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We thank both referees for their constructive comments to which we reply below followed by the 1 

track changes version of the manuscript. 2 

 3 

Response to Referee 1’s Comments 4 

General comments 5 

This manuscript is very interesting and valuable in developing a global accurate ET dataset. 6 

Currently, there are many global or regional ET datasets, but their performances vary across 7 

different regions. This manuscript provides an insightful approach in processing these datasets 8 

ensemble. However, there are many procedures to be clarified to inform the readers. 9 

 10 

» Answer: Thank you very much for your positive comments and suggestions which for sure 11 

significantly improved the manuscript. 12 

 13 

Major comments 14 

 15 
I don’t understand the meanings of “best first and second levels” and “levels one and two validation 16 

metrics”. These two phrases have appeared many times and are vitally important to understand the 17 

synthesis procedure. If I understand this correctly, the performance metrics in Tables 5-8 were 18 

used to select two or three best ET datasets and the new dataset is produced by averaging these 19 

two or three datasets. A figure of processing procedure may be helping. 20 

 21 

» Answer: Thank you for pointing this out. The level one of validation metrics has the highest R 22 

and TS values and the lowest ME, RME, RMSE, and RRMSE while the level two of validation 23 

metrics has the highest R and TS values and the lowest ME, RME, RMSE, and RRMSE after level 24 

one. You are right, the performance metrics in Tables 5-8 were used to select two or three best ET 25 

datasets and the new dataset is produced by averaging these two or three datasets. For that, Fig. 1, 26 

that shown below, was created to preview the synthesization method and is included in the revised 27 

manuscript under Section 3.2. Hence, we rewrote Section 3.2 as follows: 28 

“There are 6 validation metrics including R, TS, ME, RME, RMSE, and RRMSE. The 29 

validation values of 6 metrics are categorized into levels. The level one of validation metrics has 30 

the highest R and TS values and the lowest ME, RME, RMSE, and RRMSE while the level two 31 

of validation metrics has the highest R and TS values and the lowest ME, RME, RMSE, and 32 

RRMSE after level one. For that, R and TS sorted descending while ME, RME, RMSE, and 33 

RRMSE sorted ascending (Fig.1a) then the corresponding ET product of each validation metric 34 

saved in a new table to be used to fill in Fig.1b.  35 

The current study proposes three steps to develop a synthesized global ET dataset. First, 36 

the ET datasets are compared based on 6 validated metrics to generate a matrix to indicate level 37 

one and two of the validation metrics of all ET products over all comparison levels (Fig.1b). For 38 

each level, there are 6 validation metrics in rows and 26 ET values of different time periods and 39 

underlying conditions in columns (comparison levels), including monthly average (01), annual 40 

average (02), monthly (January-December: 03-14), land cover types (15-19), climate classes (20-41 

23), and elevation levels (24-26). Thus, the total number of cells is 156 for each level. Each cell in 42 

the matrix represents one of twelve ET products that belong to this level. Then, to select ET data 43 

for further synthesis, the number and percentage of ET product occurrence at matrix (Fig.2b) of 44 

level one and two were calculated (Fig.1c). ET products were ranked in descending order based 45 
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on the occurrence percentage of levels one and two (the last column in Fig.1c). Finally, the first 46 

two or three highly ranked ET products were selected to incorporate into the ensemble ET. For 47 

that, the selected ET products were resampled to a comparable spatial resolution if needed, and the 48 

average was used as the synthesized ET value.” 49 

 50 

 51 
Fig.1. Flowchart of the synthesization method. 52 

 53 

 54 

 55 

 56 
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 59 

 60 

 61 
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The second major problem is the validation data. By reading this manuscript, it could be confirmed 62 

that the observed EC ET data serve as validation data in evaluating and ranking the 12 ET datasets 63 

and also the validation data in evaluating the proposed Global Actual Evapotranspiration dataset. 64 

There could be an overfitting effect. It is like we use the same dataset as calibration data and 65 

validation data at the same time. Therefore, a cross-checking method should be applied. For 66 

example, 2/3 of the EC sites be used to evaluate the ET datasets and 1/3 of EC sites to validate. 67 

 68 

» Answer: Thank you very much for your comment. You are right, it needs to split the in-situ data 69 

into 2 groups for calibration and validation. However, we do not calibrate ET products. We use in-70 

situ data to see which one is performing better than others. Once ET products are selected, then 71 

we synthesize them into one and use in-situ data to validate to see if the synthesized data is better. 72 

Furthermore, From Tables 1 and 3, the flux EC ET sites, as well as the 12 ET products, are 73 

available in different periods. For evaluating each ET product the matched periods between EC 74 

sites and ET datasets were used (Xu et al. 2019; Li et al. 2018), that is why RME and RRMSE are 75 

included in the validation metrics. Further, the synthesized ET represented by the mean of PML 76 

and SSEBop about 60% (2003 to 2017) and the mean of NTSG and MOD16A2105 about 8% 77 

(2002-2002) indicating 68% of the synthesized ET are new data. For that, we used the matched 78 

period’s method aiming to validate the new product under the same conditions of the experiment. 79 

We agreed with this method because we did not incorporate the flux EC ET data into the 80 

synthesized ET, it just serves as a ruler to prove to what extend each ET product works well in all 81 

comparison levels. Moreover, we used three regional ET datasets for comparison of consistent 82 

agreement over China, the United States, and the African continent to ensure the proposed product 83 

works well. 84 

 85 

Another question that should be discussed is the scale problem. The EC sites normally work in a 86 

very limited area and can only present the ET condition of a small region. The related uncertainty 87 

should be discussed in the manuscript. 88 

 89 

» Answer: Thank you for your very thoughtful comment. This is a common issue. The best way 90 

to validate the ET datasets is to use closure watershed water balances, however, these data set are 91 

quite a few. Flux EC ET data has its footprint, covering a larger area, but hard to match with a 92 

pixel. This issue still needs fundamental study. For that, we added Lines 61-64, as follows: 93 

“Although flux EC ET is commonly flawed, particularly concerning energy balance 94 

closure at some sites (Foken, 2008; Helgason and Pomeroy, 2012), relatively short periods, and 95 

sparse spatial coverage, it is the most direct method for measuring the exchange between the 96 

surface and the atmosphere in different ecosystems (Foken et al., 2012; Baldocchi, 2014). Thus, 97 

site-pixel-level validation of certain ET products against flux EC ET as typically observed data 98 

has been performed by several studies in specific regions” 99 

 100 

 101 

 102 

 103 

 104 

 105 

 106 

 107 
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Minor comments 108 

 109 
Line 11: What do you mean by “they produce different levels of uncertainties?” 110 

» Answer: Thank you for that comment. We rewrote the sentence (Lines 9-11) to be clearer, as 111 

follows: 112 

“Although it is difficult to estimate ET over a large scale and for a long time, there are 113 

several global ET datasets available with uncertainty associated with various assumptions 114 

regarding their algorithms, parameters, and inputs”. 115 

 116 

In the abstract, the synthesization method should be indicated clearly. 117 

» Answer: Thank you for your cogent advice. We agree and have indeed done that (Lines 12-15), 118 

as follows: 119 

“Through a site-pixel evaluation of 12 global ET products over different time periods, land 120 

surface types, and conditions, the high performing products were selected for synthesis of the new 121 

dataset using a high-quality flux eddy covariance covering the entire globe.” 122 

 123 

Line 74: check the time period. 124 

» Answer: Thank you for pointing this out. We changed “1998-1995” to “1989-1995”. 125 

 126 

Line 258: the title of subplot c. 127 

» Answer: Thank you for pointing this out. We changed RMSE (mm): (d) to RMSE (mm): (c). 128 

 129 

Line 371-392: Different datasets were selected due to data availability. That means for each period, 130 

for example before 2003 and 2003-2017, different datasets were used. My concern is that the 131 

ensemble means/variations may differ greatly. An adjustment in the period mean/variation should 132 

be considered. 133 

 134 

» Answer: Thank you for your very thoughtful comment. Although we agree with you, this time 135 

series adjustment is very important and should be done in the future. Therefore, we have added 136 

Lines 549-551, as follows: 137 

“since different datasets were selected due to data availability, also future improvements 138 

may be focused on the adjustment of the ensemble means particularly for longterm pixel-based 139 

studies.” 140 

 141 

Some tables and figure captions are similar. For example, Table 5 and Table 12. The major 142 

differences between them are the time period, which should be clearly indicated. 143 

 144 

» Answer: We appreciate your advice. Tables and figures caption has been revised (Figures 6 145 

and 13; Tables 6-9, 12, 13). 146 

 147 

 148 

 149 
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Response to Referee 2’s Comments 150 

The present article proposes a long-term synthesized ET product at a kilometer spatial resolution 151 

and monthly temporal resolution from 1982 to 2019. The authors made a trial application of GIS 152 

and remotely sensed data to reach the proposed aim of their study. 153 

 154 

» Answer: Thank you very much for your positive comments and suggestions which for sure 155 

significantly improved the manuscript. 156 

 157 

The presented article would be a good piece of work by supporting the conclusion with the 158 

obtained findings. 159 

 160 

» Answer: Thank you for your very thoughtful comment. We have added the obtained findings to 161 

the Conclusions section as follows: 162 

” The average annual ET from 1982–2019 is 567 mm year–1. Although no product 163 

performed better in terms of all selected validation criteria in all classification levels, PML, 164 

GLDAS20, SSEBop, MOD16A2105, GLDAS21, SEBS, and NTSG are the sequence of their 165 

performances. The synthesized ET from PML, SSEBop, MOD16A2105 and NTSG agreed with 166 

the flux EC ET with R-values higher than 0.70, a maximum ME (RME) of 13.94 mm (17.13%) 167 

and a maximum RMSE (RRMSE) of 38.61 mm (47.45%) over 62% of all comparisons levels, as 168 

remotely sensed based ET product spanning from 1982 to 2019 with highest agreements, 169 

accuracies and lower biases over most of the land surface types and conditions. It performs well 170 

when compared with country-based and continental ET products over China, the United States and 171 

the African continent. However, the further synthesis of local ET products is encouraged if 172 

regional ET products are available.”. 173 

 174 

 175 

 176 

 177 

 178 

 179 

 180 

 181 

 182 

 183 

 184 

 185 
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Synthesis of Global Actual Evapotranspiration from 1982 to 2019 186 

Abdelrazek Elnashar1,2,3, Linjiang Wang1,2, Bingfang Wu1,2*, Weiwei Zhu1, Hongwei Zeng1,2 187 

1State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of 188 
Sciences, Beijing, 100094, China 189 
2College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China 190 
3Department of Natural Resources, Faculty of African Postgraduate Studies, Cairo University, Giza, 12613, Egypt 191 

Correspondence to: Bingfang Wu (wubf@aircas.ac.cn) 192 

Abstract. As a linkage among water, energy, and carbon cycles, global actual evapotranspiration (ET) plays an 193 

essential role in agriculture, water resource management, and climate change. Although it is difficult to estimate ET 194 

over a large scale and for a long time, there are several global ET datasets available with varieduncertainty associated 195 

with various assumptions regarding their algorithms, parameters, and inputs, and they produce different levels of 196 

uncertainties. In this study, we propose a long-term synthesized ET product at a kilometer spatial resolution and 197 

monthly temporal resolution from 1982 to 2019. Through a site-pixel validationevaluation of certain12 global ET 198 

products over different time periods, land surface types, and conditions, the high performing products were selected 199 

throughfor synthesis of the new dataset using a high-quality flux eddy covariance covering the entire globe. According 200 

to the study results, Penman-Monteith Leuning (PML), operational Simplified Surface Energy Balance (SSEBop), 201 

Moderate Resolution Imaging Spectroradiometer (MODIS, MOD16A2105) and the Numerical Terradynamic 202 

Simulation Group (NTSG) ET products were chosen to create the synthesized ET set. The proposed product agreed 203 

well with flux EC ET over most of the all comparison levels, with a maximum ME (RME) of 13.94 mm (17.13%) and 204 

a maximum RMSE (RRMSE) of 38.61 mm (47.45%). Furthermore, the product performed better than local ET 205 

products over China, the United States, and the African continent and presented an ET estimation across all land cover 206 

classes. While no product can perform best in all cases, the proposed ET can be used without looking at other datasets 207 

and performing further assessments. Data are available on the Harvard Dataverse public repository through the 208 

following Digital Object Identifier (DOI): https://doi.org/10.7910/DVN/ZGOUED (Elnashar et al., 2020) as well as it 209 

is available as Google Earth Engine (GEE) application through this link: 210 

https://elnashar.users.earthengine.app/view/synthesizedet. 211 

1. Introduction 212 

Over most of the global land area, terrestrial evapotranspiration (ET) considers the second largest element of 213 

the hydrological cycle after precipitation (Waring and Running, 2007b;Bastiaanssen et al., 2014) and represents the 214 

linkage between water, energy, and carbon cycles (Gentine et al., 2019;Yang et al., 2016;Ferguson and Veizer, 2007) 215 

and ecosystem services (Almusaed, 2011;Yang et al., 2015;Revelli and Porporato, 2018). 216 

Hence, the accurate estimation of global ET is essential for understanding the global hydrological cycle and 217 

water budgets (Oki and Kanae, 2006;Trenberth et al., 2007;Rodell et al., 2015), global drought (Sheffield et al., 218 

2012;Naumann et al., 2018;Spinoni et al., 2019;Lu et al., 2019;Forootan et al., 2019), impacts of climate change 219 

(Waring and Running, 2007a;Zomer et al., 2008;Scheff and Frierson, 2014;Pan et al., 2015), climate change and global 220 

mailto:wubf@aircas.ac.cn
https://doi.org/10.7910/DVN/ZGOUED
https://elnashar.users.earthengine.app/view/synthesizedet
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water resources (Arnell, 1999;Haddeland et al., 2014;Arnell and Lloyd-Hughes, 2014), global transboundary basin 221 

water scarcity (Degefu et al., 2018), water competition within a basin (Scott et al., 2001) and water stress/conflict 222 

within transboundary basins (Samaranayake et al., 2016;Munia et al., 2016;Bastiaanssen et al., 2014). 223 

While precipitation and runoff, which are other paramount factors of the global water balance, can be directly 224 

measured by in situ weather stations and stream gauge networks as well as the availability of several datasets of 225 

remotely sensed precipitation (Funk et al., 2015;Ashouri et al., 2015;Huffman et al., 1997;Yamamoto and Shige, 226 

2015), it is difficult to measure ET, especially at large spatial scales (Senay et al., 2012;Zhang et al., 2016). 227 

Recently, several global ET datasets have become available for a variety of purposes, and they have been 228 

generated using remote sensing models, land surface models (LSM), and hydrological models (Trambauer et al., 229 

2014;Li et al., 2018;Sörensson and Ruscica, 2018). There are many differences among these models concerning their 230 

algorithms, parameters, and inputs, and they produce different levels of uncertainty (Wang and Dickinson, 2012;Xu 231 

et al., 2019;Weerasinghe et al., 2020;Vinukollu et al., 2011a). The remote sensing model, which mainly focuses on 232 

thermal remote sensing and the energy balance equation, will be represented by MOD16A2 (Mu et al., 2011), PML 233 

(Zhang et al., 2019), SSEBop (Senay et al., 2013), SEBS (Chen et al., 2013), NTSG (Zhang et al., 2010), and GLEAM 234 

v3.3b (Miralles et al., 2011b). The land surface model uses quantitative methods to simulate the vertical exchanges of 235 

water and energy fluxes between the atmosphere and the land surface, as represented by GLDAS ET (Rodell et al., 236 

2004), GLEAM v3.3a (Miralles et al., 2011b), and FLDAS (McNally et al., 2017). TerraClimate, which is a 237 

hydrological model, is based on a one-dimensional water balance approach (Abatzoglou et al., 2018). However, the 238 

availability of many datasets introduces challenges related to how users choose the appropriate dataset for their 239 

purposes (Wu et al., 2020). 240 

Some studies have evaluated global ET products using an inferred estimate of ET obtained by subtracting 241 

discharge (Q) from precipitation (P), ET = P ˗ Q, over global river basins (Zhang et al., 2010;Vinukollu et al., 242 

2011a;Vinukollu et al., 2011b), continental river basins (Weerasinghe et al., 2020), transboundary river basins (Hofste, 243 

2014), and national river basins (Zhong et al., 2020). Some, on the other hand, have used the ensemble ET product as 244 

observed data for evaluating certain ET products (Hofste, 2014;Trambauer et al., 2014;Andam-Akorful et al., 245 

2015;Bhattarai et al., 2019). 246 

Site-pixel-level validation of certain ET products against flux EC ET as typically observed data has been 247 

performed by several studies in specific regions (e.g., globally (Leuning et al., 2008;Zhang et al., 2010;Ershadi et al., 248 

2014;Michel et al., 2016); Asia (Kim et al., 2012); South Africa (Majozi et al., 2017); Europe (Ghilain et al., 2011;Hu 249 

et al., 2015); North America (Jiménez et al., 2009;Mu et al., 2011); Europe and the United States (Miralles et al., 250 

2011b); the United States (Vinukollu et al., 2011b;Velpuri et al., 2013;Xu et al., 2019); and China (Jia et al., 2012;Liu 251 

et al., 2013;Chen et al., 2014b;Tang et al., 2015;Yang et al., 2017;Li et al., 2018)). Although flux EC ET is commonly 252 

flawed, particularly concerning energy balance closure at some sites (Foken, 2008;Helgason and Pomeroy, 2012), 253 

relatively short periods, and sparse spatial coverage, it is the most direct method for measuring the exchange between 254 

the surface and the atmosphere in different ecosystems (Foken et al., 2012;Baldocchi, 2014). Thus, site-pixel-level 255 

validation of certain ET products against flux EC ET as typically observed data has been performed by several studies 256 

in specific regions (e.g., globally (Leuning et al., 2008;Zhang et al., 2010;Ershadi et al., 2014;Michel et al., 2016); 257 
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Asia (Kim et al., 2012); South Africa (Majozi et al., 2017); Europe (Ghilain et al., 2011;Hu et al., 2015); North 258 

America (Jiménez et al., 2009;Mu et al., 2011); Europe and the United States (Miralles et al., 2011b); the United States 259 

(Vinukollu et al., 2011b;Velpuri et al., 2013;Xu et al., 2019); and China (Jia et al., 2012;Liu et al., 2013;Chen et al., 260 

2014b;Tang et al., 2015;Yang et al., 2017;Li et al., 2018)).  261 

Few previous studies have focused on merging certain ET products to create an ensemble ET product; for 262 

instance, (Vinukollu et al., 2011a;Mueller et al., 2013;Badgley et al., 2015). They used all ET products and created a 263 

merged product with a low spatial resolution. There are some global merged benchmarking evaporation products. 264 

Vinukollu et al. (2011a) generated an ensemble of six global ET datasets at a daily time scale and 0.5°×0.5° (≈55 km) 265 

spatial resolution for the period 1984–2007 using two surface radiation budget products and three models (i.e., surface 266 

energy balance, revised Penman-Monteith, and modified Priestley-Taylor). They reported that the ensemble simple 267 

mean value was reasonable; however, it was generally highly biased globally. Mueller et al. (2013) presented two 268 

monthly global ET products that differed in their input ET members and temporal coverage. The first dataset consisted 269 

of 40 datasets for the period 1998-1989–1995, while the second dataset merged 14 datasets from 1989 to 2005. Their 270 

ET was derived from satellite and/or in situ observations (diagnostic) or calculated via LSM driven with observation-271 

based forcing or output from atmospheric reanalysis. Hence, they provided four merged synthesis products, one 272 

including all datasets and three including datasets of each category (i.e., diagnostic, LSM, and reanalysis). They 273 

introduced the first benchmark products for global ET and found that its multi-annual variations showed realistic 274 

responses and were consistent with previous findings. Badgley et al. (2015) used a Priestly-Taylor Jet Propulsion Lab 275 

(PT-JPL) model with 19 different combinations of forcing data to produce global ET estimates from 1984 to 2006 at 276 

a 1°×1° (≈100 km) spatial resolution. The ensemble ET members changed according to the number of products 277 

available each year, which ranged between 4 and 12 members for 1999/2000 and 2001/2002, respectively. Their study 278 

focused on the uncertainty in global ET estimates resulting from each class of input forcing datasets. 279 

However, from the aforementioned studies, we can report three findings: (1) no single ET product performed 280 

better than any other over different land surface types and conditions, (2) no one generated a single dataset for users, 281 

and (3) the created ensemble ET products relied on several individual ET products and were not based on the product 282 

with the best performance. 283 

From our point of view, this work attempts to add to the growing scientific literature using a high-quality 284 

dataset from global flux towers for further validations and inter-comparison between different global ET products to 285 

understand their behavior within defined land cover types, elevation levels, and climatic classes. Moreover, we attempt 286 

to build an ensemble ET product that has a minimum level of uncertainty over as many conditions as possible. The 287 

study has two objectives: (1) to assess global ET products with in situ data derived from global flux towers across a 288 

variety of land surface types and conditions to gain a better understanding of the disparities among datasets and (2) to 289 

synthesize an ensemble global ET product with minimum uncertainties over more land surface types, climate systems, 290 

and monthly, annually and interannual time steps for a longer time. 291 



 

9 

 

2. Data 292 

2.1. Evapotranspiration 293 

Twelve global ET datasets were explored in the current study (Table 1 and Appendix A). Of them, 5 datasets 294 

used the Moderate Resolution Imaging Spectroradiometer (MODIS) as input, including two versions (V6 and V105) 295 

of Global Evapotranspiration Project (MOD16A2), Penman-Monteith Leuning ET (PML), the operational Simplified 296 

Surface Energy Balance ET (SSEBop) and the Surface Energy Balance System (SEBS). One dataset used the 297 

Advanced Very High-Resolution Radiometer (AVHRR) as input, including the Numerical Terradynamic Simulation 298 

Group (NTSG). The remainder mainly uses meteorological datasets as direct input, including field measurements such 299 

as TerraClimate and reanalysis datasets such as FLADS and GLADS. The algorithm used in 12 global ET datasets is 300 

mainly the Penman-Monteith model, except for FLADS and GLDAS, which use the LSM, and TerraClimate, which 301 

uses the soil water balance model. Priestley‐Taylor is used to estimate evaporation from open water by NTSG while 302 

Penman evapotranspiration is used in PML for a water body, snow and ice evaporation. SSEBop, SEBS, NTSG, and 303 

GLEAM are individually managed, and other ET products, as well as elevation data, are available from GEE. 304 

Table 1. Global ET products. 305 

Product Method Satellite data 
Meteorological 

data 

Resolution Temporal 

coverage Spatial Temporal 

MOD16A2 V6 P-M, SC MODIS GMAO 500 m 8 days 
Jan 1, 2001 –

Ongoing 

MOD16A2 V105 P-M, SC MODIS GMAO 1 km 8 days 
Jan 1, 2000 –

Dec 31, 2014 

PML PML MODIS GLDAS V21 500 m 8 days 
Jul 4, 2002 –

Dec 27, 2017 

SSEBop P-M MODIS GDAS, PRISM 1 km 1 month 
Jan 1, 2003 –

Ongoing 

SEBS RS-SEB 
MODIS, 

GLASS, GLAS 
ERA-Interim 5 km 1 month 

Jan 1, 2001 –

Dec 31, 2010 

NTSG 
Modified 

P-M & P-T 
AVHRR 

NCEP/NCAR 

Reanalysis 
8 km 1 month 

Jan 1, 1982 –

Dec 31, 2013 

GLEAM 3.3b P-T, SSF 
Radiation & air 

temperature 

Certain reanalysis 

data 
0.25o 1 month 

Jan 1, 2003 –

Dec 31, 2018 

GLEAM 3.3a P‐T, SSF - 
Certain reanalysis 

data 
0.25o 1 month 

Jan 1, 1980 –

Dec 31, 2018 

FLADS LSM 
MODIS-IGBP, 

UMD-AVHRR 

MERRA-2, 

CHIRPS 
0.10 o 1 month 

Jan 1, 1982 –

Dec 1, 2019 

GLDAS V20 LSM 

MCD12Q1, 

MOD44W, 

GTOPO30 

NOAA/GDAS, 

GPCP, AGRMET 
0.25o 3 hours 

Jan 1, 1948 –

Dec 31, 2010 

GLDAS V21 LSM 

MCD12Q1, 

MOD44W, 

GTOPO30 

NOAA/GDAS, 

GPCP, AGRMET 
0.25o 3 hours 

Jan 1,2000 – 

Dec 23,2019 

TerraClimate SWB 
Root zone 

storage capacity 

WorldClim 

V1.4&2, CRU 

Ts4.0, JRA-55 

0.25o 1 month 
Jan 1, 1958 –

Dec 1, 2018 

Note: P-M: Penman-Monteith; PML: P-M Leuning; SC: Surface Conductance; P-T: Priestley‐Taylor; RS-SEB: remotely sensed 306 
surface energy balance; LSM: land surface model; SWB: soil water balance; GMAO: Global Modelling and Assimilation Office 307 
for daily meteorological reanalysis data; GDAS: Global Data Assimilation System; PRISM: Parameter-elevation Regressions on 308 
Independent Slopes Model; GLASS: Global Land Surface Satellite; GLAS: Geoscience Laser Altimeter System; MERRA-2: 309 
Modern-Era Retrospective analysis for Research and Applications version 2; CHIRPS: Climate Hazards Group InfraRed 310 
Precipitation with Station data; RFE2: The African Rainfall Estimation version 2.0; NOAA: National Oceanic and Atmospheric 311 
Administration; GPCP: Global Precipitation Climatology Project; AGRMET: Agricultural Meteorological modeling system; CRU 312 
Ts4.0: Climate Research Unit time series data version 4.0; JRA-55: Japanese 55-year Reanalysis. 313 
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Three regional ET datasets were used for comparison of consistent agreement over China, the United States 314 

and the African continent (Table 2). Over China Mainland, The Complementary Relationship (CR) ET product was 315 

used (Ma et al., 2019); it is estimated monthly at a 0.1° (≈10 km) spatial resolution over 1982–2015 and can be 316 

retrieved from http://en.tpedatabase.cn/. For the United States, daily SSEBop was used (Savoca et al., 2013;Senay and 317 

Kagone, 2019). These data are produced at a 0.009°×0.009° (≈1 km) grid cell spatial resolution from 2000 to 2018 318 

and can be downloaded from https://earlywarning.usgs.gov/ssebop/modis/daily/. Daily SSEBop aggregated to 319 

monthly time steps to be comparable with the synthesized ET temporal resolution. The Food and Agriculture 320 

Organization (FAO) Water Productivity through Open access of Remotely sensed derived ET product (FAO WaPOR 321 

version 2) was used for Africa (FAO, 2018, 2020). These data estimates are the sum of ET and interception, provided 322 

at a 0.002°×0.002° (≈250 m) spatial resolution with a monthly temporal resolution from 2009. WaPOR ET estimates 323 

are available through the following website: https://wapor.apps.fao.org/home/WAPOR_2/1/. 324 

Table 2. Regional ET products. 325 

Product Method Satellite data Meteorological data 
Resolution 

Temporal coverage 
Spatial Temporal 

CR  CR MODIS CMFD 10 km 1 month Jan 1, 1982 – Dec 31, 2015 

SSEBop P-M MODIS NASA GDAS 1 km 1 day Jan 1, 2000 – Dec 31, 2018 

WaPOR RS-SEB MODIS MERRA/GEOS-5, CHIRPS 250 m 1 month Jan 1, 2009 – Ongoing 

Note: CR: Complementary Relationship; P-M: Penman-Monteith; P-T: Priestley‐Taylor; RS-SEB: remotely sensed surface energy 326 
balance; CMFD: China Meteorological Forcing Dataset; NASA GDAS: National Oceanic and Atmospheric Administration’s 327 
(NOAA) Global Data Assimilation System; MERRA: Modern-Era Retrospective Analysis for Research and Applications; GEOS-328 
5: Goddard Earth Observing System, Version 5; CHIRPS: Climate Hazards Group InfraRed Precipitation with Stations. 329 

2.2. Flux EC data 330 

Comprehensive flux EC ET data from 645 sites (Fig. 1 and Table 3), AmeriFlux; FluxNET; EuroFlux; 331 

AsiaFlux; and ChinaFlux, were collected and processed to examine the performance of different estimated ET 332 

products. The downloaded EC data are half-hourly text-type data, while the periods of flux EC ET ranged from 1 year 333 

(12 months) to 21 years (252 months) from 1994 to 2019. The gap-filling technique was applied to the downloaded 334 

in situ EC data (Reichstein et al., 2005). Different EC flux sites were spatially distributed on the heterogeneous 335 

underlying surface, corresponding to different land cover types according to the International Geosphere-Biosphere 336 

Programme (IGBP) classification system, which is recorded in each flux attribute data. The in-situ measured ET (mm 337 

day-1) can be obtained by the half-hourly average latent heat flux (LE, W·m-2s-1) through Eq. (1), (Su, 2002): 338 

ET =  
LE̅̅̅̅

λ
× 3600 × 24 (1) 

Where LE̅̅̅̅  (W·m-2s-1) is the daily average of the half-hourly average latent heat flux, and λ is the latent heat of 339 

evaporation. λ varies with air temperature in hydrologic or agricultural system modeling but only to a small extent 340 

(Walter et al., 2001), and the value acts directly on the accuracy of the estimated in situ measured ET. Considering 341 

that there are very limited impacts of the changes in air temperature on the estimated in-situ measured ET (Henderson-342 

Sellers, 1984;Li et al., 2018), the constant value of 2.45 MJ kg-1 is fixed in the calculation above (Walter et al., 2001). 343 

http://en.tpedatabase.cn/
https://earlywarning.usgs.gov/ssebop/modis/daily/
https://wapor.apps.fao.org/home/WAPOR_2/1/
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 344 
Figure 1. Spatial distribution of 645 in-situ flux EC sites across the world. 345 

Table 3. Summary of 645 in-situ EC flux sites. 346 

Flux 
Sites 

number 

Temporal 

coverage 

Elevation 

range (m) 
Underlying surface IGBP type 

Website 

AmeriFlux 249 1994–2019 -9 to 3199 
ENF/EBF/DBF/MF/CSH/OSH/WSA/S

AV/GRA/WET/CRO/SNO/BSV/WAT 
ameriflux.lbl.gov 

FluxNET 203 1994–2019 -10 to 4312 
ENF/EBF/DNF/DBF/MF/CSH/OSH/W

SA/SAV/GRA/WET/CRO 
fluxnet.fluxdata 

EourFlux 148 1996–2018 -4 to 2436 
ENF/EBF/DBF/MF/CSH/OSH/WSA/S

AV/GRA/WET/CRO/SNO 
europe-fluxdata.eu 

AsiaFlux 33 2000–2015 0 to 3308 
ENF/EBF/DNF/DBF/MF/GRA/CRO/U

RB/WAT 
asiaflux.net 

ChinaFlux 12 2003–2017 26 to 4317 EBF/MF/GRA/CRO chinaflux.org 

Note: ENF: Evergreen Needleleaf Forests; EBF: Evergreen Broadleaf Forests; DBF: Deciduous Broadleaf Forests; MF: Mixed 347 
Forests; CSH: Closed Shrublands; OSH: Open Shrublands; WSA: Woody Savannas; SAV: Savannas; GRA: Grasslands; WET: 348 
Permanent Wetlands; CRO; Croplands; URB: Urban and Build-up Lands; SNO: Permanent Snow and Ice; BSV: Barren or Sparsely 349 
Vegetated Area; WAT: Water Bodies. 350 

2.3. Aridity index 351 

The mean global aridity index dataset was produced by (Zomer et al., 2008) using WorldClim global climate 352 

data. The aridity index was estimated as the mean annual precipitation divided by the mean annual potential 353 

evapotranspiration, and the latter was calculated by the Hargreaves equation. The spatial resolution was 354 

0.0083°×0.0083° (≈1 km) grid cell (Trabucco and Zomer, 2018) and the data can be downloaded from the following 355 

website: https://cgiarcsi.community/data/global-aridity-and-pet-database/ 356 

2.4. Elevation data 357 

The Shuttle Radar Topography Mission (SRTM) data were provided at a resolution of one arc-second and 358 

void-filled (Farr et al., 2007). For the geographic areas outside the SRTM coverage area, the Global Multi-resolution 359 

Terrain Elevation Data 2010 (GMTED2010), which have a resolution of 7.5 arc-seconds, were used (Danielson and 360 

Gesch, 2011). 361 

https://cgiarcsi.community/data/global-aridity-and-pet-database/
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3. Methods 362 

3.1 Assessment 363 

Because ET is highly variable in both space and time (Schaffrath and Bernhofer, 2013;Fisher et al., 2017), a 364 

comprehensive evaluation from different perspectives is required (Trambauer et al., 2014;McCabe et al., 2016;Li et 365 

al., 2018). For each flux tower location, the aridity index, elevation and estimated ET data were extracted. The aridity 366 

index was classified (Table 4) according to the United Nations Environment Programme definition (UNEP, 1997) into 367 

four classes (i.e., humid: 361 (56%), semiarid: 167 (26%), dry sub-humid: 82 (13%), and arid: 35 (5%)). Elevations 368 

were classified into three levels (i.e., <500 m: 452 (70%), 500 m–1500 m: 135 (21%), and >1500 m: 58 (9%)). Land 369 

cover included five types (i.e., forests: 349 (54%), grasslands: 128 (20%), croplands: 89 (14%), water bodies: 73 370 

(11%), and others (barren land and permanent snow and ice): 6 (1%)). Accordingly, the following metrics were 371 

estimated using Eqs. (2-7): 372 

ME =
1

n
∑ Yi

n

i=1

− Xi (2) 

RME =  
ME

X
 (3) 

RMSE = √
∑ (Yi − Xi)

2n
i=1

n
 (4) 

RRMSE =  
RMSE

X
 (5) 

R =
∑ [(Yi − Y)(Xi − X)]n

i=1

√∑ (Yi − Y)2n
i=1 √∑ (Xi − X)2n

i=1

 (6) 

TS =
4(1 + R)

(std +
1

std
)

2

(1 + R0)

 
(7) 

Where ME is the mean error; RME is the relative mean error; RMSE is the root mean square error; RRMSE is the 373 

relative root mean square error; R is the correlation coefficient; TS is the Taylor score; n is the sample number; i is 374 

the ith sample; X is the mean of the observed EC ET data; Y is the mean of different estimated ET data; std is the 375 

standard deviation of the estimated ET normalized by the standard deviation of the observed EC ET; and R0 is the 376 

maximum theoretical R, with an R0 value of 0.9976 (Taylor, 2001). 377 

The magnitude of ME (the absolute value) is used as a bias indicator (Mu et al., 2011;Yang et al., 2017), 378 

while its sign indicates whether different ET products overestimate or underestimate the flux EC ET values. The 379 

accuracy of each ET product can be described by the RMSE (Miralles et al., 2011b;Hu et al., 2015). Moreover, the 380 

relative values of ME and RMSE are used for a fairer comparison between certain ET products among different regions 381 

and periods (Majozi et al., 2017). In addition, correlation coefficients (R values) are used to measure the strength of 382 

the relation between flux EC ET and different ET products (Ghilain et al., 2011;Hu et al., 2015), and with the aid of 383 

the Taylor score (TS), the overall performance of each product can be described well (Taylor, 2001;Mu et al., 2011). 384 

To rank each ET product, the lower ME, RME, RMSE, and RRMSE values and the higher R and TS values are desired; 385 

lower biases and higher accuracies. 386 

 387 
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Table 4. Climate classification according to the global aridity index values. 388 
Aridity Index value Climate class 

<0.03 Hyper arid 

0.03 – 0.20 Arid 

0.20 – 0.50 semiarid 

0.50 – 0.65 Dry sub-humid 

>0.65 Humid 

3.2 Synthesis method 389 

There are 6 validation metrics including R, TS, ME, RME, RMSE, and RRMSE. The validation values of 6 390 

metrics are categorized into levels. The level one of validation metrics has the highest R and TS values and the lowest 391 

ME, RME, RMSE, and RRMSE while the level two of validation metrics has the highest R and TS values and the 392 

lowest ME, RME, RMSE, and RRMSE after level one. For that, R and TS sorted descending while ME, RME, RMSE, 393 

and RRMSE sorted ascending (Fig. 2a) then the corresponding ET product of each validation metric saved in a new 394 

table to be used to fill in Fig. 2b.  395 

The current study proposes three steps to develop a synthesized global ET dataset. First, the ET datasets are 396 

compared based on 6 validated metrics, in which to generate a matrix was developed to indicate level one and two of 397 

the validation metrics of all ET products over all comparison levels, see Table 5. There (Fig. 2b). For each level, there 398 

are six6 validation criteriametrics in rows (i.e., ME (mm), RME (%), RMSE (mm), RRMSE (%), R, and TS)and 26 399 

ET values of different periods and 26 underlying conditions in columns (comparison levels in columns (i.e.,), including 400 

monthly average (01), annual average (02), monthly (January-December: 03-–14), land cover types (15-–19), climate 401 

classes (20-–23), and elevation levels (24-–26)). The). Thus, the total number of cells is 156. for each level. Each cell 402 

in the matrix represents a free competition between certainone of twelve ET products that belong to occupy this cell 403 

based on each validation criterion.level. Then, selectingto select ET data for further synthesis, based on the magnitudes 404 

(absolute values) of each validation index of all ET products across all comparison classes (01-26), the best firstthe 405 

number and second levels of ET products within each cell were selected; additionally, the count and percent of each 406 

percentage of ET product in all cellsoccurrence at matrix (Fig. 2b) of level one and two were calculated to calculate 407 

the total count and percent from levels one and two, see Table 6. All(Fig. 2c). ET products will be sortedwere ranked 408 

in descending order based on the totaloccurrence percentage of levels one and two. (the last column in Fig. 2c). Finally, 409 

the first two or three highly ranked ET products were incorporatedselected to incorporate into the ensemble ET. For 410 

that, the selected ET products were resampled to a comparable spatial resolution if needed, and the average was used 411 

as the synthesized ET value. 412 
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 413 

Figure 2. Flowchart of the synthesization method. 414 

4. Results 415 

4.1. Assessment of existing global ET datasets 416 

Figure 23 shows that seasonality exists and is captured well by all ET datasets, with some exceptions over 417 

barren land, permanent snow and ice, and arid areas (not shown). The maximum ET occurs during July and differs 418 

according to each ET dataset. Generally, MOD16A2 represents the minimum estimated ET across all conditions, while 419 

SSEBop represents the maximum ET across all conditions except over humid regions and at elevations between 500 420 

m and 1500 m. From Figures (3, 5-114, 6–12), the best-fitted linear regression line (blue-solid line) compared to the 421 

1:1 line (red-dashed line), all ET datasets overestimate the flux EC ET in lower ET values and underestimate the flux 422 

EC ET in higher ET values with two exceptions. The first exception is over barren land and permanent snow and ice, 423 

where MOD16A2 underestimates and GLDAS21, GLEAM33a, and TerraClimate overestimate under both lower and 424 

higher ET values (not shown). Second, in dry sub-humid areas, SSEBop (Fig. 9c3) and GLDAS21 (Fig. 9e3) 425 

overestimate under both lower and higher ET values. Applying for the highest R (TS) and lowest error metrics role, 426 
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MOD16A2 cannot present any role; additionally, only one contribution by the lowest RRMSE was found in February 427 

and the highest TS was found in March for TerraClimate and GLEAM33b, respectively. 428 

4.1.2. Validation by all sites’ monthly ET 429 

Figure 34 shows that only SEBS and MOD16A2 underestimate flux EC ET. PML is the dataset that best 430 

agrees with the observed ET, and it had the lowest RMSE (RRMSE). MOD16A2105 returned the smallest absolute 431 

ME, while SEBS yielded the smallest RME. Figure 45 shows there are interannual differences between certain ET 432 

product performances. MOD16A2 shows negative MEs and RMEs for all months, with larger biases during March, 433 

April, and May, while FLDAS shows positive MEs and RMEs for all months, with larger biases during March, April 434 

May, June, and July. For other products, the ME and RME signs vary among months; for instance, the ME and RME 435 

values of GLDAS21 are negative (underestimated) during February, September, and November and positive 436 

(overestimated) in the remaining months, with larger biases during March, April, May, June, and July. The RMSE 437 

declines from January to February and then increases until July and declines again until November. The minimum 438 

RMSE values occur during February, November, and December, while the maximum values occur during June, July, 439 

and August. 440 

For instance, the RMSE in July ranges from 36.28 mm to 52.41 mm for FLDAS and PML, respectively, 441 

while it ranges from 17.08 mm to 21.68 mm for PML and SEBS, respectively. RRMSE declines from January reaches 442 

its minimum in June and then increases again until December, except for SEBS in December. The highest values of 443 

RRMSE (>80%) occur in January, February, November, and December except for SEBS in December, while the 444 

lowest values (<60%) exist in June, July, and August. The R-value declines from January and reaches its minimum in 445 

May; it then increases starting in August. Except for MOD16A2, all products have an R-value greater than 0.60 during 446 

January, February, November, and December. SEBS has the lowest R-value during March, April, May, and June, 447 

while PML yields the highest R-value during all months except January and December. Except for MOD16A2 in 448 

February, which has a TS value above 0.60, as with the R-value, the TS declines from January, reaches its minimum 449 

in May, and then increases again starting in August. Figures 3 and 4 and 5 show these products yield intra-annual ET 450 

variations but vary in their performance according to the selected validation metrics, which also vary among all months 451 

(from January to December). 452 

 453 

 454 
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 455 
Figure 23. Monthly average flux EC ET and 12 ET products over all flux sites (a), land cover types (croplands: (b); grasslands: 456 
(c); forests: (d); water bodies: (e)), climate classes (semiarid: (f); dry sub-humid: (g); humid: (h)), and elevation levels (<500 m: 457 
(l), 500 m-1500 m: (j), and >1500m: (k)). 458 

 459 
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 460 
Figure 34. Monthly ET products (PML: (a); GLDAS20: (b); SSEBop: (c); MOD16A2105: (d); GLDAS21: (e); SEBS: (f); NTSG: 461 
(g); GLEAM33a: (h); FLDAS: (i); GLEAM33b: (j); TerraClimate: (k); MOD16A2: (l)) against flux EC ET aggregated for all sites. 462 

 463 
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 464 
Figure 45. Monthly validation metrics (ME (mm): (a); RME (%): (b); RMSE (mm): (dc); RRMSE (%): (d); R: (e); TS: (f)) of ET 465 
products against flux EC ET for all sites (legend as Figure 2k3k). 466 

4.1.3. Validation by all sites’ annual ET 467 

Figure 56 shows all ET products overestimate the observed ET with two exceptions,; SEBS and MOD16A2. 468 

In all environmental conditions, PML has the highest R (TS) and the lowest ME (RME) and RMSE (RRMSE). Figures 469 

34 and 56 indicate the obvious error metrics of annual scale performances that are consistent with those that come 470 

from the monthly time step. The lowest and highest absolute values of ME (RME) for monthly ET exist in 471 

MOD16A2105 (SEBS) and FLDAS, respectively, while those for annual ET exist in PML and FLDAS, respectively. 472 

Furthermore, PML yields the largest R and TS values for monthly and annual ET, but the minimum values of R and 473 

TS were registered with TerraClimate and MOD16A2 for monthly and annual ET, respectively. This result may be 474 

attributed to the aggregation of monthly ET into annual values. 475 

 476 

 477 
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 478 
Figure 56. Annually ET products (PML: (a); GLDAS20: (b); SSEBop: (c); MOD16A2105: (d); GLDAS21: (e); SEBS: (f); NTSG: 479 
(g); GLEAM33a: (h); FLDAS: (i); GLEAM33b: (j); TerraClimate: (k); MOD16A2: (l)) against flux EC ET aggregated for all sites. 480 
(subplot label as in Figure 4). 481 

4.1.4. Validation by land cover types 482 

Figures 67 and 78 show that, according to the ME (RME) sign, except for some ET products over croplands 483 

(i.e., MOD16A2, SEBS, MOD16A2105, and PML), grasslands (i.e., MOD16A2, SEBS, MOD16A2105, GLDAS20, 484 

and PML), forests (MOD16A2), and barren land and permanent snow and ice (i.e., MOD16A2105, MOD16A2, 485 

FLDAS, and GLDAS20), which underestimate the flux EC ET, the other ET products overestimate. For water bodies, 486 

MOD16A2105, GLEAM33b, GLDAS20, and FLDAS overestimate, while the other products produce underestimates. 487 

Over croplands, grasslands, and forests, PML is the best product for R (TS) and RMSE (RRMSE). Additionally, it 488 

has the highest TS over water bodies. SSEBop, GLEAM33a, SEBS, NTSG, and GLDAS20 obtained the desired ME 489 

(RME) over croplands, grasslands, forests, water bodies, and barren land and permanent snow and ice, respectively. 490 

GLEAM33a also represents the highest R (TS) with the lowest RRMSE, while GLDAS20 has the smallest RMSE 491 

over barren land and permanent snow and ice. In addition, GLDAS20 has the lowest RMSE, while SSEBop has the 492 

highest R and lowest RRMSE over water bodies, see Table 5 (level one: 15–19). 493 
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 494 

Figure 67. Monthly ET products (PML: (a); GLDAS20: (b); SSEBop: (c); MOD16A2105: (d); GLDAS21: (e); SEBS: (f)) against 495 
flux EC ET aggregated for all sites for each land cover type (croplands: (1); grasslands: (2); frosts: (3); water bodies: (4)). 496 

 497 

 498 

 499 

 500 

 501 

 502 

 503 
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 504 
Figure 78. Monthly ET products (NTSG: (a); GLEAM33a: (b); FLDAS: (c); GLEAM33b: (d); TerraClimate: (e); MOD16A2: (f)) 505 
against flux EC ET aggregated for all sites for each land cover type (croplands: (1); grasslands: (2); frosts: (3); water bodies: (4)). 506 

4.1.5. Validation by climate classes 507 

Figures 89 and 910 show that SEBS, PML, NTSG, and SSEBop in arid areas and PML, NTSG, and SSEBop 508 

in semiarid areas overestimate values, while MOD16A2 and SEBS in dry sub-humid areas and MOD16A2, SEBS, 509 

and PML in humid areas underestimate values; for each aridity index class, other products were the opposite. Over 510 

humid areas, PML represents the highest agreement and accurate dataset compared to the flux EC ET. Furthermore, 511 

it had the highest R (TS) in the arid and semiarid areas and the smallest RMSE (RRMSE) in semiarid areas. GLDAS20 512 

yielded the largest R (TS) with the smallest RMSE (RRMSE) in dry-sub-humid regions; over these regions, 513 

MOD16A2105 presented the best ME (RME). FLDAS has two contributions, with the smallest ME (RME) and RMSE 514 

(RRMSE) in semiarid and arid areas, respectively, while GLDAS21 has only one point over arid areas where the best 515 

ME (RME) is found, see Table 5 (level one: 20–23). 516 
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 517 

Figure 89. Monthly ET products (PML: (a); GLDAS20: (b); SSEBop: (c); MOD16A2105: (d); GLDAS21: (e); SEBS: (f)) against 518 
flux EC ET aggregated for all sites for each climate class (arid: (1); semiarid: (2); dry-sub-humid: (3); humid: (4)). 519 

 520 

 521 

 522 

 523 

 524 

 525 

 526 

 527 

 528 

 529 
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 530 
Figure 910. Monthly ET products (NTSG: (a); GLEAM33a: (b); FLDAS: (c); GLEAM33b: (d); TerraClimate: (e); MOD16A2: 531 
(f)) against flux EC ET aggregated for all sites for each climate class (arid: (1); semiarid: (2); dry-sub-humid: (3); humid: (4)). 532 

4.1.6. Validation by elevation levels 533 

Figures 1011 and 1112 show that MOD16A2 and SEBS over elevation levels <500 and MOD16A2 and 534 

MOD16A2105 over elevation levels from 500 m to 1500 underestimate the values, while the other ET products 535 

overestimate the values; additionally, at elevations >1500, only SSEBop and NTSG overestimate the values. The ET 536 

product agreed best with the desired RMSE (RRMSE) in the PML product. Moreover, it yielded the best ME (RME) 537 

at elevations <500 m. The preferred ME (RME) over elevations 500 m to 1500 m and elevations > 500 m was obtained 538 

using SEBS and FLADS, respectively, see Table 5 (level one: 24–26). 539 

 540 

 541 



 

24 

 

 542 
Figure 1011. Monthly ET products (PML: (a); GLDAS20: (b); SSEBop: (c); MOD16A2105: (d); GLDAS21: (e); SEBS: (f)) 543 
against flux EC ET aggregated for all sites for each elevation level (<500 m: (1); 500 m–1500 m: (2); >1500 m: (3)). 544 

 545 

 546 



 

25 

 

 547 
Figure 1112. Monthly ET products (NTSG: (a); GLEAM33a: (b); FLDAS: (c); GLEAM33b: (d); TerraClimate: (e); MOD16A2: 548 
(f)) against flux EC ET aggregated for all sites for each elevation level (<500 m: (1); 500 m–1500 m: (2); >1500 m: (3)). 549 
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4.2. Ensemble ET product 550 

4.2.1. Ensemble steps 551 

 Table 5 provides levels one and two validation metrics of all ET products for monthly (01), annual (02), 552 

interannual (January-December: 03–14), land cover types (croplands, grasslands, forests, water bodies, others: 15–553 

19), climatic classes (arid, semiarid, dry sub-humid, humid: 20–23), and elevation levels (<500 m, 500 m-1500 m, 554 

>1500 m: 24–26). Each cell represents one of the validation levels (01–26) and the best-performing ET product based 555 

on the selected validation metric, see Sect. 3. 556 

Table 6 shows that, according to first-the occurrence of ET products in level accuraciesone, PML, GLDAS20, 557 

and SEBS represent the first three best-performing ET products, while according to the secondoccurrence of ET 558 

products in level two GLDAS20, PML, and MOD16A2105, and according to the total of the first and 559 

secondoccurrence in levels one and two, PML, GLDAS20, and SSEBop are the best, respectively. For example, PML 560 

yielded the best validation indicesmetrics (the lowest ME, RME, RMSE, and RRMSE as well as the highest R and 561 

TS) over 83 (53%) and 24 (15%) cells in levels one and two, respectively; thus, the total count was 107 (34%) cells. 562 

Accordingly, the three best-performing ET products over most of the all conditions are MPL followed by GLDAS20 563 

(first level one: 10 (6%); second level two: 37 (24%); total: 37 (15%)) and SSEBop (first level one: 12 (8%); second 564 

level two: 15 (10%); total: 27 (9%)). 565 

Since the three best-performing ET products differ in their spatial resolution and algorithms, we introduced 566 

an ensemble mean product at a 1000 m × 1000 m spatial resolution that spans from 2003 to 2017 (15 years) and relies 567 

on remotely sensed models (PML and SSEBop). It should be noted that although SEBS has one point more than 568 

SSEBop in the firston level one, it has 7 fewer points than SSEBop in the second level two (5%). In addition, SSEBop 569 

has a higher spatial resolution than that of SEBS. In the same manner, SSEBop and MOD16A2105 have the same 570 

performance in terms of total count (27 (9%)), but SSEBop is higher by 5 points in the first level one. 571 

Obviously, from Table 7, the ensemble ET products cannot perform highly across all regions, and it had a 572 

total count of 50%, followed by PML (44%). Looking to the ensemble mean from Table 7 compared to PML from 573 

Table 6, the total count increased from 34% to 50% (+16%), indicating that the ensemble mean, which created from 574 

PML and SSEBop, enhanced PML performance across all conditions by 16% and PML itself still has the best 575 

performance by 44%. 576 

To introduce an ensemble product before 2003, firstly, PML and SSEBop were ignored, and the same steps 577 

were repeated. Table 8 shows that the best-performing products are GLDAS20, MOD16A2105, and NTSG in terms 578 

of the total count. Since the last two products are based on remote sensing, they were selected to create the ensemble 579 

product before 2003 at a 1000 m × 1000 m spatial resolution. Although GLDAS20 agreed well over 42% and had the 580 

lowest maximum ME among all datasets (9.73 mm), NTSG was selected to provide the ET estimates before 2000 581 

because it had a higher spatial resolution, so it could capture more spatial details than GLDAS20. 582 

Table 9 shows that the ensemble ET for 2001 and 2002 performed better than the original ET products, with 583 

values of 62%, 38%, and 50% for level one, level two and the total, respectively. For the periods before 2001, NTSG 584 

can be used from 1982 to 2001 or GLDAS20 can be used instead. Hence, remotely sensed-based long-term ensemble 585 
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ET can be synthesized from PML and SSEBop between 2003 and 2017, MOD16A2105 and NTSG between 2001 and 586 

2002. SSEBop can be used after 2018, while before 2000, NTSG can be used. 587 

Table 5. Levels one and two validation metrics of allthe 12 ET products for monthly (01), annually (02) interannual (January-588 
December: 03-14), land cover types (croplands, grasslands, forests, water bodies, others: 15-19), climatic classes (arid, semiarid, 589 
dry sub-humid, humid: 20-23), and elevation levels (<500 m, 500 m-1500 m, >1500 m: 24-26), cells colourcolor as Table 6. 590 

Level IndicatorMetrics 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 

Level 
one ME                                                     

 RME                                                     

 RMSE                                                     

One RRMSE                                                     

 R                                                     

 TS                                                     

Level 

two ME                                                     

 RME                                                     

 RMSE                                                     

Two RRMSE                                                     

 R                                                     

 TS                                                     

 591 

Table 6. The count, percent and occurrence of the total count and percent of levels one and two of all12 ET products 592 
performancebased on Table 5. 593 

ET products Occurrence in level 1 Occurrence in level 2 Total 

 
Level 1 

count 

Level 1 count 

(%)% 

Level 2 

count 

Level 2 count 

(%)% 

Total 

count 

%Total count 

(%) 

PML 83 53 24 15 107 34 

GLDAS20 10 6 37 24 47 15 

SSEBop 12 8 15 10 27 9 

MOD16A2105 7 4 20 13 27 9 

GLDAS21 14 9 11 7 25 8 

SEBS 13 8 8 5 21 7 

NTSG 4 3 16 10 20 6 

GLEAM33a 5 3 6 4 11 4 

FLDAS 6 4 4 3 10 3 

GLEAM33b 1 1 6 4 7 2 

TerraClimate 1 1 6 4 7 2 

MOD16A2 0 0 3 2 3 1 

 594 

Table 7. The count, percent and the total count and percent of levels one and twooccurrence of PML and SSEBop products and 595 
their ensemble mean for the periodduring 2003- and 2017. 596 

ET 

products 
Occurrence in level 1 Occurrence in level 2 Total 

 Level 1 count Level 1 count (%)% Level 2 count Level 2 count (%)% Total count %Total count (%) 

Mean 43 28 113 72 156 50 

PML 103 66 33 21 136 44 

SSEBop 10 6 10 6 20 6 

 597 

 598 

 599 

 600 

 601 

 602 

 603 
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Table 8. The count, percent and the total count and percent of levels one and twooccurrence of all ET products performance 604 

except PML and SSEBop products. 605 

ET products Occurrence in level 1 Occurrence in level 2 Total 

 
Level 1 

count 
Level 1 count (%)% Level 2 count Level 2 count (%)% Total count Total count (%)% 

GLDAS20 42 27 27 17 69 22 

MOD16A2105 28 18 28 18 56 18 

NTSG 14 9 35 22 49 16 

GLDAS21 23 15 14 9 37 12 

SEBS 21 13 7 4 28 9 

GLEAM33a 8 5 16 10 24 8 

GLEAM33b 6 4 15 10 21 7 

FLDAS 9 6 5 3 14 4 

TerraClimate 3 2 5 3 8 3 

MOD16A2 2 1 4 3 6 2 

Table 9. The count, percent and the total count and percent of levels one and twooccurrence of NTSG and MOD16A2105 606 
products and their ensemble mean forduring 2001 and 2002. 607 

ET products Occurrence in level 1 Occurrence in level 2 Total 

 
Level 1 

count 
Level 1 count (%)% Level 2 count Level 2 count (%)% Total count Total count (%)% 

Mean 96 62 59 38 155 50 

NTSG 19 12 68 44 87 28 

MOD16A2105 41 26 29 19 70 22 

4.2.2 Contribution of ET datasets to the synthesized ET 608 

 The synthesized ET dataset was created at a 1000 m × 1000 m spatial resolution from 1982 to 2019 based on 609 

remotely sensed ET products. PML, SSEBop, MOD16A2105, and NTSG were augmented together to create the new 610 

dataset. Since SSEBop and MOD16A2105 have a 1000 m × 1000 m spatial resolution, PML was upscaled and NTSG 611 

was downscaled by pixel average and nearest neighbor resampling techniques in GEE, respectively. The synthesized 612 

ET was fully contributed by SSEBop for the years 2018 and 2019 and by NTSG from 1982 to 2000, while for the 613 

years 2001 and 2002, it was contributed by the simple mean of MOD16A2105 and NTSG. Finally, between 2003 and 614 

2017, the value represents the simple mean of PML and SSEBop. 615 

Since the synthesized ET performance was governed by each ET product(s) for the corresponding year from 616 

1994 to 2019 (25 years), where the ET EC fluxes were available, most of the performance comes from PML and 617 

SSEBop for the 15 years from 2003 to 2017 (60%), from MOD16A2105 and NTSG for 2 years (2001 and 2002; 8%), 618 

from SSEBop for individual values in years 2018 and 2019 (8%), and from NTSG for 7 years (24%) from 1994 to 619 

2000. 620 

4.2.3. Synthesized global ET product 621 

Figure 1213 shows, looking to July, except over barren land, permanent snow and ice, and arid areas (not 622 

shown), the maximum value of the synthesized ET lies between SSEBop, which yields the largest ET during all 623 

months, and PML. Hence, the long-term monthly synthesized ET performance is affected by PML and SSEBop more 624 

than by NTSG and MOD16A2105, as mentioned in Sect. 4.2.2. 625 

Table 10 provides the average monthly and annual synthesized ET (mm month–1), land cover types, aridity 626 

index classes, and elevation levels (mm year–1). The average annual ET from 1982–2019 is 567 mm year–1. July 627 
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represents the maximum synthesized ET (Fig. 1213). Table 10 also provides average annual ET for land cover types 628 

calculated from flux sites. Across land cover types, croplands are higher than forests, followed by grassland, where 629 

the average synthesized ET was 597, 548, and 542 for croplands, forests, and grasslands, respectively. Low 630 

synthesized ET values across arid areas (average = 392 mm year -1) can be attributed to low vegetation cover. It should 631 

be noted that Table 10 does not represent the perfect calculation of ET over each Land cover class because the total 632 

number of fluxes for each class was not distributed well; for instance, in the arid areas, there were 35 (5%) fluxes, 633 

while in the humid area, there were 361 (56%) fluxes. 634 

 Figure 13 14 shows the decadal (1982–1989, 1990–1999, 2000–2009, and 2010–2019) and long-term (1982–635 

2019) average synthesized ET maps worldwide, except for Antarctica. Regarding the spatial distribution, the higher 636 

ET is shown in Malaysia, Singapore, and Indonesia and the northern part of South America. During the first and 637 

second decades, the synthesized ET is based on the NTSG product; thus, the same spatial distribution was observed. 638 

Although PML and SSEBop mainly contribute the synthesized ET between 2003 and 2017, there is little difference 639 

in their spatial distributions, where higher ET can be observed during 2010–2019 over the northern parts of South 640 

America. 641 

Table 11 shows statistics of the maps provided in Fig. 13 14 for all continents except Antarctica. The standard 642 

deviation is higher over Africa followed by Oceania and Asia. The mean values of the synthesized ET is sequenced 643 

from South America followed by Oceania and Africa. The maximum value of the synthesized ET is recorded over 644 

Asia followed Africa and Australia. The total ETs are 29.1%, 21.7%, 19.9%, 16.7%, 7.9%, 4.2%, and 0.5% for Asia, 645 

South America, Africa, North America, Europe, Australia, and Oceania, respectively.  646 

4.2.4 Validation of the synthesized ET 647 

Figures 1415–17 18 show that the synthesized ET agreed well with the observed data, where the R (TS) 648 

ranged between 0.70 (0.85) and 0.78 (0.89), except at the annual time step (Fig. 14b15b) and over barren land and 649 

permanent snow and ice (not shown), where R (TS) was 0.65 (0.81) and 0.68 (0.80), respectively. Based on the ME 650 

sign, the value was underestimated only over water bodies. The magnitude of ME (RME) ranged between 0.54 mm 651 

(1.05%) and 6.76 mm (16.62%), while the RMSE (RRMSE) ranged from 20.95 mm (45.22%) to 30.12 mm (59.61%). 652 

Looking at the regression line equation, with no exceptions, the synthesized ET overestimated the flux EC ET at lower 653 

ET values and underestimated the flux EC ET at higher ET values. As mentioned above, even the long-term 654 

synthesized ET cannot perform best across all comparison levels (Tables 12 and 13). 655 

During the periods 2018–2019 and before 2001, the synthesized ET performance came from the original 656 

datasets of SSEBop and NTSG, respectively. The ensemble mean has a total count of 50% over the periods 2003–657 

2017 and 2001–2002 compared to the original datasets, indicating that it can perform better than other ET products 658 

over half of all comparison levels, see Tables 7 and 9. 659 
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 660 
Figure 123. Monthly average synthesized ET and the original products over all flux sites (a), land cover types (croplands: (b); 661 
grasslands: (c); forests: (d); water bodies: (e)), climate classes (semiarid: (f); dry sub-humid: (g); humid: (h)), and elevation 662 
levels (<500 m: (l), 500 m-1500 m: (j), and >1500m: (k)) Monthly average flux EC ET, MOD16A2105, SSEBop, NTSG, PML 663 
and the synthesized ET (subplot label as in Figure 3). 664 

 665 

 666 
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Table 10. The average decadal synthesized ET of monthly (mm month–1) and land cover types, aridity index classes and 667 
elevation levels (mm year–1). 668 

Level 1982–1989 1990–1999 2000–2009 2010–2019 1982–2019 

January 43.22 44.10 44.94 45.99 44.56 

February 39.73 41.14 42.83 42.09 41.45 

March 44.83 45.09 43.73 42.93 44.15 

April 45.84 46.04 39.32 38.57 42.44 

May 52.86 53.36 47.13 46.61 49.99 

June 56.15 57.31 53.98 54.00 55.36 

July 60.83 61.80 57.06 56.99 59.17 

August 58.02 58.77 51.25 50.25 54.57 

September 49.99 50.15 44.10 42.79 46.76 

October 46.76 46.91 38.53 38.77 42.74 

November 42.55 42.45 41.52 42.29 42.20 

December 42.66 43.58 42.92 44.43 43.40 

Annual 583 591 547 546 567 

Croplands 597 619 595 577 597 

Grasslands 526 546 539 557 542 

Forests 541 561 544 546 548 

Water bodies 499 517 519 534 517 

Others 280 288 230 195 248 

Arid 400 405 366 398 392 

Semiarid 519 538 528 541 532 

Dry sub-humid 479 498 498 511 497 

Humid 577 600 582 577 583 

Elevation <500m 551 570 570 579 568 

Elevation 500 m – 1500 m 498 519 484 484 496 

Elevation >1500 m 557 583 506 471 529 

Note: Monthly and annual estimates have based on synthesized ET raster layers averaged over a decade. Land cover 669 

types, aridity index classes and elevation levels estimates have based on annual synthesized ET values extracted over 670 

all flux sites.  671 

 672 

 673 

 674 

 675 

 676 

 677 

 678 
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 679 
Figure 1314. Decadal and long-term synthesized ET, the last plot shows continental-scale used to create Table 1311 accompanied 680 
by the percent of ET over each continent for the periods 1982–2019 except Antarctica. Use the following link of the GEE 681 
application to preview these maps: https://elnashar.users.earthengine.app/view/synthesizedet/ 682 

 683 

 684 

 685 

 686 

 687 

 688 

 689 

 690 

 691 

 692 

 693 

https://elnashar.users.earthengine.app/view/synthesizedet/
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 694 

Table 11. Statistics of the decadal and long-term synthesized ET (mm). 695 
Period Continent Minimum Maximum Mean Standard Deviation Sum 

 Africa 0 3588 541 540 17091316777 

 Asia 0 3979 377 392 25075224084 

 Australia 0 4076 445 275 3812181627 

1982-1989 Europe 0 2934 403 189 6902627799 

 North America 0 3818 413 331 14682344407 

 Oceania 111 2155 903 392 431987028 

 South America 4 3585 1002 364 18968179507 

 Global 0 4076 583 355 86963861230 

 Africa 0 3673 555 545 17552175432 

 Asia 0 4054 387 398 25755440497 

 Australia 0 4240 438 281 3748291789 

1990-1999 Europe 0 2825 424 203 7260038441 

 North America 0 3742 423 338 15051753185 

 Oceania 111 2176 892 394 426754913 

 South America 8 3409 1015 363 19218216796 

 Global 0 4240 591 360 89012671053 

 Africa 0 4326 538 504 17073575117 

 Asia 0 4794 393 377 26457856410 

 Australia 0 4804 397 260 3417383567 

2000-2009 Europe 0 4108 399 165 7119724411 

 North America 0 3915 333 310 15229417841 

 Oceania 0 3349 811 398 425095485 

 South America 0 3975 960 411 18312021115 

 Global 0 4804 547 346 88035073946 

 Africa 0 4892 556 530 17631809454 

 Asia 0 6167 398 401 26760551956 

 Australia 0 4692 425 271 3658944492 

2010-2019 Europe 0 3866 384 165 6834742252 

 North America 0 4366 338 320 15454707917 

 Oceania 0 3387 766 417 391231772 

 South America 0 4452 953 453 18166326886 

 Global 0 6167 546 365 88898314729 

 Africa 0 4892 548 530 17337219195 

 Asia 0 6167 389 392 26012268237 

 Australia 0 4804 426 272 3659200369 

1982-2019 Europe 0 4108 402 180 7029283226 

 North America 0 4366 377 325 15104555837 

 Oceania 0 3387 843 400 418767300 

 South America 0 4452 983 398 18666186076 

 Global 0 6167 567 357 88227480239 

 696 

 697 

 698 

 699 

 700 

 701 

 702 

 703 

 704 
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 705 

Table 12. Same as Table 5 butLevels one and two validation metrics of all ET products (except MOD16A2) and replaced by the 706 
synthesized ET for monthly (01), annually (02) interannual (January-December: 03-14), land cover types (croplands, grasslands, 707 
forests, water Bodies, others: 15-19), climatic classes (arid, semiarid, dry sub-humid, humid: 20-23), and elevation levels (<500 708 
m, 500 m–1500 m, >1500 m: 24-26), (cells colour as Table 13.). 709 

Levels
Level 

Indicato

rMetrics 
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 

Level 
one 

ME                           

 RME                           

 RMSE                           

One RRMSE                           

 R                           

 TS                           

Level 

two 
ME                           

 RME                           

 RMSE                           

Two RRMSE                           

 R                           

 TS                           

Note: MOD16A2 ignored according to Sec. 4.1. 710 

Table 13. The count, percent and the total count and percent of levels one and two of all ET products (except MOD16A2) and 711 
Same as Table 6 but MOD16A2 replaced by the synthesized ET performanceand based on Table 12. 712 

ET products Occurrence in level 1 Occurrence in level 2 Total 

 Level 1 count Level 1 count (%)% Level 2 count 
Level 2 

count (%)% 
Total count Total count (%)% 

PML 66 42 33 21 99 32 

Synthesized 26 17 57 37 83 27 

GLDAS20 12 8 12 8 24 8 

GLDAS21 12 8 7 4 19 6 

SEBS 12 8 7 4 19 6 

MOD16A2105 6 4 12 8 18 6 

SSEBop 8 5 8 5 16 5 

NTSG 2 1 8 5 10 3 

FLDAS 6 4 2 1 8 3 

GLEAM33a 5 3 3 2 8 3 

TerraClimate 1 1 4 3 5 2 

GLEAM33b 0 0 3 2 3 1 

 713 

 714 

 715 

 716 

 717 

 718 

 719 
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 720 

Figure 1415. Monthly (a) and annually (b) synthesized ET against flux EC ET aggregated for all sites. 721 

 722 

 723 
Figure 1516. Monthly synthesized ET against flux EC ET aggregated for all sites for each land cover type (croplands: (a); 724 
grasslands: (b); forest: (c); water bodies: (d)). 725 

 726 

 727 
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 728 
Figure 1617. Monthly synthesized ET against flux EC ET aggregated for all sites for each climate class (arid: (a); semiarid: (b); 729 
dry-sub-humid: (c); humid: (d)). 730 

 731 
Figure 1718. Monthly synthesized ET against flux EC ET aggregated for all sites for each elevation level (<500 m: (a); 500 m –732 
1500 m: (b); >1500 m: (d)). 733 

Figure 1819 presents a monthly comparison between the synthesized ET with the country-based ET products 734 

over China and the United States as well as over the African continent. In general, the synthesized ET returned higher 735 

agreement (R and TS) and accuracy (RMSE) with the flux EC ET than did the other ET products (CR, SSEBop, and 736 

FAO WaPOR). Moreover, it has lower biases over the United States and the African continent. 737 

 738 
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 739 
Figure 1819. Monthly comparison between the synthesized ET (a, c and e) and CR (b), SSEBop (d), and FAO WaPOR (f) ET 740 
products against flux EC ET aggregated for all sites over China (a and b), the USA (c and d) and the African continent (e and f). 741 

5. Discussion 742 

Since global land ET plays a paramount role in the hydrological cycle, its accurate estimation is essential for 743 

further studies. Although there are many global ET products that have been derived from remote sensing models, land 744 

surface models, and hydrological models, they differ in their algorithms, parameterization, and temporal span, and 745 

none of these products can be used for a long time with a reasonable spatial resolution and lower uncertainty. In this 746 

study, we ensemble the best-performing, currently available global ET products at a reasonable spatial resolution 747 

(kilometer) as one consistent global ET dataset covering a long temporal period. Users can use this dataset assuredly 748 

without looking at other datasets and performing additional assessments. 749 

We used a high-quality dataset of global flux towers as a site-pixel-level validation for certain global ET 750 

products (Leuning et al., 2008;Zhang et al., 2010;Ershadi et al., 2014;Michel et al., 2016) to assess them and select 751 
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the best products to create a synthesized ET covering a long temporal period. For that, a matrix of 6 validation criteria 752 

and 26 comparison levels was created, and then levels one and two of the validation metrics were used to select the 753 

best-performing products. Finally, by the simple mean of the products that performed best over the different periods, 754 

the synthesized ET was created. 755 

Among all global ET products investigated in this study, the products that performed best are PML, 756 

GLDAS20, SSEBop, MOD16A2105, GLDAS21, SEBS, and NTSG (Table 6). From the perspective of all comparison 757 

levels, the performance of these products varied, and no single product performed well across all land surface types 758 

and conditions (Vinukollu et al., 2011a;Li et al., 2018). The PML represents the ET product with the highest 759 

agreement, with lower ME (RME) and RMSE (RRMSE) values, followed by the synthesized ET (Tables 12 and 13); 760 

however, it should be noted that PML estimates span a 15-yr period, while the synthesized ET presents longer 761 

estimates from 1982 to 2019 (38 years). 762 

The main advantage of the new dataset is that, for the first time, a synthesized remotely sensed ET product 763 

with a reasonable spatial resolution and lower long-term uncertainties has been provided, where the maximum absolute 764 

ME (RME) and RMSE (RRMSE) values are 13.94 mm (17.13%) and 38.61 mm (47.45%), respectively. Furthermore, 765 

it agreed well (R > 0.70) in 62% of all comparison levels (Table 14). This dataset can provide ensemble ET estimates 766 

for all land cover types, where MOD16A2105 does not provide ET estimates over water bodies and desert areas other 767 

products are. Moreover, a comparison among the synthesized ET against CR, SSEBop, and FAO WaPOR ET products 768 

over China, the United States, and the African continent proved that the synthesized ET outperformed these products 769 

in terms of a higher agreement, higher accuracies and lower biases. Hence, the synthesized ET can play an essential 770 

role, especially for regional and global scale studies, over a long time (1892–2019). 771 

Table 14. Percentage of R more than 0.70 and the maximum absolute value of ME (mm), RME (%) RMSE (mm), and RRMSE 772 
(%) across all comparisons levels (01–26) of the highly preformed ET products and the synthesized ET. 773 

ET products R>0.7 (%) ME RME RMSE RRMSE 

PML 65 7.64 12.22 36.28 44.30 

Synthesized 62 13.94 17.13 38.61 47.45 

GLDAS20  42 9.73 23.02 39.53 49.32 

SSEBop  42 21.82 26.07 48.14 57.50 

MOD16A2105  42 12.89 51.06 42.78 53.27 

GLDAS21  35 13.69 22.07 47.84 58.32 

NTSG  23 14.46 86.35 40.50 50.26 

The synthesized ET used SSEBop ET for the years 2018 and 2019 and NTSG from 1982 to 2000 because 774 

NTSG is the only remotely sensed global ET product available and has a good spatial resolution compared to 775 

GLDAS20. It is the simple mean of MOD16A2105 and NTSG for the years 2001 and 2002 and the simple mean of 776 

PML and SSEBop between 2003 and 2017 (see Tables 7 and 9). 777 

Because the ET was synthesized during the first and second decades as well as the year 2000 based on 778 

resampled NTSG to a 1 km spatial resolution to be comparable with other products, future improvements may be 779 

focused on statistical downscaling of NTSG during this period. Moreover, since different datasets were selected due 780 

to enhancedata availability, also future improvements may be focused on the product proposed in this paperadjustment 781 

of the ensemble means particularly for long-term pixel-based studies. 782 
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6. Data availability 783 

All data used in this study are freely available; see Sect. 2 and Appendix A. The synthesized ET is available 784 

in https://doi.org/10.7910/DVN/ZGOUED (Elnashar et al., 2020) and as GEE application from the following link: 785 

https://elnashar.users.earthengine.app/view/synthesizedet. In addition, it can be accessed  in the GEE JavaScript editor 786 

(the updated link embedded in the GEE application interface). Through this application, the user can query and display 787 

as well as download the synthesized ET. It should be noted that SSEBop and NTSG datasets are not available in Earth 788 

Engine so they were uploaded as assets in GEE for this purpose. 789 

7. Conclusion 790 

 In the current study, a site-pixel-level validation was conducted for certain global ET products across a variety 791 

of land surface types and conditions to select the best performing ET products and then produce a global long-term 792 

synthesized ET dataset. To apply a comprehensive evaluation from different perspectives, land cover types, climate 793 

and elevations were classified into five, four, and three classes, respectively. According to six comprehensive 794 

validation criteria, the evaluated ET products ranked based on the lowest error metrics and highest accuracy and 795 

consistency over different classification levels to choose the ensemble members over different times. 796 

 Concerning the study investigation, PML, GLDAS20, SSEBop, MOD16A2105, GLDAS21, SEBS, 797 

and NTSG were ET products that performed best. The average annual ET from 1982–2019 is 567 mm year–1. Although 798 

no product performed bestbetter in terms of all selected validation criteria in all classification levels, the PML, 799 

GLDAS20, SSEBop, MOD16A2105, GLDAS21, SEBS, and NTSG are the sequence of their performances. The 800 

synthesized ET produced from PML, SSEBop, MOD16A2105 and NTSG had highagreed with the flux EC ET with 801 

R-values higher than 0.70, a maximum ME (RME) of 13.94 mm (17.13%) and a maximum RMSE (RRMSE) of 38.61 802 

mm (47.45%) over 62% of all comparisons levels, as remotely sensed based ET product spanning from 1982 to 2019 803 

with highest agreements and, accuracies with lowand lower biases over most of the land surface types and conditions. 804 

In addition, this study provides ET estimates from 1982 to 2019 and for all land cover types. Furthermore, it 805 

performedIt performs well when compared with country-based and continental ET products over China, the United 806 

States and the African continent. However, the further synthesis of local ET products is encouraged if regional ET 807 

products are available. 808 

The results from this study provide a better understanding of the high performing ET products in each land 809 

cover type, elevation level and climate region as well as a monthly, annual and interannual time steps. Hence, this 810 

study provides an ET product that can be used to improve the quality of ET at regional and global levels and, 811 

consequently, can be used to improve agriculture, water resource management, and climate change studies. 812 
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Appendix A 821 

A summary of ET datasets used in this research is presented here. It should be noted that except for SSEBop, 822 

SEBS, NTSG ET, and GLEAM, which are downloaded from their providers, other datasets are available in Earth 823 

Engine Data Catalog through the following link https://developers.google.com/earth-engine/datasets/catalog/. Each 824 

dataset in GEE has Earth Engine Snippet as following: 825 

MOD16A2 ET V6: ee.ImageCollection("MODIS/006/MOD16A2") 826 

MOD16A2 ET V105: ee.ImageCollection("MODIS/NTSG/MOD16A2/105") 827 

PML ET: ee.ImageCollection("CAS/IGSNRR/PML/V2") 828 

GLDAS ET V20: ee.ImageCollection("NASA/GLDAS/V20/NOAH/G025/T3H") 829 

GLDAS ET V021: ee.ImageCollection("NASA/GLDAS/V021/NOAH/G025/T3H") 830 

FLADS ET: ee.ImageCollection("NASA/FLDAS/NOAH01/C/GL/M/V001") 831 

TerraClimate ET: ee.ImageCollection("IDAHO_EPSCOR/TERRACLIMATE") 832 

MOD16 ET 833 

The Moderate Resolution Imaging Spectroradiometer (MODIS) Global Evapotranspiration Project 834 

(MOD16A2) estimates terrestrial ET as the sum of evaporation and plant transpiration. MOD16A2 ET uses the 835 

Penman-Monteith model, which includes MODIS remotely sensed data (e.g., vegetation, surface albedo, and land 836 

cover classification) and daily meteorological reanalysis. There are two products of MOD16A2 ET (V6 and V105) 837 

with an 8-day temporal resolution, but they differ in their spatial resolution and temporal coverage (Mu et al., 2011;Mu 838 

et al., 2014b). V6 spans from 2001 until now with a 500 m × 500 m spatial resolution and is provided by NASA LP 839 

DAAC at the USGS EROS Center; it can be downloaded from https://doi.org/10.5067/MODIS/MOD16A2.006/. 840 

V105 estimates span the period from 2001 to 2014 with a 1000 m × 1000 m spatial resolution and are provided by the 841 

Numerical Terradynamic Simulation Group (NTSG) at the University of Montana in conjunction with the NASA 842 

Earth Observing System (Mu et al., 2014a). 843 

PML ET 844 

The Penman-Monteith Leuning (PML) ET product partitions ET into three components: plant transpiration, 845 

soil evaporation, and intercepted rainfall by the canopy as well as water evaporation. PML data span from 2002 to 846 

2017 with a 500 m × 500 m spatial resolution and an 8-day temporal resolution (Zhang et al., 2019). 847 

https://developers.google.com/earth-engine/datasets/catalog/
https://modis.gsfc.nasa.gov/about/
https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod16a2_v006
https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod16a2_v006
https://doi.org/10.5067/MODIS/MOD16A2.006/
http://www.ntsg.umt.edu/project/modis/mod16.php
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SSEBop 848 

The operational Simplified Surface Energy Balance (SSEBop) model is based on the Simplified Surface 849 

Energy Balance (SSEB) approach with a unique parameterization for operational applications. Using a thermal index 850 

approach, it combines ET fractions generated from remotely sensed MODIS land surface temperature, acquired every 851 

10 days, with reference ET from global weather datasets. The SSEBop uses predefined, seasonally dynamic, boundary 852 

conditions that are unique to each pixel for the hot and cold reference points (Senay et al., 2007;Senay et al., 853 

2011;Senay et al., 2013;Senay et al., 2020). SSEBop estimates are from 2003 with a 0.0096°×0.0096° (≈1 km) spatial 854 

resolution and a monthly temporal resolution. Data were provided by The Early Warning and Environmental 855 

Monitoring Program via the United States Geological Survey and can be downloaded from the following website 856 

https://earlywarning.usgs.gov/. 857 

SEBS 858 

The Surface Energy Balance System (SEBS) is an approach designed to estimate ET from the evaporative 859 

fraction using satellite remote sensing augmented with meteorological data at corresponding scales (Su, 2002). 860 

MODIS-LST and the Normalized Difference Vegetation Index (NDVI), GLASS-LAI, GLAS global forest height, 861 

GlobAlbedo, and ERA-Interim meteorological data have been used in these ET calculations with the revised SEBS 862 

algorithm (Chen et al., 2013;Chen et al., 2014a;Chen et al., 2019). SEBS is available during the period from 2000 to 863 

2017 with a 5 km × 5 km spatial resolution and monthly temporal resolution. It is copyrighted by the Institute of 864 

Tibetan Plateau Research, Chinese Academy of Sciences and is available at http://en.tpedatabase.cn/. 865 

NTSG ET 866 

The Numerical Terradynamic Simulation Group (NTSG) ET data are based on an algorithm that estimates 867 

transpiration from the canopy and evaporation from soil using a modified Penman‐Monteith model and evaporation 868 

from open water using a Priestley‐Taylor model. These algorithms were applied globally using the Advanced Very 869 

High-Resolution Radiometer (AVHRR) Global Inventory Modeling and Mapping Studies (GIMMS) NDVI, 870 

NCEP/NCAR Reanalysis daily surface meteorology, and NASA/GEWEX Surface Radiation Budget Release-3.0 solar 871 

radiation inputs (Zhang et al., 2009;Zhang et al., 2010). NTSG estimates cover a period from 1982 to 2013 at a spatial 872 

resolution of 8 km × 8 km and a monthly temporal resolution. It is produced by NTSG at the University of Montana 873 

and can be retrieved from http://files.ntsg.umt.edu/. 874 

GLEAM 875 

The Global Land Evaporation Amsterdam Model (GLEAM) is physically based on an algorithm that estimate 876 

ET components separately (i.e., transpiration, interception loss, bare soil evaporation, snow sublimation, and open-877 

water evaporation). The potential evaporation is estimated by the Priestley and Taylor equation based on observations 878 

of surface net radiation and near-surface air temperature and is then converted into actual evaporation based on the 879 

evaporative (soil) stress factor. The soil stress factor is based on microwave vegetation optical depth and simulated 880 

root-zone soil moisture calculated from a multilayer water balance model. Separately, interception loss is calculated 881 

https://earlywarning.usgs.gov/
http://en.tpedatabase.cn/
http://www.ntsg.umt.edu/project/modis/mod16.php
http://files.ntsg.umt.edu/
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based on vegetation and rainfall observations. There are two datasets available for GLEAM (i.e., v3.3a, and v3.3b) 882 

that differ only in their forcing and temporal coverage. v3.3a spans from 1980 to 2018 and relies on reanalysis radiation 883 

and air temperature, a combination of gauge-based, reanalysis and satellite-based precipitation, and satellite-based 884 

vegetation optical depth, while v3.3b spans from 2003 to 2018, and its forcing factors are the same as v3.3a except 885 

for radiation and air temperature, which are based on remotely sensed data. Both v3.3a and v3.3b estimates are 886 

provided at a monthly temporal resolution and a 0.25°×0.25° (≈25 km) spatial resolution (Miralles et al., 887 

2011b;Miralles et al., 2011a;Martens et al., 2017). 888 

GLDAS ET 889 

The Global Land Data Assimilation System (GLDAS) generates optimal fields of land surface states and 890 

fluxes using advanced land surface modeling and data assimilation techniques by ingesting satellite and ground-based 891 

observational data products. GLDAS Version 2 has two components (GLDAS-2.0 and GLDAS-2.1) with a 892 

0.25°×0.25° (≈25 km) spatial resolution and a 3-hour temporal resolution. GLDAS-2.0 is reprocessed with the updated 893 

Princeton Global Meteorological Forcing Dataset and upgraded Land Information System Version 7. The model 894 

simulation was initialized from January 1, 1948, to December 31, 2010, using soil moisture and other state fields from 895 

the LSM climatology for that day of the year. The simulation used the common GLDAS datasets for land cover 896 

(MCD12Q1), land-water mask (MOD44W), and soil texture and elevation (GTOPO30). The GLDAS-2.1 simulation 897 

started on January 1, 2000, and lasted until December 31, 2019, using the conditions from the GLDAS-2.0 simulation. 898 

This simulation was forced with the National Oceanic and Atmospheric Administration (NOAA)/Global Data 899 

Assimilation System (GDAS) atmospheric analysis, disaggregated Global Precipitation Climatology Project (GPCP) 900 

precipitation, and Air Force Weather Agency's AGRicultural METeorological modeling system (AGRMET) radiation. 901 

The MODIS-based land surface parameters were used in the current GLDAS-2.x products, while the AVHRR base 902 

parameters were used in previous GLDAS-2 products before October 2012 (Rodell et al., 2004). 903 

FLDAS ET 904 

The Famine Early Warning Systems Network (FEWS NET) Land Data Assimilation System (FLDAS) 905 

dataset uses remotely sensed and reanalysis inputs to drive land surface models. It includes information on many 906 

climate-related variables, including evapotranspiration, moisture content, humidity, average soil temperature, and total 907 

precipitation rate. For forcing data, this FLDAS dataset uses a combination of the new version of Modern-Era 908 

Retrospective analysis for Research and Applications version 2 (MERRA-2) data and Climate Hazards Group 909 

InfraRed Precipitation with Station data (CHIRPS), a quasi-global rainfall dataset designed for seasonal drought 910 

monitoring and trend analysis (McNally et al., 2017). FLDAS is provided at a 0.1°×0.1° (≈10 km) spatial resolution 911 

and monthly temporal resolution during the period 1982–2019. 912 

TerraClimate ET 913 

TerraClimate ET is estimated based on a monthly one-dimensional soil water balance for global terrestrial 914 

surfaces, which incorporates evapotranspiration, precipitation, temperature, and interpolated plant extractable soil 915 
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water capacity. The water balance model is very simple and does not account for heterogeneity in vegetation types or 916 

their physiological responses to changing environmental conditions (Abatzoglou et al., 2018). TerraClimate estimates 917 

are provided at a monthly temporal resolution from 1958 to 2018 and 0.041°×0.041° (≈5 km) grid cells. 918 
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