it is concluded that the RF ensemble method achieves a higher training accuracy than the 

BMA and SA methods, with a RF training accuracy of less than 1.0 K under most conditions. 

To assess the stability and sensitivity of the RF model, the LST estimated with RF, BMA, and SA method were evaluated 395 

against the VAL-T and VAL-S datasets at uncertainty levels L1 and L2. Figure 7 shows the evaluation of the three methods for 

NOAA-14 AVHRR. For VAL-S at L1, STD and RMSE of about 0.7 K are found for all three methods; however, the biases of 

RF (MBE=-0.04 K) and BMA (MBE=-0.03 K) are smaller than that of SA (MBE=-0.11 K) and negligible (i.e. less than ±0.1 

K). For VAL-S at L2, the bias for all three methods is negligible. However, considerable improvements are obtained with the 

RF method in terms of STD/RMSE, which is about 0.25K lower than for BMA and SA. For VAL-T at L1, the RF method has 400 

a slightly larger bias (MBE=-0.1 K) than the SA/BMA methods; however, its STD/RMSE is smaller. For VAL-T at L2, the 

three methods have a similar bias. However, RF has a significantly smaller STD/RMSE of 1.02/1.03 K than SA (1.41/1.42 K) 
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and BMA (1.38/1.39 K). Similar results were found for NOAA-07/09/11 AVHRR.  

4.3 Validation of RF-SWA LST against in-situ LST 

First, the generated RF-SWA LST was validated against in-situ LST from SURFRAD sites. Figure 8 shows a scatterplot 405 

between RF-SWA LST and SURFRAD in-situ LST and some statistic indicators, i.e. MBE, RMSE, STD, R2, and N (i.e. sample 

size). High correlations are found between RF-SWA LST and in-situ LST with a R2 range of 0.91-0.96. MBE varies between 

-1.59 K and 2.71 K and RMSE between 2.25 K and 3.86 K. Compared to LST products for MODIS, AATSR, and VIIRS, 

which were also validated against SURFRAD in-situ LST (Duan et al., 2019; Liu et al., 2019b; Martin et al., 2019), RF-SWA 

LST shows a similar accuracy and precision. It should be noted that the large MBE at BND, GWN, and TBL are probably due 410 

to a lack of in-situ LST representativeness at the satellite scale, e.g. BND, a seasonal bias variation is observed. During the 

dormancy season, the surface within the ground radiometer’s FOV and the corresponding AVHRR pixel are both fairly 

homogeneously covered by bare soil and grassland, which leads to smaller LST differences. In contrast, during the growing 

season, most of the area within the AVHRR pixel is covered by cropland and the fraction of vegetation cover depends on the 

crop’s growth stage: especially in the early growing and harvesting season, there are many bare areas between crop rows, 415 

which causes larger LST differences. If only BND matchups during the dormancy season are considered, the corresponding 

MBE and RMSE between RF-SWA LST and in-situ LST reduce to 1.56 K and 2.58 K, respectively. At GWN, the land cover 

within the ground radiometer’s FOV is also grassland; however, the corresponding AVHRR pixel includes several nearby 

forest areas. Therefore, the daytime LST observed on the pixel scale tends to lower than the in-situ LST. At TBL, RF-SWA 

LST is lower than in-situ LST for in-situ LST larger than 300 K: this may be explained by a larger vegetation area southeast 420 

of the site, which is included in the AVHRR pixel, while the ground radiometer’s entire FOV is covered by bare soil.  

Figure 9 shows scatterplots between RF-SWA LST and NDBC lake surface water temperature (LSWT) and some statistic 

indicators for buoys in the East Pacific, the Big Lakes, Gulf of Mexico, and western Atlantic. As shown in Table 4, the number 

of buoys for each area differs. The RF-SWA LST shows a good correlation with in-situ LSWT with R2 ranging from 0.94 to 

0.98. The plots also show low systematic errors and high precision, e.g. MBEs are less than 0.26 K and RMSE ranges from 425 

0.77 K to 0.89 K. Overall, the validation results resemble those obtained for the simulation datasets in section 4.2. Furthermore, 
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the validation results meet WMO’s requirements for applications of LST/LSWT in different fields, e.g. an uncertainty of 2.0 

K for Agricultural Meteorology and of 1.0 K for Climate Monitoring (WMO, 2020).  

4.4 Orbital Drift Correction 

The retrieved RF-SWA LST were normalized for the orbital drift of the NOAA-series satellites using the orbital drift correction 430 

method described in section 3.4. Since water surface temperature varies relatively slowly, only the retrieved surface 

temperatures over land were normalized. The orbital drift corrected LST (ODC LST) was then validated against the same in-

situ data as in section 4.3. Figure 10 shows a boxplot of the residuals (TAVHRR-Tin-situ) for the ODC LST and RF-SWA LST. The 

plot shows that the bias of the ODC LST over the 6 sites is similar to that of the uncorrected RF-SWA LST. From the six 

SURFRAD sites, BND has the highest positive bias, while GWN and TBL show negative biases. Following the explanation 435 

in section 4.3, this is probably due to less representative in-situ measurements. The standard deviations (STD) of the ODC 

LST residuals at the six SURFRAD sites are 3.62 K (BND), 2.34 K (DRA), 3.38 K (FPK), 3.45 K (GWN), 2.57 K (PSU), and 

3.69 K (TBL). The STD variations (ODC LST – RF-SWA LST) ranges from 0.06 K to 1.15 K. This indicates that the ODC 

LST maintains the good accuracy of RF-SWA LST and its performance primarily depends on surface conditions. This is 

understandable because the improved ODC method uses adjacent pixels to compensate for the lack of temporal information. 440 

Nevertheless, the improved ODC method provides a practical way to correct the effect of orbital drift on LST retrieved from 

NOAA AVHRR data. 

4.5 Global ODC LST product examples 

Figure 11 shows monthly averaged ODC LST for March, June, September, and December 1999 normalized to 14:30 solar time. 

The LST show an obvious annual variation as seasons change with Earth’s revolution around the Sun. In March and September 445 

(Fig. 11 a and c), the Sun is overhead near the equator, which then receives most of the solar energy. However, the highest LST 

are observed north and south of the equator, i.e. over the Sahara and Australia. This is due to the equatorial regions’ dense 

coverage with tropical rainforests, e.g. in the Amazon and Congo basins. The lowest LST are observed in the northern 

hemisphere around 45°N and around the Qinghai-Tibet Plateau. In June (Fig. 11 b), the Sun is more overhead in the northern 
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hemisphere and the area with the highest LST is located around 30°N, e.g. over the Sahara Desert, the Arabian Peninsula, and 450 

the Iran-Pamir Plateau. At the same time, LST also increases north of 45°N. In December (Fig. 11 d), the area with the highest 

LST is mainly located over Oceania and parts of South America. It should be noted that the large areas with invalid data, which 

are mainly observed at latitudes larger than 45°, are caused by the strict cloud filtering algorithms, which frequently recognize 

snow and ice as cloud, and polar night when no visible data are available to calculate NDVI (related to LSE). Furthermore, in 

June there are many invalid pixels over southern and southwestern China, which is regularly affected by cloudy weather. 455 

In order to demonstrate the temporal consistency between satellites, Figure 12 shows time series of monthly averaged 

ODC LST from 1981-2000 for the Amazon basin, the Arctic pole, and the Tibetan plateau (areas are shown in Fig. 1): no 

significant orbital drift or inconsistencies can be seen, indicating that the ODC method adequately normalized the retrieved 

AVHRR LST. The larger annual variations over the North pole (Fig. 12 b) are related to the specific variation of solar radiation 

in high latitude areas, i.e. polar day and polar night. For the Amazon basin (Fig. 12 a), the North Arctic pole (Fig. 12 b), and 460 

the Tibetan plateau (Fig. 12 c), the linear regressions (blue lines) show different trends with rates of 0.048±0.024 K/year (p-

value=0.046), 0.087±0.221 K/year (p-value=0.695), and 0.081±0.103 K/year (p-value=0.433), respectively. However, these 

rates may be affected by averaging over large areas and by the frequently missing data due to clouds. Therefore, more in-depth 

analyses, especially with in-situ observations and reanalysis data, are needed (Liu et al., 2008; Rigor et al., 2000; Schneider 

and Hook, 2010; Wu et al., 2013). 465 

5. Data availability 

Global LST products retrieved from NOAA/AVHRR data between 1981 to 2000 are freely available at 

https://doi.org/10.5281/zenodo.3934354 for RF-SWA LST (Ma et al., 2020a); https://doi.org/10.5281/zenodo.3936627 for 

ODC LST (Ma et al., 2020c); https://doi.org/10.5281/zenodo.3936641 for monthly averaged LST (Ma et al., 2020b). The 

dataset is also available at the National Earth System Science Data Center, National Science & Technology Infrastructure of 470 

China (http://www.geodata.cn/thematicView/GLASS.html) and the University of Maryland (http://glass.umd.edu/LST/). 
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6. Conclusion and Outlook 

Three global LST products with a spatial resolution of 0.05°×0.05° have been generated from historical NOAA-7/9/11/14 

AVHRR data (1981-2000). These LST products are obtained in four steps: (1) training and evaluation of 17 AVHRR SWAs, 

(2) integrating nine selected SWAs with the Random Forest method (RF-SWA), (3) correcting the effect of orbital drift by 475 

normalising RF-SWA LST to 14:30 solar time, and (4) validating the retrieved LST against in-situ LST data. 

The 17 trained candidate SWAs generally showed consistent results for the four sensors. The candidate algorithms 

OV1992, FO1996, FOW1996, PP1991, UC1985, and MT2002 had larger SEE than the other SWAs while SO1991 and 

CO1994 were sensitive to uncertainties in LSE and CWVC. Therefore, these SWAs were rejected. The nine remaining SWAs 

were evaluated based on the simulation datasets VAL-S and VAL-T. The results show that the trained nine SWAs have RMSE 480 

ranging between 0.38 K and 0.55 K for VAL-S and between 0.53 K and 0.69 K for VAL-T. Since the atmospheric profiles used 

to simulate and evaluate were chosen to be globally representative, we conclude that these nine SWAs should perform well 

globally. 

The RF ensemble method was then been applied to the nine selected SWAs. Compared to individual SWAs, sample 

averaging, and the BMA ensemble method, the RF ensemble method showed the best accuracy when evaluated against the 485 

simulation datasets. The RF ensemble algorithm yielded an accuracy better than 0.8 K for a maximum LSE uncertainty of 0.02 

and a maximum CWVC uncertainty of 1.0 g/cm-2; the accuracy was still better than 1.10 K when the maximum LSE uncertainty 

increased to 0.04. Based on these results, the algorithm theoretically satisfies the target accuracy requirement of WMO, i.e. an 

accuracy better than 1.0 K at a spatial resolution of 5 km. Furthermore, it is concluded that the RF method outperforms the SA 

and BMA methods and has the greatest potential for improving LST retrieval accuracy. 490 

The RF-SWA LST and ODC LST are validated against in-situ LST from SURFRAD sites and NDBC buoys. Against 

SURFRAD LST, the MBE of RF-SWA LST varies from -1.59 K to 2.71 K and its STD varies from 2.26 K to 2.76 K, which 

is similar to LST products retrieved from other sensors, e.g. MODIS. Against NDBC data from 1981-2000, RF-SWA LST also 

shows good accuracy and precision: with its small MBE (less than 0.10 K) and a STD ranging from 0.84 to 1.05 K, its 

performance against in-situ water temperature is similar to that for the simulated datasets. When validated against the same 495 

SURFRAD LST, the MBE of ODC LST ranges from -1.05 K to 3.01 K, which is similar to the MBE obtained for RF-SWA 
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LST; its STD increases and ranges from 2.34 K to 3.69 K. Overall, it is concluded that both RF-SWA LST and ODC LST 

achieve similar accuracy. 

The generated global AVHRR LST is well suited to meet the needs of many applications and studies, e.g. global climate 

change, radiation budget, and energy balance, mapping of land cover change. However, further research should address the 500 

following points: first, the developed LST products were validated against in-situ LST data from North America, while they 

need to be validated globally, e.g. against AsiaFlux measurements, historical air temperature, reanalysis data, etc. Second, 

ODC LST is obtained at a single overpass time, which required using prior knowledge on temporal parameters. If additional 

information on LST would be available, e.g. from modelling datasets, geostationary satellite datasets, and AVHRR nighttime 

datasets. Third, over some areas, there are many invalid values, e.g. southwest China, which frequently experiences cloudy 505 

and rainy weather. It is expected that future work can utilize recent progress in generating global all-weather LST products 

(Martins et al., 2019; Zhang et al., 20192020) to help integrating multi-source data, e.g. passive microwave brightness 

temperature and reanalysis data. 
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Tables 

Table 1 Details of the selected AVHRR datasets 

Name Satellite Start Date End Date Spatial resolution Temporal resolution 

AVH02C1.465 

AVH13C1.465 

NOAA-07 1981/06/24 1985/02/02 

0.05°×0.05° Daily daytime 
NOAA-09 1985/01/04 1988/11/07 

NOAA-11 1988/11/07 1994/12/31 

NOAA-14 1995/01/01 2000/10/31 

 780 

Table 2 Global LSE ranges determined from JHU spectral emissivity library for AVHRR channels 4 and 5 centred at 11μm and 

12μm 

Satellite and sensor 
LSE at 11 μm 

(channel 4ε11) 

LSE at 12 μm 

(channel 5ε12) 

NOAA-07 AVHRR 0.674 – 0.996 0.692 – 0.991 

NOAA-09 AVHRR 0.665 – 0.996 0.713 – 0.991 

NOAA-11 AVHRR 0.670 – 0.996 0.697 – 0.991 

NOAA-14 AVHRR 0.672 – 0.994 0.661 – 0.991 

 

Table 3 Atmospheric profile datasets and corresponding simulation datasets 

Sources Name 
CWVC 

(g/cm2) 

NSAT 

(K) 

Number 

of 

profiles 

VZA Ts LSE Sample size 

Name of 

dataset 

SeeBor V5.0 
GAPD 0.014 – 7.939 224.25 – 309.05 549 15 10 48 3952800 TRA-G 

ATP-S 0.005 – 4.999 201.96 – 313.50 4761 10 1 1 47610 VAL-S 

TIGR2000 V1.2 ATP-T 0.058 – 8.199 233.85 – 314.16 506 10 1 1 5060 VAL-T 

 785 
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Table 4 SURFRAD sites and NDBC buoys used for LST validation 

ID Site Network Elevation Latitude Longitude Sensor LC type Valid period 

BND Bondville, Illinois SURFRAD 230 40.0519 -88.3731 Eppley PIR Cropland 1995.01-2000.10 

DRA 
Desert Rock, 

Nevada 
SURFRAD 1007 36.6237 -116.0195 Eppley PIR 

Open 

Shrubland 
1998.03-2000.10 

FPK Fort Peck, Montana SURFRAD 634 48.3078 -105.1017 Eppley PIR Grassland 1995.01-2000.09 

GWN 
Goodwin Creek, 

Mississippi 
SURFRAD 98 34.2547 -89.8729 Eppley PIR 

Wooded 

Grassland 
1995.01-2000.10 

PSU 
Penn. State Univ., 

Pennsylvania 
SURFRAD 376 40.7201 -77.9309 Eppley PIR 

Deciduous 

Broadleaf 

Forest 

1998.07-2000.10 

TBL 
Table Mountain, 

Boulder, Colorado 
SURFRAD 1689 40.1250 -105.2368 Eppley PIR Cropland 1995.08-2000.08 

BEP 
46025, 46027, 

46053, 46054 
NDBC 0 

33.763 

– 60.587 

-119.053 

– 146.833 
thermistors Water 1982.04-2000.10 

BGL 

45001, 45002, 

45003, 45004, 

45005, 45006, 

45007, 45008 

NDBC 175 
41.677 

– 48.061 

-82.398 

– -89.793 
thermistors Water 1981.07-2000.10 

BGM 
42007, 42020, 

42035 
NDBC 0 

26.968 

– 30.09 

-88.32 

– -96.693 
thermistors Water 1990.05-2000.10 

BWA 

41008, 41009, 

44007, 44013, 

44025 

NDBC 0 
28.508 

– 43.525 

-70.141 

– -80.868 
thermistors Water 1982.02-2000.10 
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Table 5 Initial candidate Split Window Algorithms (SWAs) 790 

Name Formula Reference 

OV1992 
𝑇𝑠 = 𝐴0 + 𝐴1𝑇11 + 𝐴2(𝑇11 − 𝑇12) 

Ottlé and Vidal-Madjar 

(1992) 

FO1996 𝑇𝑠 = 𝐴0 + 𝐴1𝑇11 + 𝐴2(𝑇11 − 𝑇12) + 𝐴3(𝑇11 − 𝑇12)
2 Francois and Ottle (1996) 

PR1984 𝑇𝑠 = 𝐴0 + 𝐴1𝑇11 + 𝐴2(𝑇11 − 𝑇12) + 𝐴3𝑇11𝜀11 + 𝐴4(𝑇11 − 𝑇12)(1 − 𝜀11)

+ 𝐴5𝑇12∆𝜀 
Price (1984) 

UC1985 
𝑇𝑠 = 𝐴0 + 𝐴1𝑇11 + 𝐴2(𝑇11 − 𝑇12) + 𝐴3(1 − 𝜀) 

Ulivieri and Cannizzaro 

(1985) 

BL-WD 
𝑇𝑠 = 𝐴0 + (𝐴1 + 𝐴2

1 − 𝜀

𝜀
+ 𝐴3

∆𝜀

𝜀2
) (𝑇11 + 𝑇12)

+ (𝐴4 + 𝐴5
1 − 𝜀

𝜀
+ 𝐴6

∆𝜀

𝜀2
) (𝑇11 − 𝑇12) 

Becker and Li (1990a) 

Wan and Dozier (1996) 

PP1991 
𝑇𝑠 = 𝐴0 + 𝐴1

𝑇11 − 𝑇0
𝜀11

+ 𝐴2
𝑇12 − 𝑇0
𝜀12

+ 𝐴3

1 − 𝜀11
𝜀11

+ 𝑇0 Prata and Platt (1991) 

VI1991 
𝑇𝑠 = 𝐴0 + 𝐴1𝑇11 + 𝐴2(𝑇11 − 𝑇12) + 𝐴3

1 − 𝜀

𝜀
+ 𝐴4

∆𝜀

𝜀
 Vidal (1991) 

UL1994 𝑇𝑠 = 𝐴0 + 𝐴1𝑇11 + 𝐴2(𝑇11 − 𝑇12) + 𝐴3(1 − 𝜀) + 𝐴4∆𝜀 Ulivieri et al. (1994) 

WA2014 
𝑇𝑠 = 𝐴0 + (𝐴1 + 𝐴2

1 − 𝜀

𝜀
+ 𝐴3

∆𝜀

𝜀2
) (𝑇11 + 𝑇12)

+ (𝐴4 + 𝐴5
1 − 𝜀

𝜀
+ 𝐴6

∆𝜀

𝜀2
) (𝑇11 − 𝑇12) + 𝐴7(𝑇11 − 𝑇12)

2 

Wan (2014) 

FOW1996 𝑇𝑠 = 𝐴0 + (𝐴1𝑤 + 𝐴2𝑤
2 + 𝐴3)𝑇11 + (𝐴4𝑤 + 𝐴5𝑤

2 + 𝐴6)𝑇12 + 𝐴7𝑤 + 𝐴8𝑤
2 Francois and Ottle (1996) 

SO1991 𝑇𝑠 = 𝐴0 + 𝐴1𝑇11 + [𝐴2𝑤 + 𝐴3 + (𝐴4𝑤 + 𝐴5)(1 − 𝜀11) + (𝐴6𝑤 + 𝐴7)∆𝜀](𝑇11

− 𝑇12) +
1 − 𝜀11
𝜀11

𝑇11[𝐴8𝑤 + 𝐴9(𝐴10𝑤 + 𝐴11)∆𝜀]

−
1 − 𝜀12
𝜀12

𝑇12[𝐴12𝑤 + 𝐴13(𝐴14𝑤 + 𝐴15)∆𝜀] 

Sobrino et al. (1991) 

ULW1994 𝑇𝑠 = 𝐴0 + 𝐴1𝑇11 + (𝐴2𝑤 + 𝐴3)(𝑇11 − 𝑇12) + (𝐴4𝑤 + 𝐴5)(1 − 𝜀)

+ (𝐴6𝑤 + 𝐴7)∆𝜀 
Ulivieri et al. (1994) 

CO1994 𝑇𝑠 = 𝐴0 + 𝐴1𝑇11 + 𝐴2(𝑇11 − 𝑇12) + 𝐴3(𝑇11 − 𝑇12)
2

+ [(𝐴4𝑤 + 𝐴5)𝑇11 + (𝐴6𝑤 + 𝐴7)](1 − 𝜀)

− [(𝐴8𝑤 + 𝐴9)𝑇11 + (𝐴10𝑤 + 𝐴11)]∆𝜀 

Coll et al. (1994) 

SR2000 𝑇𝑠 = 𝐴0 + 𝐴1𝑇11 + 𝐴2(𝑇11 − 𝑇12) + 𝐴3(𝑇11 − 𝑇12)
2 + (𝐴4𝑤 + 𝐴5)(1 − 𝜀)

− (𝐴6𝑤 + 𝐴7)∆𝜀 

Sobrino and Raissouni 

(2000) 

MT2002 
𝑇𝑠 = 𝐴0 + 𝐴1𝑇11 + 𝐴2(𝑇11 − 𝑇12) + 𝐴3(𝑇11 − 𝑇12)

2 + (𝐴4𝑤 + 𝐴5)(1 − 𝜀) 
Ma and Tsukamoto 

(2002) 
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BL1995 𝑇𝑠 = 𝐴0 + 𝐴1𝑤 + [𝐴2 + (𝐴3𝑤𝑐𝑜𝑠𝜃 + 𝐴4)(1 − 𝜀11) − (𝐴5𝑤 + 𝐴6)∆𝜀](𝑇11

+ 𝑇12)

+ [𝐴7 + 𝐴8𝑤 + (𝐴9 + 𝐴10𝑤)(1 − 𝜀11)

− (𝐴11𝑤 + 𝐴12)∆𝜀](𝑇11 − 𝑇12) 

Becker and Li (1995) 

GA2008 𝑇𝑠 = 𝐴0 + 𝐴1𝑇11 + 𝐴2(𝑇11 − 𝑇12) + 𝐴3(𝑇11 − 𝑇12)
2

+ (𝐴4 + 𝐴5𝑤 + 𝐴6𝑤
2)(1 − 𝜀) + (𝐴7 + 𝐴8𝑤)∆𝜀 

Galve et al. (2008) 

Note: subscripts 11 and 12 denote channels centred at approximately 11μm and 12μm, respectively, while T11 and T12 and ε11 

and ε12 are their associated BTs and LSEs; ε= (ε11+ε12)/2, Δε=(ε11-ε12); Ai are coefficients; T0 in PP1991 is 273.15 K; w is 

CWVC and θ is VZA. 
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Table 6 Coefficients for converting bare soil emissivity from ASTER to AVHRR (see section 3.3). 795 

Sensor Channel 

centred at 

a0 a1 a2 a3 a4 a5 RMSE R2 

NOAA-07 
11μm4 0.0000 0.0049 -0.0071 0.0006 0.7749 0.2267 0.0001 0.99 

12μm5 0.3064 -0.1484 0.2676 -0.0657 -0.7622 1.3984 0.0016 0.91 

NOAA-09 
11μm4 0.0005 0.0041 -0.0085 0.0029 0.8228 0.1781 0.0001 0.99 

12μm5 0.2513 -0.1392 0.2572 -0.0757 -0.7070 1.4102 0.0014 0.94 

NOAA-11 
11μm4 0.0007 0.0053 -0.0091 0.0020 0.7895 0.2115 0.0001 0.99 

12μm5 0.2944 -0.1473 0.2666 -0.0699 -0.7404 1.3929 0.0016 0.92 

NOAA-14 
11μm4 0.0013 -0.0083 0.0068 0.0042 0.8045 0.1912 0.0001 0.99 

12μm5 0.3945 -0.1591 0.2756 -0.0467 -0.8340 1.3647 0.0021 0.84 

 

Table 7 Emissivities of different vegetation types, water, and built-up surfaces for AVHRR channel centred at 11μm and 

12μmchannel 4 and channel 5. 

LCTs NO. 

NOAA-07 AVHRR NOAA-09 AVHRR NOAA-11 AVHRR NOAA-14 AVHRR 

11μmcha

nnel 4 

12μmcha

nnel 5 

11μmcha

nnel 4 

12μmcha

nnel 5 

11μmcha

nnel 4 

12μmcha

nnel 5 

11μmcha

nnel 4 

12μmcha

nnel 5 

Evergreen forest 1, 2 0.989  0.988  0.990  0.987  0.989  0.988  0.990  0.987  

Deciduous forest 3, 4 0.974  0.971  0.975  0.970  0.974  0.971  0.975  0.970  

Mixed forest 5 0.982  0.979  0.983  0.979  0.982  0.979  0.983  0.979  

Woodland 6 0.982  0.979  0.983  0.979  0.982  0.979  0.983  0.979  

Wooded grassland 7 0.982  0.979  0.983  0.979  0.982  0.979  0.983  0.979  

Closed shrubland 8 0.982  0.979  0.983  0.979  0.982  0.979  0.983  0.979  

Open shrubland 9 0.982  0.979  0.983  0.979  0.982  0.979  0.983  0.979  

Grassland 10 0.982  0.986  0.983  0.985  0.982  0.986  0.983  0.985  

Cropland 11 0.982  0.986  0.983  0.985  0.982  0.986  0.983  0.985  

Water 0 0.991 0.987 0.991 0.987 0.991 0.987 0.991 0.987 

Built-up surface 12 0.948 0.953 0.948 0.953 0.948 0.953 0.948 0.953 
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Table 8 Variables in the LST files. 

LST Name Variable Description Unit 
Data 

type 
Scale Offset Dimension 

RF-SWA 

(instantaneous) 

LST 

LST Land surface temperature  K Uint16 0.02 - 3600*7200 

View_time 
Time of LST observation 

(UTC) 
hrs Uint8 0.1 - 3600*7200 

View_angle View zenith angle degree Uint8 - - 3600*7200 

QA LST quality flag - Uint8 - - 3600*7200 

Latitude Latitude degree Uint8 - - 3600*1 

Longitude Longitude degree Uint8 - - 7200*1 

ODC LST 

LST 
Land surface temperature at 

14:30 solar time 
K Uint16 0.02 - 3600*7200 

Latitude Latitude degree Uint8 - - 3600*1 

Longitude Longitude degree Uint8 - - 7200*1 

monthly 

averaged LST 

LST 

Land Surface Temperature 

averaged monthly at 14:30 

solar time 

K Uint16 0.02 - 3600*7200 

Count 
the number of available 

pixels in a month 
- Uint8 - - 3600*7200 

Latitude Latitude degree Uint8 - - 3600*1 

Longitude Longitude degree Uint8 - - 7200*1 
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Figures 

 

Figure 1 Spectral response functions of NOAA-07/09/11/14 AVHRR and Terra ASTER. 805 

 

 

Figure 2 Locations of SURFRAD sites and NDBC buoys, and the three sample areas. Blue squares indicate pyrgeometers; Red 

circles indicate contact thermistors. 

 810 
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Figure 3 Estimation of AVHRR LSE from ASTER GED, JHU spectral emissivity library data, LCT, and vegetation cover fraction. 

 

Figure 4. Performance of the nine selected SWAs for simulation datasets VAL-S and VAL-T 

 815 

 

Figure 5. Importance of the nine SWAs for the RF ensemble model 
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Figure 6. SEE values of the three ensemble methods for NOAA-14 AVHRR under different atmospheric and VZA conditions. (a) 820 

Cold-ATM, for Ts–NSAT within [–4, 20] K (top) and [–16, 4] K (centre); (b) Warm-ATM, for Ts–NSAT within [–4, 20] K; (c) Warm-

ATM, for Ts–NSAT within [–16, 4] K (bottom). 
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Figure 7. LST retrieved with the three ensemble methods for NOAA-14 against true LST. Results are based on simulation datasets 

VAL-T and VAL-S with added Gaussian noise (uncertainty levels L1 and L2). 825 

 



54 

 

Figure 8. RF-SWA LST against in-situ LST from SURFRAD sites. 

 

 830 

Figure 9. RF-SWA LST against in-situ LSWT from four NDBC sites (buoy data) and corresponding statistics. 
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Figure 10. Residuals w.r.t. in-situ LST for ODC and RF-SWA LST for six SURFRAD sites (BND, DRA, FPK, GWN, PSU, and TBL). 

Details on the sites are provided in Table 4. 835 

 

 

Figure 11. Monthly averaged ODC LST retrieved from NOAA 14 data for 1999 normalized to 14:30: (a) March; (c) June; (c) 

September; (d) December. 
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Figure 12 Monthly averaged ODC LST time series normalized to 14:30 solar time for 1981-2000 over the Amazon basin (a), the 

North pole (b), and the Tibet plateau (c). 
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