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 28 
Abstract. Here we present a global and regionally-resolved terrestrial net biosphere exchange 29 
(NBE) dataset with corresponding uncertainties between 2010–2018: CMS-Flux NBE 2020. It is 30 
estimated using the NASA Carbon Monitoring System Flux (CMS-Flux) top-down flux 31 
inversion system that assimilates column CO2 observations from the Greenhouse gases 32 
Observing SATellite (GOSAT) and NASA’s Observing Carbon Observatory -2 (OCO-2). The 33 
regional monthly fluxes are readily accessible as tabular files, and the gridded fluxes are 34 
available in NetCDF format. The fluxes and their uncertainties are evaluated by extensively 35 
comparing the posterior CO2 mole fractions with CO2 observations from aircraft and the NOAA 36 
marine boundary layer reference sites. We describe the characteristics of the dataset as global 37 
total, regional climatological mean, and regional annual fluxes and seasonal cycles. We find that 38 
the global total fluxes of the dataset agree with atmospheric CO2 growth observed by the surface-39 
observation network within uncertainty. Averaged between 2010 and 2018, the tropical regions 40 
range from close-to neutral in tropical South America to a net source in Africa; these contrast 41 
with the extra-tropics, which are a net sink of 2.5 ± 0.3 gigaton carbon per year. The regional 42 
satellite-constrained NBE estimates provide a unique perspective for understanding the terrestrial 43 
biosphere carbon dynamics and monitoring changes in regional contributions to the changes of 44 
atmospheric CO2 growth rate. The gridded and regional aggregated dataset can be accessed at: 45 
https://doi.org/10.25966/4v02-c391 (Liu et al., 2020).  46 
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1 Introduction  48 

New “top-down” inversion frameworks that harness satellite observations provide an important 49 

complement to global aggregated fluxes (e.g., Global Carbon Budget (GCB), Friedlingstein et al., 50 

2019) and inversions based on surface CO2 observations (e.g., Chevallier et al., 2010), especially 51 

over the tropics and the Southern Hemisphere (SH) where conventional surface CO2 observations 52 

are sparse. The net biosphere exchange (NBE), which is the net carbon flux of all the land-53 

atmosphere exchange processes except fossil fuel emissions, is far more variable and uncertainty 54 

than ocean fluxes (Lovenduski and Bonan, 2017) or fossil fuel emissions (Yin et al, 2019), and is 55 

thus the focus of this dataset estimated from a top-down atmospheric CO2 inversion of satellite 56 

column CO2 dry-air mole fraction (XCO2). Here, we present the global and regional NBE as a series 57 

of maps, time series and tables, and disseminate it as a public dataset for further analysis and 58 

comparison to other sources of flux information. The gridded NBE dataset and its uncertainty, air-59 

sea fluxes, and fossil fuel emissions are also available, so that users can calculate carbon budget 60 

from regional to global scale. Finally, we provide a comprehensive evaluation of both mean and 61 

uncertainty estimates against the CO2 observations from independent airborne datasets and the 62 

NOAA marine boundary layer (MBL) reference sites (Conway et al., 1994).  63 

 64 

Global top-down atmospheric CO2 flux inversions have been historically used to estimate regional 65 

terrestrial NBE. They make uses of the spatiotemporal variability of atmospheric CO2, which is 66 

dominated by NBE, to infer net carbon exchange at the surface (Chevallier et al., 2005; Baker et 67 

al., 2006; Liu et al., 2014). The accuracy of the NBE from top-down flux inversions is determined 68 
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by the density and accuracy of the CO2 observations, the accuracy of modeled atmospheric 69 

transport, and knowledge of the prior uncertainties of the flux inventories.  70 

 71 

For CO2 flux inversions based on high precision in situ and flask observations, the measurement 72 

error is low (<0.2 parts per million (ppm)) and not a significant source of error; however, these 73 

observations are limited spatially, and are concentrating primarily over North America (NA) and 74 

Europe (Crowell et al., 2019). Satellite XCO2 from CO2-dedicated satellites, such as the Greenhouse 75 

Gases Observing Satellite (GOSAT) (launched in July 2009) and the Observing Carbon 76 

Observatory 2 (OCO-2) (Crisp et al., 2017) have much broader spatial coverage (O’Dell et al., 77 

2018), which fill the observational gaps of conventional surface CO2 observations, but they have 78 

up to an order of magnitude higher single-sounding uncertainty and potential systematic errors 79 

compared to the in situ and flask CO2 observations. Recent progress in instrument error 80 

characterization, spectroscopy, and retrieval methods have significantly improved the accuracy 81 

and precision of the XCO2 retrievals (O’Dell et al., 2018; Kiel et al., 2019). The single sounding 82 

random error of XCO2 from OCO-2 is ~1.0 ppm (Kulawik et al., 2019). A recent study by Byrne et 83 

al. (2020) shows less than a 0.5 ppm difference between posterior XCO2 constrained by a recent 84 

data set, ACOS-GOSAT b7 XCO2 retrievals, and those constrained by conventional surface CO2 85 

observations. Chevallier et al. (2019) also showed that an OCO-2 based flux inversion had similar 86 

performance to surface CO2 based flux inversions when comparing posterior CO2 mole fractions 87 

to aircraft CO2 in the free troposphere. Results from these studies show that systematic 88 

uncertainties in CO2 retrievals from satellites are comparable to, or smaller than, other uncertainty 89 

sources in atmospheric inversions (e.g. transport).  90 

 91 
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A newly-developed biogeochemical model-data fusion system, CARDAMOM, made progress in 92 

producing NBE uncertainties, along with mean values that are consistent with a variety of 93 

observations assimilated through a Markov Chain Monte Carlo (MCMC) method (Bloom et al., 94 

2016; 2020). Transport model errors in general have also been reduced relative to earlier transport 95 

model intercomparison efforts, such as TransCom 3 (Gurney et al., 2004; Gaubert et al., 2019). 96 

Advancements in satellite retrieval, transport, and prior terrestrial biosphere modeling have led to 97 

more mature inversions constrained by satellite XCO2 observations.  98 

 99 

Two satellites, GOSAT and OCO-2, have now produced more than 10 years of observations. Here 100 

we harness the CMS-Flux inversion framework (Liu et al., 2014; 2017; 2018; Bowman et al., 2017) 101 

to generate an NBE product: CMS-Flux NBE 2020, by assimilating both GOSAT and OCO-2 from 102 

2010–2018. The dataset is the longest satellite-constrained NBE product so far. The CMS-Flux 103 

framework exploits globally available XCO2 to infer spatially-resolved total surface-atmosphere 104 

exchange. In combination with constituent fluxes, e.g., Gross Primary Production (GPP), NBE 105 

from CMS-Flux framework have been used to assess the impacts of El Niño on terrestrial 106 

biosphere fluxes (Bowman et al, 2017; Liu et al, 2017) and the role of droughts in the North 107 

American carbon balance (Liu et al, 2018). These fluxes have furthermore been ingested into land-108 

surface data assimilation systems to quantify heterotrophic respiration (Konings et al., 2019), 109 

evaluate structural and parametric uncertainty in carbon-climate models (Quetin et al., 2020), and 110 

inform climate dynamics (Bloom et al., 2020). We present the regional NBE and its uncertainty 111 

based on three types of regional masks: (1) latitude and continent, 2) distribution of biome types 112 

(defined by plant functional types) and continent, and 3) TransCom regions (Gurney et al., 2004).  113 

 114 
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The outline of the paper is as follows: Section 2 describes methods, and Sections 3 and 4 describe 115 

the dataset and the major NBE characteristics, respectively. We extensively evaluate the posterior 116 

fluxes and uncertainties by comparing the posterior CO2 mole fractions against aircraft 117 

observations and the NOAA MBL reference CO2, and a gross primary production (GPP) product 118 

(section 5). In Section 6, we discuss the strength and weakness, and potential usage of the data. A 119 

summary is provided in Section 7, and Section 8 describes the dataset availability and future plan. 120 

 121 

2 Methods  122 

2.1 CMS-Flux inversion system 123 

The CMS-Flux framework is summarized in Figure 1. The center of the system is the CMS-Flux 124 

inversion system, which optimizes NBE and air-sea net carbon exchanges with a 4D-Var inversion 125 

system (Liu et al., 2014). In the current system, we assume no uncertainty in fossil fuel emissions, 126 

which is a widely adopted assumption in global flux inversion systems (e.g., Crowell et al., 2019), 127 

since the uncertainty in fossil fuel emissions at regional scales is substantially less than the NBE 128 

uncertainties. The 4D-Var minimizes a cost function that includes two terms:  129 

           (1) 130 

The first term measures the differences between the optimized fluxes and the prior fluxes 131 

normalized by the prior flux error covariance B. The second term measures the differences between 132 

observations ( ) and the corresponding model simulations ( ) normalized by the observation 133 

error covariance R. The term ℎ(∙)  is the observation operator that calculates observation-134 

equivalent model-simulated XCO2. The 4D-Var uses the adjoint (i.e., the backward integration of 135 

the transport model) (Henze et al., 2004) of the GEOS-Chem transport model to calculate the 136 

sensitivity of the observations to surface fluxes. The configurations of the inversion system are 137 

J (x) = (x − xb)
TB−1(x − xb)+ (y − h(x))TR−1(y − h(x))

y h(x)
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summarized in Table 1. We run both the forward and adjoint at 4° x 5° spatial resolution, and 138 

optimize monthly NBE and air-sea carbon fluxes at each grid point from January 2010 to 139 

December 2018. Inputs for the system include prior carbon fluxes, meteorological drivers, and the 140 

satellite XCO2 (Figure 1). Section 2.2 (Table 2) describes the prior flux and its uncertainties, and 141 

section 2.3 (Table 3) describes the observations and the corresponding uncertainties. 142 

 143 

2.2 The prior CO2 fluxes and uncertainties 144 

The prior CO2 fluxes include NBE, air-sea carbon exchange, and fossil fuel emissions (see Table 145 

2). The data sources for the prior fluxes are listed in Table 7 and provided in the gridded fluxes. 146 

Methods to generate prior ocean carbon fluxes and fossil fuel emissions are documented in Brix 147 

et al., (2015), Caroll et al. (2020), and Oda et al. (2018). The focus of this dataset is optimized 148 

terrestrial biosphere fluxes, so we briefly describe the prior terrestrial biosphere fluxes and their 149 

uncertainties. 150 

 151 

We construct the NBE prior using the CARDAMOM framework (Bloom et al., 2016). The 152 

CARDAMOM data assimilation system explicitly represents the time-resolved uncertainties in the 153 

NBE. The prior estimates are already constrained with multiple data streams accounting for 154 

measurement uncertainties following a Bayesian approach similar to that used in the 4D-155 

variational approach. We use the CARDAMOM setup as described by Bloom et al. (2016, 2020) 156 

resolved at monthly timescales; data constraints include GOME-2 solar-induced fluorescence 157 

(Joiner et al., 2013), MODIS Leaf Area Index (LAI), and biomass and soil carbon (details on the 158 

data assimilation are provided in Bloom et al. (2020)). In addition, mean GPP and fire carbon 159 

emissions from 2010 - 2017 are constrained by FLUXCOM RS+METEO version 1 GPP 160 
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(Tramontana et al., 2016; Jung et al., 2017) and GFEDv4.1s (Randerson et al., 2018), respectively, 161 

both assimilated with an uncertainty of 20%. We use the Olsen and Randerson (2001) approach to 162 

downscale monthly GPP and respiration fluxes to 3-hourly timescales, based on ERA-interim re-163 

analysis of global radiation and surface temperature. Fire fluxes are downscaled using the 164 

GFEDv4.1 daily and diurnal scale factors on monthly emissions (Giglio et al., 2013). 165 

Posterior CARDAMOM NBE estimates are then summarized as NBE mean and standard 166 

deviation values.  167 

  168 

The NBE from CARDAMOM shows net carbon uptake of 2.3 GtC/year over the tropics and close 169 

to neutral in the extratropics (Figure B1). The year-to-year variability (i.e., interannual variability, 170 

IAV) estimated from CARDAMOM from 2010 –2017 is generally less than 0.1 gC/m2/day outside 171 

of the tropics (Figure B1). Because of the weak interannual variability estimated by CARDAMOM, 172 

we use the same 2017 NBE prior for 2018.  173 

 174 

CARDAMOM generates uncertainty along with the mean state. The relative uncertainty over the 175 

tropics is generally larger than 100%, and the magnitude is between 50% and 100% over the extra-176 

tropics (Figure B2). We assume no correlation in the prior flux errors in either space or time. The 177 

temporal and spatial error correlation estimates can in principle be computed by CARDAMOM. 178 

We anticipate incorporating these error correlations in subsequent versions of this dataset. 179 

 180 

2.3 Column CO2 observations from GOSAT and OCO-2 181 

We use the satellite-column CO2 retrievals from Atmospheric Carbon Observations from Space 182 

(ACOS) team for both GOSAT (version 7.3) and OCO-2 (version 9) (Table 3). The use of the 183 

same retrieval algorithm and validation strategy adopted by the ACOS team to process both 184 
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GOSAT and OCO-2 spectra maximizes the consistency between these two datasets. Both GOSAT 185 

and OCO-2 satellites carry high-resolution spectrometers optimized to return high precision 186 

measurements of reflected sunlight within CO2 and O2 absorption bands in the shortwave infrared 187 

(Crisp et al., 2012). Both satellites fly in a sun-synchronous orbit. GOSAT has a 13:00 ± 0.15 188 

hours local passing time and a three-day ground track repeat cycle. The footprint of GOSAT is 189 

~10.5 km in diameter in sun-nadir view (Crisp et al., 2012). The daily number of soundings 190 

processed by the ACOS-GOSAT retrieval algorithm is between a few hundreds to ~2000. Further 191 

quality control and filtering reduce the ACOS-GOSAT XCO2 retrievals to ~100 – 300 daily (Figure 192 

B5 in Liu et al., 2017). We only assimilate ACOS-GOSAT land nadir observations flagged as 193 

being good quality, which are the retrievals with quality flag equal to zero.  194 

 195 

OCO-2 has a 13:30 local passing time and 16-day ground track repeat cycle. The nominal 196 

footprints of the OCO-2 are 1.25 km wide and ~2.4 km along the orbit. Because of their small 197 

footprints and sampling strategy, OCO-2 has many more XCO2 retrievals than ACOS-GOSAT. To 198 

reduce the sampling error due to the resolution differences between the transport model and OCO-199 

2 observations, we generate super observations by aggregating the observations within ~100 km 200 

(along the same orbit) (Liu et al., 2017). The super-obing strategy was first proposed in numerical 201 

weather prediction (NWP) to assimilate dense observations (Lorenc, 1981), and is still broadly 202 

used in NWP (e.g., Liu and Rabier, 2003). More detailed information about OCO-2 super 203 

observations can be found in Liu et al. (2017). OCO-2 has four observing modes: land nadir, land 204 

glint, ocean glint, and target. Following Liu et al. (2017), we only use land nadir observations. The 205 

super observations have more uniform spatial coverage and are more comparable to the spatial 206 
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representation of ACOS-GOSAT observations and the transport model (see Figure B5 in Liu et 207 

al., 2017).  208 

 209 

We directly use observational uncertainty provided with ACOS-GOSAT b7.3 to represent the 210 

observation error statistics, R, in Eq 1. The uncertainty of the OCO-2 super observations is the 211 

sum of the variability of XCO2 used to generate each individual super observation and the mean 212 

uncertainty provided in the original OCO-2 retrievals. Kulawik et al. (2019) showed that both 213 

OCO-2 and ACOS-GOSAT bias-corrected retrievals have a mean bias of -0.1 ppm when compared 214 

with XCO2 from Total Carbon Column Observing Network (TCCON) (Wunch et al., 2011), 215 

indicating consistency between ACOS-GOSAT and OCO-2 retrievals. O’Dell et al. (2018) showed 216 

that the OCO-2 XCO2 land nadir retrievals has RMS error of ~1.1 ppm when compared to TCCON 217 

retrievals; the differences between OCO-2 XCO2 retrievals and surface CO2 constrained model 218 

simulations are well within 1.0 ppm over most of the locations in the Northern Hemisphere (NH), 219 

where most of the surface CO2 observations are located.  220 

 221 

The magnitude of observation errors used in R is generally above 1.0 ppm, larger than the sum of 222 

random error and biases in the observations. The ACOS-GOSAT b7.3 observations from July 223 

2009–June 2015 are used to optimize fluxes between 2010 and 2014, and the OCO-2 XCO2 224 

observations from Sep 2014–June 2019 are used to optimize fluxes between 2015 and 2018. 225 

 226 

The observational coverage of ACOS-GOSAT and OCO-2 is spatiotemporally dependent, with 227 

more coverage during summer than winter over the NH, and more observations over mid-latitudes 228 

than over the tropics (Figure B3). The variability (i.e., standard deviation) of annual total number 229 
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of observations from 2010–2014 is within 4% of the annual mean number for ACOS-GOSAT. 230 

Except for a data gap in 2017 caused by a malfunction of the OCO-2 instrument, the variability of 231 

the annual total number of observations between 2015 and 2018 is within 8% of the annual mean 232 

number for OCO-2.  233 

 234 

2.4 Uncertainty quantification 235 

The posterior flux error covariance is the inverse Hessian, which incorporates the transport, 236 

measurement, and background errors at the 4D-Var solution (Eq. 13 in Bowman et al, 2017). 237 

Posterior flux uncertainty projected to regions can be estimated analytically based on the methods 238 

described in Fisher and Courtier (1995) and Meirink et al. (2008), using either flux singular vectors 239 

or flux increments obtained during the iterative optimization (e.g., Niwa and Fujii, 2020). In this 240 

study, we rely on a Monte Carlo approach to quantify posterior flux uncertainties following 241 

Chevallier et al. (2010) and Liu et al. (2014), which is simpler and widely used. In this approach, 242 

an ensemble of flux inversions is carried out with an ensemble of priors and simulated observations 243 

to sample the uncertainties of prior fluxes (i.e., B in eq. 1) and observations (R in Eq. 1), 244 

respectively. The magnitude of posterior flux uncertainties is a function of assumed uncertainties 245 

in prior fluxes and observations, as well as the density of observations. Since the density of 246 

GOSAT and OCO-2 observations are stable (section 2.3) within their respective data record, we 247 

characterize the posterior flux uncertainties for 2010 and 2015 only, and assume the flux 248 

uncertainties for 2011–2014 are the same as 2010 and flux uncertainties for 2016–2018 are the 249 

same as 2015.  250 

 251 

2.5 Evaluation of posterior fluxes 252 
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Direct NBE estimates from flux towers only provide a spatial representation of roughly 1 – 3 253 

kilometers (Running et al., 1999), not appropriate to evaluate regional NBE from top-down flux 254 

inversions. Thus, we use two methods to indirectly evaluate the posterior NBE and its uncertainties. 255 

One is to compare annual NBE anomalies and seasonal cycle to a gross primary production (GPP) 256 

product. The other is to compare posterior CO2 mole fractions to independent (i.e., not assimilated 257 

in the inversion) aircraft and the NOAA MBL reference observations. The second method has been 258 

broadly used to indirectly evaluate posterior fluxes from top-down flux inversions (e.g., Stephens 259 

et al., 2007; Liu and Bowman, 2016; Chevallier et al., 2019; Crowell et al., 2019). In addition to 260 

these two methods, we also compare the NBE seasonal cycles to three publicly available top-down 261 

NBE estimates that are constrained by surface CO2 observations (Tables 3 and 7).  262 

2.5.1 Evaluation against independent gross primary production (GPP) product 263 

 NBE is a small residual difference between two large terms: total ecosystem respiration (TER) 264 

and GPP, plus fire. A positive NBE anomaly (i.e., less uptake from the atmosphere) has been 265 

shown to correspond to reduced GPP caused by climate anomalies (e.g., Bastos et al., 2018), and 266 

the magnitude of net uptake is proportional to GPP in most biomes observed by flux tower 267 

observations (e.g., Falk et al., 2008). Since NBE is related not only to GPP, the comparison to GPP 268 

only serves as a qualitative measure of the NBE quality. For example, we would expect that the 269 

posterior NBE seasonality to be anti-correlated with GPP in the temperate and high latitudes. In 270 

this study, we use FLUXSAT GPP (Joiner et al., 2018), which is an upscaled GPP product based 271 

on flux tower GPP observations and satellite-based geometry adjusted reflectance from the 272 

MODerate-resolution Imaging Spectroradiometer (MODIS) and solar-induced chlorophyll 273 

fluorescence observations from Global Ozone Monitoring Experiment – 2 (GOME-2) (Joiner et 274 
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al., 2013). Joiner et al. (2018) show that the agreement between FLUXSAT-GPP and GPP from 275 

flux towers is better than other available upscaled GPP products. 276 

2.5.2 Evaluation against aircraft and the NOAA marine boundary layer (MBL) 277 

reference CO2 observations  278 

 The aircraft observations used in this study include those published in OCO-2 MIP ObsPack 279 

August 2019 (CarbonTracker team, 2019), which include regular vertical profiles from flask 280 

samples collected on light aircraft by NOAA (Sweeney et al., 2015) and other laboratories, regular 281 

(two to four weekly) vertical profiles from the Instituto de Pesquisas Espaciais (INPE) over 282 

tropical South America (SA) (Gatti et al., 2014), and from the Atmospheric Tomography (ATom, 283 

Wofsy et al., 2018), HIAPER Pole-to-Pole (HIPPO, Wofsy et al., 2011), the O2/N2 Ratio and CO2 284 

airborne Southern Ocean Study (ORCAS)  (Stephens et al., 2017), and Atmospheric Carbon and 285 

Transport - America (ACT-America, Davis et al., 2018) aircraft campaigns (Table 3). Figure 2 286 

shows the aircraft observation coverage and density between 2010 and 2018. Most of the aircraft 287 

observations are concentrated over NA. ATom had four (1–4) campaigns between August 2016 to 288 

May 2018, spanning four seasons over the Pacific and Atlantic Ocean. HIPPO had five (1–5) 289 

campaigns over the Pacific, but only HIPPO 3–5 occurred between 2010 and 2011. HIPPO 1–2 290 

occurred in 2009. Based on the spatial distribution of aircraft observations, we divide the 291 

comparison into nine regions: Alaska, mid-latitude NA, Europe, East Asia, South Asia, Africa, 292 

Australia, Southern Ocean, and South America (Table 4 and Figure 2).  293 

 294 

We calculate several quantities to evaluate the posterior fluxes and their uncertainty with aircraft 295 

observations. One is the monthly mean differences between posterior and aircraft CO2 mole 296 
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fractions. The second is the monthly root mean square errors (RMSE) over each of nine sub-297 

regions, which is defined as: 298 

  (2) 299 

where		𝑦!"#$#!%&'  is the ith aircraft observation, 		𝑦!"#$#!%&(  is the corresponding posterior CO2 mole 300 

fraction sampled at the ith aircraft location, and n is the number of aircraft observations over each 301 

region. The RMSE is computed over the n aircraft observations within one of the nine sub-regions. 302 

The mean differences indicate the magnitude of the mean posterior CO2 bias, while the RMSE 303 

includes both random and systematic errors in posterior CO2. The bias and RMSE could be due to 304 

errors in posterior fluxes, transport, and initial CO2 concentrations. When errors in transport and 305 

initial CO2 concentrations are smaller than the errors in the posterior fluxes, the magnitude of 306 

biases and RMSE indicates the accuracy of the posterior fluxes.  307 

 308 

To evaluate the magnitude of posterior flux uncertainty estimates, we compare RMSE against the 309 

standard deviation of ensemble simulated aircraft observations (equation 3) from the Monte Carlo 310 

method (RMSEMC). The quantity 𝑅𝑀𝑆𝐸)* 	can be written as: 311 

𝑅𝑀𝑆𝐸)* = [ +
,-,.

∑ ((𝑦!"#$#!%&
(()*) )"-,. − 𝑦/!"#$#!%&

(()*) )1,-,.
"-,.2+ ]

!
"	(3)  312 

The variable  (𝑦!"#$#!%&
(()*) )"-,. is the ith ensemble member of simulated aircraft observations from 313 

Monte Carlo ensemble simulations, 𝑦/!"#$#!%&
(()*) is the mean, and nens is the total number of ensemble 314 

members. For simplicity, in equation (3), we drop the indices for the aircraft observations used in 315 

equation (2). In the absence of errors in transport and initial CO2 concentrations, when the 316 

estimated posterior flux uncertainty reflects the “true” posterior flux uncertainty, we show in the 317 

Appendix that: 318 

RMSE = ( 1
n

( yaircraft
o − yaircraft

b )i
2 )
1
2

i=1

n

∑
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𝑅𝑀𝑆𝐸1 = +
,
∑ 𝑅",",
"2+ + 𝑅𝑀𝑆𝐸)*1           (4)  319 

where 𝑅!"#$#!%& is the aircraft observation error variance, which could be neglected on regional 320 

scale.  321 

 322 

We further calculate the ratio r between RMSE and 𝑅𝑀𝑆𝐸)*: 323 

𝑟 = 4)56
4)56#$

				                          (5) 324 

A ratio close to one indicates that the posterior flux uncertainty reflects the true uncertainty in the 325 

posterior fluxes when the transport errors are small.  326 

 327 

The presence of transport errors will make the comparison between RMSE and 𝑅𝑀𝑆𝐸)*  328 

potentially difficult to interpret. Even when 	𝑅𝑀𝑆𝐸)*  represents the actual uncertainty in posterior 329 

fluxes, the RMSE could be larger than 𝑅𝑀𝑆𝐸)* , since the differences between aircraft 330 

observations and model simulated posterior mole fractions RMSE could be due to errors in both 331 

transport and the posterior fluxes, while 𝑅𝑀𝑆𝐸)*  only reflects the impact of posterior flux 332 

uncertainty on simulated aircraft observations. In this study, we assume the primary sources of 333 

RMSE come from errors in posterior fluxes.  334 

 335 

The RMSE and 𝑅𝑀𝑆𝐸)*  comparison only shows differences in CO2 space. We further calculate 336 

the sensitivity of the RMSE  to the posterior flux using the GEOS-Chem adjoint. We first define a 337 

cost function J as: 338 

𝐽 = 𝑅𝑀𝑆𝐸1				   (6)   339 

The sensitivity of the mean-square error to a flux, x, at location i and month j  is 340 
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𝑤",7 =
89
8:%,'

× 𝑥",7   (7) 341 

This sensitivity is normalized by the flux magnitude. Equation 7 can be interpreted as the 342 

sensitivity of the RMSE2 to a fractional change in the fluxes. We can estimate the time-integrated 343 

magnitude of the sensitivity over the entire assimilation window by calculating: 344 

𝑆" =
∑ <=%,'<#
'(!

∑ ∑ <=),'<#
'(!

*
)(!

   (8) 345 

where P is the total number of grid points and M is the total number of months from the time of 346 

the aircraft data to the beginning of the inversion. The numerator of equation (8) quantifies the 347 

absolute total sensitivity of the RMSE2 to the fluxes at the ith grid. Normalized by the total absolute 348 

sensitivity across the globe, the quantity 𝑆" indicates the relative sensitivity of RMSE2 to fluxes at 349 

the ith grid point. Note that 𝑆" is unitless, and it only quantifies sensitivity, not the contribution of 350 

fluxes at each grid to RMSE2. 351 

 352 

We use the NOAA MBL reference dataset (Table 7) to evaluate the CO2 seasonal cycle over four 353 

latitude bands: 90ºN-60ºN, 60ºN-20ºN, 20ºN-20ºS, and 20ºS-90ºS. The MBL reference is based 354 

on a subset of sites from the NOAA Cooperative Global Air Sampling Network. Only 355 

measurements that are representative of a large volume air over a broad region are considered. In 356 

the comparison, we first remove the global mean CO2 357 

(https://www.esrl.noaa.gov/gmd/ccgg/trends/global.html ) from both the NOAA MBL reference 358 

and the posterior CO2. 359 

 360 

2.6 Regional masks  361 
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We provide posterior NBE from 2010 – 2018 using three sets of regional masks (Figure 3), in 362 

addition to the gridded product. The regional mask in Figure 3A is based on a combination of 363 

seven plant function types condensed from MODIS IGBP and the TransCom -3 regions (Gurney 364 

et al., 2004), which is referred as Region Mask 1 (RM1) in later description. There are 28 regions 365 

in Figure 3A: six in NA, four in SA, five in Eurasia (north of 40˚N), three in tropical Asia, three 366 

in Australia, and seven in Africa. The regional mask in Figure 3B is based on latitude and 367 

continents with 13 regions in total, which is referred as Region Mask 2 (RM2) in later description. 368 

Figure 3C is the TransCom regional mask with 11 regions on land.  369 

 370 

3 Dataset description 371 
 372 
We present the fluxes as globally, latitudinally, and regionally aggregated time series. We show 373 

the nine-year average fluxes aggregated into RM1, RM2, and TransCom regions (Figure 3). The 374 

aggregations are geographic (latitude and continent) and bio-climatic (biome by continent).  For 375 

each region in the geographic and biome aggregations, we show nine-year mean annual net fluxes 376 

and uncertainties, and then the annual fluxes for each region as a set of time-series plots. The 377 

month-by-month fluxes and uncertainties are available in tabular format, so the actual aggregated 378 

fluxes may be readily compared to bottom-up extrapolated fluxes and Earth System models. Users 379 

can also aggregate the gridded fluxes and uncertainties based on their own defined regional masks. 380 

Table 5 provides a complete list of all data products available in the dataset. In section 4, we 381 

describe the major characteristics of the dataset.  382 

4 Characteristics of the dataset  383 

4.1 Global fluxes 384 
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The annual atmospheric CO2 growth rate, which is the net difference between fossil fuel emissions 385 

and total annual sink over land and ocean, is well-observed by the NOAA surface CO2 observing 386 

network (https://www.esrl.noaa.gov/gmd/ccgg/ggrn.php). We compare the global total flux estimates 387 

constrained by GOSAT and OCO-2 with the NOAA CO2 growth rate from 2010–2018, and discuss 388 

the mean carbon sink over land and ocean. Over these nine years, the satellite-constrained 389 

atmospheric CO2 growth rate agrees with the NOAA observed CO2 growth rate within the 390 

uncertainty of the posterior fluxes (Figure 4). The mean annual global surface CO2 fluxes (in Gt 391 

C/yr) are derived from the NOAA observed CO2 growth rate (in ppm/yr) using a conversion factor 392 

of 2.124 GtC/ppm (Le Quéré et al., 2018). The estimated growth rate has the largest discrepancy 393 

with the NOAA observed growth rate in 2014, which may be due to a failure of one of the two 394 

solar paddles of GOSAT in May 2014 (Kuze et al., 2016). Over the nine years, the estimated total 395 

accumulated carbon in the atmosphere is 41.5 ± 2.4 GtC, which is slightly lower than the 396 

accumulated carbon based on the NOAA CO2 growth rate (45.2 ± 0.4 GtC). On average, we 397 

estimate that the NBE is 2.0 ± 0.7 GtC, ~20 ± 8% of fossil fuel emissions, and the ocean sink is 398 

3.0 ± 0.1 GtC, ~ 30 ± 1% of fossil fuel emissions (Figure 4). These numbers are within the ranges 399 

of the corresponding GCB estimates from Freidlingstein et al., 2019 (referred as GCB-2019 400 

hereafter). The mean NBE and ocean sink from GCB-2019 are 2.0 ± 1.0 GtC and 2.5 ± 0.5 GtC 401 

respectively, which are 21 ± 10%  and 26 ± 5% of fossil fuel emissions respectively between 2010–402 

2018. The GCB does not report NBE directly, we calculate NBE from GCB-2019 as the residual 403 

differences between fossil fuel, ocean net carbon sink, and atmospheric CO2 growth rate. It is also 404 

equivalent to (SLAND + BIM - ELUC) reported by Freidlingstein et al., 2019, where SLAND is terrestrial 405 

sink, BIM is a budget imbalance, and ELUC is land use change.   Over these nine years, we estimate 406 

that NBE ranges from 3.6 GtC (~37% of fossil fuel emissions) in 2011 (a La Niña year), to only 407 
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0.5 GtC, (~5% of fossil fuel emissions) in 2015 (an El Niño year), consistent with 3.3 GtC (35% 408 

of fossil fuel) in 2011 to 0.9 GtC (7% of fossil fuel) in 2015 estimated from GCB-2019. We 409 

estimate that the ocean sinks range from 3.5 GtC in 2015 to 2.3 GtC in 2012, larger than the 410 

estimated ocean flux ranges of 2.7 in 2016 to 2.5 in 2012 reported by Freidlingstein et al. (2019).  411 

4.2 Mean regional fluxes and uncertainties 412 

Figure 5 shows the nine-year mean regional annual fluxes, uncertainty, and its variability between 413 

2010–2018. Table 6 shows an example of the dataset corresponding to Figure 5 A, D, and G. It 414 

shows that large net carbon uptake occurs over Eurasia, NA, and the Southern Hemisphere (SH) 415 

mid-latitudes. The largest net carbon uptake is over the eastern US (-0.4 ± 0.1 GtC (1s uncertainty)) 416 

and high latitude Eurasia (-0.5 ± 0.1 GtC) (Figure 5A, B). We estimate a net land carbon sink of 417 

2.5 ± 0.3 GtC/year between 2010–2013 over the NH mid to high latitudes, which agrees with 2.4 418 

± 0.6 GtC estimates over the same time periods based on a two-box model (Ciais et al., 2019). Net 419 

uptake in the tropics ranges from close-to-neutral in tropical South America (0.1 ± 0.1 GtC) to a 420 

net source in northern Africa (0.6 ± 0.2 GtC) (Figure 5A, B). The tropics exhibit both large 421 

uncertainty and large variability. The NBE interannual variability over northern Africa and tropical 422 

SA are 0.5 GtC and 0.3 GtC respectively, larger than the 0.2 GtC and 0.1 GtC uncertainty (Figure 423 

5D, E). We also find collocation of regions with large NBE and FLUXSAT-GPP interannual 424 

variability (Figure B4). The availability of flux estimates over the broadly used TransCom regions 425 

make it easy to compare to previous studies. For example, we estimate that the annual net carbon 426 

uptake over North America is 0.7 ± 0.1 GtC/year with 0.2 GtC variability between 2010 and 2018, 427 

which agrees with 0.7 ± 0.5 GtC/year estimates based on surface CO2 observations between 1996-428 

2007 (Peylin et al., 2013).  429 

 430 
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4.3 Interannual variabilities and uncertainties 431 

Here we present hemispheric and regional NBE interannual variabilities and corresponding 432 

uncertainties (Figures 6 and 7, and corresponding tabular data files). In Figure 6, we further divide 433 

the globe into three large latitude bands: tropics (20°S–20°N), NH extra-tropics (20°N–85°N), and 434 

SH extra-tropics (60°S–20°S). The tropical NBE contributes 90% to the global NBE interannual 435 

variability (IAV). The IAV of NBE over the extra-tropics is only about one-third of that over the 436 

tropics. The dominant role of tropical NBE in the global IAV of NBE agrees with Figure 4 in 437 

Sellers et al. (2018). The top-down global annual NBE anomaly is within the 1.0 GtC/yr 438 

uncertainty of residual NBE (i.e., fossil fuel – atmospheric growth – ocean sink) calculated from 439 

GCB-2019 (Friedlinston et al., 2019) (Figure 6). 440 

 441 

Figure 7 shows the annual NBE anomalies and uncertainties over a few selected regions based on 442 

RM1. Positive NBE indicates reduced net uptake relative to the 2010–2018 mean, and vice versa. 443 

Also shown in Figure 7 are GPP anomalies estimated from FLUXSAT. Positive GPP indicates 444 

increased productivity, and vice versa. GPP drives NBE in years where anomalies are inversely 445 

correlated (e.g., positive NBE and negative GPP), and TER drives NBE in years where anomalies 446 

of GPP and NBE have the same sign or are weakly correlated. Over tropical SA evergreen 447 

broadleaf forest, the largest positive NBE anomalies occur during the 2015–2016 El Niño, 448 

corresponding to large reductions in productively, consistent with Liu et al. (2017). In 2017, the 449 

region sees increased net uptake and increased productivity, implying a recovery from the 2015–450 

2016 El Niño event. The variability in GPP explains 80% of NBE variability over this region over 451 

the nine-year period. In Australian shrubland, our inversion captures the increased net uptake in 452 

2010 and 2011 due to increased precipitation (Poulter et al., 2014) and increased productivity. The 453 
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variability in GPP explains 70% of the interannual variability in NBE. Over tropical south America 454 

savanna, the NBE interannual variability also shows strong negative correlations with GPP, with 455 

GPP explaining 40% of NBE interannual variability. Over the mid-latitude regions where the IAV 456 

is small, the R2 between GPP and NBE is also small (0.0–0.5) as expected. But the increased net 457 

uptake generally corresponds to increased productivity. We also do not expect perfect negative 458 

correlation between NBE anomalies and GPP anomalies, as discussed in section 2.5. The 459 

comparison between NBE and GPP provides insight into when and where net fluxes are likely 460 

dominated by productivity.  461 

 462 

4.4 Seasonal cycle  463 

We provide the regional mean NBE seasonal cycle, its variability, and uncertainty based on the 464 

three regional masks (Table 5). Here we briefly describe the characteristics of the NBE seasonal 465 

cycle over the 11 TransCom regions, and its comparison to three independent top-down inversion 466 

results based on surface CO2, which are CT-Europe (e.g., van der Laan-Luijkx et al., 2017) CAMS 467 

(Chevallier et al., 2005), and Jena CarbonScope (Rödenbeck et al., 2003). CMS-Flux-NBE differs the 468 

most from surface-CO2 based inversions over the South American Tropical, Northern Africa, 469 

tropical Asia, and NH boreal regions. The CMS-Flux NBE has a larger seasonal cycle amplitude 470 

over tropical Asia and Northern Africa, where the surface CO2 constraint is weak, while it has a 471 

smaller seasonal cycle amplitude over the boreal region; this may be due to the sparse satellite 472 

observations over the high latitudes and weaker seasonal amplitude of the prior CARDAMOM 473 

fluxes. The comparison to FluxSat GPP can only qualitatively evaluate the NBE seasonal cycle, 474 

but cannot differentiate among different estimates. In general, the months that have larger 475 

productivity corresponds to months with a net uptake of carbon from the atmosphere, especially 476 
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over the NH (Figure 8). More research is still needed to understand the  seasonal cycles of NBE, 477 

including its phase (i.e., transition from source to sink) and amplitude (peak-to-trough difference), 478 

and its relationships with GPP and respiration.  479 

 480 

5 Evaluation against independent aircraft CO2 observations   481 

5.1 Comparison to aircraft observations over nine sub-regions 482 

In this section, we evaluate posterior CO2 against aircraft observations over the nine sub-regions 483 

listed in Table 4 and Figure 2. We compare the posterior CO2 to aircraft CO2 mole fractions above 484 

the planetary boundary layer and up to mid troposphere (1–5 km) at the locations and time of 485 

aircraft observations, and then calculate the monthly mean error statistics between 1–5 km. The 486 

aircraft observations between 1–5 km are more sensitive to regional fluxes (Liu et al., 2015; Liu 487 

and Bowman, 2016). Scatter plots in the left column of Figure 9 show regional monthly mean de-488 

trended aircraft CO2 observations (x-axis) versus the simulated detrended posterior CO2 (y-axis). 489 

We used the NOAA global CO2 trend to detrend both the observations and model simulated mole 490 

fractions (ftp://aftp.cmdl.noaa.gov/products/trends/co2/co2_trend_gl.txt). Over the NH regions (A, 491 

B, C, D) and Africa (F), the R2 is greater than or equal to 0.9, which indicates that the posterior 492 

CO2 captures the observed seasonality. The low R2 (0.7) value in South Asia is caused by one 493 

outlier. Over the Southern Ocean, Australia, and SA, the R2 is between 0.2 and 0.4, reflecting 494 

weaker CO2 seasonality over these regions and possible bias in ocean flux estimates (see 495 

discussions later).  496 

 497 

The right panel of Figure 9 shows the monthly mean differences between posterior CO2 and aircraft 498 

observations (black), RMSE (equation 2) (blue line), and RMSEMC (equation 3) (red line). The 499 
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magnitude of the mean differences between the posterior CO2 and aircraft observations is less than 500 

0.5 ppm except over the Southern Ocean, which has a -0.8 ppm bias. The mean differences between 501 

posterior CO2 and aircraft observations are primarily caused by errors in transport and biases in 502 

assimilated satellite observations, while RMSEMC is ‘internal flux error’ projected into mole 503 

fraction space.  With the exception of the Southern Ocean, for all regions mean bias is significantly 504 

less than RMSEMC, which suggests that transport and data bias in satellite observations may be 505 

much smaller than the internal flux errors. Note that RMSEMC is smaller than RMSE over the first 506 

~six months of simulation, which may indicate a dominant impact of errors in transport and initial 507 

CO2 concentration on posterior CO2 RMSE.  508 

 509 

As demonstrated in section 2.5, comparing RMSE and RMSEMC is a test of the accuracy of posterior 510 

flux uncertainty estimate. Over all the regions, the differences between RMSE and RMSEMC are 511 

smaller than 0.3 ppm, which indicates a comparable magnitude between empirical posterior flux 512 

uncertainty estimates from the Monte Carlo method and the actual posterior flux uncertainty over 513 

the regions that these aircraft observations are sensitive to. These aircraft observations are sensitive 514 

to NBE over a broad region as shown in Figure B5. Note, Figure B5 and Figures B8-B10 are 515 

calculated using equation (8).  516 

 517 

5.2 Comparison to aircraft observations from ATom and HIPPO aircraft campaigns 518 

Figures 10 and 11 show comparisons to aircraft CO2 from ATom 1–4 campaigns spanning four 519 

seasons, and HIPPO 3–5 over the Pacific Ocean between 1–5 km. The vertical curtain comparisons 520 

are shown in Figure B6 and B7. The mean differences between posterior CO2 and aircraft CO2 are 521 

quite uniform (within 0.5 ppm) throughout the column except over the Atlantic Ocean during 522 
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ATom 1–2 and the Southern Ocean during ATom 1 (Figures S6 and S7). Also shown in Figures 523 

10 and 11 are RMSE of each aircraft campaign (middle column) and the ratio between RMSE and 524 

RMSEMC (right column). A ratio larger than one between RMSE and RMSEMC indicates errors in 525 

either transport or underestimation of the posterior flux uncertainty (section 2.5).  526 

 527 

Over most of the flight tracks during ATom 1–4, the posterior CO2 errors are between -0.5 and 0.5 528 

ppm, the RMSE is smaller than 0.5 ppm, and the ratio between RMSE and RMSEMC is smaller than 529 

or equal to 1. However, off the coast of Africa during ATOM -1 and -2 and over the Southern 530 

Ocean during ATOM-1, the mean differences between posterior CO2 and aircraft observations are 531 

larger than 0.5 ppm. During ATOM-1 (29 July – 23 Aug 2016), the mean differences between 532 

posterior CO2 and aircraft CO2 show large negative biases, while during ATOM-2 (26 Jan 2017–533 

21 Feb 2017), it has large positive biases off the coast of Africa. The ratio between RMSE and 534 

RMSEMC is significantly larger than one over these regions, which indicates an underestimation of 535 

posterior flux uncertainty or large magnitude of transport errors during that time period.  536 

 537 

We further run adjoint sensitivity analyses over the three regions with ratios significantly larger 538 

than one to identify the posterior fluxes that could contribute to the large differences between 539 

posterior CO2 and aircraft observations during ATOM 1–2. We run the adjoint model backward 540 

for three months from the observation time and calculate Si as defined in equation (7). The adjoint 541 

sensitivity analysis indicates that the large mismatch between aircraft observations and model 542 

simulations during ATOM-1 and -2 off the coast of Africa could be potentially driven by errors in 543 

posterior fluxes over tropical Africa (Figure B8). The large posterior CO2 errors and large ratio 544 

between RMSE and RMSEMC over the Southern Ocean during ATOM-1 are driven by flux errors 545 
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in oceanic fluxes around 30°S and over Australia (Figure B9), which also contribute to the large 546 

errors in comparison to aircraft observations over the Southern Ocean shown in Figure 9 H.  547 

 548 

During the HIPPO aircraft campaigns, the absolute errors in posterior CO2 across the Pacific are 549 

less than 0.5 ppm except over the Arctic Ocean and over Alaska in summer (Figure 11), consistent 550 

with Figure 10A. The large errors over the Arctic Ocean may be related to both transport errors 551 

and the accuracy of high latitude fluxes. Byrne et al. (2020) provide a brief summary of the 552 

challenges in simulating CO2 over high latitudes using a transport model with 4° x 5° resolution. 553 

Increasing the resolution of the transport model may reduce transport errors over high latitudes. 554 

 555 

We run adjoint sensitivity analysis over the high-latitude regions where the differences between 556 

posterior CO2 and aircraft observations are large (Figure 11). The adjoint sensitivity analysis 557 

(Figure B10) shows that the large errors over these regions could be driven by errors in fluxes over 558 

Alaska as well as broad NH mid-latitude regions.  559 

 560 

5.3 Comparison to MBL reference sites 561 

Since MBL reference sites sample air over broad regions, the comparison to detrended MBL 562 

observations indirectly evaluates the NBE over large regions. Figure 12 shows the comparison 563 

over four latitude bands. The uncertainty of posterior CO2 concentration is from the MC method. 564 

Except over 90°S-20°S, the differences between observations and posterior CO2 are within 565 

posterior CO2 uncertainty estimates. The posterior CO2 concentrations have the smallest bias and 566 

random errors over the tropical latitude band. The R2 is above 0.9 over NH mid to high latitudes, 567 

consistent with Figure 9. Over 90°S-20°S, the posterior CO2 has positive bias in 2013 and 2014 568 
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and negative bias and much weaker seasonality between Jan 2015 – Dec 2018 compared to 569 

observations, which indicates possible biases in Southern Ocean flux estimates (Figure B11). The 570 

low bias over the Southern Ocean is consistent with aircraft comparison during OCO-2 period 571 

(Figures 9-10, Figure B9). The changes of performance after 2013 over 90°S-20°S is most likely 572 

due to the prior ocean carbon fluxes. Evaluation of ocean carbon fluxes is out of scope of this study. 573 

Note, since we only assimilate land-nadir XCO2 observations in this study due to known issues with 574 

the OCO-2 v9 ocean glint observations (O’Dell et all., 2018), the constraint of top-down inversion 575 

on air-sea CO2 exchanges is weak (not shown). The ocean glint observations of OCO-2 v10 576 

observations have been improved compared to v9 (Osterman et al., 2020). We expect to have better 577 

estimate of ocean carbon fluxes over the Southern Ocean when assimilating both land and ocean 578 

XCO2 observations from GOSAT and OCO-2 in the future.    579 

 580 
6 Discussion 581 

Evaluation of posterior flux uncertainty estimates by comparing posterior CO2 error statistics 582 

(RMSE, Equation 2) with the standard deviation of ensemble simulated CO2 from Monte Carlo 583 

uncertainty quantification method (RMSEMC, equation 3) has its limitations. A comparable RMSE 584 

and RMSEMC indicates a small magnitude of transport errors and reasonable posterior uncertainty 585 

estimates. A much larger RMSE than RMSEMC could be due to errors in either transport or 586 

underestimation of the posterior flux uncertainty or both. The presence of transport errors makes 587 

the interpretation of the RMSE and RMSEMC complex. A better, independent quantification of 588 

transport errors is needed in the future in order to rigorously use the comparison statistics between 589 

aircraft observations and posterior CO2 to diagnose flux errors.  590 

 591 
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Comparison to aircraft observations shows regionally-dependent accuracy in posterior fluxes. 592 

ATom observations show seasonally-dependent biases over the Atlantic, implying possible 593 

seasonally dependent errors in posterior fluxes over northern to central Africa. Therefore, we 594 

recommend combining NBE with other ancillary variables, e.g., GPP, to better understand carbon 595 

dynamics. Combining NBE with component carbon fluxes can shed light on the processes 596 

controlling the changes of NBE (e.g., Bowman et al, 2017; Liu et al., 2017). NBE can be written 597 

as: 598 

NBE= TER + fire - GPP   (8)  599 

where TER is total ecosystem respiration (TER) (Figure 1). Satellite carbon monoxide (CO) 600 

observations provide constraints on fire emissions (Arellano et al, 2006, van der Werf, 2008; Jones 601 

et al, 2009; Jiang et al., 2015, Bowman et al, 2017; Liu et al., 2017). In addition to the  FLUXSAT-602 

GPP product used here, solar induced chlorophyll fluorescence (SIF) can be directly used as a 603 

proxy for GPP (e.g., Parazoo et al, 2014). Once NBE, fire, and GPP carbon fluxes are quantified, 604 

TER can be calculated as a residual (e.g., Bowman et al, 2017; Liu et al., 2017, 2018).  605 

 606 

Because of the diffusive manner of atmospheric transport and the limited observation coverage, 607 

the gridded flux values are not independent from each other. The errors and uncertainties of the 608 

fluxes at each individual grid point are larger than regional aggregated fluxes. Interpreting NBE at 609 

each individual grid point requires caution. But at the same time, satellite CO2 constrained NBE 610 

can potentially resolve fluxes at spatial scales smaller than the traditional TransCom regions. Here, 611 

we provide regional fluxes at two predefined regions in addition to TransCom. We encourage data 612 

users to use the data at appropriate regional scales.   613 

 614 
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The variability and changes are more robust than the mean NBE fluxes from top-down flux 615 

inversions in general (Baker et al., 2006b). The errors in transport and potential biases in 616 

observations are mostly stable in time, so biases in the mean fluxes tend to cancel out when 617 

computing interannual variability and year-to-year changes (Schuh et al., 2019; Crowell et al., 618 

2019).  619 

 620 

The global fossil fuel emissions have ~5% uncertainty (GCB-2019). However, they are regionally 621 

inhomogeneous. We neglect the uncertainties in fossil fuel emissions, which will introduce 622 

additional error in regions of rapid fossil fuel growth or in areas with noisier statistics (Yin et al., 623 

2019). In the future, we will account for uncertainties in fossil fuel emissions. 624 

 625 

The posterior NBE includes all types of land fluxes except fossil fuel emissions, which is 626 

equivalent to the sum of land use change fluxes, land sinks, and residual imbalance published by 627 

the GCB-2019. The sum of regional NBE and fossil fuel emissions is an index of the contribution 628 

of any specific region to the changes of the atmospheric CO2 growth rate. Since the predicted 629 

changes of NBE in the future have large uncertainties (Lovenduski and Bonan, 2017), quantifying 630 

regional NBE is critical to monitoring regional contributions to atmospheric CO2 growth rate, and 631 

ultimately to guide mitigation to limit warming to 1.5°C above pre-industrial levels (IPCC, 2018).  632 

 633 

7 Summary   634 

Terrestrial biosphere carbon fluxes are the largest contributor to the interannual variability of the 635 

atmospheric CO2 growth rate. Therefore, monitoring its change at regional scales is essential for 636 

understanding how it responds to CO2, climate and land use. Here, we present the longest terrestrial 637 
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flux estimates and their uncertainties constrained by XCO2 from 2010–2018 on self-consistent 638 

global and regional scales (CMS-Flux NBE 2020). We qualitatively evaluate the NBE estimates 639 

by comparing its variability with GPP variability, and provide comprehensive evaluation of 640 

posterior fluxes and the uncertainties by comparing posterior CO2 with independent CO2 641 

observations from aircraft and the NOAA MBL reference sites. This dataset can be used in 642 

understanding controls on regional NBE interannual variability, evaluating biogeochemical 643 

models, and supporting the monitoring of regional contributions to changes in atmospheric CO2.  644 

 645 

8 Data availability and future update 646 

The CMS-Flux NBE 2020 data are available at:  https://doi.org/10.25966/4v02-c391 (Liu et al., 647 

2020). The regional aggregated fluxes are provided as csv files with file size ~10MB, and the 648 

gridded data is provided in NetCDF format with file size ~1.4 GB. The full ensemble of posterior 649 

fluxes used to estimate posterior flux uncertainties are provided in NetCDF format with file size 650 

~30MB. Table 7 lists the sources of the data used in producing and evaluating the CMS-Flux NBE 651 

2020 data product. 652 

 653 

The quality of XCO2 from satellite observations is continually improving. The OCO-2 v10 XCO2 654 

has been released in June 2020 along with the full GOSAT record (June 2009–Jan 2020) processed 655 

by the same retrieval algorithm as OCO-2. Continuing to improving the quality of satellite 656 

observations and extending the NBE estimates beyond 2018 in the future will help us better 657 

understand interactions between terrestrial biosphere carbon cycle and climate and provide support 658 

in monitoring the regional contributions to the changes of atmospheric CO2. Thus, we plan a future 659 
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update of the dataset on an annual basis, with a goal to support current scientific research and 660 

policy making. 661 
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Appendix A 693 

As shown in Kalnay (2003): 694 

𝑅𝑀𝑆𝐸1 = +
,
∑ (𝑅"," + (𝐻𝑃!𝐻>)","),
"2+  (A.1) 695 

where 𝑅"," is the ith aircraft observation error variance, and 𝑃! is the posterior flux error covariance. 696 

The H is linearized observation operator, which transfers posterior flux errors to aircraft 697 

observation space, and 𝐻>  is its adjoint. In the Monte Carlo method, the posterior flux error 698 

covariance 𝑃! is approximated by:  699 

𝑃! = +
,-,.

𝑋!𝑋!> (A.2) 700 

where 𝑋! is the ensemble perturbations written as:  701 

𝑋! = 𝑥! − �̅�! (A.3) 702 

where 𝑥! is the ensemble posterior fluxes from Monte Carlo, and �̅�! is the mean.  703 

Therefore, 𝐻𝑃!𝐻> can be written as:  704 

𝐻𝑃!𝐻> = +
,-,.

[ℎ(𝑥!) − ℎ(�̅�!)][ℎ(𝑥!) − ℎ(�̅�!)]> (A.4) 705 
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The sum of diagonal elements in the right-hand side of A.4 is the same as the definition of RMSEMC 706 

in the main text.  707 

Therefore, when the posterior flux uncertainty estimated by Monte Carlo method represents the 708 

actual uncertainty in posterior fluxes, equation (A.1) can be written as: 709 

𝑅𝑀𝑆𝐸1 = +
,
∑ 𝑅",",
"2+ + 𝑅𝑀𝑆𝐸)*1     (A.5).  710 

It is the same as equation (4) in the main text.  711 

Appendix B 712 

In this Appendix, we include figures to support the main text.  713 

 714 

Figure B1 Annual mean net biosphere exchanges from CARDAMOM (A) and its interannual 715 
variability between 2010 and 2017 (B).  716 
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 717 

Figure B2 An example of absolute mean NBE (A) and its uncertainty (B) simulated by CARDAMOM. This 718 
is for July 2010.  719 

 720 
 721 
 722 
 723 
 724 
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 725 
 726 
 727 
 728 
Figure B3 Daily number of ACOS-GOSAT b7.3 (A) and OCO-2 super observations (B) 729 
assimilated in the top-down inversions.  730 
 731 
 732 
 733 
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 734 
Figure B4 Regional mean FlUXSAT GPP and its variability between 2010 –2018. (A, B, and C) 735 
Regional mean GPP aggregated with the three regional masks; (D, E, and F) GPP variability 736 
between 2010 –2018.  Unit: GtC/year.  737 
  738 
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 739 

 740 
Figure B5 The relative sensitivity of root mean square errors (RMSE) of posterior CO2 (Figure 9 741 
in the main text) relative to NBE at every grid point. The adjoint model is carried out over Sep 742 
2014–Dec 2018.  743 
 744 
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 745 

 746 
Figure B6 Differences between posterior CO2 and ATOM 1-4 aircraft CO2 observations over the 747 
Pacific (A1-D1) and Atlantic Ocean (A2-D2) as a function of latitude and altitude (unit: km). 748 
Unit: ppm.  749 
 750 
 751 
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 752 
Figure B7 Differences between posterior CO2 and HIPPO 3-5 aircraft CO2 observations over the 753 
Pacific (A-C) as a function of latitude and altitude. Unit: ppm.  754 
 755 
 756 
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 757 
Figure B8 The relative sensitivity of RMSE of posterior CO2 to NBE over land and air-sea net 758 
carbon exchange over ocean at every grid point. The RMSE is calculated against aircraft CO2 759 
observations from ATom-1 (A) and ATom-2 (B) between 40°W-0°, 20°S-20°N. The adjoint 760 
model is carried out over June – August 2016 (A) and Dec 2016 – Feb 2017 (B). Unit: %.  761 
 762 
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 779 
 780 
Figure B9 The relative sensitivity of RMSE of posterior to NBE over land and air-sea net carbon 781 
exchange over ocean at every grid point. The RMSE is calculated against aircraft CO2 observations 782 
from ATom-1 between 175°W-20°W, 80°S-30°S. The adjoint model is carried out over June – 783 
August 2016. Unit: %.  784 
 785 
 786 
 787 
  788 
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 789 

 790 
Figure B10 The relative sensitivity of RMSE of posterior to NBE over land and air-sea net carbon 791 
exchange over ocean at every grid point. The RMSE is calculated against aircraft CO2 observations 792 
from HIPPO-4 between 180°W-130°W, 50°N-90°N. The adjoint model is carried out over April 793 
– July 2011. Unit: %.  794 
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 814 
Figure B11 Monthly posterior air-sea CO2 exchanges between 85°S-30°S. (unit: gC/m2/day) 815 
 816 
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 1221 

Figure: 1 Data flow diagram with the main processing steps to generate regional net 1222 
biosphere change (NBE). TER: total ecosystem respiration; GPP: gross primary production. 1223 
The green box is the inversion system. The blue boxes are the inputs for the inversion system. 1224 
The red boxes are the data outputs from the system. The black box is the evaluation step, 1225 
and the grey boxes are the future additions to the product. 1226 
 1227 
 1228 
 1229 
 1230 

 1231 
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 1232 

Figure: 2 The spatial and temporal distributions of aircraft observations used in evaluation 1233 
of posterior NBE. (A) The total number of aircraft observations between 1–5 km between 1234 
2010–2018 at each 4° x 5°grid point. The rectangle boxes show the range of the nine sub 1235 
regions. (B) The total number of monthly aircraft observations at each longitude as a 1236 
function of time.  1237 
 1238 

 1239 
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 1240 

Figure: 3 Three types of regional masks used in calculating regional fluxes. A: the mask is 1241 
based on a combination of condensed seven MODIS IGBP plant functional types, 1242 
TRANCOM-3 regions (Gurney et al., 2004), and continents. B: the mask is based on latitude 1243 
and continents. C: the TransCom region mask. 1244 
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 1250 

 1251 

 1252 

 1253 

Figure: 4 Global flux estimation and uncertainties from 2010 –2018 (black: fossil fuel; green: 1254 
posterior land fluxes; blue: ocean fluxes; magenta: estimated CO2 growth rate; red: the 1255 
NOAA CO2 growth rate).  1256 
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 1258 

 1259 
Figure: 5 Mean annual regional NBE (A, B, and C), uncertainty (D, E, and F), and variability 1260 
between 2010–2018 (G, H, and I) with the three types of regional masks (Figure 3). The first 1261 
column uses a region mask based on PFT and continents (RM1). The second column uses a 1262 
region mask based latitude and continents (RM2), and the third column uses TransCom 1263 
mask.  1264 
  1265 
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 1266 

 1267 

Figure: 6 The NBE interannual variability over the globe (black), the tropics (20°S–20°N), 1268 
SH mid-latitudes (60°S–20°S), and NH mid-latitudes (20°N–9°0N). For reference, the 1269 
residual net land carbon sink from GCB-2019 (Friedlingstein et al., 2019) and its uncertainty 1270 
is also shown (magenta).  1271 
 1272 
 1273 
 1274 
 1275 
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 1276 

Figure: 7 The NBE interannual variability over six selected regions. Blue: annual NBE 1277 
anomaly and its uncertainties. Green: annual GPP anomaly based on FLUXSAT. 1278 
 1279 
 1280 
 1281 
 1282 
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 1283 
Figure: 8 The NBE climatological seasonality over TransCom regions. The seasonal cycle is 1284 
calculated over 2010-2017 since CT-Europe only covers till 2017. Black: CMS-Flux-NBE and 1285 
its uncertainty; blue shaded: mean NBE seasonality based on surface CO2 inversion results 1286 
from CAMS, CT-Europe, and Jena CarbonScope; red: CAMS; magenta: CT-Europe; green: 1287 
Jena CarbonScope. The names of each region are shown on individual subplots. 1288 
 1289 

 1290 

 1291 

 1292 

 1293 



 59 

 1294 

Figure: 9 Comparison between posterior CO2 mole fraction and aircraft observations. Left 1295 
panel: detrended posterior CO2 (y-axis) vs. detrended aircraft CO2 (x-axis) over nine regions. 1296 
The dashed line is 1:1 line; right panel: black: the differences between posterior CO2 and 1297 
aircraft CO2 as a function of time; blue: RMSE (unit: ppm); red: RMSEMC.  1298 
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 1300 
 1301 

 1302 

Figure: 10 Left column: the mean differences between posterior CO2 and aircraft 1303 
observations from ATOM 1–4 aircraft campaigns between 1–5 km (A–D). Middle column: 1304 
the Root Mean Square Errors (RMSE) between aircraft observations and posterior CO2 1305 
between 1–5 km. The color bar is the same as the left column. Right column: the ratio 1306 
between RMSE and RMSEMC based on ensemble CO2 from the Monte Carlo uncertainty 1307 
estimation method.  1308 
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 1309 

Figure: 11 Left column: the mean differences between posterior CO2 and aircraft 1310 
observations from HIPPO 3-5 aircraft campaigns between 1–5 km (A–C) (unit: ppm). (unit: 1311 
ppm). The time frame of each campaign is in the figure. Middle column: the Root Mean 1312 
Square Errors (RMSE) between aircraft observations and posterior CO2 between 1–5 km 1313 
(unit: ppm). The color bar is the same as the left column. Right column: the ratio between 1314 
RMSE and RMSEMC based on ensemble CO2 from the Monte Carlo method.  1315 
 1316 
 1317 
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 1318 
Figure: 12 Comparison between posterior CO2 and the NOAA marine boundary layer (MBL) 1319 
reference sites. Black: observations averaged over each latitude bands; blue and shaded area: 1320 
posterior CO2 and its uncertainty. The global mean CO2 1321 
(https://www.esrl.noaa.gov/gmd/ccgg/trends/global.html ) was subtracted from both the 1322 
NOAA MBL reference and posterior CO2 before the comparison.  1323 
  1324 
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 1325 
 1326 
 1327 
 1328 
 1329 
 1330 
Table: 1 Configurations of the CMS-Flux atmospheric inversion system 1331 

 Model setup  Configuration  Reference 
Inversion general 
setup 
 

Spatial scale 
Spatial resolution 
Time resolution 
Minimizer of cost 
function 
 
Control vector 

Global 
4° latitude x 5° longitude 
monthly 
L-BFGS 
 
Monthly net terrestrial 
biosphere fluxes and 
ocean fluxes 

-- 
 
 
Byrd et al., 1994;  
Zhu et al., 1997 

Transport model  
 

Model name 
 
 
 
Meteorological forcing 
 

GEOS-Chem and its 
adjoint 
 
 
GEOS-5 (2010–2014) and 
GEOS-FP (2015–2019) 

Suntharalingam et al., 
2004 
Nassar et al., 2010 
Henze et al., 2007 
Rienecker et al., 2008 
 

 1332 
  1333 
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 1334 
Table: 2 Description of the prior fluxes and assumed uncertainties in the inversion system  1335 

Prior fluxes Terrestrial 
biosphere fluxes 

Ocean fluxes 
 

Fossil fuel emissions 
 

Model name CARDAMOM-v1 ECCO-Darwin ODIAC 2018 
Spatial resolution 4° x 5° 0.5° 1° x 1°  
Frequency  3-hourly 3-hourly hourly 
Uncertainty Estimated from 

CARDAMOM 
100% same as Liu et al. 
(2017) 

No uncertainty  

References Bloom et al., 2006; 
2020 

Brix et al, 2015; Carroll et al., 
2020 
 

Oda et al., 2016; 2018 

 1336 

  1337 
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 1338 

 1339 
Table: 3 Description of observation and evaluation dataset. Data sources are listed in Table 7. 1340 

 Dataset name and version References 
Satellite XCO2  ACOS-GOSAT v7.3 O’Dell et al., (2012) 

OCO-2 v9 O’Dell et al., (2018) 
Aircraft CO2 observations ObsPack OCO-2 MIP CarbonTracker team (2019) 

HIPPO 3-5 Wofsy et al. (2011) 
ATom 1-4 Wofsy et al. (2018) 

INPE Gatti et al., (2014) 
ORCAS Stephens et al. (2017) 

ACT-America Davis et al. (2018) 
NOAA marine boundary 
layer (MBL) reference 

NOAA MBL reference Conway et al., 1994 
 

GPP FLUXSAT-GPP Joiner et al., (2018) 
Top-down NBE estimates 

constrained by surface CO2  
CarbonTracker-Europe van der Laan-Luijkx et al. 

(2017) 
Peters et al., (2010) 
Peters et al. (2007) 

 
Jena CarbonScope 

s10oc_v2020 
Rödenbeck et al., 2003 

CAMS v18r1 Chevallier et al., 2005 
  1341 
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 1342 
 1343 
Table: 4 Latitude and longitude ranges for seven sub regions.  1344 

Region Alaska Mid-lat NA  Europe            East Asia South Asia 
Longitude 

range 
180°W–125° W 125°W–65°W 5°W–45°E 110°E–160°E 65°E–110°E 

Latitude 
range 

58°N–89°N 22°N-58°N 30°N–66°N 22°N–50°N 10°S–32°N 

Region Africa South 
America 

Australia Southern 
Ocean 

Longitude 
range 

5°W–55°E 95°W–50°W 120°E–160°E 110°W–40°E 

Latitude 
range 

2°N–18°N 20°S–2°N 45°S–10°S 80°S–30°S 

 1345 

  1346 
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Table: 5 List of the data products. 1347 

Product Spatial resolution Temporal 
resolution when 

applicable 

Data format Sample data 
description in the 

text 
Total fossil fuel, 

ocean, and land fluxes 
Global Annual csv  Figure 4 (section 

4.1) 
Climatology mean 

NBE, variability, and 
uncertainties 

PFT and continents 
based 28 regions 

N/A csv Figure 5  (section 
4.2) 

Geographic-based 
13 regions 

csv 

TransCom regions csv 
Hemispheric NBE 
and uncertainties 

 NH (20°N-90°N), 
tropics (20°S-
20°N), and SH 

(60°S-20°S) 

Annual  csv Figure 6 (section 
4.3) 

NBE variability and 
uncertainties 

PFT and continents 
based 28 regions 

Annual csv 
 

Figure 7 (section 
4.3) 

Geographic -based 
13 regions 

csv 

TransCom regions csv 
NBE seasonality and 

its uncertainties 
PFT and continents 

based 28 regions 
Monthly  csv 

 
Figure 8 (section 

4.4) 
Geographic -based 

13 regions 
csv 

TransCom regions csv 
Monthly NBE and 

uncertainties 
PFT and continents 

based 28 regions 
Monthly csv 

 
N/A 

Geographic -based 
13 regions 

csv 

TransCom csv 
Gridded posterior 

NBE, air-sea carbon 
exchanges, and 
uncertainties 

4° (latitude) x 5° 
(longitude) 

Monthly  NetCDF   N/A 

Gridded prior NBE 
and air-sea carbon 

exchanges 

4° (latitude) x 5° 
(longitude) 

Monthly and 3-
hourly 

NetCDF N/A 

Gridded fossil fuel 
emissions 

4° (latitude) x 5° 
(longitude) 

Monthly mean and 
hourly 

NetCDF N/A 

Region masks PFT and continents 
based 28 regions 

N/A csv 
 

Figure 3 (section 
2.4) 

Geographic -based 
13 regions 

TransCom regions 
 1348 

  1349 



 68 

Table: 6 The nine-year mean regional annual fluxes, uncertainties, and variability. Regions 1350 
are based on the mask shown in Figure 5A (Figure 5.csv). Unit: GtC/year 1351 

Region name (Figure4.csv) Mean NBE Uncertainty Variability 
NA shrubland -0.14 0.02 0.05 

NA needleleaf forest -0.22 0.04 0.06 
NA deciduous forest -0.2 0.04 0.07 

NA  crop natural vegetation -0.41 0.06 0.18 
NA grassland -0.04 0.03 0.03 
NA savannah 0.03 0.02 0.03 

Tropical South America (SA) evergreen broadleaf 0.04 0.1 0.28 
SA savannah -0.09 0.06 0.18 
SA cropland -0.07 0.03 0.07 

SA shrubland -0.03 0.02 0.08 
Eurasia shrubland savanna -0.44 0.07 0.14 

Eurasia needleleaf forest -0.41 0.07 0.12 
Europe cropland -0.46 0.09 0.16 
Eurasia grassland 0.02 0.08 0.13 

Asia cropland -0.37 0.13 0.08 
India 0.14 0.09 0.14 

Tropical Asia savanna -0.12 0.11 0.08 
Tropical Asia evergreen broadleaf -0.09 0.09 0.12 

Australia (Aus) savannah grassland -0.11 0.02 0.09 
Aus  shrubland -0.07 0.01 0.05 
Aus cropland -0.01 0.01 0.03 

African (Afr) northern shrubland 0.04 0.02 0.03 
Afr grassland 0.03 0.01 0.01 

Afr northern savanna 0.54 0.15 0.49 
Afr southern savanna -0.27 0.18 0.33 

Afr evergreen broadleaf 0.1 0.07 0.09 
Afr southern shrubland 0.01 0.01 0.01 

Afr desert 0.06 0.01 0.04 

 1352 

  1353 
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Table: 7 Lists of data sources used in producing and evaluating posterior NBE product.  1354 

Data name Data Source 
ECCO-Darwin 
ocean fluxes 

 https://doi.org/10.25966/4v02-c391 

CARDAMOM  
NBE and uncertainties 

https://doi.org/10.25966/4v02-c391 

ODIAC http://db.cger.nies.go.jp/dataset/ODIAC/DL_odiac2019.html 
GOSAT b7.3  https://oco2.gesdisc.eosdis.nasa.gov/data/GOSAT_TANSO_Level2/

ACOS_L2S.7.3/ 
OCO-2 b9 https://disc.gsfc.nasa.gov/datasets?page=1&keywords=OCO-2 
ObsPack https://www.esrl.noaa.gov/gmd/ccgg/obspack/data.php 
ATom 1-4 https://daac.ornl.gov/ATOM/guides/ATom_merge.html 
HIPPO 3-5 https://www.eol.ucar.edu/field_projects/hippo 
INPE https://www.esrl.noaa.gov/gmd/ccgg/obspack/data.php?id=obspack_

co2_1_INPE_RESTRICTED_v2.0_2018-11-13 
and  

FLUXSAT-GPP https://gs614-avdc1-pz.gsfc.nasa.gov/pub/tmp/FluxSat_GPP/ 
NOAA MBL 
reference 

https://www.esrl.noaa.gov/gmd/ccgg/mbl/index.html 

CarbonTracker-
Europe NBE 

https://www.carbontracker.eu/download.shtml 

Jena CarbonScope 
NBE 

http://www.bgc-jena.mpg.de/CarboScope/?ID=s 

CAMS NBE https://apps.ecmwf.int/datasets/data/cams-ghg-
inversions/?date_month_slider=2009-12,2018-
12&param=co2&datatype=ra&version=v17r1&frequency=mm&qua
ntity=surface_flux 

Posterior NBE https://doi.org/10.25966/4v02-c391 
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