
Jin Ma et al.
majin@std.uestc.edu.cn

Received and published: 28 September 2020

Dear Dr. Andreas Baumann,

Thank you very much for your comments and questions.

Sorry for the missing explanation of ϵ_{11}, ϵ_{12}, and CWVC. In our context, they are the Land Surface Emissivities (LSE) of NOAA AVHRR band centered at 11 μm and 12 μm, and column water vapour content, respectively. The study is a continuation of Zhou et al. (2019b) and, in order to be consistent with our previous study, the uncertainty thresholds were chosen to be similar to Zhou et al. (2019b).

LSEs and CWVC are the main input parameters of the Split-window Algorithm. Therefore, we analyzed the sensitivity of the candidate SWAs to these input parameters. We used the NDVI-threshold method to determine the LSEs of a given pixel. A method comparison performed by Sobrino et al. (2001) yielded root-mean-square errors of 0.020 between the NDVI-threshold method and the Temperature-Independent Spectral Indices method and of 0.025 between the NDVI-threshold method the Thermal Infrared Radiance Ratio Model. Therefore, we increased the uncertainty of the NDVI-threshold method and the maximum uncertainty of LSE to 0.020 for level 1 (L1) and 0.040 for level 2 (L2). CWVC was derived from the Modern-Era Retrospective Analysis for Research and Applications (MERRA) dataset. Validation indicates that CWVC is biased by 0.24 g/cm² in the tropical zone (Rienecker et al., 2011). Considering the typical inhomogeneity within a MERRA grid, we increased the maximum CWVC uncertainty to 1.0 g/cm². This results in two combinations of maximum LSE uncertainty and CWVC uncertainty, which we grouped into two levels: (i) L1: $|\delta \epsilon_{11}|_{max} \leq 0.02$, $|\delta \epsilon_{12}|_{max} \leq 0.02$, and $|\delta CWVC|_{max} \leq 1.0$ g/cm²; (ii) L2: $|\delta \epsilon_{11}|_{max} \leq 0.04$, $|\delta \epsilon_{12}|_{max} \leq 0.04$, and $|\delta CWVC|_{max} \leq 1.0$ g/cm².

References:

Thank you again and Best Regards,

Jin Ma and co-authors.