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Abstract. As a linkage among water, energy, and carbon cycles, global actual evapotranspiration (ET) plays an 

essential role in agriculture, water resource management, and climate change. Although it is difficult to estimate ET 

over a large scale and for a long time, there are several global ET datasets available with uncertainty associated with 

various assumptions regarding their algorithms, parameters, and inputs. In this study, we propose a long-term 

synthesized ET product at a kilometer spatial resolution and monthly temporal resolution from 1982 to 2019. Through 

a site-pixel evaluation of 12 global ET products over different time periods, land surface types, and conditions, the 

high performing products were selected for synthesis of the new dataset using a high-quality flux eddy covariance 

covering the entire globe. According to the study results, Penman-Monteith Leuning (PML), operational Simplified 

Surface Energy Balance (SSEBop), Moderate Resolution Imaging Spectroradiometer (MODIS, MOD16A2105) and 

the Numerical Terradynamic Simulation Group (NTSG) ET products were chosen to create the synthesized ET set. 

The proposed product agreed well with flux EC ET over most of the all comparison levels, with a maximum ME 

(RME) of 13.94 mm (17.13%) and a maximum RMSE (RRMSE) of 38.61 mm (47.45%). Furthermore, the product 

performed better than local ET products over China, the United States, and the African continent and presented an ET 

estimation across all land cover classes. While no product can perform best in all cases, the proposed ET can be used 

without looking at other datasets and performing further assessments. Data are available on the Harvard Dataverse 

public repository through the following Digital Object Identifier (DOI): https://doi.org/10.7910/DVN/ZGOUED 

(Elnashar et al., 2020) as well as it is available as Google Earth Engine (GEE) application through this link: 

https://elnashar.users.earthengine.app/view/synthesizedet. 

1. Introduction 

Over most of the global land area, terrestrial evapotranspiration (ET) considers the second largest element of 

the hydrological cycle after precipitation (Waring and Running, 2007b;Bastiaanssen et al., 2014) and represents the 

linkage between water, energy, and carbon cycles (Gentine et al., 2019;Yang et al., 2016;Ferguson and Veizer, 2007) 

and ecosystem services (Almusaed, 2011;Yang et al., 2015;Revelli and Porporato, 2018). 

Hence, the accurate estimation of global ET is essential for understanding the global hydrological cycle and 

water budgets (Oki and Kanae, 2006;Trenberth et al., 2007;Rodell et al., 2015), global drought (Sheffield et al., 

2012;Naumann et al., 2018;Spinoni et al., 2019;Lu et al., 2019;Forootan et al., 2019), impacts of climate change 

(Waring and Running, 2007a;Zomer et al., 2008;Scheff and Frierson, 2014;Pan et al., 2015), climate change and global 
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water resources (Arnell, 1999;Haddeland et al., 2014;Arnell and Lloyd-Hughes, 2014), global transboundary basin 

water scarcity (Degefu et al., 2018), water competition within a basin (Scott et al., 2001) and water stress/conflict 

within transboundary basins (Samaranayake et al., 2016;Munia et al., 2016;Bastiaanssen et al., 2014). 

While precipitation and runoff, which are other paramount factors of the global water balance, can be directly 

measured by in situ weather stations and stream gauge networks as well as the availability of several datasets of 

remotely sensed precipitation (Funk et al., 2015;Ashouri et al., 2015;Huffman et al., 1997;Yamamoto and Shige, 

2015), it is difficult to measure ET, especially at large spatial scales (Senay et al., 2012;Zhang et al., 2016). 

Recently, several global ET datasets have become available for a variety of purposes, and they have been 

generated using remote sensing models, land surface models (LSM), and hydrological models (Trambauer et al., 

2014;Li et al., 2018;Sörensson and Ruscica, 2018). There are many differences among these models concerning their 

algorithms, parameters, and inputs, and they produce different levels of uncertainty (Wang and Dickinson, 2012;Xu 

et al., 2019;Weerasinghe et al., 2020;Vinukollu et al., 2011a). The remote sensing model, which mainly focuses on 

thermal remote sensing and the energy balance equation, will be represented by MOD16A2 (Mu et al., 2011), PML 

(Zhang et al., 2019), SSEBop (Senay et al., 2013), SEBS (Chen et al., 2013), NTSG (Zhang et al., 2010), and GLEAM 

v3.3b (Miralles et al., 2011b). The land surface model uses quantitative methods to simulate the vertical exchanges of 

water and energy fluxes between the atmosphere and the land surface, as represented by GLDAS ET (Rodell et al., 

2004), GLEAM v3.3a (Miralles et al., 2011b), and FLDAS (McNally et al., 2017). TerraClimate, which is a 

hydrological model, is based on a one-dimensional water balance approach (Abatzoglou et al., 2018). However, the 

availability of many datasets introduces challenges related to how users choose the appropriate dataset for their 

purposes (Wu et al., 2020). 

Some studies have evaluated global ET products using an inferred estimate of ET obtained by subtracting 

discharge (Q) from precipitation (P), ET = P ˗ Q, over global river basins (Zhang et al., 2010;Vinukollu et al., 

2011a;Vinukollu et al., 2011b), continental river basins (Weerasinghe et al., 2020), transboundary river basins (Hofste, 

2014), and national river basins (Zhong et al., 2020). Some, on the other hand, have used the ensemble ET product as 

observed data for evaluating certain ET products (Hofste, 2014;Trambauer et al., 2014;Andam-Akorful et al., 

2015;Bhattarai et al., 2019). 

Although flux EC ET is commonly flawed, particularly concerning energy balance closure at some sites 

(Foken, 2008;Helgason and Pomeroy, 2012), relatively short periods, and sparse spatial coverage, it is the most direct 

method for measuring the exchange between the surface and the atmosphere in different ecosystems (Foken et al., 

2012;Baldocchi, 2014). Thus, site-pixel-level validation of certain ET products against flux EC ET as typically 

observed data has been performed by several studies in specific regions (e.g., globally (Leuning et al., 2008;Zhang et 

al., 2010;Ershadi et al., 2014;Michel et al., 2016); Asia (Kim et al., 2012); South Africa (Majozi et al., 2017); Europe 

(Ghilain et al., 2011;Hu et al., 2015); North America (Jiménez et al., 2009;Mu et al., 2011); Europe and the United 

States (Miralles et al., 2011b); the United States (Vinukollu et al., 2011b;Velpuri et al., 2013;Xu et al., 2019); and 

China (Jia et al., 2012;Liu et al., 2013;Chen et al., 2014b;Tang et al., 2015;Yang et al., 2017;Li et al., 2018)). Few 

previous studies have focused on merging certain ET products to create an ensemble ET product; for instance, 

(Vinukollu et al., 2011a;Mueller et al., 2013;Badgley et al., 2015). They used all ET products and created a merged 
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product with a low spatial resolution. There are some global merged benchmarking evaporation products. Vinukollu 

et al. (2011a) generated an ensemble of six global ET datasets at a daily time scale and 0.5°×0.5° (≈55 km) spatial 

resolution for the period 1984–2007 using two surface radiation budget products and three models (i.e., surface energy 

balance, revised Penman-Monteith, and modified Priestley-Taylor). They reported that the ensemble simple mean 

value was reasonable; however, it was generally highly biased globally. Mueller et al. (2013) presented two monthly 

global ET products that differed in their input ET members and temporal coverage. The first dataset consisted of 40 

datasets for the period 1989–1995, while the second dataset merged 14 datasets from 1989 to 2005. Their ET was 

derived from satellite and/or in situ observations (diagnostic) or calculated via LSM driven with observation-based 

forcing or output from atmospheric reanalysis. Hence, they provided four merged synthesis products, one including 

all datasets and three including datasets of each category (i.e., diagnostic, LSM, and reanalysis). They introduced the 

first benchmark products for global ET and found that its multi-annual variations showed realistic responses and were 

consistent with previous findings. Badgley et al. (2015) used a Priestly-Taylor Jet Propulsion Lab (PT-JPL) model 

with 19 different combinations of forcing data to produce global ET estimates from 1984 to 2006 at a 1°×1° (≈100 

km) spatial resolution. The ensemble ET members changed according to the number of products available each year, 

which ranged between 4 and 12 members for 1999/2000 and 2001/2002, respectively. Their study focused on the 

uncertainty in global ET estimates resulting from each class of input forcing datasets. 

However, from the aforementioned studies, we can report three findings: (1) no single ET product performed 

better than any other over different land surface types and conditions, (2) no one generated a single dataset for users, 

and (3) the created ensemble ET products relied on several individual ET products and were not based on the product 

with the best performance. 

From our point of view, this work attempts to add to the growing scientific literature using a high-quality 

dataset from global flux towers for further validations and inter-comparison between different global ET products to 

understand their behavior within defined land cover types, elevation levels, and climatic classes. Moreover, we attempt 

to build an ensemble ET product that has a minimum level of uncertainty over as many conditions as possible. The 

study has two objectives: (1) to assess global ET products with in situ data derived from global flux towers across a 

variety of land surface types and conditions to gain a better understanding of the disparities among datasets and (2) to 

synthesize an ensemble global ET product with minimum uncertainties over more land surface types, climate systems, 

and monthly, annually and interannual time steps for a longer time. 

2. Data 

2.1. Evapotranspiration 

Twelve global ET datasets were explored in the current study (Table 1 and Appendix A). Of them, 5 datasets 

used the Moderate Resolution Imaging Spectroradiometer (MODIS) as input, including two versions (V6 and V105) 

of Global Evapotranspiration Project (MOD16A2), Penman-Monteith Leuning ET (PML), the operational Simplified 

Surface Energy Balance ET (SSEBop) and the Surface Energy Balance System (SEBS). One dataset used the 

Advanced Very High-Resolution Radiometer (AVHRR) as input, including the Numerical Terradynamic Simulation 
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Group (NTSG). The remainder mainly uses meteorological datasets as direct input, including field measurements such 

as TerraClimate and reanalysis datasets such as FLADS and GLADS. The algorithm used in 12 global ET datasets is 

mainly the Penman-Monteith model, except for FLADS and GLDAS, which use the LSM, and TerraClimate, which 

uses the soil water balance model. Priestley‐Taylor is used to estimate evaporation from open water by NTSG while 

Penman evapotranspiration is used in PML for a water body, snow and ice evaporation. SSEBop, SEBS, NTSG, and 

GLEAM are individually managed, and other ET products, as well as elevation data, are available from GEE. 

Table 1. Global ET products. 

Product Method Satellite data 
Meteorological 

data 

Resolution Temporal 

coverage Spatial Temporal 

MOD16A2 V6 P-M, SC MODIS GMAO 500 m 8 days 
Jan 1, 2001 –

Ongoing 

MOD16A2 V105 P-M, SC MODIS GMAO 1 km 8 days 
Jan 1, 2000 –

Dec 31, 2014 

PML PML MODIS GLDAS V21 500 m 8 days 
Jul 4, 2002 –

Dec 27, 2017 

SSEBop P-M MODIS GDAS, PRISM 1 km 1 month 
Jan 1, 2003 –

Ongoing 

SEBS RS-SEB 
MODIS, 

GLASS, GLAS 
ERA-Interim 5 km 1 month 

Jan 1, 2001 –

Dec 31, 2010 

NTSG 
Modified 

P-M & P-T 
AVHRR 

NCEP/NCAR 

Reanalysis 
8 km 1 month 

Jan 1, 1982 –

Dec 31, 2013 

GLEAM 3.3b P-T, SSF 
Radiation & air 

temperature 

Certain reanalysis 

data 
0.25o 1 month 

Jan 1, 2003 –

Dec 31, 2018 

GLEAM 3.3a P‐T, SSF - 
Certain reanalysis 

data 
0.25o 1 month 

Jan 1, 1980 –

Dec 31, 2018 

FLADS LSM 
MODIS-IGBP, 

UMD-AVHRR 

MERRA-2, 

CHIRPS 
0.10 o 1 month 

Jan 1, 1982 –

Dec 1, 2019 

GLDAS V20 LSM 

MCD12Q1, 

MOD44W, 

GTOPO30 

NOAA/GDAS, 

GPCP, AGRMET 
0.25o 3 hours 

Jan 1, 1948 –

Dec 31, 2010 

GLDAS V21 LSM 

MCD12Q1, 

MOD44W, 

GTOPO30 

NOAA/GDAS, 

GPCP, AGRMET 
0.25o 3 hours 

Jan 1,2000 – 

Dec 23,2019 

TerraClimate SWB 
Root zone 

storage capacity 

WorldClim 

V1.4&2, CRU 

Ts4.0, JRA-55 

0.25o 1 month 
Jan 1, 1958 –

Dec 1, 2018 

Note: P-M: Penman-Monteith; PML: P-M Leuning; SC: Surface Conductance; P-T: Priestley‐Taylor; RS-SEB: remotely sensed 

surface energy balance; LSM: land surface model; SWB: soil water balance; GMAO: Global Modelling and Assimilation Office 

for daily meteorological reanalysis data; GDAS: Global Data Assimilation System; PRISM: Parameter-elevation Regressions on 

Independent Slopes Model; GLASS: Global Land Surface Satellite; GLAS: Geoscience Laser Altimeter System; MERRA-2: 

Modern-Era Retrospective analysis for Research and Applications version 2; CHIRPS: Climate Hazards Group InfraRed 

Precipitation with Station data; RFE2: The African Rainfall Estimation version 2.0; NOAA: National Oceanic and Atmospheric 

Administration; GPCP: Global Precipitation Climatology Project; AGRMET: Agricultural Meteorological modeling system; CRU 

Ts4.0: Climate Research Unit time series data version 4.0; JRA-55: Japanese 55-year Reanalysis. 

Three regional ET datasets were used for comparison of consistent agreement over China, the United States 

and the African continent (Table 2). Over China Mainland, The Complementary Relationship (CR) ET product was 

used (Ma et al., 2019); it is estimated monthly at a 0.1° (≈10 km) spatial resolution over 1982–2015 and can be 

retrieved from http://en.tpedatabase.cn. For the United States, daily SSEBop was used (Savoca et al., 2013;Senay and 

Kagone, 2019). These data are produced at a 0.009°×0.009° (≈1 km) grid cell spatial resolution from 2000 to 2018 

and can be downloaded from https://earlywarning.usgs.gov/ssebop/modis/daily. Daily SSEBop aggregated to monthly 

time steps to be comparable with the synthesized ET temporal resolution. The Food and Agriculture Organization 

(FAO) Water Productivity through Open access of Remotely sensed derived ET product (FAO WaPOR version 2) 

http://en.tpedatabase.cn/
https://earlywarning.usgs.gov/ssebop/modis/daily/
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was used for Africa (FAO, 2018, 2020). These data estimates are the sum of ET and interception, provided at a 

0.002°×0.002° (≈250 m) spatial resolution with a monthly temporal resolution from 2009. WaPOR ET estimates are 

available through the following website: https://wapor.apps.fao.org/home/WAPOR_2/1. 

Table 2. Regional ET products. 

Product Method Satellite data Meteorological data 
Resolution 

Temporal coverage 
Spatial Temporal 

CR  CR MODIS CMFD 10 km 1 month Jan 1, 1982 – Dec 31, 2015 

SSEBop P-M MODIS NASA GDAS 1 km 1 day Jan 1, 2000 – Dec 31, 2018 

WaPOR RS-SEB MODIS MERRA/GEOS-5, CHIRPS 250 m 1 month Jan 1, 2009 – Ongoing 

Note: CR: Complementary Relationship; P-M: Penman-Monteith; P-T: Priestley‐Taylor; RS-SEB: remotely sensed surface energy 

balance; CMFD: China Meteorological Forcing Dataset; NASA GDAS: National Oceanic and Atmospheric Administration’s 

(NOAA) Global Data Assimilation System; MERRA: Modern-Era Retrospective Analysis for Research and Applications; GEOS-

5: Goddard Earth Observing System, Version 5; CHIRPS: Climate Hazards Group InfraRed Precipitation with Stations. 

2.2. Flux EC data 

Comprehensive flux EC ET data from 645 sites (Fig. 1 and Table 3), AmeriFlux; FluxNET; EuroFlux; 

AsiaFlux; and ChinaFlux, were collected and processed to examine the performance of different estimated ET 

products. The downloaded EC data are half-hourly text-type data, while the periods of flux EC ET ranged from 1 year 

(12 months) to 21 years (252 months) from 1994 to 2019. The gap-filling technique was applied to the downloaded 

in situ EC data (Reichstein et al., 2005). Different EC flux sites were spatially distributed on the heterogeneous 

underlying surface, corresponding to different land cover types according to the International Geosphere-Biosphere 

Programme (IGBP) classification system, which is recorded in each flux attribute data. The in-situ measured ET (mm 

day-1) can be obtained by the half-hourly average latent heat flux (LE, W·m-2s-1) through Eq. (1), (Su, 2002): 

ET =  
LE̅̅̅̅

λ
× 3600 × 24 (1) 

Where LE̅̅̅̅  (W·m-2s-1) is the daily average of the half-hourly average latent heat flux, and λ is the latent heat of 

evaporation. λ varies with air temperature in hydrologic or agricultural system modeling but only to a small extent 

(Walter et al., 2001), and the value acts directly on the accuracy of the estimated in situ measured ET. Considering 

that there are very limited impacts of the changes in air temperature on the estimated in-situ measured ET (Henderson-

Sellers, 1984;Li et al., 2018), the constant value of 2.45 MJ kg-1 is fixed in the calculation above (Walter et al., 2001). 

https://wapor.apps.fao.org/home/WAPOR_2/1/
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Figure 1. Spatial distribution of 645 in-situ flux EC sites across the world. 

Table 3. Summary of 645 in-situ EC flux sites. 

Flux 
Sites 

number 

Temporal 

coverage 

Elevation 

range (m) 
Underlying surface IGBP type 

Website 

AmeriFlux 249 1994–2019 -9 to 3199 
ENF/EBF/DBF/MF/CSH/OSH/WSA/S

AV/GRA/WET/CRO/SNO/BSV/WAT 
ameriflux.lbl.gov 

FluxNET 203 1994–2019 -10 to 4312 
ENF/EBF/DNF/DBF/MF/CSH/OSH/W

SA/SAV/GRA/WET/CRO 

fluxnet.org 

EourFlux 148 1996–2018 -4 to 2436 
ENF/EBF/DBF/MF/CSH/OSH/WSA/S

AV/GRA/WET/CRO/SNO 
europe-fluxdata.eu 

AsiaFlux 33 2000–2015 0 to 3308 
ENF/EBF/DNF/DBF/MF/GRA/CRO/U

RB/WAT 
asiaflux.net 

ChinaFlux 12 2003–2017 26 to 4317 EBF/MF/GRA/CRO chinaflux.org 

Note: ENF: Evergreen Needleleaf Forests; EBF: Evergreen Broadleaf Forests; DBF: Deciduous Broadleaf Forests; MF: Mixed 

Forests; CSH: Closed Shrublands; OSH: Open Shrublands; WSA: Woody Savannas; SAV: Savannas; GRA: Grasslands; WET: 

Permanent Wetlands; CRO; Croplands; URB: Urban and Build-up Lands; SNO: Permanent Snow and Ice; BSV: Barren or Sparsely 

Vegetated Area; WAT: Water Bodies. 

2.3. Aridity index 

The mean global aridity index dataset was produced by (Zomer et al., 2008) using WorldClim global climate 

data. The aridity index was estimated as the mean annual precipitation divided by the mean annual potential 

evapotranspiration, and the latter was calculated by the Hargreaves equation. The spatial resolution was 

0.0083°×0.0083° (≈1 km) grid cell (Trabucco and Zomer, 2018) and the data can be downloaded from the following 

website: https://cgiarcsi.community/data/global-aridity-and-pet-database 

2.4. Elevation data 

The Shuttle Radar Topography Mission (SRTM) data were provided at a resolution of one arc-second and 

void-filled (Farr et al., 2007). For the geographic areas outside the SRTM coverage area, the Global Multi-resolution 

Terrain Elevation Data 2010 (GMTED2010), which have a resolution of 7.5 arc-seconds, were used (Danielson and 

Gesch, 2011). 

https://cgiarcsi.community/data/global-aridity-and-pet-database/
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3. Methods 

3.1 Assessment 

Because ET is highly variable in both space and time (Schaffrath and Bernhofer, 2013;Fisher et al., 2017), a 

comprehensive evaluation from different perspectives is required (Trambauer et al., 2014;McCabe et al., 2016;Li et 

al., 2018). For each flux tower location, the aridity index, elevation and estimated ET data were extracted. The aridity 

index was classified (Table 4) according to the United Nations Environment Programme definition (UNEP, 1997) into 

four classes (i.e., humid: 361 (56%), semiarid: 167 (26%), dry sub-humid: 82 (13%), and arid: 35 (5%)). Elevations 

were classified into three levels (i.e., <500 m: 452 (70%), 500 m–1500 m: 135 (21%), and >1500 m: 58 (9%)). Land 

cover included five types (i.e., forests: 349 (54%), grasslands: 128 (20%), croplands: 89 (14%), water bodies: 73 

(11%), and others (barren land and permanent snow and ice): 6 (1%)). Accordingly, the following metrics were 

estimated using Eqs. (2-7): 

ME =
1

n
∑ Yi

n

i=1

− Xi (2) 

RME =  
ME

X
 (3) 

RMSE = √
∑ (Yi − Xi)

2n
i=1

n
 (4) 

RRMSE =  
RMSE

X
 (5) 

R =
∑ [(Yi − Y)(Xi − X)]n

i=1

√∑ (Yi − Y)2n
i=1 √∑ (Xi − X)2n

i=1

 (6) 

TS =
4(1 + R)

(std +
1

std
)

2

(1 + R0)

 
(7) 

Where ME is the mean error; RME is the relative mean error; RMSE is the root mean square error; RRMSE is the 

relative root mean square error; R is the correlation coefficient; TS is the Taylor score; n is the sample number; i is 

the ith sample; X is the mean of the observed EC ET data; Y is the mean of different estimated ET data; std is the 

standard deviation of the estimated ET normalized by the standard deviation of the observed EC ET; and R0 is the 

maximum theoretical R, with an R0 value of 0.9976 (Taylor, 2001). 

The magnitude of ME (the absolute value) is used as a bias indicator (Mu et al., 2011;Yang et al., 2017), 

while its sign indicates whether different ET products overestimate or underestimate the flux EC ET values. The 

accuracy of each ET product can be described by the RMSE (Miralles et al., 2011b;Hu et al., 2015). Moreover, the 

relative values of ME and RMSE are used for a fairer comparison between certain ET products among different regions 

and periods (Majozi et al., 2017). In addition, correlation coefficients (R values) are used to measure the strength of 

the relation between flux EC ET and different ET products (Ghilain et al., 2011;Hu et al., 2015), and with the aid of 

the Taylor score (TS), the overall performance of each product can be described well (Taylor, 2001;Mu et al., 2011). 

To rank each ET product, the lower ME, RME, RMSE, and RRMSE values and the higher R and TS values are desired; 

lower biases and higher accuracies. 
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Table 4. Climate classification according to the global aridity index values. 

Aridity Index value Climate class 

<0.03 Hyper arid 

0.03 – 0.20 Arid 

0.20 – 0.50 semiarid 

0.50 – 0.65 Dry sub-humid 

>0.65 Humid 

3.2 Synthesis method 

There are 6 validation metrics including R, TS, ME, RME, RMSE, and RRMSE. The validation values of 6 

metrics are categorized into levels. The level one of validation metrics has the highest R and TS values and the lowest 

ME, RME, RMSE, and RRMSE while the level two of validation metrics has the highest R and TS values and the 

lowest ME, RME, RMSE, and RRMSE after level one. For that, R and TS sorted descending while ME, RME, RMSE, 

and RRMSE sorted ascending (Fig. 2a) then the corresponding ET product of each validation metric saved in a new 

table to be used to fill in Fig. 2b.  

The current study proposes three steps to develop a synthesized global ET dataset. First, the ET datasets are 

compared based on 6 validated metrics to generate a matrix to indicate level one and two of the validation metrics of 

all ET products over all comparison levels (Fig. 2b). For each level, there are 6 validation metrics in rows and 26 ET 

values of different periods and underlying conditions in columns (comparison levels), including monthly average (01), 

annual average (02), monthly (January-December: 03–14), land cover types (15–19), climate classes (20–23), and 

elevation levels (24–26). Thus, the total number of cells is 156 for each level. Each cell in the matrix represents one 

of twelve ET products that belong to this level. Then, to select ET data for further synthesis, the number and percentage 

of ET product occurrence at matrix (Fig. 2b) of level one and two were calculated (Fig. 2c). ET products were ranked 

in descending order based on the occurrence percentage of levels one and two (the last column in Fig. 2c). Finally, the 

first two or three highly ranked ET products were selected to incorporate into the ensemble ET. For that, the selected 

ET products were resampled to a comparable spatial resolution if needed, and the average was used as the synthesized 

ET value. 
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Figure 2. Flowchart of the synthesization method. 

4. Results 

4.1. Assessment of existing global ET datasets 

Figure 3 shows that seasonality exists and is captured well by all ET datasets, with some exceptions over 

barren land, permanent snow and ice, and arid areas (not shown). The maximum ET occurs during July and differs 

according to each ET dataset. Generally, MOD16A2 represents the minimum estimated ET across all conditions, while 

SSEBop represents the maximum ET across all conditions except over humid regions and at elevations between 500 

m and 1500 m. From Figures (4, 6–12), the best-fitted linear regression line (blue-solid line) compared to the 1:1 line 

(red-dashed line), all ET datasets overestimate the flux EC ET in lower ET values and underestimate the flux EC ET 

in higher ET values with two exceptions. The first exception is over barren land and permanent snow and ice, where 

MOD16A2 underestimates and GLDAS21, GLEAM33a, and TerraClimate overestimate under both lower and higher 

ET values (not shown). Second, in dry sub-humid areas, SSEBop (Fig. 9c3) and GLDAS21 (Fig. 9e3) overestimate 

under both lower and higher ET values. Applying for the highest R (TS) and lowest error metrics role, MOD16A2 
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cannot present any role; additionally, only one contribution by the lowest RRMSE was found in February and the 

highest TS was found in March for TerraClimate and GLEAM33b, respectively. 

4.1.2. Validation by all sites’ monthly ET 

Figure 4 shows that only SEBS and MOD16A2 underestimate flux EC ET. PML is the dataset that best agrees 

with the observed ET, and it had the lowest RMSE (RRMSE). MOD16A2105 returned the smallest absolute ME, 

while SEBS yielded the smallest RME. Figure 5 shows there are interannual differences between certain ET product 

performances. MOD16A2 shows negative MEs and RMEs for all months, with larger biases during March, April, and 

May, while FLDAS shows positive MEs and RMEs for all months, with larger biases during March, April May, June, 

and July. For other products, the ME and RME signs vary among months; for instance, the ME and RME values of 

GLDAS21 are negative (underestimated) during February, September, and November and positive (overestimated) in 

the remaining months, with larger biases during March, April, May, June, and July. The RMSE declines from January 

to February and then increases until July and declines again until November. The minimum RMSE values occur during 

February, November, and December, while the maximum values occur during June, July, and August. 

For instance, the RMSE in July ranges from 36.28 mm to 52.41 mm for FLDAS and PML, respectively, 

while it ranges from 17.08 mm to 21.68 mm for PML and SEBS, respectively. RRMSE declines from January reaches 

its minimum in June and then increases again until December, except for SEBS in December. The highest values of 

RRMSE (>80%) occur in January, February, November, and December except for SEBS in December, while the 

lowest values (<60%) exist in June, July, and August. The R-value declines from January and reaches its minimum in 

May; it then increases starting in August. Except for MOD16A2, all products have an R-value greater than 0.60 during 

January, February, November, and December. SEBS has the lowest R-value during March, April, May, and June, 

while PML yields the highest R-value during all months except January and December. Except for MOD16A2 in 

February, which has a TS value above 0.60, as with the R-value, the TS declines from January, reaches its minimum 

in May, and then increases again starting in August. Figures 4 and 5 show these products yield intra-annual ET 

variations but vary in their performance according to the selected validation metrics, which also vary among all months 

(from January to December). 
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Figure 3. Monthly average flux EC ET and 12 ET products over all flux sites (a), land cover types (croplands: (b); grasslands: (c); 

forests: (d); water bodies: (e)), climate classes (semiarid: (f); dry sub-humid: (g); humid: (h)), and elevation levels (<500 m: (l), 

500 m-1500 m: (j), and >1500m: (k)). 
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Figure 4. Monthly ET products (PML: (a); GLDAS20: (b); SSEBop: (c); MOD16A2105: (d); GLDAS21: (e); SEBS: (f); NTSG: 

(g); GLEAM33a: (h); FLDAS: (i); GLEAM33b: (j); TerraClimate: (k); MOD16A2: (l)) against flux EC ET aggregated for all sites. 
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Figure 5. Monthly validation metrics (ME (mm): (a); RME (%): (b); RMSE (mm): (c); RRMSE (%): (d); R: (e); TS: (f)) of ET 

products against flux EC ET for all sites (legend as Figure 3k). 

4.1.3. Validation by all sites’ annual ET 

Figure 6 shows all ET products overestimate the observed ET with two exceptions; SEBS and MOD16A2. 

In all environmental conditions, PML has the highest R (TS) and the lowest ME (RME) and RMSE (RRMSE). Figures 

4 and 6 indicate the obvious error metrics of annual scale performances that are consistent with those that come from 

the monthly time step. The lowest and highest absolute values of ME (RME) for monthly ET exist in MOD16A2105 

(SEBS) and FLDAS, respectively, while those for annual ET exist in PML and FLDAS, respectively. Furthermore, 

PML yields the largest R and TS values for monthly and annual ET, but the minimum values of R and TS were 

registered with TerraClimate and MOD16A2 for monthly and annual ET, respectively. This result may be attributed 

to the aggregation of monthly ET into annual values. 
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Figure 6. Annually ET products against flux EC ET aggregated for all sites (subplot label as in Figure 4). 

4.1.4. Validation by land cover types 

Figures 7 and 8 show that, according to the ME (RME) sign, except for some ET products over croplands 

(i.e., MOD16A2, SEBS, MOD16A2105, and PML), grasslands (i.e., MOD16A2, SEBS, MOD16A2105, GLDAS20, 

and PML), forests (MOD16A2), and barren land and permanent snow and ice (i.e., MOD16A2105, MOD16A2, 

FLDAS, and GLDAS20), which underestimate the flux EC ET, the other ET products overestimate. For water bodies, 

MOD16A2105, GLEAM33b, GLDAS20, and FLDAS overestimate, while the other products produce underestimates. 

Over croplands, grasslands, and forests, PML is the best product for R (TS) and RMSE (RRMSE). Additionally, it 

has the highest TS over water bodies. SSEBop, GLEAM33a, SEBS, NTSG, and GLDAS20 obtained the desired ME 

(RME) over croplands, grasslands, forests, water bodies, and barren land and permanent snow and ice, respectively. 

GLEAM33a also represents the highest R (TS) with the lowest RRMSE, while GLDAS20 has the smallest RMSE 

over barren land and permanent snow and ice. In addition, GLDAS20 has the lowest RMSE, while SSEBop has the 

highest R and lowest RRMSE over water bodies, see Table 5 (level one: 15–19). 
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Figure 7. Monthly ET products (PML: (a); GLDAS20: (b); SSEBop: (c); MOD16A2105: (d); GLDAS21: (e); SEBS: (f)) against 

flux EC ET aggregated for all sites for each land cover type (croplands: (1); grasslands: (2); frosts: (3); water bodies: (4)). 

 

 

 

 

 

 



 

16 

 

 
Figure 8. Monthly ET products (NTSG: (a); GLEAM33a: (b); FLDAS: (c); GLEAM33b: (d); TerraClimate: (e); MOD16A2: (f)) 

against flux EC ET aggregated for all sites for each land cover type (croplands: (1); grasslands: (2); frosts: (3); water bodies: (4)). 

4.1.5. Validation by climate classes 

Figures 9 and 10 show that SEBS, PML, NTSG, and SSEBop in arid areas and PML, NTSG, and SSEBop 

in semiarid areas overestimate values, while MOD16A2 and SEBS in dry sub-humid areas and MOD16A2, SEBS, 

and PML in humid areas underestimate values; for each aridity index class, other products were the opposite. Over 

humid areas, PML represents the highest agreement and accurate dataset compared to the flux EC ET. Furthermore, 

it had the highest R (TS) in the arid and semiarid areas and the smallest RMSE (RRMSE) in semiarid areas. GLDAS20 

yielded the largest R (TS) with the smallest RMSE (RRMSE) in dry-sub-humid regions; over these regions, 

MOD16A2105 presented the best ME (RME). FLDAS has two contributions, with the smallest ME (RME) and RMSE 

(RRMSE) in semiarid and arid areas, respectively, while GLDAS21 has only one point over arid areas where the best 

ME (RME) is found, see Table 5 (level one: 20–23). 
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Figure 9. Monthly ET products (PML: (a); GLDAS20: (b); SSEBop: (c); MOD16A2105: (d); GLDAS21: (e); SEBS: (f)) against 

flux EC ET aggregated for all sites for each climate class (arid: (1); semiarid: (2); dry-sub-humid: (3); humid: (4)). 
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Figure 10. Monthly ET products (NTSG: (a); GLEAM33a: (b); FLDAS: (c); GLEAM33b: (d); TerraClimate: (e); MOD16A2: (f)) 

against flux EC ET aggregated for all sites for each climate class (arid: (1); semiarid: (2); dry-sub-humid: (3); humid: (4)). 

4.1.6. Validation by elevation levels 

Figures 11 and 12 show that MOD16A2 and SEBS over elevation levels <500 and MOD16A2 and 

MOD16A2105 over elevation levels from 500 m to 1500 underestimate the values, while the other ET products 

overestimate the values; additionally, at elevations >1500, only SSEBop and NTSG overestimate the values. The ET 

product agreed best with the desired RMSE (RRMSE) in the PML product. Moreover, it yielded the best ME (RME) 

at elevations <500 m. The preferred ME (RME) over elevations 500 m to 1500 m and elevations > 500 m was obtained 

using SEBS and FLADS, respectively, see Table 5 (level one: 24–26). 
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Figure 11. Monthly ET products (PML: (a); GLDAS20: (b); SSEBop: (c); MOD16A2105: (d); GLDAS21: (e); SEBS: (f)) against 

flux EC ET aggregated for all sites for each elevation level (<500 m: (1); 500 m–1500 m: (2); >1500 m: (3)). 
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Figure 12. Monthly ET products (NTSG: (a); GLEAM33a: (b); FLDAS: (c); GLEAM33b: (d); TerraClimate: (e); MOD16A2: (f)) 

against flux EC ET aggregated for all sites for each elevation level (<500 m: (1); 500 m–1500 m: (2); >1500 m: (3)). 
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4.2. Ensemble ET product 

4.2.1. Ensemble steps 

 Table 5 provides levels one and two validation metrics of all ET products for monthly (01), annual (02), 

interannual (January-December: 03–14), land cover types (croplands, grasslands, forests, water bodies, others: 15–

19), climatic classes (arid, semiarid, dry sub-humid, humid: 20–23), and elevation levels (<500 m, 500 m-1500 m, 

>1500 m: 24–26). Each cell represents one of the validation levels (01–26) and the best-performing ET product based 

on the selected validation metric, see Sect. 3. 

Table 6 shows that, according to the occurrence of ET products in level one, PML, GLDAS20, and SEBS 

represent the first three best-performing ET products, while according to the occurrence of ET products in level two 

GLDAS20, PML, and MOD16A2105, and according to the total occurrence in levels one and two, PML, GLDAS20, 

and SSEBop are the best, respectively. For example, PML yielded the best validation metrics (the lowest ME, RME, 

RMSE, and RRMSE as well as the highest R and TS) over 83 (53%) and 24 (15%) cells in levels one and two, 

respectively; thus, the total count was 107 (34%) cells. Accordingly, the three best-performing ET products over most 

of the all conditions are MPL followed by GLDAS20 (level one: 10 (6%); level two: 37 (24%); total: 37 (15%)) and 

SSEBop (level one: 12 (8%); level two: 15 (10%); total: 27 (9%)). 

Since the three best-performing ET products differ in their spatial resolution and algorithms, we introduced 

an ensemble mean product at a 1000 m × 1000 m spatial resolution that spans from 2003 to 2017 (15 years) and relies 

on remotely sensed models (PML and SSEBop). It should be noted that although SEBS has one point more than 

SSEBop on level one, it has 7 fewer points than SSEBop in level two (5%). In addition, SSEBop has a higher spatial 

resolution than that of SEBS. In the same manner, SSEBop and MOD16A2105 have the same performance in terms 

of total count (27 (9%)), but SSEBop is higher by 5 points in level one. 

Obviously, from Table 7, the ensemble ET products cannot perform highly across all regions, and it had a 

total count of 50%, followed by PML (44%). Looking to the ensemble mean from Table 7 compared to PML from 

Table 6, the total count increased from 34% to 50% (+16%), indicating that the ensemble mean, which created from 

PML and SSEBop, enhanced PML performance across all conditions by 16% and PML itself still has the best 

performance by 44%. 

To introduce an ensemble product before 2003, firstly, PML and SSEBop were ignored, and the same steps 

were repeated. Table 8 shows that the best-performing products are GLDAS20, MOD16A2105, and NTSG in terms 

of the total count. Since the last two products are based on remote sensing, they were selected to create the ensemble 

product before 2003 at a 1000 m × 1000 m spatial resolution. Although GLDAS20 agreed well over 42% and had the 

lowest maximum ME among all datasets (9.73 mm), NTSG was selected to provide the ET estimates before 2000 

because it had a higher spatial resolution, so it could capture more spatial details than GLDAS20. 

Table 9 shows that the ensemble ET for 2001 and 2002 performed better than the original ET products, with 

values of 62%, 38%, and 50% for level one, level two and the total, respectively. For the periods before 2001, NTSG 

can be used from 1982 to 2001 or GLDAS20 can be used instead. Hence, remotely sensed-based long-term ensemble 

ET can be synthesized from PML and SSEBop between 2003 and 2017, MOD16A2105 and NTSG between 2001 and 

2002. SSEBop can be used after 2018, while before 2000, NTSG can be used. 
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Table 5. Levels one and two validation metrics of the 12 ET products for monthly (01), annually (02) interannual (January-

December: 03-14), land cover types (croplands, grasslands, forests, water bodies, others: 15-19), climatic classes (arid, semiarid, 

dry sub-humid, humid: 20-23), and elevation levels (<500 m, 500 m-1500 m, >1500 m: 24-26), cells color as Table 6. 

Level Metrics 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 

 ME                                                     

 RME                                                     

 RMSE                                                     

One RRMSE                                                     

 R                                                     

 TS                                                     

 ME                                                     

 RME                                                     

 RMSE                                                     

Two RRMSE                                                     

 R                                                     

 TS                                                     

Table 6. The occurrence of the 12 ET products based on Table 5. 

ET products Occurrence in level 1 Occurrence in level 2 Total 

 count % count % count % 

PML 83 53 24 15 107 34 

GLDAS20 10 6 37 24 47 15 

SSEBop 12 8 15 10 27 9 

MOD16A2105 7 4 20 13 27 9 

GLDAS21 14 9 11 7 25 8 

SEBS 13 8 8 5 21 7 

NTSG 4 3 16 10 20 6 

GLEAM33a 5 3 6 4 11 4 

FLDAS 6 4 4 3 10 3 

GLEAM33b 1 1 6 4 7 2 

TerraClimate 1 1 6 4 7 2 

MOD16A2 0 0 3 2 3 1 

Table 7. The occurrence of PML and SSEBop products and their ensemble mean during 2003 and 2017. 

ET products Occurrence in level 1 Occurrence in level 2 Total 

 count % count % count % 

Mean 43 28 113 72 156 50 

PML 103 66 33 21 136 44 

SSEBop 10 6 10 6 20 6 

Table 8. The occurrence of all ET products except PML and SSEBop products. 

ET products Occurrence in level 1 Occurrence in level 2 Total 

 count % count % count % 

GLDAS20 42 27 27 17 69 22 

MOD16A2105 28 18 28 18 56 18 

NTSG 14 9 35 22 49 16 

GLDAS21 23 15 14 9 37 12 

SEBS 21 13 7 4 28 9 

GLEAM33a 8 5 16 10 24 8 

GLEAM33b 6 4 15 10 21 7 

FLDAS 9 6 5 3 14 4 

TerraClimate 3 2 5 3 8 3 

MOD16A2 2 1 4 3 6 2 

Table 9. The occurrence of NTSG and MOD16A2105 products and their ensemble mean during 2001 and 2002. 

ET products Occurrence in level 1 Occurrence in level 2 Total 

 count % count % count % 

Mean 96 62 59 38 155 50 

NTSG 19 12 68 44 87 28 

MOD16A2105 41 26 29 19 70 22 



 

23 

 

4.2.2 Contribution of ET datasets to the synthesized ET 

 The synthesized ET dataset was created at a 1000 m × 1000 m spatial resolution from 1982 to 2019 based on 

remotely sensed ET products. PML, SSEBop, MOD16A2105, and NTSG were augmented together to create the new 

dataset. Since SSEBop and MOD16A2105 have a 1000 m × 1000 m spatial resolution, PML was upscaled and NTSG 

was downscaled by pixel average and nearest neighbor resampling techniques in GEE, respectively. The synthesized 

ET was fully contributed by SSEBop for the years 2018 and 2019 and by NTSG from 1982 to 2000, while for the 

years 2001 and 2002, it was contributed by the simple mean of MOD16A2105 and NTSG. Finally, between 2003 and 

2017, the value represents the simple mean of PML and SSEBop. 

Since the synthesized ET performance was governed by each ET product(s) for the corresponding year from 

1994 to 2019 (25 years), where the ET EC fluxes were available, most of the performance comes from PML and 

SSEBop for the 15 years from 2003 to 2017 (60%), from MOD16A2105 and NTSG for 2 years (2001 and 2002; 8%), 

from SSEBop for individual values in years 2018 and 2019 (8%), and from NTSG for 7 years (24%) from 1994 to 

2000. 

4.2.3. Synthesized global ET product 

Figure 13 shows, looking to July, except over barren land, permanent snow and ice, and arid areas (not 

shown), the maximum value of the synthesized ET lies between SSEBop, which yields the largest ET during all 

months, and PML. Hence, the long-term monthly synthesized ET performance is affected by PML and SSEBop more 

than by NTSG and MOD16A2105, as mentioned in Sect. 4.2.2. 

Table 10 provides the average monthly and annual synthesized ET (mm month–1), land cover types, aridity 

index classes, and elevation levels (mm year–1). The average annual ET from 1982–2019 is 567 mm year–1. July 

represents the maximum synthesized ET (Fig. 13). Table 10 also provides average annual ET for land cover types 

calculated from flux sites. Across land cover types, croplands are higher than forests, followed by grassland, where 

the average synthesized ET was 597, 548, and 542 for croplands, forests, and grasslands, respectively. Low 

synthesized ET values across arid areas (average = 392 mm year -1) can be attributed to low vegetation cover. It should 

be noted that Table 10 does not represent the perfect calculation of ET over each Land cover class because the total 

number of fluxes for each class was not distributed well; for instance, in the arid areas, there were 35 (5%) fluxes, 

while in the humid area, there were 361 (56%) fluxes. 

 Figure 14 shows the decadal (1982–1989, 1990–1999, 2000–2009, and 2010–2019) and long-term (1982–

2019) average synthesized ET maps worldwide, except for Antarctica. Regarding the spatial distribution, the higher 

ET is shown in Malaysia, Singapore, and Indonesia and the northern part of South America. During the first and 

second decades, the synthesized ET is based on the NTSG product; thus, the same spatial distribution was observed. 

Although PML and SSEBop mainly contribute the synthesized ET between 2003 and 2017, there is little difference 

in their spatial distributions, where higher ET can be observed during 2010–2019 over the northern parts of South 

America. 

Table 11 shows statistics of the maps provided in Fig. 14 for all continents except Antarctica. The standard 

deviation is higher over Africa followed by Oceania and Asia. The mean values of the synthesized ET is sequenced 
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from South America followed by Oceania and Africa. The maximum value of the synthesized ET is recorded over 

Asia followed Africa and Australia. The total ETs are 29.1%, 21.7%, 19.9%, 16.7%, 7.9%, 4.2%, and 0.5% for Asia, 

South America, Africa, North America, Europe, Australia, and Oceania, respectively.  

4.2.4 Validation of the synthesized ET 

Figures 15–18 show that the synthesized ET agreed well with the observed data, where the R (TS) ranged 

between 0.70 (0.85) and 0.78 (0.89), except at the annual time step (Fig. 15b) and over barren land and permanent 

snow and ice (not shown), where R (TS) was 0.65 (0.81) and 0.68 (0.80), respectively. Based on the ME sign, the 

value was underestimated only over water bodies. The magnitude of ME (RME) ranged between 0.54 mm (1.05%) 

and 6.76 mm (16.62%), while the RMSE (RRMSE) ranged from 20.95 mm (45.22%) to 30.12 mm (59.61%). Looking 

at the regression line equation, with no exceptions, the synthesized ET overestimated the flux EC ET at lower ET 

values and underestimated the flux EC ET at higher ET values. As mentioned above, even the long-term synthesized 

ET cannot perform best across all comparison levels (Tables 12 and 13). 

During the periods 2018–2019 and before 2001, the synthesized ET performance came from the original 

datasets of SSEBop and NTSG, respectively. The ensemble mean has a total count of 50% over the periods 2003–

2017 and 2001–2002 compared to the original datasets, indicating that it can perform better than other ET products 

over half of all comparison levels, see Tables 7 and 9. 
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Figure 13.  Monthly average flux EC ET, MOD16A2105, SSEBop, NTSG, PML and the synthesized ET (subplot label as in 

Figure 3) 
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Table 10. The average decadal synthesized ET of monthly (mm month–1) and land cover types, aridity index classes and 

elevation levels (mm year–1). 

Level 1982–1989 1990–1999 2000–2009 2010–2019 1982–2019 

January 43.22 44.10 44.94 45.99 44.56 

February 39.73 41.14 42.83 42.09 41.45 

March 44.83 45.09 43.73 42.93 44.15 

April 45.84 46.04 39.32 38.57 42.44 

May 52.86 53.36 47.13 46.61 49.99 

June 56.15 57.31 53.98 54.00 55.36 

July 60.83 61.80 57.06 56.99 59.17 

August 58.02 58.77 51.25 50.25 54.57 

September 49.99 50.15 44.10 42.79 46.76 

October 46.76 46.91 38.53 38.77 42.74 

November 42.55 42.45 41.52 42.29 42.20 

December 42.66 43.58 42.92 44.43 43.40 

Annual 583 591 547 546 567 

Croplands 597 619 595 577 597 

Grasslands 526 546 539 557 542 

Forests 541 561 544 546 548 

Water bodies 499 517 519 534 517 

Others 280 288 230 195 248 

Arid 400 405 366 398 392 

Semiarid 519 538 528 541 532 

Dry sub-humid 479 498 498 511 497 

Humid 577 600 582 577 583 

Elevation <500m 551 570 570 579 568 

Elevation 500 m – 1500 m 498 519 484 484 496 

Elevation >1500 m 557 583 506 471 529 

Note: Monthly and annual estimates have based on synthesized ET raster layers averaged over a decade. Land cover 

types, aridity index classes and elevation levels estimates have based on annual synthesized ET values extracted over 

all flux sites.  
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Figure 14. Decadal and long-term synthesized ET, the last plot shows continental-scale used to create Table 11 accompanied by 

the percent of ET over each continent for the periods 1982–2019 except Antarctica. Use the following link of the GEE application 

to preview these maps: https://elnashar.users.earthengine.app/view/synthesizedet 

 

 

 

 

 

 

 

 

 

 

 

https://elnashar.users.earthengine.app/view/synthesizedet
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Table 11. Statistics of the decadal and long-term synthesized ET (mm). 

Period Continent Minimum Maximum Mean Standard Deviation Sum 

 Africa 0 3588 541 540 17091316777 

 Asia 0 3979 377 392 25075224084 

 Australia 0 4076 445 275 3812181627 

1982-1989 Europe 0 2934 403 189 6902627799 

 North America 0 3818 413 331 14682344407 

 Oceania 111 2155 903 392 431987028 

 South America 4 3585 1002 364 18968179507 

 Global 0 4076 583 355 86963861230 

 Africa 0 3673 555 545 17552175432 

 Asia 0 4054 387 398 25755440497 

 Australia 0 4240 438 281 3748291789 

1990-1999 Europe 0 2825 424 203 7260038441 

 North America 0 3742 423 338 15051753185 

 Oceania 111 2176 892 394 426754913 

 South America 8 3409 1015 363 19218216796 

 Global 0 4240 591 360 89012671053 

 Africa 0 4326 538 504 17073575117 

 Asia 0 4794 393 377 26457856410 

 Australia 0 4804 397 260 3417383567 

2000-2009 Europe 0 4108 399 165 7119724411 

 North America 0 3915 333 310 15229417841 

 Oceania 0 3349 811 398 425095485 

 South America 0 3975 960 411 18312021115 

 Global 0 4804 547 346 88035073946 

 Africa 0 4892 556 530 17631809454 

 Asia 0 6167 398 401 26760551956 

 Australia 0 4692 425 271 3658944492 

2010-2019 Europe 0 3866 384 165 6834742252 

 North America 0 4366 338 320 15454707917 

 Oceania 0 3387 766 417 391231772 

 South America 0 4452 953 453 18166326886 

 Global 0 6167 546 365 88898314729 

 Africa 0 4892 548 530 17337219195 

 Asia 0 6167 389 392 26012268237 

 Australia 0 4804 426 272 3659200369 

1982-2019 Europe 0 4108 402 180 7029283226 

 North America 0 4366 377 325 15104555837 

 Oceania 0 3387 843 400 418767300 

 South America 0 4452 983 398 18666186076 

 Global 0 6167 567 357 88227480239 
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Table 12. Same as Table 5 but MOD16A2 replaced by the synthesized ET (cells colour as Table 13). 

Levels Metrics 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 

 ME                           

 RME                           

 RMSE                           

One RRMSE                           

 R                           

 TS                           

 ME                           

 RME                           

 RMSE                           

Two RRMSE                           

 R                           

 TS                           

Note: MOD16A2 ignored according to Sec. 4.1. 

Table 13.  Same as Table 6 but MOD16A2 replaced by the synthesized ET and based on Table 12. 

ET products Occurrence in level 1 Occurrence in level 2 Total 

 count % count % count % 

PML 66 42 33 21 99 32 

Synthesized 26 17 57 37 83 27 

GLDAS20 12 8 12 8 24 8 

GLDAS21 12 8 7 4 19 6 

SEBS 12 8 7 4 19 6 

MOD16A2105 6 4 12 8 18 6 

SSEBop 8 5 8 5 16 5 

NTSG 2 1 8 5 10 3 

FLDAS 6 4 2 1 8 3 

GLEAM33a 5 3 3 2 8 3 

TerraClimate 1 1 4 3 5 2 

GLEAM33b 0 0 3 2 3 1 

 

Figure 15. Monthly (a) and annually (b) synthesized ET against flux EC ET aggregated for all sites. 
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Figure 16. Monthly synthesized ET against flux EC ET aggregated for all sites for each land cover type (croplands: (a); grasslands: 

(b); forest: (c); water bodies: (d)). 

 
Figure 17. Monthly synthesized ET against flux EC ET aggregated for all sites for each climate class (arid: (a); semiarid: (b); dry-

sub-humid: (c); humid: (d)). 
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Figure 18. Monthly synthesized ET against flux EC ET aggregated for all sites for each elevation level (<500 m: (a); 500 m–1500 

m: (b); >1500 m: (d)). 

Figure 19 presents a monthly comparison between the synthesized ET with the country-based ET products 

over China and the United States as well as over the African continent. In general, the synthesized ET returned higher 

agreement (R and TS) and accuracy (RMSE) with the flux EC ET than did the other ET products (CR, SSEBop, and 

FAO WaPOR). Moreover, it has lower biases over the United States and the African continent. 

 
Figure 19. Monthly comparison between the synthesized ET (a, c and e) and CR (b), SSEBop (d), and FAO WaPOR (f) ET 

products against flux EC ET aggregated for all sites over China (a and b), the USA (c and d) and the African continent (e and f). 
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5. Discussion 

Since global land ET plays a paramount role in the hydrological cycle, its accurate estimation is essential for 

further studies. Although there are many global ET products that have been derived from remote sensing models, land 

surface models, and hydrological models, they differ in their algorithms, parameterization, and temporal span, and 

none of these products can be used for a long time with a reasonable spatial resolution and lower uncertainty. In this 

study, we ensemble the best-performing, currently available global ET products at a reasonable spatial resolution 

(kilometer) as one consistent global ET dataset covering a long temporal period. Users can use this dataset assuredly 

without looking at other datasets and performing additional assessments. 

We used a high-quality dataset of global flux towers as a site-pixel-level validation for certain global ET 

products (Leuning et al., 2008;Zhang et al., 2010;Ershadi et al., 2014;Michel et al., 2016) to assess them and select 

the best products to create a synthesized ET covering a long temporal period. For that, a matrix of 6 validation criteria 

and 26 comparison levels was created, and then levels one and two of the validation metrics were used to select the 

best-performing products. Finally, by the simple mean of the products that performed best over the different periods, 

the synthesized ET was created. 

Among all global ET products investigated in this study, the products that performed best are PML, 

GLDAS20, SSEBop, MOD16A2105, GLDAS21, SEBS, and NTSG (Table 6). From the perspective of all comparison 

levels, the performance of these products varied, and no single product performed well across all land surface types 

and conditions (Vinukollu et al., 2011a;Li et al., 2018). The PML represents the ET product with the highest 

agreement, with lower ME (RME) and RMSE (RRMSE) values, followed by the synthesized ET (Tables 12 and 13); 

however, it should be noted that PML estimates span a 15-yr period, while the synthesized ET presents longer 

estimates from 1982 to 2019 (38 years). 

The main advantage of the new dataset is that, for the first time, a synthesized remotely sensed ET product 

with a reasonable spatial resolution and lower long-term uncertainties has been provided, where the maximum absolute 

ME (RME) and RMSE (RRMSE) values are 13.94 mm (17.13%) and 38.61 mm (47.45%), respectively. Furthermore, 

it agreed well (R > 0.70) in 62% of all comparison levels (Table 14). This dataset can provide ensemble ET estimates 

for all land cover types, where MOD16A2105 does not provide ET estimates over water bodies and desert areas other 

products are. Moreover, a comparison among the synthesized ET against CR, SSEBop, and FAO WaPOR ET products 

over China, the United States, and the African continent proved that the synthesized ET outperformed these products 

in terms of a higher agreement, higher accuracies and lower biases. Hence, the synthesized ET can play an essential 

role, especially for regional and global scale studies, over a long time (1892–2019). 

Table 14. Percentage of R more than 0.70 and the maximum absolute value of ME (mm), RME (%) RMSE (mm), and RRMSE 

(%) across all comparisons levels (01–26) of the highly preformed ET products and the synthesized ET. 

ET products R>0.7 (%) ME RME RMSE RRMSE 

PML 65 7.64 12.22 36.28 44.30 

Synthesized 62 13.94 17.13 38.61 47.45 

GLDAS20 42 9.73 23.02 39.53 49.32 

SSEBop 42 21.82 26.07 48.14 57.50 

MOD16A2105 42 12.89 51.06 42.78 53.27 

GLDAS21 35 13.69 22.07 47.84 58.32 

NTSG 23 14.46 86.35 40.50 50.26 
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The synthesized ET used SSEBop ET for the years 2018 and 2019 and NTSG from 1982 to 2000 because 

NTSG is the only remotely sensed global ET product available and has a good spatial resolution compared to 

GLDAS20. It is the simple mean of MOD16A2105 and NTSG for the years 2001 and 2002 and the simple mean of 

PML and SSEBop between 2003 and 2017 (see Tables 7 and 9). 

Because the ET was synthesized during the first and second decades as well as the year 2000 based on 

resampled NTSG to a 1 km spatial resolution to be comparable with other products, future improvements may be 

focused on statistical downscaling of NTSG during this period. Moreover, since different datasets were selected due 

to data availability, also future improvements may be focused on the adjustment of the ensemble means particularly 

for long-term pixel-based studies. 

6. Data availability 

All data used in this study are freely available; see Sect. 2 and Appendix A. The synthesized ET is available 

in https://doi.org/10.7910/DVN/ZGOUED (Elnashar et al., 2020) and as GEE application from the following link: 

https://elnashar.users.earthengine.app/view/synthesizedet. In addition, it can be accessed in the GEE JavaScript editor 

(the updated link embedded in the GEE application interface). Through this application, the user can query and display 

as well as download the synthesized ET. It should be noted that SSEBop and NTSG datasets are not available in Earth 

Engine so they were uploaded as assets in GEE for this purpose. 

7. Conclusion 

 In the current study, a site-pixel-level validation was conducted for certain global ET products across a variety 

of land surface types and conditions to select the best performing ET products and then produce a global long-term 

synthesized ET dataset. To apply a comprehensive evaluation from different perspectives, land cover types, climate 

and elevations were classified into five, four, and three classes, respectively. According to six comprehensive 

validation criteria, the evaluated ET products ranked based on the lowest error metrics and highest accuracy and 

consistency over different classification levels to choose the ensemble members over different times. 

The average annual ET from 1982–2019 is 567 mm year–1. Although no product performed better in terms 

of all selected validation criteria in all classification levels, PML, GLDAS20, SSEBop, MOD16A2105, GLDAS21, 

SEBS, and NTSG are the sequence of their performances. The synthesized ET from PML, SSEBop, MOD16A2105 

and NTSG agreed with the flux EC ET with R-values higher than 0.70, a maximum ME (RME) of 13.94 mm (17.13%) 

and a maximum RMSE (RRMSE) of 38.61 mm (47.45%) over 62% of all comparisons levels, as remotely sensed 

based ET product spanning from 1982 to 2019 with highest agreements, accuracies and lower biases over most of the 

land surface types and conditions. It performs well when compared with country-based and continental ET products 

over China, the United States and the African continent. However, the further synthesis of local ET products is 

encouraged if regional ET products are available. 

The results from this study provide a better understanding of the high performing ET products in each land 

cover type, elevation level and climate region as well as a monthly, annual and interannual time steps. Hence, this 

https://doi.org/10.7910/DVN/ZGOUED
https://elnashar.users.earthengine.app/view/synthesizedet


 

34 

 

study provides an ET product that can be used to improve the quality of ET at regional and global levels and, 

consequently, can be used to improve agriculture, water resource management, and climate change studies. 
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Appendix A 

A summary of ET datasets used in this research is presented here. It should be noted that except for SSEBop, 

SEBS, NTSG ET, and GLEAM, which are downloaded from their providers, other datasets are available in Earth 

Engine Data Catalog through the following link https://developers.google.com/earth-engine/datasets/catalog. Each 

dataset in GEE has Earth Engine Snippet as following: 

MOD16A2 ET V6: ee.ImageCollection("MODIS/006/MOD16A2") 

MOD16A2 ET V105: ee.ImageCollection("MODIS/NTSG/MOD16A2/105") 

PML ET: ee.ImageCollection("CAS/IGSNRR/PML/V2") 

GLDAS ET V20: ee.ImageCollection("NASA/GLDAS/V20/NOAH/G025/T3H") 

GLDAS ET V021: ee.ImageCollection("NASA/GLDAS/V021/NOAH/G025/T3H") 

FLADS ET: ee.ImageCollection("NASA/FLDAS/NOAH01/C/GL/M/V001") 

TerraClimate ET: ee.ImageCollection("IDAHO_EPSCOR/TERRACLIMATE") 

MOD16 ET 

The Moderate Resolution Imaging Spectroradiometer (MODIS) Global Evapotranspiration Project 

(MOD16A2) estimates terrestrial ET as the sum of evaporation and plant transpiration. MOD16A2 ET uses the 

Penman-Monteith model, which includes MODIS remotely sensed data (e.g., vegetation, surface albedo, and land 

cover classification) and daily meteorological reanalysis. There are two products of MOD16A2 ET (V6 and V105) 

with an 8-day temporal resolution, but they differ in their spatial resolution and temporal coverage (Mu et al., 2011;Mu 

et al., 2014b). V6 spans from 2001 until now with a 500 m × 500 m spatial resolution and is provided by NASA LP 

DAAC at the USGS EROS Center; it can be downloaded from https://doi.org/10.5067/MODIS/MOD16A2.006. V105 

estimates span the period from 2001 to 2014 with a 1000 m × 1000 m spatial resolution and are provided by the 

Numerical Terradynamic Simulation Group (NTSG) at the University of Montana in conjunction with the NASA 

Earth Observing System (Mu et al., 2014a). 

https://developers.google.com/earth-engine/datasets/catalog/
https://modis.gsfc.nasa.gov/about/
https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod16a2_v006
https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod16a2_v006
https://doi.org/10.5067/MODIS/MOD16A2.006/
http://www.ntsg.umt.edu/project/modis/mod16.php
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PML ET 

The Penman-Monteith Leuning (PML) ET product partitions ET into three components: plant transpiration, 

soil evaporation, and intercepted rainfall by the canopy as well as water evaporation. PML data span from 2002 to 

2017 with a 500 m × 500 m spatial resolution and an 8-day temporal resolution (Zhang et al., 2019). 

SSEBop 

The operational Simplified Surface Energy Balance (SSEBop) model is based on the Simplified Surface 

Energy Balance (SSEB) approach with a unique parameterization for operational applications. Using a thermal index 

approach, it combines ET fractions generated from remotely sensed MODIS land surface temperature, acquired every 

10 days, with reference ET from global weather datasets. The SSEBop uses predefined, seasonally dynamic, boundary 

conditions that are unique to each pixel for the hot and cold reference points (Senay et al., 2007;Senay et al., 

2011;Senay et al., 2013;Senay et al., 2020). SSEBop estimates are from 2003 with a 0.0096°×0.0096° (≈1 km) spatial 

resolution and a monthly temporal resolution. Data were provided by The Early Warning and Environmental 

Monitoring Program via the United States Geological Survey and can be downloaded from the following website 

https://earlywarning.usgs.gov. 

SEBS 

The Surface Energy Balance System (SEBS) is an approach designed to estimate ET from the evaporative 

fraction using satellite remote sensing augmented with meteorological data at corresponding scales (Su, 2002). 

MODIS-LST and the Normalized Difference Vegetation Index (NDVI), GLASS-LAI, GLAS global forest height, 

GlobAlbedo, and ERA-Interim meteorological data have been used in these ET calculations with the revised SEBS 

algorithm (Chen et al., 2013;Chen et al., 2014a;Chen et al., 2019). SEBS is available during the period from 2000 to 

2017 with a 5 km × 5 km spatial resolution and monthly temporal resolution. It is copyrighted by the Institute of 

Tibetan Plateau Research, Chinese Academy of Sciences and is available at http://en.tpedatabase.cn. 

NTSG ET 

The Numerical Terradynamic Simulation Group (NTSG) ET data are based on an algorithm that estimates 

transpiration from the canopy and evaporation from soil using a modified Penman‐Monteith model and evaporation 

from open water using a Priestley‐Taylor model. These algorithms were applied globally using the Advanced Very 

High-Resolution Radiometer (AVHRR) Global Inventory Modeling and Mapping Studies (GIMMS) NDVI, 

NCEP/NCAR Reanalysis daily surface meteorology, and NASA/GEWEX Surface Radiation Budget Release-3.0 solar 

radiation inputs (Zhang et al., 2009;Zhang et al., 2010). NTSG estimates cover a period from 1982 to 2013 at a spatial 

resolution of 8 km × 8 km and a monthly temporal resolution. It is produced by NTSG at the University of Montana 

and can be retrieved from http://files.ntsg.umt.edu/. 

https://earlywarning.usgs.gov/
http://en.tpedatabase.cn/
http://www.ntsg.umt.edu/project/modis/mod16.php
http://files.ntsg.umt.edu/
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GLEAM 

The Global Land Evaporation Amsterdam Model (GLEAM) is physically based on an algorithm that estimate 

ET components separately (i.e., transpiration, interception loss, bare soil evaporation, snow sublimation, and open-

water evaporation). The potential evaporation is estimated by the Priestley and Taylor equation based on observations 

of surface net radiation and near-surface air temperature and is then converted into actual evaporation based on the 

evaporative (soil) stress factor. The soil stress factor is based on microwave vegetation optical depth and simulated 

root-zone soil moisture calculated from a multilayer water balance model. Separately, interception loss is calculated 

based on vegetation and rainfall observations. There are two datasets available for GLEAM (i.e., v3.3a, and v3.3b) 

that differ only in their forcing and temporal coverage. v3.3a spans from 1980 to 2018 and relies on reanalysis radiation 

and air temperature, a combination of gauge-based, reanalysis and satellite-based precipitation, and satellite-based 

vegetation optical depth, while v3.3b spans from 2003 to 2018, and its forcing factors are the same as v3.3a except 

for radiation and air temperature, which are based on remotely sensed data. Both v3.3a and v3.3b estimates are 

provided at a monthly temporal resolution and a 0.25°×0.25° (≈25 km) spatial resolution (Miralles et al., 

2011b;Miralles et al., 2011a;Martens et al., 2017). 

GLDAS ET 

The Global Land Data Assimilation System (GLDAS) generates optimal fields of land surface states and 

fluxes using advanced land surface modeling and data assimilation techniques by ingesting satellite and ground-based 

observational data products. GLDAS Version 2 has two components (GLDAS-2.0 and GLDAS-2.1) with a 

0.25°×0.25° (≈25 km) spatial resolution and a 3-hour temporal resolution. GLDAS-2.0 is reprocessed with the updated 

Princeton Global Meteorological Forcing Dataset and upgraded Land Information System Version 7. The model 

simulation was initialized from January 1, 1948, to December 31, 2010, using soil moisture and other state fields from 

the LSM climatology for that day of the year. The simulation used the common GLDAS datasets for land cover 

(MCD12Q1), land-water mask (MOD44W), and soil texture and elevation (GTOPO30). The GLDAS-2.1 simulation 

started on January 1, 2000, and lasted until December 31, 2019, using the conditions from the GLDAS-2.0 simulation. 

This simulation was forced with the National Oceanic and Atmospheric Administration (NOAA)/Global Data 

Assimilation System (GDAS) atmospheric analysis, disaggregated Global Precipitation Climatology Project (GPCP) 

precipitation, and Air Force Weather Agency's AGRicultural METeorological modeling system (AGRMET) radiation. 

The MODIS-based land surface parameters were used in the current GLDAS-2.x products, while the AVHRR base 

parameters were used in previous GLDAS-2 products before October 2012 (Rodell et al., 2004). 

FLDAS ET 

The Famine Early Warning Systems Network (FEWS NET) Land Data Assimilation System (FLDAS) 

dataset uses remotely sensed and reanalysis inputs to drive land surface models. It includes information on many 

climate-related variables, including evapotranspiration, moisture content, humidity, average soil temperature, and total 

precipitation rate. For forcing data, this FLDAS dataset uses a combination of the new version of Modern-Era 

Retrospective analysis for Research and Applications version 2 (MERRA-2) data and Climate Hazards Group 
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InfraRed Precipitation with Station data (CHIRPS), a quasi-global rainfall dataset designed for seasonal drought 

monitoring and trend analysis (McNally et al., 2017). FLDAS is provided at a 0.1°×0.1° (≈10 km) spatial resolution 

and monthly temporal resolution during the period 1982–2019. 

TerraClimate ET 

TerraClimate ET is estimated based on a monthly one-dimensional soil water balance for global terrestrial 

surfaces, which incorporates evapotranspiration, precipitation, temperature, and interpolated plant extractable soil 

water capacity. The water balance model is very simple and does not account for heterogeneity in vegetation types or 

their physiological responses to changing environmental conditions (Abatzoglou et al., 2018). TerraClimate estimates 

are provided at a monthly temporal resolution from 1958 to 2018 and 0.041°×0.041° (≈5 km) grid cells. 
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