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Abstract. This dataset contains input parameters for 12,703 locations around the world to parameterize a stochastic weather 

generator called CLIGEN. The parameters are essentially monthly statistics relating to daily precipitation , temperature and 

solar radiation. The dataset is separated into three sub-datasets differentiated by having monthly statistics determined from 30-10 

year, 20-year, and 10-year record lengths. Input parameters related to precipitation were calculated primarily from the NOAA 

GHCN-Daily network. The remaining input parameters were calculated from various sources including global meteorological 

and land-surface models that are informed by remote sensing and other methods. The new CLIGEN dataset includes inputs 

for locations in the U.S., which were compared to a selection of stations from an existing U.S. CLIGEN dataset representing 

2,648 locations. This validation showed reasonable agreement between the two datasets, with the majority of parameters 15 

showing less than 20% discrepancy relative to the existing dataset. For the three new datasets, differentiated by the minimum 

record lengths used for calculations, the validation showed only a small increase in discrepancy going towards shorter record 

lengths, such that the average discrepancy for all parameters was greater by 5% for the 10-year dataset. The new CLIGEN 

dataset has the potential to improve the spatial coverage of analysis for a variety of CLIGEN applications, and reduce the effort 

needed in preparing climate inputs. The dataset is available at the National Agriculture Library Data Commons website at 20 

https://data.nal.usda.gov/dataset/international-climate-benchmarks-and-input-parameters-stochastic-weather-generator-cligen 

and https://doi.org/10.15482/USDA.ADC/1518706 (Fullhart et al., 2020c). 
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1 Introduction 

Essential climate variables defined by the World Meteorological Organization are physical, chemical, or biological 

variables, or groups of linked variables that critically contribute to the characterization of Earth’s climate (Bojinski et al., 35 

2014). Aside from their use in climate studies, basic essential climate variables like precipitation and temperature are important 

for water resource management, drought monitoring, agricultural engineering, and other applications (Hollmann et al., 2013). 

The temporal resolution of climate data varies for these applications. Climate data reduced to monthly statistics may facilitate 

analysis of multi-decadal climate trends and serve as benchmarks of climate normals (Menne et al., 2012; Hollmann et al., 

2013). In this paper, it is discussed how a stochastic weather generator may be parameterized with a new dataset of monthly 40 

climate statistics to simulate daily weather outputs for locations around the world. 

Stochastic weather generators are used for a variety of applications that include model forcing, statistical downscaling 

of climate models, and study of climate change scenarios (Vaghefi and Yu, 2017). CLImate GENerator (CLIGEN) is one such 

point-scale weather generator that produces daily outputs based on input parameters that are essentially observed monthly 

statistics. CLIGEN is regularly used to provide soil erosion models with realistic trends and statistical distributions of weather 45 

parameters (Kinnell 2019). Such models include the Rangeland Hydrology and Erosion Model (RHEM); the Water Erosion 

Prediction Project Model (WEPP); and the Revised Universal Soil Loss Equation 2 Model (RUSLE 2). CLIGEN can generate 

long-term realizations of stationary climate, subsequently enabling long-term erosion simulations, and ensuring that average 

annual erosion rates reach convergence (Baffaut et al., 1996). CLIGEN has been validated in a number of countries, under a 

variety of climates, and for different outputs that include daily precipitation, peak intensity, time-to-peak intensity, storm 50 

duration, and storm frequency. For example, Mehan et al. (2017) showed that the mean of all daily precipitation values was 

within 0.1 mm of observations, and minimum and maximum daily temperatures within 0.1 °C for locations in the western 

Lake Erie basin. A particularly important CLIGEN output is precipitation intensity because of its high model sensitivity in 

erosion and runoff modeling (Nearing et al., 2005). Zhang et al. (2008) validated intensity for the loess plateau of China based 

on distributions of maximum 30-min intensities (I30) that were derived from CLIGEN’s peak intensity. They found that 55 

differences with observed distributions were statistically insignificant, suggesting that rainfall erosivity could be accurately 

estimated using CLIGEN. 

CLIGEN has location-specific input parameters for the United States with dense coverage, but on a global scale, input 

parameters are sparsely available. This is partly because of the labor-intensive nature of determining the parameters, and 

because of numerous data requirements, e.g., high-frequency precipitation measurements. For erosion modeling, the lack of 60 

widely available CLIGEN inputs has hindered progress towards increasing the spatial scale and coverage of analysis that other 

aspects of soil erosion research have brought to the global scale, one example being the development of global maps of annual  

rainfall erosivity (Panagos et al., 2017). Hence, in the interest of increasing the availability of CLIGEN inputs for soil erosion 
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modeling and other applications, we present a dataset of CLIGEN input parameter files. The dataset represents 12,703 locations 

in 68 countries. Besides providing the necessary parameters to run CLIGEN simulations, the dataset also serves to provide 65 

statistics for representing climate normals. The parameters are validated using an existing CLIGEN input dataset for the United 

States, and differences are discussed. 

2 Datasets 

2.1 Overview 

Three sets of CLIGEN v5.3 input files for international locations are presented, differentiated by having monthly 70 

parameters determined from minimums of 30-year, 20-year and 10-year records (note that assumptions were made to handle 

data gaps which are discussed in Sect. 2.2) (Fullhart et al., 2020c). The distribution of locations for the three datasets are in 

Fig. 1, which shows 7,673 parameter sets based on 30-year records (left panel), 2,336 parameter sets based on 20-year records 

(middle panel), and 2,694 parameter sets based on 10-year records (right panel). All locations are unique, with no overlap in 

locations between the three datasets. As may be seen in Fig. 1, there is relatively sparse coverage for South America, Africa  75 

and southern Asia, while North America, Europe and Australia have relatively dense coverage. The spatial density of all 

stations is shown in Fig. 2 so that density may be judged in places were overcrowding of points occurs in Fig. 1, and Table 1 

enumerates the number of stations on each continent. Furthermore, a .kmz map layer is available on the Ag Data Commons 

website (link given in Sect. 4) that can be imported into Google Earth as an interactive map and allows the CLIGEN station 

nearest to an area of interest to be found. 80 

As 30 years is traditionally the minimum record length needed to represent climate, the 30-year dataset may be used 

to characterize climate normals (Bojinski et al., 2014). The 20-year and 10-year datasets, reflecting the most recent monthly 

records available at each location, may be more representative of current climates in some cases considering the non-

stationarity of current and projected climate conditions (IPCC 2013). In soil erosion modeling, a 20-year record has been 

suggested as the minimum length needed to represent rainfall erosivity (Wischmeier and Smith, 1978), which may be estimated 85 

using CLIGEN (Lobo et al., 2013). It should be noted that in non-stationary climates, CLIGEN inputs may be adjusted to 

represent departures from climate normals (Pruski and Nearing 2002; Zhang 2005; Vaghefi and Yu, 2016). For example, 

Zhang et al. (2013) determined how CLIGEN’s precipitation intensity and skewness factors scale with monthly precipitation 

to correct for future changes in precipitation. 

A list of parameters and their definitions that were determined for each input file are given in Table 2. These 90 

parameters are used to model statistical distributions that are randomly sampled by CLIGEN to derive daily outputs. Some 

parameters such as TMAX AV and TMIN AV (refer to Table 2 for definitions) are also typical climate benchmarks. Another 

climate benchmark, average monthly precipitation, may be determined by the following calculation from input parameters:  

 

avg. monthly precip. = 𝑛 ∗ 𝑃𝑎𝑣𝑔 ∗ {𝑃(𝑊|𝐷) / [1 − P(W|W) + 𝑃(𝑊|𝐷)]}     (1) 95 
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where n is the number of calendar days in the month being considered, and Pavg is the MEAN P CLIGEN parameter.  

The various input parameters were derived from an assortment of data sources. In general, there were two main 

categories of sources: (1) ground-based precipitation networks, and (2) land-surface and meteorological models that assimilate 

remote sensing data and ground observations, and which reproduce historical time-series of variables of concern. The sources 100 

of data had various temporal resolutions. In most cases, the data was used to make direct calculation of parameters, but for 

parameters where the available data was insufficient for direct calculation, parameter estimations were done. Each data source 

and the resulting parameters are discussed in detail in the following sections. 

2.2 Precipitation Accumulation 

The primary source of precipitation data is the Global Historical Climate Network-Daily (GHCN-Daily) maintained 105 

by NOAA (Menne et al., 2012). The locations shown in Fig. 1 correspond to those of selected stations from GHCN-Daily. 

These ground-based records enabled direct calculation of five parameters related to precipitation accumulation: MEAN P, S 

DEV P, SKEW P, P(W/W) and P(W/D) (see Table 2 for their definitions). The GHCN-Daily dataset undergoes rigorous quality 

control, both to check for consistency of formatting, and for the integrity of daily values. Values are removed that fail any test 

in a suite of quality tests which identify a variety of problems. Durre et al. (2010) outlined 19 of the quality tests in detail. 110 

Short record lengths and missing data precluded a wide majority (~90%) of GHCN-Daily stations from being used to 

create CLIGEN input parameters. A substantial number of data gaps necessitated an assumption for the calculation of the five 

monthly parameters related to accumulation. To handle gaps, records were queried starting with the most recent year available 

and going backwards in each time-series until the number of months needed could be produced by replacing gaps with existing 

records from earlier in the time-series. Therefore, it was assumed that time-series do not need to be temporally continuous. 115 

This means that records were accepted which did not necessarily come from sequential months, but which had at least 30, 20 

and 10 complete individual months for each calendar month, in order to derive the 30-year, 20-year and 10-year monthly 

statistics, respectively. As a result, record lengths were queried that were often longer than the number of years needed. Also, 

since representing recent data was a priority, 96% of stations included at least some data after the year 2000, and 81% included 

some data after the year 2010. Ranges of years queried for each station are given in an extensive table available on the Ag 120 

Data Commons website (link given in Sect. 4). The ranges are defined by the first and last year with at least one monthly  

record accepted for use. Ranges in excess of the 30, 20 and 10-year minimum record lengths are due to data gaps for respective 

datasets. The longest viable record length (of 30, 20 and 10 years) was used for each station, such that if a 30-year record was 

possible, 10 and 20-year records were not created. Therefore, no stations have multiple datasets created for them. This 

treatment of data gaps complicates the validation of the determined climate benchmarks against other datasets with similar 125 

temporal ranges, and the effect of non-stationarity and long-term climate cycles should also be considered. 
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2.3 Precipitation Intensity 

In soil erosion and runoff modeling, precipitation intensity is a critical factor (Pruski  and Nearing, 2002; Nearing et 

al., 2005). The two parameters related to precipitation intensity, MX.5P and TimePk (refer to Table 2 for definitions), require 

data with high frequency measurements such that hyetographs for a single precipitation event may be resolved. Since GHCN-130 

Daily did not have adequate temporal resolution, MX.5P was estimated from the daily data using a temporal downscaling 

model, and TimePk was assumed to follow representative TimePk values for given Köppen-Geiger climate classifications. The 

development of these procedures is discussed in Fullhart et al. (2020a) and Fullhart et al. (2020b). High resolution data needed 

for these procedures came from the Automated Surface Observing System (ASOS) maintained by NOAA with stations 

distributed across the United States and its territories (Doesken et al., 2002). 135 

In CLIGEN, the MX.5P input parameter is used to parameterize statistical distributions of normalized peak intensity. 

The definition of MX.5P is as follows: 

 

𝑀𝑋. 5𝑃 =
1

𝑘
∑ 𝑚𝑎𝑥𝐼30𝑖

, … , 𝑚𝑎𝑥𝐼30𝑛
𝑛=𝑘
𝑖=1          (2) 

 140 

where k is the number of times (years) a record for a given month exists in the data set, and maxI30 is the maximum 30-minute 

intensity (mm hr-1) for each monthly record (Yu 2005). Since maximum 30-minute intensity is most accurately determined 

from data with as high frequency of measurement as possible, deriving values from data with lower resolutions results in 

underestimation bias, therefore necessitating use of the temporal downscaling model for MX.5P. The downscaling model took 

GHCN-Daily data to estimate the MX.5P value that would be expected if derived from the 1-min data. The downscaling model 145 

is a machine learning regression using Gradient Boosting trained with 609 ASOS stations (Fullhart et al., 2020b). The model 

requires 11 predictor variables shown in Table 3, which are statistics that may be determined from daily data and geographic 

information, some of which are already CLIGEN inputs. While MX.5P from 1-min resolution was estimated by the model, the 

predictor variable with the single most predictive power was MX.5P derived from daily data, which was calculated based on 

an assumption that intensity was constant for the duration of daily intervals (and was therefore grossly underestimated). MEAN 150 

P and S DEV P were also important predictors. The MX.5P values estimated by the model were found to have an RMSE of 

0.148 inches (3.76 mm) (Fullhart et al., 2020b). 

The second intensity parameter, TimePk, represents values at 12 equal intervals along the cumulative distribution 

function of normalized time-to-peak intensity for events recorded at a given station (TimePk is the only input parameter that 

does not represent monthly values, though there are 12 values per station, each representing quantiles of the CDF). For a given 155 

TimePk interval, the definition is as follows: 

 

𝑇𝑖𝑚𝑒𝑃𝑘(𝑖) =
𝑁𝑡𝑝(𝑖)

𝑁𝑡𝑜𝑡
           (3) 
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where TimePk(i) is the TimePk value at interval i; tp is time-to-peak intensity normalized to the event duration; Ntp(i) is the 160 

number of events where tp <= i; and Ntot is the total number of events. Interval, i, ranges between 1/12 and 12/12, and varies 

by increments of 1/12. (Yu 2005). Events were separated by >= 6 hours of no precipitation. 

In Fullhart et al. (2020a), it was shown that using climate average TimePk values for the Köppen-Geiger climate 

classification of a given station resulted in <10% error relative to true TimePk values, suggesting little variation of TimePk 

within climate classifications. In this previous study, a different weather station network was used—the U.S. Climate Reference 165 

Network (USCRN) at 5-min resolution (Diamond et al., 2013). For the new dataset of CLIGEN inputs, the analysis was 

repeated for the climate classifications represented by the 1-min ASOS network, though in some cases, climate classifications 

exclusive to the USCRN were used. Table A1 shows the assumed TimePk values for each climate classification. Of the 30 

highest-order climate classifications, 19 were represented by ASOS and USCRN. The remaining 11 classifications were 

assumed to be the averages of the other TimePk values within respective first-order groups (of which there are 5, where A is 170 

tropical, B is arid, C is temperate, D is cold, and E is polar). As such, the climate classification of each station was used to 

index the assumed TimePk values used in the CLIGEN input files. The climate classification of each station was determined 

based on the Köppen-Geiger climate map of Beck et al. (2018) representing the 1980-2016 time period at 0.083° resolution. 

2.4 Temperature 

The 5 temperature-related parameters, TMAX AV, TMIN AV, SD TMAX, SD TMIN and DEW PT (refer to Table 2 for 175 

definitions), have straight-forward calculations. However, the required data were only available for a subset of GHCN-Daily 

stations. To avoid limiting the analysis to this subset of stations, these data were instead derived from the model outputs of the 

ERA5 global meteorological/climate analysis (“ECMWF ReAnalysis”, with ERA5 being the fifth major global reanalysis). 

The ERA5 analysis was created by The European Centre for Medium-Range Weather Forecasts and the Copernicus Climate 

Change Service (Balsamo et al., 2018; Hersbach et al., 2020). Google Earth Engine was used to download maximum and 180 

minimum temperatures at daily resolution, and average dew point temperatures at monthly resolution from a grid with 0.25° 

x 0.25° spatial resolution. (see Table A3 for more information). Values obtained from the grid were unchanged, without any 

weighting based on proximity to neighbouring cells or other forms of interpolation. The monthly dew point temperature was 

a convenient aggregation of data equivalent to the DEW PT CLIGEN parameter, while daily resolution was needed for the 

remaining CLIGEN temperature parameters to determine both the average and standard deviation of daily max/min 185 

temperatures. Use of the ERA 5 model also allowed continuous time-series to be obtained without gaps for the 30-year, 20-

year and 10-year datasets (from 1990 through 2019, 2000 through 2019, and 2010 through 2019, respectively). 

2.5 Solar Radiation 

Incoming shortwave radiation is represented in CLIGEN by the SOL.RAD and SD RAD parameters (refer to Table 2 

for definitions) that require solar radiation with units of langley/d where 1 langley = 41,840 J/m². These parameters were 190 

calculated with relatively high frequency (3-hr) estimates that captured daily and day-to-day variability of radiation taken from 
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the Global Land Data Assimilation System model (GLDAS) produced by NASA (Fang et al., 2009) at 0.25° x 0.25° resolution. 

(see Table A3 for more information). The outputs of the reprocessed GLDAS 2.0 and GLDAS 2.1 versions were used and 

downloaded from Google Earth Engine (again, no weighting of values was done based on proximity to neighbouring cells). 

The most recent data available was used to create continuous time-series with temporal ranges being the same as those for the 195 

temperature parameters. For an individual day, incoming solar radiation was modeled by fitting a gaussian curve through the 

3-hr time-averaged data points. Doing this avoided underestimation caused by time-averaging, which would have occurred by 

considering the 3-hr datapoints alone. Also, if the 3-hr intervals did not coincide with the time of peak intensity, comparison 

to ground observations from Ameriflux data (discussed more later) showed that the gaussian curve tended to better approximate 

peak radiation than the greatest 3-hr datapoint. 200 

A number of stations that existed on coasts or on small islands, particularly in the Pacific Ocean, did not have solar 

radiation data coverage for their locations because the GLDAS product covers only locations beyond a certain coastal 

proximity. In total, 390 stations had this problem. For these stations, data from the nearest station with existing data was used. 

300 of the stations with missing data were within 100 km of a station with data. Some proximities, however, were much further, 

with islands in the south Pacific being examples. Similarly, some locations in the existing U.S. CLIGEN input dataset used for 205 

validation created by Srivastava et al. (2019) did not have observed solar radiation, and their parameter values were taken from 

the nearest station with available data, which in some cases were at considerable distances, potentially leading to poor 

validation in Sect. 3. 

To ensure locations are matched for validation, a separate validation from that of Sect. 3 was done for solar radiation 

parameters. In this, GLDAS output was compared to 10 ground-based Ameriflux stations that monitor ecosystem fluxes 210 

including solar radiation (Hargrove et al., 2003). The Ameriflux network has stations distributed across the North and South 

American continents, and the 10 stations were selected from a range of latitudes and climates as a representation of global 

variability. From these stations, a single year was selected that had the fewest data gaps. Comparison to corresponding GLDAS 

outputs showed reasonable agreement with an RMSE of 36.6 langley/d and with GLDAS being overestimated by <1% for 

monthly values of SOL.RAD. Error was more evident for SD RAD suggesting that GLDAS was not optimum for capturing the 215 

day-to-day variability of radiation. The RMSE for SD RAD was 38.6 langley/d with GLDAS being underestimated by 24.1%. 

2.5 Wind 

Very few applications of CLIGEN have used wind data in the past, perhaps the only one being the blowing snow 

component in WEPP (Nicks et al., 1989). CLIGEN inputs require high-frequency measurement of wind speed (m/s) and 

azimuthal wind direction. This includes mean, standard deviation, and skewness of daily wind speed on a monthly basis; and 220 

determinations of the average daily percentage of time with wind directions coming from the 4 cardinal directions, 4 

intercardinal directions, and the 8 sub-divisions of these (e.g. NNE, ENE), on a monthly basis. However, wind data was not 

obtainable for the locations corresponding to the GHCN-Daily stations with the level of detail needed for creating CLIGEN 

input files. The solution to this was to use the “International Conversion Programs” tool (availability given in Sect. 4), which 
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takes the known daily precipitation accumulation and temperature parameters from an international station of interest and finds 225 

the existing station in the U.S. CLIGEN dataset with the most similar climate, allowing its wind parameters to be used (and 

other remaining parameters, if needed). Information regarding the locations from where wind parameters were taken from are 

given at the bottom of each input file. 

3 Validation 

Each parameter except for the wind parameters were compared to an existing dataset for the U.S. and its territories 230 

created in 2015 using NOAA NCDC DSI-3260 data at 15-min resolution and consisting of 40-year records for 2,648 stations 

(Srivastava et al., 2019). This limited the validation to only stations for the U.S., and from those, only the new stations within 

10 km of an existing CLIGEN station were accepted. This resulted in the validation of 61 stations for the 30-year dataset, 53 

stations for the 20-year dataset, and 204 stations for the 10-year dataset. For each of the validated parameters, RMSE, percent 

bias, and percent error were determined, where it was assumed that values from the existing U.S. dataset were the true values 235 

(performance metric definitions are given in Table A2). A summary of the validation is seen in Table 4.  Inconsistencies 

between the two datasets were attributed to: differences of data sources, differences in temporal resolution of data used, 

differences in record lengths, and whether data was interpolated or taken from nearby stations. 

Overall, reasonable agreement was found, with PERROR being below 20% for the majority of parameters. As 

expected, record length is a factor in the comparison to the 40-year U.S. dataset. Percent error increased slightly on average 240 

(~5%) with decreasing record length, going from the 30-year to 10-year dataset. Though a small increase, this difference likely 

reflected the potential for capturing short-term climate dynamics by the 20-year and 10-year datasets. For the 5 parameters 

related to daily accumulation, the parameter with the highest error was SKEW P, with error up to 30%. The sign of PBIAS for 

SKEW P was consistently positive suggesting that the GHCN-Daily data showed less skewness towards high daily 

accumulation. 245 

Error was also considerable for the two parameters related to precipitation intensity, MX.5P and TimePk. The 

discrepancies were due to multiple issues including the fact that the DSI-3260 dataset uses 15-min resolution compared to the 

1-min resolution that the MX.5P downscaling model and TimePk distributions were based on. As mentioned, the downscaling 

model was previously shown to produce an average error of 0.148 inches (3.76 mm) (Fullhart et al., 2020b). In the comparison 

to the DSI-3260 dataset, downscaled MX.5P values resulted in discrepancy of up to 37% error for MX.5P. Interval values for 250 

TimePk distributions were generally smaller in magnitude and approached unity later in the distribution, meaning that the peak 

intensity of storms generally happened later in their duration than in the DSI-3260 data. This may be expected given the 

relatively coarse 15-min resolution of DSI-3260, and particularly when considering shorter storms, such as convective storms, 

the apparent peak intensity may have considerable uncertainty. 

Temperature parameters were generally in agreement with no consistent estimation bias, except for DEW PT, which 255 

was slightly underestimated on average by up to 6%. Errors for SOL.RAD were up to 6%, with a slight overestimation bias of 
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up to 3%. While SOL.RAD was in good agreement, SD SOL indicated up to 193% more day-to-day variability of solar radiation. 

The GLDAS data for solar radiation generally agreed better with the variability of the Ameriflux network that was discussed 

in Sect. 2.5, with GLDAS showing 24% less variability than Ameriflux. Given the reasonable agreement between GLDAS 

and Ameriflux, and good agreement of SOL.RAD with the DSI-3260 data, the substantial underestimation bias of SD SOL may 260 

be the result of errors in the existing U.S. inputs. 

While the U.S. represents a wide range of climate types, limitation of the validation to only the U.S. is a hinderance 

to quality assurance of the new dataset. However, each of the source data have their own quality assurances prior to going to 

product. Particularly for the ERA5 and GLDAS global products, biases are documented and are known to happen on regional 

and continental spatial scales, and may relate to extremes in temperature, moisture, geographic location, etc. (Zhou et al., 2013; 265 

Ji et al., 2015; Urraca et al., 2018; Wang et al., 2019). Therefore, the uncertainty of each CLIGEN parameter also depends on 

the particular source data. 

4 Data Availability 

The new international CLIGEN input dataset is available at the National Agriculture Library Online Repository—Ag 

Data Commons—at https://data.nal.usda.gov/dataset/international-climate-benchmarks-and-input-parameters-stochastic-270 

weather-generator-cligen (Fullhart et al., 2020c; DOI: https://doi.org/10.15482/USDA.ADC/1518706) and is separated into 

three datasets according to 30-year, 20-year and 10-year record lengths. To run the CLIGEN inputs, CLIGEN may be 

downloaded at https://www.ars.usda.gov/midwest-area/west-lafayette-in/national-soil-erosion-research/docs/wepp/cligen/. 

Additional resources and materials are available at this website including the “International Conversion Programs” tool. The 

international CLIGEN dataset will also be added to the web interface for running the hillslope-scale erosion and runoff model, 275 

RHEM, available at https://apps.tucson.ars.ag.gov/rhem/. The station of interest will be selectable in the input parameters panel 

under “Climate Station” and under “International”. 

5 Conclusions 

Validation of CLIGEN inputs in the new international dataset showed reasonable agreement with parameter values 

for existing U.S. CLIGEN inputs. The 30-year, 20-year and 10-year datasets are generally in close agreement, and in some 280 

cases, the methods used to create this dataset may offer an improvement over existing CLIGEN input files. However, issues 

arise due to the assumptions that were taken for addressing pervasive data gaps in NOAA-GHCN records. Validation of the 

climate benchmarks by comparison to other records is complicated by use of discontinuous time-series, and uncertainty is 

higher in places with non-stationary climates or long-term cycles. 

The new dataset of CLIGEN inputs allows the CLIGEN weather generator to be more readily applied to its various 285 

applications. The input files also serve to represent climate benchmarks for a selection of variables that are generally 
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unobtainable from a single source. The coverage of stations is particularly dense in Europe, Australia, and North America, and 

offers the potential to improve the spatial analysis of processes in different fields that require climate records. For a number of 

CLIGEN’s applications, the production of climate data is a secondary concern, but is often a labor-intensive task. The use of 

this dataset may allow researchers to put more effort and resources towards their primary study or area of focus without needing 290 

to address the production of climate inputs. 
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Appendix A 

Table A1: TimePk distribution interval values for global Köppen-Geiger climate classifications. 

Interval 1/12 2/12 3/12 4/12 5/12 6/12 7/12 8/12 9/12 10/12 11/12 12/12 

Af 0.22 0.30 0.36 0.44 0.50 0.58 0.63 0.70 0.77 0.83 0.90 1.00 

Am 0.25 0.36 0.43 0.51 0.58 0.66 0.73 0.79 0.84 0.90 0.94 1.00 

Aw 0.27 0.39 0.48 0.56 0.63 0.71 0.77 0.81 0.86 0.90 0.95 1.00 

Bwh 0.16 0.26 0.35 0.43 0.52 0.61 0.69 0.76 0.84 0.90 0.95 1.00 

Bwk 0.15 0.26 0.36 0.45 0.53 0.62 0.69 0.76 0.83 0.89 0.96 1.00 

BSh 0.16 0.27 0.36 0.46 0.54 0.64 0.71 0.77 0.83 0.89 0.95 1.00 

BSk 0.12 0.22 0.32 0.40 0.48 0.57 0.65 0.74 0.82 0.89 0.96 1.00 

Csa 0.07 0.17 0.26 0.36 0.45 0.54 0.62 0.70 0.78 0.86 0.94 1.00 

Csb 0.07 0.17 0.25 0.34 0.43 0.52 0.61 0.69 0.77 0.85 0.94 1.00 

Csc 0.07 0.17 0.26 0.35 0.44 0.53 0.61 0.70 0.78 0.86 0.94 1.00 

Cwa 0.10 0.20 0.29 0.38 0.46 0.55 0.64 0.72 0.80 0.87 0.94 1.00 

Cwb 0.10 0.20 0.29 0.38 0.46 0.55 0.64 0.72 0.80 0.87 0.94 1.00 

Cwc 0.10 0.20 0.29 0.38 0.46 0.55 0.64 0.72 0.80 0.87 0.94 1.00 

Cfa 0.20 0.31 0.40 0.48 0.56 0.65 0.72 0.78 0.84 0.90 0.96 1.00 

Cfb 0.07 0.15 0.24 0.32 0.40 0.51 0.60 0.69 0.78 0.86 0.94 1.00 

Cfc 0.13 0.23 0.32 0.40 0.48 0.58 0.66 0.74 0.81 0.88 0.95 1.00 

Dsa 0.17 0.27 0.37 0.45 0.53 0.61 0.68 0.75 0.82 0.88 0.94 1.00 

Dsb 0.08 0.17 0.25 0.34 0.42 0.52 0.60 0.69 0.78 0.85 0.93 1.00 

Dsc 0.27 0.38 0.48 0.56 0.64 0.70 0.76 0.81 0.87 0.91 0.95 1.00 

Dsd 0.17 0.27 0.37 0.45 0.53 0.61 0.68 0.75 0.82 0.88 0.94 1.00 

Dwa 0.16 0.29 0.40 0.49 0.58 0.67 0.74 0.80 0.86 0.91 0.96 1.00 

Dwb 0.16 0.27 0.37 0.46 0.55 0.63 0.70 0.78 0.83 0.90 0.95 1.00 

Dwc 0.16 0.28 0.38 0.48 0.56 0.65 0.72 0.79 0.85 0.91 0.96 1.00 

Dwd 0.16 0.28 0.38 0.48 0.56 0.65 0.72 0.79 0.85 0.91 0.96 1.00 

Dfa 0.15 0.26 0.35 0.45 0.53 0.62 0.70 0.77 0.84 0.90 0.96 1.00 

Dfb 0.13 0.23 0.32 0.41 0.50 0.59 0.67 0.75 0.83 0.89 0.95 1.00 

Dfc 0.25 0.36 0.45 0.53 0.60 0.67 0.72 0.79 0.85 0.90 0.95 1.00 

Dfd 0.18 0.28 0.37 0.46 0.54 0.63 0.70 0.77 0.84 0.90 0.95 1.00 

ET 0.28 0.41 0.51 0.58 0.66 0.74 0.78 0.82 0.87 0.91 0.94 1.00 
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EF 0.28 0.41 0.51 0.58 0.66 0.74 0.78 0.82 0.87 0.91 0.94 1.00 
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Table A2: Statistical measures of performance. Observed (O) and predicted (P) values are compared by each metric. 

Performance metric Abbreviation  Equation 

Root mean square error RMSE 

√
1

𝑛
∑(𝑂 − 𝑃)2 

Percent Bias PBIAS 
[
∑(𝑂 − 𝑃)

∑ 𝑂
] 𝑥100 

Percent Error PERROR 1

𝑛
[∑

𝑎𝑏𝑠(𝑂 − 𝑃)

𝑂
] 𝑥100 
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Table A3: Google Earth Engine climate model sources. 

Climate Model Description Website Version Date 

Accessed 

Original 

Source 

ERA5 Daily 

aggregates 

 

https://developers.google.com/earth-

engine/datasets/catalog/ECMWF_ERA5_DAILY 

v5.0 (IFS cycle 

41r2) 

18/2/2020 C3S/ECMWF 

ERA5 Monthly 

aggregates 

 

https://developers.google.com/earth-

engine/datasets/catalog/ECMWF_ERA5_MONTHLY 

v5.0 (IFS cycle 

41r2) 

13/2/2020 C3S/ECMWF 

GLDAS 2.0 

Reprocessed 

https://developers.google.com/earth-

engine/datasets/catalog/NASA_GLDAS_V20_NOAH_G025_T3H 

v2.0 21/3/2020 NASA 

GLDAS 2.1 https://developers.google.com/earth-

engine/datasets/catalog/NASA_GLDAS_V021_NOAH_G025_T3H 

v2.1 21/3/2020 NASA 
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 455 

Table 1: Station counts for continent/region and each of the 30-year, 20-year and 10-year datasets. Oceania is the region represented 

by south Pacific islands and extending north to Hawaii. 

Station 

Counts 

North 

America 

South 

America 

Europe Africa Asia Australia Oceania Antarctica Total 

30-year 1,860 170 2,089 9 118 3,423 4 0 7,673 

20-year 996 112 374 7 11 834 2 0 2,336 

10-year 1,332 8 413 6 52 864 19 0 2,694 

Total 4,188 290 2,876 22 181 5,121 25 0 12,703 
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Table 2: A list of CLIGEN input parameters determined for each station. The temporal resolution column indicates the resolution 

of the data used to derive each parameter. Parameters that require sub-daily resolutions at various frequency of measurements are 480 

denoted with “High-Res” in the temporal resolution column. Sub-daily resolution data was not available for High-Res. parameters, 

and it is discussed how their values were estimated. 

Variable (12 values per station) Label Unit Temporal 

Resolution 

Monthly average of daily precipitation for wet days MEAN P inches Daily 

Monthly standard deviation of daily precipitation for wet 

days 

S DEV P inches Daily 

Monthly skewness of daily precipitation for wet days SKEW P - Daily 

Monthly transition probability of a wet day given a wet 

day 

P(W/W) - Daily 

Monthly transition probability of a wet day given a dry 

day 

P(W/D) - Daily 

Monthly mean maximum 30-min precipitation intensity MX.5P inches/hr High-Res. 

Cumulative distribution function interval values of 

normalized time-to-peak intensity 

TimePk - High-Res. 

Monthly mean of daily maximum temperatures TMAX AV °F Daily 

Monthly mean of daily minimum temperatures TMIN AV °F Daily 

Monthly standard deviation of daily maximum 

temperatures 

SD TMAX °F Daily 

Monthly standard deviation of daily minimum 

temperatures 

SD TMIN °F Daily 

Monthly mean dewpoint DEW PT °F Monthly 

Monthly mean of daily solar radiation SOL.RAD langley/d 3-hourly 

Monthly standard deviation of daily solar radiation SD SOL langley/d 3-hourly 

Monthly averages of wind speed and direction WIND (Various) - High-Res. 

 

 

 485 

 

 

 



 

19 

 

Table 3: The 11 predictor variables for the Gradient Boosting regression model used to temporally downscale MX.5P from GHCN-

Daily data. Units were changed to metric for the purposes of the downscaling model. 490 

Variable Label Unit Values per 

station 

Monthly mean maximum 30-min precipitation intensity MX.5P mm/hr 12 

Modified Fournier index Fournier Coeff mm 1 

Monthly average of daily precipitation for wet days MEAN P mm 12 

Monthly standard deviation of daily precipitation for wet 

days 

S DEV P mm 12 

Monthly skewness of daily precipitation for wet days SKEW P - 12 

Monthly transition probability of a wet day given a wet 

day 

P(W/W) - 12 

Monthly transition probability of a wet day given a dry 

day 

P(W/D) - 12 

Station elevation Elev m 1 

Station latitude Lat deg. 1 

Station coastal proximity Coastal Prox km 1 

Calendar month (categorical variable) Month - 12 
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Table 4: Summary of the validation of parameters to the 2015 U.S. CLIGEN dataset created by Srivastava et al. (2019). 

 30-year dataset 20-year dataset 10-year dataset 

 RMSE PBIAS PERROR RMSE PBIAS PERROR RMSE PBIAS PERROR 

MEAN P 0.08 -12.16 19.95 0.07 1.18 14.76 0.08 1.13 21.17 

S DEV P 0.10 -2.70 15.06 0.10 2.92 16.45 0.14 1.08 24.17 

SKEW  P 1.35 8.05 20.15 1.11 7.13 22.93 1.29 15.98 30.36 

P(W/W) 0.07 2.48 10.35 0.06 -1.35 10.32 0.09 -3.70 16.66 

P(W/D) 0.05 -11.80 19.20 0.06 -9.06 25.32 0.06 -14.27 29.25 

TMAX AV 3.49 3.18 3.97 5.43 -0.41 6.77 3.75 0.66 4.28 

TMIN AV 4.56 -8.55 15.79 6.23 -10.62 13.67 4.76 -7.93 11.33 

SD TMAX 1.07 7.93 9.01 1.37 11.56 13.28 1.30 9.62 11.85 

SD TMIN 1.53 6.87 11.34 1.22 7.80 13.01 1.04 4.45 10.98 

SOL.RAD 22.55 -1.08 5.85 29.10 -2.90 5.87 26.91 -2.75 5.65 

SD SOL 51.85 -135.54 146.33 68.09 -193.42 202.42 63.04 -173.21 181.51 

MX .5 P 0.23 24.91 29.91 0.27 28.36 31.90 0.31 33.25 37.28 

DEW PT 3.66 5.62 8.94 2.00 0.45 5.14 2.56 0.48 5.85 

Time Pk 0.33 30.92 33.43 0.30 28.33 31.08 0.30 28.77 31.66 
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Figure 1: Coverage of the three international CLIGEN input datasets according to the record length used to produce the monthly 520 

input parameters. The locations correspond to those of the GHCN-Daily stations accepted for use. 
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Figure 2: Station density map representing all stations combined. The cell size is defined by lat./long. degree lines (1° x 1°). Densities 

are calculated inside of circular neighbourhoods with radii of three degrees from the center of each cell. 
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