
 

 

Summary of Changes: 
Revisions made to address the referee comments improved the clarity and accuracy of the paper. A 

response is given below to each comment where a response was required. Minimal changes were made 

to the paper beyond what was done to address the comments. A revised version of the dataset is now 

available at Ag Data Commons. The revision to the dataset corrected two metadata issues: first, as the 

referees point out, the record length (10, 20 or 30 years) was not correctly shown in the headings of the 

10 and 20-year .par files, and this is now corrected; second, improvements were made to the formatting 

of locality names in the headings of the .par files. There were also changes made to correct inconsistencies 

in MX.5P and transition probability parameter values for very dry climates or months. Some values were 

predicted be smaller than 10-3 (or two decimal places), which is the minimum value allowed by CLIGEN, 

and were therefore set to zero. This sometimes corresponded with non-zero MEAN P values. If this was 

the case, the MX.5P or transition probability was set to the minimum allowed value of 10-3. This had a 

small effect on the validation metrics in Table 4. 

 

RC1 Key Points: 
 

RC1 #1) While data sources for individual weather variables were described in reasonable details. 

What is missing is the table summarizing the spatial resolution for each. 

Since the precipitation parameters were point-scale (or site-specific), spatial resolution is relevant only 

for the temperature and solar radiation parameters derived from gridded products. The climate models 

that were used, ERA and GLDAS, both have 0.25° x 0.25° resolution, and this is now stated in the text 

instead of in a table. 

RC1 #2) How were temperature parameter values prepared for individual sites? Were gridded 

temp data mapped to individual precipitation sites through spatial interpretation techniques? The 

same applies to solar radiation data. 

This relates to the previous comment. In the same revision to include the spatial resolution of the climate 

models, it is now stated that no weighting of values based on proximity of a station to neighbouring cells, 

or other forms of interpolation, is done. The 0.25° resolution translates to ~28 km resolution at the equator, 

which is reasonable resolution for this application. Using the original values from the models also enables 

easier interpretation of existing uncertainty information for respective models. 



 

 

RC1 #3) Recognition of the issue with record length is useful, but not critical. In CLIGEN 

parameter file, the number of years of data is recorded. I would leave at that, Caveat Emptor! 

We feel that the record length issue is worth explaining in the text because it may complicate the 

interpretation of the data and any future validation that is done through comparison to other climate 

records, particularly for non-stationary climates or climates with long-term cycles. 

RC1 #4) I have had a close look at the parameter files generated. For 20-year data set. The years 

used are still 30. 

This metadata issue is now corrected in the revised dataset. 

RC1 #5) Fig.1 Why are there more sites with 30-year data than those with 10? Any station with 30 

year would also have 10 years of data? 

Correct, any station with 30 years of data would be viable for the 10-year dataset. The longest possible 

record length (of 10, 20, or 30 years) was used for a given site, such that if a 30-year dataset was possible, 

a 10 and 20-year dataset were not made in addition. So, no site had multiple datasets created for it. This 

is now stated in the text, and this partly explains why the 30-year dataset has the most locations. It is also 

the case that many NOAA-GHCN sites included a long backlog of data at the time of being added to the 

network, for which 30-year datasets were possible, while the 10-year datasets tended to come from newer 

installations without a long backlog. 

RC1 #6) (Equation) (1) ’n days’ ’MEAN P’ should not be used as variables in the equation. 

Equations need to be readable, clear, precise. 

In the context of the equation, variable names for n days and MEAN P were changed to shorter names 

with no spaces, making the equation easier to read. The identities of the new variable names are explained 

in the text under the equation. 

RC1 #7) (Equation) (2) The equation is wrong, once the summation sign is used. there is no need 

for all other terms. That is what the summation is for. 

Correct, the “+…+” inside of the summation operator should not be shown. This was meant to be “,…,” 

which clarifies what the set of terms is being summed. 

RC1 #8) (Equation) (3) Again ’Time Pk(i)’, any variables with a space ’ ’ in them can lead to 

confusion One bracket is missing from the equation in the third row in Table A2. If there is space 

in the variable name, use ’ ’ for the variable. 

The space was removed from the Time Pk variable name in the equation and where it is used in sections 

of the text. The space was previously used to be consistent with what is shown in CLIGEN .par files, but 

the connection between the two labels is evident and shouldn’t lead to confusion. Several of the CLIGEN 



 

 

parameter names have spaces in them but are not used frequently in the text like Time Pk is. So, spaces 

in the other names were kept. Also, the percent bias equation was missing a bracket around (O – P), which 

is now fixed. 

 

RC2 Key Points: 

 

RC2 #1) In lines 83-84 and 115-118 slightly mismatching statement are proposed. Using complete 

months in non continuous series could drive to incompatibilities in temporal comparison of the 

proposed parameters? 

The statement on 83-84 does imply continuous records should be used. The handling of the pervasive 

data gaps in NOAA-GHCN records becomes a source of error, and complicates validation using other 

datasets with the same temporal ranges. A stronger statement is made about the uncertainty from using 

non-continuous records with mention of the uncertainty associated with non-stationary climates, long-

term climate cycles, and the complication that arises when comparing to other climate data. 

RC2 #2) Overplotting occurs in figure 1, maybe a thematic raster "distance from nearest location" 

can enhance the information provided? Furthermore details on spatial coverage of the proposed 

parameters could be provided. 

A new figure (Fig. 2) was added that shows a raster of station density. This allows the reader to see the 

relative density of stations in places where overcrowding makes this impossible. 

RC2 #3) The collection and harmonization of international climate data encounters notorious 

obstacles, their once for all overcome falls in the goals of this work. The methods used are soundly 

reported, but -I miss an explicit criterion for gridded model temperature values: radiation is in 

ERA5 dataset. Why use gridded temperature and not radiation? -About SD RAD, the 2.6 closes on 

GLDAS-Ameriflux comparison, the proposed global parameters rely on the continue model of 

GLDAS 3h values? 

The temperature and solar radiation parameters come from ERA and GLDAS gridded climate models, 

respectively, and this is now made more explicit in the text. A lack of clarity about this may have been 

leading to a misunderstanding originating from the discussion of the use of point-scale Ameriflux ground 

observations for validation that solar radiation parameters did not come from a gridded product. So, 

answering the question in the comment, it is correct that the parameters rely on the GLDAS 3h values. 

RC2 #4) I would expect 30y points to be fulfilling the requirements of 10y ones, it doesn’t look so in 

figure 1. 



 

 

The same question was addressed in response to RC1 #5. 

RC2 #5) May the definition of time-series at line 11 be improved using "maximum" or "available" 

rather than "minimum"? 

“Minimum” was changed to “available”. Use of “available” in the context of record length may suggest 

that some screening or filtering was done, which is the case. 

RC2 #6) Somewhere in the text CLIGEN parameters are referred with no introduction (ie. lines 92, 

236), their presentation would get the text easier to read. 

Table 2 gives all parameter definitions, so rather than restating their definitions in the text, reference to 

Table 2 is made at the beginning of each of the major methods sections where the respective parameters 

being calculated are generally listed. 
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Abstract. This dataset contains input parameters for 12,703 locations around the world to parameterize a stochastic weather 7 

generator called CLIGEN. The parameters are essentially monthly statistics relating to daily precipitation , temperature and 8 

solar radiation. The dataset is separated into three sub-datasets differentiated by having monthly statistics determined from 30-9 

year, 20-year, and 10-year minimum record lengths. Input parameters related to precipitation were calculated primarily from 10 

the NOAA GHCN-Daily network. The remaining input parameters were calculated from various sources including global 11 

meteorological and land-surface models that are informed by remote sensing and other methods. The new CLIGEN dataset 12 

includes inputs for locations in the U.S., which were compared to a selection of stations from an existing U.S. CLIGEN dataset 13 

representing 2,648 locations. This validation showed reasonable agreement between the two datasets, with the majority of 14 

parameters showing less than 20% discrepancy relative to the existing dataset. For the three new datasets, differentiated by the 15 

minimum record lengths used for calculations, the validation showed only a small increase in discrepancy going towards 16 

shorter record lengths, such that the average discrepancy for all parameters was greater by 5% for the 10-year dataset. The new 17 

CLIGEN dataset has the potential to improve the spatial coverage of analysis for a variety of CLIGEN applications, and reduce 18 

the effort needed in preparing climate inputs. The dataset is available at the National Agriculture Library Data Commons 19 

website at https://data.nal.usda.gov/dataset/international-climate-benchmarks-and-input-parameters-stochastic-weather-20 

generator-cligen and https://doi.org/10.15482/USDA.ADC/1518706 (Fullhart et al., 2020c). 21 
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1 Introduction 29 

Essential climate variables defined by the World Meteorological Organization are physical, chemical, or biological 30 

variables, or groups of linked variables that critically contribute to the characterization of Earth’s climate (Bojinski et al., 31 

2014). Aside from their use in climate studies, basic essential climate variables like precipitation and temperature are important 32 

for water resource management, drought monitoring, agricultural engineering, and other applications (Hollmann et al., 2013). 33 

The temporal resolution of climate data varies for these applications. Climate data reduced to monthly statistics may facilitate 34 

analysis of multi-decadal climate trends and serve as benchmarks of climate normals (Menne et al., 2012; Hollmann et al., 35 

2013). In this paper, it is discussed how a stochastic weather generator may be parameterized with a new dataset of monthly 36 

climate statistics to simulate daily weather outputs for locations around the world. 37 

Stochastic weather generators are used for a variety of applications that include model forcing, statistical downscaling 38 

of climate models, and study of climate change scenarios (Vaghefi and Yu, 2017). CLImate GENerator (CLIGEN) is one such 39 

point-scale weather generator that produces daily outputs based on input parameters that are essentially observed monthly 40 

statistics. CLIGEN is regularly used to provide soil erosion models with realistic trends and statistical distributions of weather 41 

parameters (Kinnell 2019). Such models include the Rangeland Hydrology and Erosion Model (RHEM); the Water Erosion 42 

Prediction Project Model (WEPP); and the Revised Universal Soil Loss Equation 2 Model (RUSLE 2). CLIGEN can generate 43 

long-term realizations of stationary climate, subsequently enabling long-term erosion simulations, and ensuring that average 44 

annual erosion rates reach convergence (Baffaut et al., 1996). CLIGEN has been validated in a number of countries, under a 45 

variety of climates, and for different outputs that include daily precipitation, peak intensity, time-to-peak intensity, storm 46 

duration, and storm frequency. For example, Mehan et al. (2017) showed that the mean of all daily precipitation values was 47 

within 0.1 mm of observations, and minimum and maximum daily temperatures within 0.1 °C for locations in the western 48 

Lake Erie basin. A particularly important CLIGEN output is precipitation intensity because of its high model sensitivity in 49 

erosion and runoff modeling (Nearing et al., 2005). Zhang et al. (2008) validated intensity for the loess plateau of China based 50 

on distributions of maximum 30-min intensities (I30) that were derived from CLIGEN’s peak intensity. They found that 51 

differences with observed distributions were statistically insignificant, suggesting that rainfall erosivity could be accurately 52 

estimated using CLIGEN. 53 

 CLIGEN has a dataset of location-specific input parameters for the United States with dense coverage, but 54 

on a global scale, input parameters are sparsely available. This is partly because of the labor-intensive nature of determining 55 

the parameters, and because of numerous data requirements, e.g., high-frequency precipitation measurements. For erosion 56 

modeling, the lack of widely available CLIGEN inputs has hindered progress towards increasing the spatial scale and coverage 57 

of analysis that other aspects of soil erosion research have brought to the global scale, one example being the development of 58 

global maps of annual rainfall erosivity (Panagos et al., 2017). Hence, in the interest of increasing the availability of CLIGEN 59 



 

 

inputs for soil erosion modeling and other applications, we present a dataset of CLIGEN input parameter files. The dataset 60 

represents 12,703 locations in 68 countries. Besides providing the necessary parameters to run CLIGEN simulations, the 61 

dataset also serves to provide statistics for representing climate normals. The parameters are validated using an existing 62 

CLIGEN input dataset for the United States, and differences are discussed. 63 

2 Datasets 64 

2.1 Overview 65 

Three sets of CLIGEN v5.3 input files for international locations are presented, differentiated by having monthly 66 

parameters determined from minimums of 30-year, 20-year and 10-year records (note that assumptions were made to handle 67 

data gaps which are discussed in Sect. 2.2) (Fullhart et al., 2020c). The distribution of locations for the three datasets are in 68 

Fig. 1, which shows 7,673 parameter sets based on 30-year records (left panel), 2,336 parameter sets based on 20-year records 69 

(middle panel), and 2,694 parameter sets based on 10-year records (right panel). All locations are unique, with no overlap in 70 

locations between the three datasets. As may be seen in Fig. 1, there is relatively sparse coverage for South America, Africa 71 

and southern Asia, while North America, Europe and Australia have relatively dense coverage. The spatial density of all 72 

stations is shown in Fig. 2 so that density may be judged in places were overcrowding of points occurs in Fig. 1, and Table 1 73 

enumerates the number of stations on each continent. Furthermore, a .kmz map layer is available on the Ag Data Commons 74 

website (link given in Sect. 4) that can be imported into Google Earth as an interactive map and allows the CLIGEN station 75 

nearest to an area of interest to be found. 76 

As 30 years is traditionally the minimum record length needed to represent climate, the 30-year dataset may be used 77 

to characterize climate normals (Bojinski et al., 2014). The 20-year and 10-year datasets, reflecting the most recent monthly 78 

records available at each location, may be more representative of current climates in some cases considering the non-79 

stationarity of current and projected climate conditions (IPCC 2013). In soil erosion modeling, a 20-year record has been 80 

suggested as the minimum length needed to represent rainfall erosivity (Wischmeier and Smith, 1978), which may be estimated 81 

using CLIGEN (Lobo et al., 2013). It should be noted that in non-stationary climates, CLIGEN inputs may be adjusted to 82 

represent departures from climate normals (Pruski and Nearing 2002; Zhang 2005; Vaghefi and Yu, 2016). For example, 83 

Zhang et al. (2013) determined how CLIGEN’s precipitation intensity and skewness factors scale with monthly precipitation 84 

to correct for future changes in precipitation. 85 

A list of parameters and their definitions that were determined for each input file are given in Table 2. These 86 

parameters are used to model statistical distributions that are randomly sampled by CLIGEN to derive daily outputs. Some 87 

parameters such as TMAX AV and TMIN AV (refer to Table 2 for definitions) are also typical climate benchmarks. Another 88 

climate benchmark, average monthly precipitation, may be determined by the following calculation from input parameters: 89 

 90 



 

 

avg. monthly precip. = n days ∗  𝑀𝐸𝐴𝑁 𝑃 ∗ {𝑛 ∗ 𝑃𝑎𝑣𝑔 ∗ {𝑃(𝑊|𝐷) / [1 − P(W|W) + 𝑃(𝑊|𝐷)]}                     91 

    (1) 92 

 93 

where n days is the number of calendar days in the month being considered, and Pavg is the MEAN P CLIGEN parameter.  94 

The various input parameters were derived from an assortment of data sources. In general, there were two main 95 

categories of sources: (1) ground-based precipitation networks, and (2) land-surface and meteorological models that assimilate 96 

remote sensing data and ground observations, and which reproduce historical time-series of variables of concern. The sources 97 

of data had various temporal resolutions. TheIn most cases, the data was used to make direct calculation of parameters, andbut 98 

for parameters where the available data was insufficient for direct calculation, parameter estimations were done. Each data 99 

source and the resulting parameters are discussed in detail in the following sections. 100 

2.2 Precipitation Accumulation 101 

The primary source of precipitation data is the Global Historical Climate Network-Daily (GHCN-Daily) maintained 102 

by NOAA (Menne et al., 2012). The locations shown in Fig. 1 correspond to those of selected stations from GHCN-Daily. 103 

These ground-based records enabled direct calculation of five parameters related to precipitation accumulation: MEAN P, S 104 

DEV P, SKEW P, P(W/W) and P(W/D) (see Table 12 for their definitions). The GHCN-Daily dataset undergoes rigorous 105 

quality control, both to check for consistency of formatting, and for the integrity of daily values. Values are removed that fail 106 

any test in a suite of quality tests which identify a variety of problems. Durre et al. (2010) outlined 19 of the quality tes ts in 107 

detail. 108 

Short record lengths and missing data precluded a wide majority (~90%) of GHCN-Daily stations from being used to 109 

create CLIGEN input parameters. A substantial number of data gaps necessitated an assumption for the calculation of the five 110 

monthly parameters related to accumulation. To handle gaps, records were queried starting with the most recent year available 111 

and going backwards in each time-series until the number of months needed could be produced by replacing gaps with existing 112 

records from earlier in the time-series. Therefore, it was assumed that time-series do not need to be temporally continuous. 113 

This means that records were accepted which did not necessarily come from sequential months, but which had at least 30, 20 114 

and 10 complete individual months for each calendar month, in order to derive the 30-year, 20-year and 10-year monthly 115 

statistics, respectively. As a result, record lengths were queried that were often longer than the number of years needed. Also, 116 

since representing recent data was a priority, 96% of stations included at least some data after the year 2000, and 81% included 117 

some data after the year 2010. Ranges of years queried for each station are given in an extensive table available on the Ag 118 

Data Commons website (link given in Sect. 4). The ranges are defined by the first and last year with at least one monthly 119 

record accepted for use. Ranges in excess of the 30, 20 and 10-year minimum record lengths are due to data gaps for respective 120 

datasets. The longest viable record length (of 30, 20 and 10 years) was used for each station, such that if a 30-year record was 121 

possible, 10 and 20-year records were not created. Therefore, no stations have multiple datasets created for them. This 122 
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treatment of data gaps complicates the validation of the determined climate benchmarks against other datasets with similar 123 

temporal ranges, and the effect of non-stationarity and long-term climate cycles should also be considered. 124 

2.3 Precipitation Intensity 125 

In soil erosion and runoff modeling, precipitation intensity is a critical factor (Pruski  and Nearing, 2002; Nearing et 126 

al., 2005). The two parameters related to precipitation intensity, MX.5P and Time Pk,TimePk (refer to Table 2 for definitions), 127 

require data with high frequency measurements such that hyetographs for a single precipitation event may be resolved. Since 128 

GHCN-Daily did not have adequate temporal resolution, MX.5P was estimated from the daily data using a temporal 129 

downscaling model, and Time PkTimePk was assumed to follow known average Time Pkrepresentative TimePk values for 130 

given Köppen-Geiger climate classifications. The development of these procedures is discussed in Fullhart et al. (2020a) and 131 

Fullhart et al. (2020b). High resolution data needed for these procedures came from the Automated Surface Observing System 132 

(ASOS) maintained by NOAA with stations distributed across the United States and its territories (Doesken et al., 2002). 133 

In CLIGEN, the MX.5P input parameter is used to parameterize statistical distributions of normalized peak intensity. 134 

The definition of MX.5P is as follows: 135 

 136 

𝑀𝑋. 5𝑃 =
1

𝑘
∑ 𝑚𝑎𝑥𝐼30𝑖

+ ⋯ + 𝑚𝑎𝑥𝐼30𝑛
𝑛=𝑘
𝑖=1                                         ∑ 𝑚𝑎𝑥𝐼30𝑖

, … , 𝑚𝑎𝑥𝐼30𝑛
𝑛=𝑘
𝑖=1   137 

       (2) 138 

 139 

where k is the number of times (years) a record for a given month exists in the data set, and maxI30 is the maximum 30-minute 140 

intensity (mm hr-1) for each monthly record (Yu 2005). Since maximum 30-minute intensity is most accurately determined 141 

from data with as high frequency of measurement as possible, deriving values from data with lower resolutions results in 142 

underestimation bias, therefore necessitating use of the temporal downscaling model for MX.5P. The downscaling model took 143 

GHCN-Daily data to estimate the MX.5P value that would be expected if derived from the 1-min data. The downscaling model 144 

is a machine learning regression using Gradient Boosting trained with 609 ASOS stations (Fullhart et al., 2020b). The model 145 

requires 11 predictor variables shown in Table 3, which are statistics that may be determined from daily data and geographic 146 

information, some of which are already CLIGEN inputs. While MX.5P from 1-min resolution was estimated by the model, the 147 

predictor variable with the single most predictive power was MX.5P derived from daily data, which was calculated based on 148 

an assumption that intensity was constant for the duration of daily intervals (and was therefore grossly underestimated). MEAN 149 

P and S DEV P were also important predictors. The MX.5P values estimated by the model were found to have an RMSE of 150 

0.148 inches (3.76 mm) (Fullhart et al., 2020b). 151 

The second intensity parameter, Time PkTimePk, represents values at 12 equal intervals along the probability 152 

densitycumulative distribution function of normalized time-to-peak intensity for events recorded at a given station (Time 153 

PkTimePk is the only input parameter that does not represent monthly values, though there are 12 values per station, each 154 

representing quantiles of the PDFCDF). For a given Time PkTimePk interval, the definition is as follows: 155 



 

 

 156 

𝑇𝑖𝑚𝑒 𝑃𝑘(𝑖) =  
𝑁𝑡𝑝(𝑖)

𝑁𝑡𝑜𝑡
                                                                                                                                                         (3) 157 

 158 

𝑇𝑖𝑚𝑒𝑃𝑘(𝑖) =
𝑁𝑡𝑝(𝑖)

𝑁𝑡𝑜𝑡
           (3) 159 

 160 

where Time PkTimePk(i) is the Time PkTimePk value at interval i; tp is time-to-peak intensity normalized to the event duration; 161 

Ntp(i) is the number of events where tp <= i; and Ntot is the total number of events. Interval, i, ranges between 1/12 and 12/12, 162 

and varies by increments of 1/12. (Yu 2005). Events were separated by >= 6 hours of no precipitation. 163 

In Fullhart et al. (2020a), it was shown that using climate average Time PkTimePk values for the Köppen-Geiger 164 

climate classification of a given station resulted in <10% error relative to true Time PkTimePk values, suggesting little variation 165 

of Time PkTimePk within climate classifications. In this previous study, a different weather station network was used—the 166 

U.S. Climate Reference Network (USCRN) at 5-min resolution (Diamond et al., 2013). For the new dataset of CLIGEN inputs, 167 

the analysis was repeated for the climate classifications represented by the 1-min ASOS network, though in some cases, climate 168 

classifications exclusive to the USCRN were used. Table A1 shows the assumed Time PkTimePk values for each climate 169 

classification. Of the 30 highest-order climate classifications, 19 were represented by ASOS and USCRN. The remaining 11 170 

classifications were assumed to be the averages of the other Time PkTimePk values within respective first-order groups (of 171 

which there are 5, where A is tropical, B is arid, C is temperate, D is cold, and E is polar). As such, the climate classification 172 

of each station was used to index the assumed Time PkTimePk values used in the CLIGEN input files. The climate classification 173 

of each station was determined based on the Köppen-Geiger climate map of Beck et al. (2018) representing the 1980-2016 174 

time period at 0.083° resolution. 175 

2.4 Temperature 176 

The 5 temperature-related parameters, TMAX AV, TMIN AV, SD TMAX, SD TMIN and DEW PT, (refer to Table 2 for 177 

definitions), have straight-forward calculations. However, the required data were only available for a subset of GHCN-Daily 178 

stations. To avoid limiting the analysis to this subset of stations, these data were instead derived from the model outputs of the 179 

ERA5 global meteorological/climate analysis (“ECMWF ReAnalysis”, with ERA5 being the fifth major global reanalysis). 180 

The ERA5 analysis was created by The European Centre for Medium-Range Weather Forecasts and the Copernicus Climate 181 

Change Service (Balsamo et al., 2018). ERA5 provides climate and land-surface outputs at various temporal resolutions, 182 

including daily and monthly.; Hersbach et al., 2020). Google Earth Engine was used to download maximum and minimum 183 

temperatures at daily resolution, and average dew point temperatures at monthly resolution. from a grid with 0.25° x 0.25° 184 

spatial resolution. Values obtained from the grid were unchanged, without any weighting based on proximity to neighbouring 185 

cells or other forms of interpolation. The monthly dew point temperature was a convenient aggregation of data equivalent to 186 

the DEW PT CLIGEN parameter, while daily resolution was needed for the remaining CLIGEN temperature parameters to 187 

determine both the average and standard deviation of daily max/min temperatures. Use of the ERA 5 model also allowed 188 
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continuous time-series to be obtained without gaps for the 30-year, 20-year and 10-year datasets (from 1990 through 2019, 189 

2000 through 2019, and 2010 through 2019, respectively). 190 

2.5 Solar Radiation 191 

Incoming shortwave radiation is represented in CLIGEN by the SOL.RAD and SD RAD parameters which (refer to 192 

Table 2 for definitions) that require that daily solar radiation is known with units of langley/d where 1 langley = 41,840  J/m². 193 

These parameters were calculated with relatively high frequency (3-hr) measurementsestimates that captured daily and day-194 

to-day variability of radiation. This data came taken from the Global Land Data Assimilation System model (GLDAS) 195 

produced by NASA at averaged 3-hr intervals (Fang et al., 2009).) at 0.25° x 0.25° resolution. The outputs of the reprocessed 196 

GLDAS 2.0 and GLDAS 2.1 versions were used and downloaddownloaded from Google Earth Engine. (again, no weighting 197 

of values was done based on proximity to neighbouring cells). The most recent data available was used to create continuous 198 

time-series with temporal ranges being the same as those for the temperature parameters. For an individual day, incoming solar 199 

radiation was modeled by fitting a gaussian curve through the 3-hr time-averaged data points. Doing this avoided 200 

underestimation caused by time-averaging, which would have occurred by considering the 3-hr datapoints alone. Also, if the 201 

3-hr intervals did not coincide with the time of peak intensity, comparison to ground observations from Ameriflux data 202 

(discussed more later) showed that the gaussian curve tended to better approximate peak radiation than the greatest 3-hr 203 

datapoint. 204 

A number of stations that existed on coasts or on small islands, particularly in the Pacific Ocean, did not have solar 205 

radiation data coverage for their locations because the GLDAS product covers only locations beyond a certain coastal 206 

proximity. In total, 390 stations had this problem. For these stations, data from the nearest station with existing data was used. 207 

300 of the stations with missing data were within 100 km of a station with data. Some proximities, however, were much further, 208 

with islands in the south Pacific being examples. Similarly, some locations in the existing U.S. CLIGEN input dataset used for 209 

validation (created by Srivastava et al., . (2019) did not have observed solar radiation, and their parameter values were taken 210 

from the nearest station with available data, which in some cases were at considerable distances, potentially leading to poor 211 

validation in Sect. 3. 212 

To ensure locations are matched for validation, a separate validation from that of Sect. 3 was done for solar radiation 213 

parameters. In this, GLDAS output was compared to 10 ground-based Ameriflux stations that monitor ecosystem fluxes 214 

including solar radiation (Hargrove et al., 2003). The Ameriflux network has stations distributed across the North and South 215 

American continents, and the 10 stations were selected from a range of latitudes and climates as a representation of global 216 

variability. From these stations, a single year was selected that had the fewest data gaps. Comparison to corresponding GLDAS 217 

outputs showed reasonable agreement with an RMSE of 36.6 langley/d and with GLDAS being overestimated by <1% for 218 

monthly values of SOL.RAD. Error was more evident for SD RAD suggesting that GLDAS was not optimum for capturing the 219 

day-to-day variability of radiation. The RMSE for SD RAD was 38.6 langley/d with GLDAS being underestimated by 24.1%. 220 



 

 

2.5 Wind 221 

 Very few applications of CLIGEN have used wind data in the past, perhaps the only one being the blowing 222 

snow component in WEPP (Nicks et al., 1989). CLIGEN inputs require high-frequency measurement of wind speed (m/s) and 223 

azimuthal wind direction. This includes mean, standard deviation, and skewness of daily wind speed on a monthly basis; and 224 

determinations of the average daily percentage of time with wind directions coming from the 4 cardinal directions, 4 225 

intercardinal directions, and the 8 sub-divisions of these (e.g. NNE, ENE), on a monthly basis. However, wind data was not 226 

obtainable for the locations corresponding to the GHCN-Daily stations with the level of detail needed for creating CLIGEN 227 

input files. The solution to this was to use the “International Conversion Programs” tool (availability given in Sect. 4), which 228 

takes the known daily precipitation accumulation and temperature parameters from an international station of interest and finds 229 

the existing station in the U.S. CLIGEN dataset with the most similar climate, allowing its wind parameters to be used (and 230 

other remaining parameters, if needed). Information regarding the locations from where wind parameters were taken from are 231 

given at the bottom of each input file. 232 

3 Validation 233 

 Each parameter except for the wind parameters were compared to an existing dataset for the U.S. and its 234 

territories created in 2015 using NOAA NCDC DSI-3260 data at 15-min resolution and consisting of 40-year records for 2,648 235 

stations (Srivastava et al., 2019). This limited the validation to only stations for the U.S., and from those, only the new stations 236 

within 10 km of an existing CLIGEN station were accepted. This resulted in the validation of 61 stations for the 30-year 237 

dataset, 53 stations for the 20-year dataset, and 204 stations for the 10-year dataset. For each of the validated parameters, 238 

RMSE, percent bias, and percent error were determined, where it was assumed that values from the existing U.S. dataset were 239 

the true values (performance metric definitions are given in Table A2). A summary of the validation is seen in Table 4. 240 

Inconsistencies between the two datasets were attributed to: differences of data sources, differences in temporal resolution of 241 

data used, differences in record lengths, and whether data was interpolated or taken from nearby stations. 242 

Overall, reasonable agreement was found, with PERROR being below 20% for the majority of parameters. As 243 

expected, record length is a factor in the comparison to the 40-year U.S. dataset. Percent error increased slightly on average 244 

(~5%) with decreasing record length, going from the 30-year to 10-year dataset. Though a small increase, this difference likely 245 

reflected the potential for capturing short-term climate dynamics by the 20-year and 10-year datasets. For the 5 parameters 246 

related to daily accumulation, the parameter with the highest error was SKEW P, with error up to 30%. The sign of PBIAS for 247 

SKEW P was consistently positive suggesting that the GHCN-Daily data showed less skewness towards high daily 248 

accumulation. 249 

Error was also considerable for the two parameters related to precipitation intensity, MX.5P and Time PkTimePk. The 250 

discrepancies were due to multiple issues including the fact that the DSI-3260 dataset uses 15-min resolution compared to the 251 

1-min resolution that the MX.5P downscaling model and Time PkTimePk distributions were based on. As mentioned, the 252 



 

 

downscaling model was previously shown to produce an average error of 0.148 inches (3.76 mm) (Fullhart et al., 2020b). In 253 

the comparison to the DSI-3260 dataset, downscaled MX.5P values resulted in discrepancy of up to 37% error for MX.5P. 254 

Interval values for Time PkTimePk distributions were generally smaller in magnitude and approached unity later in the 255 

distribution, meaning that the peak intensity of storms generally happened later in their duration than in the DSI-3260 data. 256 

This may be expected given the relatively coarse 15-min resolution of DSI-3260, and particularly when considering shorter 257 

storms, such as convective storms, the apparent peak intensity may have considerable uncertainty. 258 

Temperature parameters were generally in agreement with no consistent estimation bias, except for DEW PT, which 259 

was slightly underestimated on average by up to 6%. Errors for SOL.RAD were up to 6%, with a slight overestimation bias of 260 

up to 3%. While SOL.RAD was in good agreement, SD SOL indicated up to 193% more day-to-day variability of solar radiation. 261 

The GLDAS data for solar radiation generally agreed better with the variability of the Ameriflux network that was discussed 262 

in Sect. 2.5, with GLDAS showing 24% less variability than Ameriflux. Given the reasonable agreement between GLDAS 263 

and Ameriflux, and good agreement of SOL.RAD with the DSI-3260 data, the substantial underestimation bias of SD SOL may 264 

be the result of errors in the existing U.S. inputs. 265 

While the U.S. represents a wide range of climate types, limitation of the validation to only the U.S. is a hinderance 266 

to quality assurance of the new dataset. However, each of the source data have their own quality assurances prior to going to 267 

product. Particularly for the ERA5 and GLDAS global products, biases are documented and are known to happen on regional 268 

and continental spatial scales, and may relate to extremes in temperature, moisture, geographic location, etc. (Zhou et al., 2013; 269 

Ji et al., 2015; Urraca et al., 2018; Wang et al., 2019). Therefore, the uncertainty of each CLIGEN parameter also depends on 270 

the particular source data. 271 

4 Data Availability 272 

The new international CLIGEN input dataset is available at the National Agriculture Library websiteOnline 273 

Repository—Ag Data Commons—at https://data.nal.usda.gov/dataset/international-climate-benchmarks-and-input-274 

parameters-stochastic-weather-generator-cligen (Fullhart et al., 2020c; DOI: https://doi.org/10.15482/USDA.ADC/1518706) 275 

and is separated into three datasets according to 30-year, 20-year and 10-year record lengths. To run the CLIGEN inputs, 276 

CLIGEN may be downloaded at https://www.ars.usda.gov/midwest-area/west-lafayette-in/national-soil-erosion-277 

research/docs/wepp/cligen/. Additional resources and materials are available at this website including the “International 278 

Conversion Programs” tool. The international CLIGEN dataset will also be added to the web interface for running the hillslope-279 

scale erosion and runoff model, RHEM, available at https://apps.tucson.ars.ag.gov/rhem/. The station of interest will be 280 

selectable in the input parameters panel under “Climate Station” and under “International”. 281 



 

 

5 Conclusions 282 

Validation of CLIGEN inputs in the new international dataset showed reasonable agreement with parameter values 283 

for existing U.S. CLIGEN inputs. The 30-year, 20-year and 10-year datasets are generally in close agreement, although some 284 

uncertainty existsand in some cases, the methods used to create this dataset may offer an improvement over existing CLIGEN 285 

input files. However, issues arise due to the assumptions that were taken for addressing pervasive data gaps and the degree to 286 

which short-term climate dynamics have a role in influencingin NOAA-GHCN records. Validation of the climate benchmarks. 287 

In some cases, use of  by comparison to other records is complicated by use of discontinuous time-series, and uncertainty is 288 

higher resolution climate data for parameterization may offer an improvement over existing CLIGEN input filesin places with 289 

non-stationary climates or long-term cycles. 290 

 The new dataset of CLIGEN inputs allows the CLIGEN weather generator to be more readily applied to its 291 

various applications. The input files also serve to represent climate benchmarks for a selection of variables that are generally 292 

unobtainable from a single source. The coverage of stations is particularly dense in Europe, Australia, and North America, and 293 

offers the potential to improve the spatial analysis of processes in different fields that require climate records. For a number of 294 

CLIGEN’s applications, the production of climate data is a secondary concern, but is often a labor-intensive task. The use of 295 

this dataset may allow researchers to put more effort and resources towards their primary study or area of focus without needing 296 

to address the production of climate inputs. 297 
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Appendix A 312 

Table A1: Time PkTimePk distribution interval values for global Köppen-Geiger climate classifications. 313 

Interval 1/12 2/12 3/12 4/12 5/12 6/12 7/12 8/12 9/12 10/12 11/12 12/12 

Af 0.22 0.30 0.36 0.44 0.50 0.58 0.63 0.70 0.77 0.83 0.90 1.00 

Am 0.25 0.36 0.43 0.51 0.58 0.66 0.73 0.79 0.84 0.90 0.94 1.00 

Aw 0.27 0.39 0.48 0.56 0.63 0.71 0.77 0.81 0.86 0.90 0.95 1.00 

Bwh 0.16 0.26 0.35 0.43 0.52 0.61 0.69 0.76 0.84 0.90 0.95 1.00 

Bwk 0.15 0.26 0.36 0.45 0.53 0.62 0.69 0.76 0.83 0.89 0.96 1.00 

BSh 0.16 0.27 0.36 0.46 0.54 0.64 0.71 0.77 0.83 0.89 0.95 1.00 

BSk 0.12 0.22 0.32 0.40 0.48 0.57 0.65 0.74 0.82 0.89 0.96 1.00 

Csa 0.07 0.17 0.26 0.36 0.45 0.54 0.62 0.70 0.78 0.86 0.94 1.00 

Csb 0.07 0.17 0.25 0.34 0.43 0.52 0.61 0.69 0.77 0.85 0.94 1.00 

Csc 0.07 0.17 0.26 0.35 0.44 0.53 0.61 0.70 0.78 0.86 0.94 1.00 

Cwa 0.10 0.20 0.29 0.38 0.46 0.55 0.64 0.72 0.80 0.87 0.94 1.00 

Cwb 0.10 0.20 0.29 0.38 0.46 0.55 0.64 0.72 0.80 0.87 0.94 1.00 

Cwc 0.10 0.20 0.29 0.38 0.46 0.55 0.64 0.72 0.80 0.87 0.94 1.00 

Cfa 0.20 0.31 0.40 0.48 0.56 0.65 0.72 0.78 0.84 0.90 0.96 1.00 

Cfb 0.07 0.15 0.24 0.32 0.40 0.51 0.60 0.69 0.78 0.86 0.94 1.00 

Cfc 0.13 0.23 0.32 0.40 0.48 0.58 0.66 0.74 0.81 0.88 0.95 1.00 

Dsa 0.17 0.27 0.37 0.45 0.53 0.61 0.68 0.75 0.82 0.88 0.94 1.00 

Dsb 0.08 0.17 0.25 0.34 0.42 0.52 0.60 0.69 0.78 0.85 0.93 1.00 

Dsc 0.27 0.38 0.48 0.56 0.64 0.70 0.76 0.81 0.87 0.91 0.95 1.00 

Dsd 0.17 0.27 0.37 0.45 0.53 0.61 0.68 0.75 0.82 0.88 0.94 1.00 

Dwa 0.16 0.29 0.40 0.49 0.58 0.67 0.74 0.80 0.86 0.91 0.96 1.00 

Dwb 0.16 0.27 0.37 0.46 0.55 0.63 0.70 0.78 0.83 0.90 0.95 1.00 

Dwc 0.16 0.28 0.38 0.48 0.56 0.65 0.72 0.79 0.85 0.91 0.96 1.00 

Dwd 0.16 0.28 0.38 0.48 0.56 0.65 0.72 0.79 0.85 0.91 0.96 1.00 

Dfa 0.15 0.26 0.35 0.45 0.53 0.62 0.70 0.77 0.84 0.90 0.96 1.00 

Dfb 0.13 0.23 0.32 0.41 0.50 0.59 0.67 0.75 0.83 0.89 0.95 1.00 

Dfc 0.25 0.36 0.45 0.53 0.60 0.67 0.72 0.79 0.85 0.90 0.95 1.00 

Dfd 0.18 0.28 0.37 0.46 0.54 0.63 0.70 0.77 0.84 0.90 0.95 1.00 

ET 0.28 0.41 0.51 0.58 0.66 0.74 0.78 0.82 0.87 0.91 0.94 1.00 
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EF 0.28 0.41 0.51 0.58 0.66 0.74 0.78 0.82 0.87 0.91 0.94 1.00 
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 317 

Table A2: Statistical measures of performance. Observed (O) and predicted (P) values are compared by each metric. 318 

Performance metric Abbreviation  Equation 

Root mean square error RMSE 

√
1

𝑛
∑(𝑂 − 𝑃)2 

Percent Bias PBIAS 
[
∑ 𝑂 − 𝑃

∑ 𝑂
] [

∑(𝑂 − 𝑃)

∑ 𝑂
] 𝑥100 

Percent Error PERROR 1

𝑛
[∑

𝑎𝑏𝑠(𝑂 − 𝑃)

𝑂
] 𝑥100 
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Table 1: Station counts for continent/region and each of the 30-year, 20-year and 10-year datasets. Oceania is the region represented 465 

by south Pacific islands and extending north to Hawaii. 466 

Station 

Counts 

North 

America 

South 

America 

Europe Africa Asia Australia Oceania Antarctica Total 

30-year 1,860 170 2,089 9 118 3,423 4 0 7,673 

20-year 996 112 374 7 11 834 2 0 2,336 

10-year 1,332 8 413 6 52 864 19 0 2,694 

Total 4,188 290 2,876 22 181 5,121 25 0 12,703 
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Table 2: A list of CLIGEN inputsinput parameters determined for each station. The temporal resolution column indicates the 488 

resolution of the data used to derive each parameter. Parameters that require sub-daily resolutions at various frequency of 489 

measurements are denoted with “High-Res” in the Temporal Resolution temporal resolution column. Sub-daily resolution data was 490 

not available for all High-Res. parameters, and it is discussed how their values were estimated in some cases. 491 

Variable (12 values per station) Label Unit Temporal 

Resolution 

Monthly average of daily precipitation for wet days MEAN P inches Daily 

Monthly standard deviation of daily precipitation for wet 

days 

S DEV P inches Daily 

Monthly skewness of daily precipitation for wet days SKEW P - Daily 

Monthly transition probability of a wet day given a wet 

day 

P(W/W) - Daily 

Monthly transition probability of a wet day given a dry 

day 

P(W/D) - Daily 

Monthly mean maximum 30-min precipitation intensity MX.5P inches/hr High-Res. 

Probability densityCumulative distribution function 

interval values of normalized time-to-peak intensity 

Time PkTimePk - High-Res. 

Monthly mean of daily maximum temperatures TMAX AV °F Daily 

Monthly mean of daily minimum temperatures TMIN AV °F Daily 

Monthly standard deviation of daily maximum 

temperatures 

SD TMAX °F Daily 

Monthly standard deviation of daily minimum 

temperatures 

SD TMIN °F Daily 

Monthly mean dewpoint DEW PT °F High-

Res.Monthly 

Monthly mean of daily solar radiation SOL.RAD langley/d High-Res.3-

hourly 

Monthly standard deviation of daily solar radiation SD SOL langley/d High-Res.3-

hourly 

Monthly averages of wind speed and direction WIND (Various) - High-Res. 
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Table 3: The 11 predictor variables for the Gradient Boosting regression model used to temporally downscale MX.5P from GHCN-495 

Daily data. Units were changed to metric for the purposes of the downscaling model. 496 

Variable Label Unit Values per 

station 

Monthly mean maximum 30-min precipitation intensity MX.5P mm/hr 12 

Modified Fournier index Fournier Coeff mm 1 

Monthly average of daily precipitation for wet days MEAN P mm 12 

Monthly standard deviation of daily precipitation for wet 

days 

S DEV P mm 12 

Monthly skewness of daily precipitation for wet days SKEW P - 12 

Monthly transition probability of a wet day given a wet 

day 

P(W/W) - 12 

Monthly transition probability of a wet day given a dry 

day 

P(W/D) - 12 

Station elevation Elev m 1 

Station latitude Lat deg. 1 

Station coastal proximity Coastal Prox km 1 

Calendar month (categorical variable) Month - 12 
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Table 4: Summary of the validation of parameters to the 2015 U.S. CLIGEN dataset. created by Srivastava et al. (2019). 510 

 30-year dataset 20-year dataset 10-year dataset 

 RMSE PBIAS PERROR RMSE PBIAS PERROR RMSE PBIAS PERROR 

MEAN P 0.08 -12.16 19.95 0.07 1.18 14.76 0.08 1.13 21.17 

S DEV P 0.10 -2.70 15.06 0.10 2.92 16.45 0.14 1.08 24.17 

SKEW  P 1.35 8.05 20.15 1.11 7.13 22.93 1.29 15.98 30.36 

P(W/W) 0.07 2.48 10.35 0.06 -1.35 10.3332 0.09 -3.6870 16.6866 

P(W/D) 

0.05 

-

11.7980 19.20 0.0406 

-

6.309.0

6 

14.2025

.32 0.0506 

-

12.8314

.27 

23.0729

.25 

TMAX AV 3.49 3.18 3.97 5.43 -0.41 6.77 3.75 0.66 4.28 

TMIN AV 4.56 -8.55 15.79 6.23 -10.62 13.67 4.76 -7.93 11.33 

SD TMAX 1.07 7.93 9.01 1.37 11.56 13.28 1.30 9.62 11.85 

SD TMIN 1.53 6.87 11.34 1.22 7.80 13.01 1.04 4.45 10.98 

SOL.RAD 22.55 -1.08 5.85 29.10 -2.90 5.87 26.91 -2.75 5.65 

SD SOL 51.85 -135.54 146.33 68.09 -193.42 202.42 63.04 -173.21 181.51 

MX .5 P 0.23 24.9391 29.9591 0.27 28.3736 31.9390 0.31 33.2625 37.3028 

DEW PT 3.66 5.62 8.94 2.00 0.45 5.14 2.56 0.48 5.85 

Time Pk 0.33 30.92 33.43 0.30 28.33 31.08 0.30 28.77 31.66 
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 523 

Figure 1: Coverage of the three international CLIGEN input datasets according to the record length used to produce the monthly 524 

input parameters. The locations correspond to those of the GHCN-Daily stations accepted for use. 525 
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 546 

Figure 2: Station density map representing all stations combined. The cell size is defined by lat./long. degree lines (1° x 1°). Densities 547 

are calculated inside of circular neighbourhoods with radii of three degrees from the center of each cell. 548 
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