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 27 
Abstract. Here we present a global and regionally-resolved terrestrial net biosphere exchange 28 
(NBE) dataset with corresponding uncertainties between 2010–2018: CMS-Flux NBE 2020. It is 29 
estimated using the NASA Carbon Monitoring System Flux (CMS-Flux) top-down flux 30 
inversion system that assimilates column CO2 observations from the Greenhouse gases 31 
Observing SATellite (GOSAT) and NASA’s Observing Carbon Observatory -2 (OCO-2). The 32 
regional monthly fluxes are readily accessible as tabular files, and the gridded fluxes are 33 
available in NetCDF format. The fluxes and their uncertainties are evaluated by extensively 34 
comparing the posterior CO2 mole fractions with CO2 observations from aircraft and the NOAA 35 
marine boundary layer reference sites. We describe the characteristics of the dataset as global 36 
total, regional climatological mean, and regional annual fluxes and seasonal cycles. We find that 37 
the global total fluxes of the dataset agree with atmospheric CO2 growth observed by the surface-38 
observation network within uncertainty. Averaged between 2010 and 2018, the tropical regions 39 
range from close-to neutral in tropical South America to a net source in Africa; these contrast 40 
with the extra-tropics, which are a net sink of 2.5 ± 0.3 gigaton carbon per year. The regional 41 
satellite-constrained NBE estimates provide a unique perspective for understanding the terrestrial 42 
biosphere carbon dynamics and monitoring changes in regional contributions to the changes of 43 
atmospheric CO2 growth rate. The gridded and regional aggregated dataset can be accessed at: 44 
https://doi.org/10.25966/4v02-c391 (Liu et al., 2020).  45 
 46 
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1 Introduction  47 

New “top-down” inversion frameworks that harness satellite observations provide an important 48 

complement to global aggregated fluxes (e.g., Global Carbon Budget (GCB), Friedlingstein et al., 49 

2019) and inversions based on surface CO2 observations (e.g., Chevallier et al., 2010), especially 50 

over the tropics and the Southern Hemisphere (SH) where conventional surface CO2 observations 51 

are sparse. The net biosphere exchange (NBE), which is the net carbon flux of all the land-52 

atmosphere exchange processes except fossil fuel emissions, is far more variable and uncertainty 53 

than ocean fluxes (Lovenduski and Bonan, 2017) or fossil fuel emissions (Yin et al, 2019), and is 54 

thus the focus of this dataset estimated from a top-down atmospheric CO2 inversion of satellite 55 

column CO2 dry-air mole fraction (XCO2). Here, we present the global and regional NBE as a series 56 

of maps, time series and tables, and disseminate it as a public dataset for further analysis and 57 

comparison to other sources of flux information. The gridded NBE dataset and its uncertainty, air-58 

sea fluxes, and fossil fuel emissions are also available, so that users can calculate carbon budget 59 

from regional to global scale. Finally, we provide a comprehensive evaluation of both mean and 60 

uncertainty estimates against the CO2 observations from independent airborne datasets and the 61 

NOAA marine boundary layer (MBL) reference sites (Conway et al., 1994).  62 

 63 

Global top-down atmospheric CO2 flux inversions have been historically used to estimate regional 64 

terrestrial NBE. They make uses of the spatiotemporal variability of atmospheric CO2, which is 65 

dominated by NBE, to infer net carbon exchange at the surface (Chevallier et al., 2005; Baker et 66 

al., 2006; Liu et al., 2014). The accuracy of the NBE from top-down flux inversions is determined 67 

by the density and accuracy of the CO2 observations, the accuracy of modeled atmospheric 68 

transport, and knowledge of the prior uncertainties of the flux inventories.  69 
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 70 

For CO2 flux inversions based on high precision in situ and flask observations, the measurement 71 

error is low (<0.2 parts per million (ppm)) and not a significant source of error; however, these 72 

observations are limited spatially, and are concentrating primarily over North America (NA) and 73 

Europe (Crowell et al., 2019). Satellite XCO2 from CO2-dedicated satellites, such as the Greenhouse 74 

Gases Observing Satellite (GOSAT) (launched in July 2009) and the Observing Carbon 75 

Observatory 2 (OCO-2) (Crisp et al., 2017) have much broader spatial coverage (O’Dell et al., 76 

2018), which fill the observational gaps of conventional surface CO2 observations, but they have 77 

up to an order of magnitude higher single-sounding uncertainty and potential systematic errors 78 

compared to the in situ and flask CO2 observations. Recent progress in instrument error 79 

characterization, spectroscopy, and retrieval methods have significantly improved the accuracy 80 

and precision of the XCO2 retrievals (O’Dell et al., 2018; Kiel et al., 2019). The single sounding 81 

random error of XCO2 from OCO-2 is ~1.0 ppm (Kulawik et al., 2019). A recent study by Byrne et 82 

al. (2020) shows less than a 0.5 ppm difference between posterior XCO2 constrained by a recent 83 

data set, ACOS-GOSAT b7 XCO2 retrievals, and those constrained by conventional surface CO2 84 

observations. Chevallier et al. (2019) also showed that an OCO-2 based flux inversion had similar 85 

performance to surface CO2 based flux inversions when comparing posterior CO2 mole fractions 86 

to aircraft CO2 in the free troposphere. Results from these studies show that systematic 87 

uncertainties in CO2 retrievals from satellites are comparable to, or smaller than, other uncertainty 88 

sources in atmospheric inversions (e.g. transport).  89 

 90 

A newly-developed biogeochemical model-data fusion system, CARDAMOM, made progress in 91 

producing NBE uncertainties, along with mean values that are consistent with a variety of 92 
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observations assimilated through a Markov Chain Monte Carlo (MCMC) method (Bloom et al., 93 

2016; 2020). Transport model errors in general have also been reduced relative to earlier transport 94 

model intercomparison efforts, such as TransCom 3 (Gurney et al., 2004; Gaubert et al., 2019). 95 

Advancements in satellite retrieval, transport, and prior terrestrial biosphere modeling have led to 96 

more mature inversions constrained by satellite XCO2 observations.  97 

 98 

Two satellites, GOSAT and OCO-2, have now produced more than 10 years of observations. Here 99 

we harness the CMS-Flux inversion framework (Liu et al., 2014; 2017; 2018; Bowman et al., 2017) 100 

to generate an NBE product: CMS-Flux NBE 2020, by assimilating both GOSAT and OCO-2 from 101 

2010–2018. The dataset is the longest satellite-constrained NBE product so far. The CMS-Flux 102 

framework exploits globally available XCO2 to infer spatially-resolved total surface-atmosphere 103 

exchange. In combination with constituent fluxes, e.g., Gross Primary Production (GPP), NBE 104 

from CMS-Flux framework have been used to assess the impacts of El Niño on terrestrial 105 

biosphere fluxes (Bowman et al, 2017; Liu et al, 2017) and the role of droughts in the North 106 

American carbon balance (Liu et al, 2018). These fluxes have furthermore been ingested into land-107 

surface data assimilation systems to quantify heterotrophic respiration (Konings et al., 2019), 108 

evaluate structural and parametric uncertainty in carbon-climate models (Quetin et al., 2020), and 109 

inform climate dynamics (Bloom et al., 2020). We present the regional NBE and its uncertainty 110 

based on three types of regional masks: (1) latitude and continent, 2) distribution of biome types 111 

(defined by plant functional types) and continent, and 3) TransCom regions (Gurney et al., 2004).  112 

 113 

The outline of the paper is as follows: Section 2 describes methods, and Sections 3 and 4 describe 114 

the dataset and the major NBE characteristics, respectively. We extensively evaluate the posterior 115 
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fluxes and uncertainties by comparing the posterior CO2 mole fractions against aircraft 116 

observations and the NOAA MBL reference CO2, and a gross primary production (GPP) product 117 

(section 5). In Section 6, we discuss the strength and weakness, and potential usage of the data. A 118 

summary is provided in Section 7, and Section 8 describes the dataset availability and future plan. 119 

 120 

2 Methods  121 

2.1 CMS-Flux inversion system 122 

The CMS-Flux framework is summarized in Figure 1. The center of the system is the CMS-Flux 123 

inversion system, which optimizes NBE and air-sea net carbon exchanges with a 4D-Var inversion 124 

system (Liu et al., 2014). In the current system, we assume no uncertainty in fossil fuel emissions, 125 

which is a widely adopted assumption in global flux inversion systems (e.g., Crowell et al., 2019), 126 

since the uncertainty in fossil fuel emissions at regional scales is substantially less than the NBE 127 

uncertainties. The 4D-Var minimizes a cost function that includes two terms:  128 

           (1) 129 

The first term measures the differences between the optimized fluxes and the prior fluxes 130 

normalized by the prior flux error covariance B. The second term measures the differences between 131 

observations ( ) and the corresponding model simulations ( ) normalized by the observation 132 

error covariance R. The term ℎ(∙)  is the observation operator that calculates observation-133 

equivalent model-simulated XCO2. The 4D-Var uses the adjoint (i.e., the backward integration of 134 

the transport model) (Henze et al., 2004) of the GEOS-Chem transport model to calculate the 135 

sensitivity of the observations to surface fluxes. The configurations of the inversion system are 136 

summarized in Table 1. We run both the forward and adjoint at 4° x 5° spatial resolution, and 137 

optimize monthly NBE and air-sea carbon fluxes at each grid point from January 2010 to 138 

J (x) = (x − xb)
TB−1(x − xb)+ (y − h(x))TR−1(y − h(x))

y h(x)
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December 2018. Inputs for the system include prior carbon fluxes, meteorological drivers, and the 139 

satellite XCO2 (Figure 1). Section 2.2 (Table 2) describes the prior flux and its uncertainties, and 140 

section 2.3 (Table 3) describes the observations and the corresponding uncertainties. 141 

 142 

2.2 The prior CO2 fluxes and uncertainties 143 

The prior CO2 fluxes include NBE, air-sea carbon exchange, and fossil fuel emissions (see Table 144 

2). The data sources for the prior fluxes are listed in Table 7 and provided in the gridded fluxes. 145 

Methods to generate prior ocean carbon fluxes and fossil fuel emissions are documented in Brix 146 

et al., (2015), Caroll et al. (2020), and Oda et al. (2018). The focus of this dataset is optimized 147 

terrestrial biosphere fluxes, so we briefly describe the prior terrestrial biosphere fluxes and their 148 

uncertainties. 149 

 150 

We construct the NBE prior using the CARDAMOM framework (Bloom et al., 2016). The 151 

CARDAMOM data assimilation system explicitly represents the time-resolved uncertainties in the 152 

NBE. The prior estimates are already constrained with multiple data streams accounting for 153 

measurement uncertainties following a Bayesian approach similar to that used in the 4D-154 

variational approach. We use the CARDAMOM setup as described by Bloom et al. (2016, 2020) 155 

resolved at monthly timescales; data constraints include GOME-2 solar-induced fluorescence 156 

(Joiner et al., 2013), MODIS Leaf Area Index (LAI), and biomass and soil carbon (details on the 157 

data assimilation are provided in Bloom et al. (2020)). In addition, mean GPP and fire carbon 158 

emissions from 2010 - 2017 are constrained by FLUXCOM RS+METEO version 1 GPP 159 

(Tramontana et al., 2016; Jung et al., 2017) and GFEDv4.1s (Randerson et al., 2018), respectively, 160 

both assimilated with an uncertainty of 20%. We use the Olsen and Randerson (2001) approach to 161 
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downscale monthly GPP and respiration fluxes to 3-hourly timescales, based on ERA-interim re-162 

analysis of global radiation and surface temperature. Fire fluxes are downscaled using the 163 

GFEDv4.1 daily and diurnal scale factors on monthly emissions (Giglio et al., 2013). 164 

Posterior CARDAMOM NBE estimates are then summarized as NBE mean and standard 165 

deviation values.  166 

  167 

The NBE from CARDAMOM shows net carbon uptake of 2.3 GtC/year over the tropics and close 168 

to neutral in the extratropics (Figure B1). The year-to-year variability (i.e., interannual variability, 169 

IAV) estimated from CARDAMOM from 2010 –2017 is generally less than 0.1 gC/m2/day outside 170 

of the tropics (Figure B1). Because of the weak interannual variability estimated by CARDAMOM, 171 

we use the same 2017 NBE prior for 2018.  172 

 173 

CARDAMOM generates uncertainty along with the mean state. The relative uncertainty over the 174 

tropics is generally larger than 100%, and the magnitude is between 50% and 100% over the extra-175 

tropics (Figure B2). We assume no correlation in the prior flux errors in either space or time. The 176 

temporal and spatial error correlation estimates can in principle be computed by CARDAMOM. 177 

We anticipate incorporating these error correlations in subsequent versions of this dataset. 178 

 179 

2.3 Column CO2 observations from GOSAT and OCO-2 180 

We use the satellite-column CO2 retrievals from Atmospheric Carbon Observations from Space 181 

(ACOS) team for both GOSAT (version 7.3) and OCO-2 (version 9) (Table 3). The use of the 182 

same retrieval algorithm and validation strategy adopted by the ACOS team to process both 183 

GOSAT and OCO-2 spectra maximizes the consistency between these two datasets. Both GOSAT 184 

and OCO-2 satellites carry high-resolution spectrometers optimized to return high precision 185 
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measurements of reflected sunlight within CO2 and O2 absorption bands in the shortwave infrared 186 

(Crisp et al., 2012). Both satellites fly in a sun-synchronous orbit. GOSAT has a 13:00 ± 0.15 187 

hours local passing time and a three-day ground track repeat cycle. The footprint of GOSAT is 188 

~10.5 km in diameter in sun-nadir view (Crisp et al., 2012). The daily number of soundings 189 

processed by the ACOS-GOSAT retrieval algorithm is between a few hundreds to ~2000. Further 190 

quality control and filtering reduce the ACOS-GOSAT XCO2 retrievals to ~100 – 300 daily (Figure 191 

B5 in Liu et al., 2017). We only assimilate ACOS-GOSAT land nadir observations flagged as 192 

being good quality, which are the retrievals with quality flag equal to zero.  193 

 194 

OCO-2 has a 13:30 local passing time and 16-day ground track repeat cycle. The nominal 195 

footprints of the OCO-2 are 1.25 km wide and ~2.4 km along the orbit. Because of their small 196 

footprints and sampling strategy, OCO-2 has many more XCO2 retrievals than ACOS-GOSAT. To 197 

reduce the sampling error due to the resolution differences between the transport model and OCO-198 

2 observations, we generate super observations by aggregating the observations within ~100 km 199 

(along the same orbit) (Liu et al., 2017). The super-obing strategy was first proposed in numerical 200 

weather prediction (NWP) to assimilate dense observations (Lorenc, 1981), and is still broadly 201 

used in NWP (e.g., Liu and Rabier, 2003). More detailed information about OCO-2 super 202 

observations can be found in Liu et al. (2017). OCO-2 has four observing modes: land nadir, land 203 

glint, ocean glint, and target. Following Liu et al. (2017), we only use land nadir observations. The 204 

super observations have more uniform spatial coverage and are more comparable to the spatial 205 

representation of ACOS-GOSAT observations and the transport model (see Figure B5 in Liu et 206 

al., 2017).  207 

 208 
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We directly use observational uncertainty provided with ACOS-GOSAT b7.3 to represent the 209 

observation error statistics, R, in Eq 1. The uncertainty of the OCO-2 super observations is the 210 

sum of the variability of XCO2 used to generate each individual super observation and the mean 211 

uncertainty provided in the original OCO-2 retrievals. Kulawik et al. (2019) showed that both 212 

OCO-2 and ACOS-GOSAT bias-corrected retrievals have a mean bias of -0.1 ppm when compared 213 

with XCO2 from Total Carbon Column Observing Network (TCCON) (Wunch et al., 2011), 214 

indicating consistency between ACOS-GOSAT and OCO-2 retrievals. O’Dell et al. (2018) showed 215 

that the OCO-2 XCO2 land nadir retrievals has RMS error of ~1.1 ppm when compared to TCCON 216 

retrievals; the differences between OCO-2 XCO2 retrievals and surface CO2 constrained model 217 

simulations are well within 1.0 ppm over most of the locations in the Northern Hemisphere (NH), 218 

where most of the surface CO2 observations are located.  219 

 220 

The magnitude of observation errors used in R is generally above 1.0 ppm, larger than the sum of 221 

random error and biases in the observations. The ACOS-GOSAT b7.3 observations from July 222 

2009–June 2015 are used to optimize fluxes between 2010 and 2014, and the OCO-2 XCO2 223 

observations from Sep 2014–June 2019 are used to optimize fluxes between 2015 and 2018. 224 

 225 

The observational coverage of ACOS-GOSAT and OCO-2 is spatiotemporally dependent, with 226 

more coverage during summer than winter over the NH, and more observations over mid-latitudes 227 

than over the tropics (Figure B3). The variability (i.e., standard deviation) of annual total number 228 

of observations from 2010–2014 is within 4% of the annual mean number for ACOS-GOSAT. 229 

Except for a data gap in 2017 caused by a malfunction of the OCO-2 instrument, the variability of 230 
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the annual total number of observations between 2015 and 2018 is within 8% of the annual mean 231 

number for OCO-2.  232 

 233 

2.4 Uncertainty quantification 234 

The posterior flux error covariance is the inverse Hessian, which incorporates the transport, 235 

measurement, and background errors at the 4D-Var solution (Eq. 13 in Bowman et al, 2017). 236 

Posterior flux uncertainty projected to regions can be estimated analytically based on the methods 237 

described in Fisher and Courtier (1995) and Meirink et al. (2008), using either flux singular vectors 238 

or flux increments obtained during the iterative optimization (e.g., Niwa and Fujii, 2020). In this 239 

study, we rely on a Monte Carlo approach to quantify posterior flux uncertainties following 240 

Chevallier et al. (2010) and Liu et al. (2014), which is simpler and widely used. In this approach, 241 

an ensemble of flux inversions is carried out with an ensemble of priors and simulated observations 242 

to sample the uncertainties of prior fluxes (i.e., B in eq. 1) and observations (R in Eq. 1), 243 

respectively. The magnitude of posterior flux uncertainties is a function of assumed uncertainties 244 

in prior fluxes and observations, as well as the density of observations. Since the density of 245 

GOSAT and OCO-2 observations are stable (section 2.3) within their respective data record, we 246 

characterize the posterior flux uncertainties for 2010 and 2015 only, and assume the flux 247 

uncertainties for 2011–2014 are the same as 2010 and flux uncertainties for 2016–2018 are the 248 

same as 2015.  249 

 250 

2.5 Evaluation of posterior fluxes 251 

Direct NBE estimates from flux towers only provide a spatial representation of roughly 1 – 3 252 

kilometers (Running et al., 1999), not appropriate to evaluate regional NBE from top-down flux 253 

inversions. Thus, we use two methods to indirectly evaluate the posterior NBE and its uncertainties. 254 
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One is to compare annual NBE anomalies and seasonal cycle to a gross primary production (GPP) 255 

product. The other is to compare posterior CO2 mole fractions to independent (i.e., not assimilated 256 

in the inversion) aircraft and the NOAA MBL reference observations. The second method has been 257 

broadly used to indirectly evaluate posterior fluxes from top-down flux inversions (e.g., Stephens 258 

et al., 2007; Liu and Bowman, 2016; Chevallier et al., 2019; Crowell et al., 2019). In addition to 259 

these two methods, we also compare the NBE seasonal cycles to three publicly available top-down 260 

NBE estimates that are constrained by surface CO2 observations (Tables 3 and 7).  261 

2.5.1 Evaluation against independent gross primary production (GPP) product 262 

 NBE is a small residual difference between two large terms: total ecosystem respiration (TER) 263 

and GPP, plus fire. A positive NBE anomaly (i.e., less uptake from the atmosphere) has been 264 

shown to correspond to reduced GPP caused by climate anomalies (e.g., Bastos et al., 2018), and 265 

the magnitude of net uptake is proportional to GPP in most biomes observed by flux tower 266 

observations (e.g., Falk et al., 2008). Since NBE is related not only to GPP, the comparison to GPP 267 

only serves as a qualitative measure of the NBE quality. For example, we would expect that the 268 

posterior NBE seasonality to be anti-correlated with GPP in the temperate and high latitudes. In 269 

this study, we use FLUXSAT GPP (Joiner et al., 2018), which is an upscaled GPP product based 270 

on flux tower GPP observations and satellite-based geometry adjusted reflectance from the 271 

MODerate-resolution Imaging Spectroradiometer (MODIS) and solar-induced chlorophyll 272 

fluorescence observations from Global Ozone Monitoring Experiment – 2 (GOME-2) (Joiner et 273 

al., 2013). Joiner et al. (2018) show that the agreement between FLUXSAT-GPP and GPP from 274 

flux towers is better than other available upscaled GPP products. 275 

2.5.2 Evaluation against aircraft and the NOAA marine boundary layer (MBL) 276 

reference CO2 observations  277 
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 The aircraft observations used in this study include those published in OCO-2 MIP ObsPack 278 

August 2019 (CarbonTracker team, 2019), which include regular vertical profiles from flask 279 

samples collected on light aircraft by NOAA (Sweeney et al., 2015) and other laboratories, regular 280 

(two to four weekly) vertical profiles from the Instituto de Pesquisas Espaciais (INPE) over 281 

tropical South America (SA) (Gatti et al., 2014), and from the Atmospheric Tomography (ATom, 282 

Wofsy et al., 2018), HIAPER Pole-to-Pole (HIPPO, Wofsy et al., 2011), the O2/N2 Ratio and CO2 283 

airborne Southern Ocean Study (ORCAS)  (Stephens et al., 2017), and Atmospheric Carbon and 284 

Transport - America (ACT-America, Davis et al., 2018) aircraft campaigns (Table 3). Figure 2 285 

shows the aircraft observation coverage and density between 2010 and 2018. Most of the aircraft 286 

observations are concentrated over NA. ATom had four (1–4) campaigns between August 2016 to 287 

May 2018, spanning four seasons over the Pacific and Atlantic Ocean. HIPPO had five (1–5) 288 

campaigns over the Pacific, but only HIPPO 3–5 occurred between 2010 and 2011. HIPPO 1–2 289 

occurred in 2009. Based on the spatial distribution of aircraft observations, we divide the 290 

comparison into nine regions: Alaska, mid-latitude NA, Europe, East Asia, South Asia, Africa, 291 

Australia, Southern Ocean, and South America (Table 4 and Figure 2).  292 

 293 

We calculate several quantities to evaluate the posterior fluxes and their uncertainty with aircraft 294 

observations. One is the monthly mean differences between posterior and aircraft CO2 mole 295 

fractions. The second is the monthly root mean square errors (RMSE) over each of nine sub-296 

regions, which is defined as: 297 

  (2) 298 

where		𝑦!"#$#!%&'  is the ith aircraft observation, 		𝑦!"#$#!%&(  is the corresponding posterior CO2 mole 299 

fraction sampled at the ith aircraft location, and n is the number of aircraft observations over each 300 

RMSE = ( 1
n

( yaircraft
o − yaircraft

b )i
2 )
1
2

i=1

n

∑
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region. The RMSE is computed over the n aircraft observations within one of the nine sub-regions. 301 

The mean differences indicate the magnitude of the mean posterior CO2 bias, while the RMSE 302 

includes both random and systematic errors in posterior CO2. The bias and RMSE could be due to 303 

errors in posterior fluxes, transport, and initial CO2 concentrations. When errors in transport and 304 

initial CO2 concentrations are smaller than the errors in the posterior fluxes, the magnitude of 305 

biases and RMSE indicates the accuracy of the posterior fluxes.  306 

 307 

To evaluate the magnitude of posterior flux uncertainty estimates, we compare RMSE against the 308 

standard deviation of ensemble simulated aircraft observations (equation 3) from the Monte Carlo 309 

method (RMSEMC). The quantity 𝑅𝑀𝑆𝐸)* 	can be written as: 310 

𝑅𝑀𝑆𝐸)* = [ +
,-,.

∑ ((𝑦!"#$#!%&
(()*) )"-,. − 𝑦/!"#$#!%&

(()*) )1,-,.
"-,.2+ ]

!
"	(3)  311 

The variable  (𝑦!"#$#!%&
(()*) )"-,. is the ith ensemble member of simulated aircraft observations from 312 

Monte Carlo ensemble simulations, 𝑦/!"#$#!%&
(()*) is the mean, and nens is the total number of ensemble 313 

members. For simplicity, in equation (3), we drop the indices for the aircraft observations used in 314 

equation (2). In the absence of errors in transport and initial CO2 concentrations, when the 315 

estimated posterior flux uncertainty reflects the “true” posterior flux uncertainty, we show in the 316 

Appendix that: 317 

𝑅𝑀𝑆𝐸1 = +
,
∑ 𝑅",",
"2+ + 𝑅𝑀𝑆𝐸)*1           (4)  318 

where 𝑅!"#$#!%& is the aircraft observation error variance, which could be neglected on regional 319 

scale.  320 

 321 

We further calculate the ratio r between RMSE and 𝑅𝑀𝑆𝐸)*: 322 
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𝑟 = 4)56
4)56#$

				                          (5) 323 

A ratio close to one indicates that the posterior flux uncertainty reflects the true uncertainty in the 324 

posterior fluxes when the transport errors are small.  325 

 326 

The presence of transport errors will make the comparison between RMSE and 𝑅𝑀𝑆𝐸)*  327 

potentially difficult to interpret. Even when 	𝑅𝑀𝑆𝐸)*  represents the actual uncertainty in posterior 328 

fluxes, the RMSE could be larger than 𝑅𝑀𝑆𝐸)* , since the differences between aircraft 329 

observations and model simulated posterior mole fractions RMSE could be due to errors in both 330 

transport and the posterior fluxes, while 𝑅𝑀𝑆𝐸)*  only reflects the impact of posterior flux 331 

uncertainty on simulated aircraft observations. In this study, we assume the primary sources of 332 

RMSE come from errors in posterior fluxes.  333 

 334 

The RMSE and 𝑅𝑀𝑆𝐸)*  comparison only shows differences in CO2 space. We further calculate 335 

the sensitivity of the RMSE  to the posterior flux using the GEOS-Chem adjoint. We first define a 336 

cost function J as: 337 

𝐽 = 𝑅𝑀𝑆𝐸1				   (6)   338 

The sensitivity of the mean-square error to a flux, x, at location i and month j  is 339 

𝑤",7 =
89
8:%,'

× 𝑥",7   (7) 340 

This sensitivity is normalized by the flux magnitude. Equation 7 can be interpreted as the 341 

sensitivity of the RMSE2 to a fractional change in the fluxes. We can estimate the time-integrated 342 

magnitude of the sensitivity over the entire assimilation window by calculating: 343 

𝑆" =
∑ <=%,'<#
'(!

∑ ∑ <=),'<#
'(!

*
)(!

   (8) 344 
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where P is the total number of grid points and M is the total number of months from the time of 345 

the aircraft data to the beginning of the inversion. The numerator of equation (8) quantifies the 346 

absolute total sensitivity of the RMSE2 to the fluxes at the ith grid. Normalized by the total absolute 347 

sensitivity across the globe, the quantity 𝑆" indicates the relative sensitivity of RMSE2 to fluxes at 348 

the ith grid point. Note that 𝑆" is unitless, and it only quantifies sensitivity, not the contribution of 349 

fluxes at each grid to RMSE2. 350 

 351 

We use the NOAA MBL reference dataset (Table 7) to evaluate the CO2 seasonal cycle over four 352 

latitude bands: 90ºN-60ºN, 60ºN-20ºN, 20ºN-20ºS, and 20ºS-90ºS. The MBL reference is based 353 

on a subset of sites from the NOAA Cooperative Global Air Sampling Network. Only 354 

measurements that are representative of a large volume air over a broad region are considered. In 355 

the comparison, we first remove the global mean CO2 356 

(https://www.esrl.noaa.gov/gmd/ccgg/trends/global.html ) from both the NOAA MBL reference 357 

and the posterior CO2. 358 

 359 

2.6 Regional masks  360 

We provide posterior NBE from 2010 – 2018 using three sets of regional masks (Figure 3), in 361 

addition to the gridded product. The regional mask in Figure 3A is based on a combination of 362 

seven plant function types condensed from MODIS IGBP and the TransCom -3 regions (Gurney 363 

et al., 2004), which is referred as Region Mask 1 (RM1) in later description. There are 28 regions 364 

in Figure 3A: six in NA, four in SA, five in Eurasia (north of 40˚N), three in tropical Asia, three 365 

in Australia, and seven in Africa. The regional mask in Figure 3B is based on latitude and 366 
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continents with 13 regions in total, which is referred as Region Mask 2 (RM2) in later description. 367 

Figure 3C is the TransCom regional mask with 11 regions on land.  368 

 369 

3 Dataset description 370 
 371 
We present the fluxes as globally, latitudinally, and regionally aggregated time series. We show 372 

the nine-year average fluxes aggregated into RM1, RM2, and TransCom regions (Figure 3). The 373 

aggregations are geographic (latitude and continent) and bio-climatic (biome by continent).  For 374 

each region in the geographic and biome aggregations, we show nine-year mean annual net fluxes 375 

and uncertainties, and then the annual fluxes for each region as a set of time-series plots. The 376 

month-by-month fluxes and uncertainties are available in tabular format, so the actual aggregated 377 

fluxes may be readily compared to bottom-up extrapolated fluxes and Earth System models. Users 378 

can also aggregate the gridded fluxes and uncertainties based on their own defined regional masks. 379 

Table 5 provides a complete list of all data products available in the dataset. In section 4, we 380 

describe the major characteristics of the dataset.  381 

4 Characteristics of the dataset  382 

4.1 Global fluxes 383 

The annual atmospheric CO2 growth rate, which is the net difference between fossil fuel emissions 384 

and total annual sink over land and ocean, is well-observed by the NOAA surface CO2 observing 385 

network (https://www.esrl.noaa.gov/gmd/ccgg/ggrn.php). We compare the global total flux estimates 386 

constrained by GOSAT and OCO-2 with the NOAA CO2 growth rate from 2010–2018, and discuss 387 

the mean carbon sink over land and ocean. Over these nine years, the satellite-constrained 388 

atmospheric CO2 growth rate agrees with the NOAA observed CO2 growth rate within the 389 

uncertainty of the posterior fluxes (Figure 4). The mean annual global surface CO2 fluxes (in Gt 390 
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C/yr) are derived from the NOAA observed CO2 growth rate (in ppm/yr) using a conversion factor 391 

of 2.124 GtC/ppm (Le Quéré et al., 2018). The estimated growth rate has the largest discrepancy 392 

with the NOAA observed growth rate in 2014, which may be due to a failure of one of the two 393 

solar paddles of GOSAT in May 2014 (Kuze et al., 2016). Over the nine years, the estimated total 394 

accumulated carbon in the atmosphere is 41.5 ± 2.4 GtC, which is slightly lower than the 395 

accumulated carbon based on the NOAA CO2 growth rate (45.2 ± 0.4 GtC). On average, we 396 

estimate that the NBE is 2.0 ± 0.7 GtC, ~20 ± 8% of fossil fuel emissions, and the ocean sink is 397 

3.0 ± 0.1 GtC, ~ 30 ± 1% of fossil fuel emissions (Figure 4). These numbers are within the ranges 398 

of the corresponding GCB estimates from Freidlingstein et al., 2019 (referred as GCB-2019 399 

hereafter). The mean NBE and ocean sink from GCB-2019 are 2.0 ± 1.0 GtC and 2.5 ± 0.5 GtC 400 

respectively, which are 21 ± 10%  and 26 ± 5% of fossil fuel emissions respectively between 2010–401 

2018. The GCB does not report NBE directly, we calculate NBE from GCB-2019 as the residual 402 

differences between fossil fuel, ocean net carbon sink, and atmospheric CO2 growth rate. It is also 403 

equivalent to (SLAND + BIM - ELUC) reported by Freidlingstein et al., 2019, where SLAND is terrestrial 404 

sink, BIM is a budget imbalance, and ELUC is land use change.   Over these nine years, we estimate 405 

that NBE ranges from 3.6 GtC (~37% of fossil fuel emissions) in 2011 (a La Niña year), to only 406 

0.5 GtC, (~5% of fossil fuel emissions) in 2015 (an El Niño year), consistent with 3.3 GtC (35% 407 

of fossil fuel) in 2011 to 0.9 GtC (7% of fossil fuel) in 2015 estimated from GCB-2019. We 408 

estimate that the ocean sinks range from 3.5 GtC in 2015 to 2.3 GtC in 2012, larger than the 409 

estimated ocean flux ranges of 2.7 in 2016 to 2.5 in 2012 reported by Freidlingstein et al. (2019).  410 

4.2 Mean regional fluxes and uncertainties 411 

Figure 5 shows the nine-year mean regional annual fluxes, uncertainty, and its variability between 412 

2010–2018. Table 6 shows an example of the dataset corresponding to Figure 5 A, D, and G. It 413 
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shows that large net carbon uptake occurs over Eurasia, NA, and the Southern Hemisphere (SH) 414 

mid-latitudes. The largest net carbon uptake is over the eastern US (-0.4 ± 0.1 GtC (1s uncertainty)) 415 

and high latitude Eurasia (-0.5 ± 0.1 GtC) (Figure 5A, B). We estimate a net land carbon sink of 416 

2.5 ± 0.3 GtC/year between 2010–2013 over the NH mid to high latitudes, which agrees with 2.4 417 

± 0.6 GtC estimates over the same time periods based on a two-box model (Ciais et al., 2019). Net 418 

uptake in the tropics ranges from close-to-neutral in tropical South America (0.1 ± 0.1 GtC) to a 419 

net source in northern Africa (0.6 ± 0.2 GtC) (Figure 5A, B). The tropics exhibit both large 420 

uncertainty and large variability. The NBE interannual variability over northern Africa and tropical 421 

SA are 0.5 GtC and 0.3 GtC respectively, larger than the 0.2 GtC and 0.1 GtC uncertainty (Figure 422 

5D, E). We also find collocation of regions with large NBE and FLUXSAT-GPP interannual 423 

variability (Figure B4). The availability of flux estimates over the broadly used TransCom regions 424 

make it easy to compare to previous studies. For example, we estimate that the annual net carbon 425 

uptake over North America is 0.7 ± 0.1 GtC/year with 0.2 GtC variability between 2010 and 2018, 426 

which agrees with 0.7 ± 0.5 GtC/year estimates based on surface CO2 observations between 1996-427 

2007 (Peylin et al., 2013).  428 

 429 

4.3 Interannual variabilities and uncertainties 430 

Here we present hemispheric and regional NBE interannual variabilities and corresponding 431 

uncertainties (Figures 6 and 7, and corresponding tabular data files). In Figure 6, we further divide 432 

the globe into three large latitude bands: tropics (20°S–20°N), NH extra-tropics (20°N–85°N), and 433 

SH extra-tropics (60°S–20°S). The tropical NBE contributes 90% to the global NBE interannual 434 

variability (IAV). The IAV of NBE over the extra-tropics is only about one-third of that over the 435 

tropics. The dominant role of tropical NBE in the global IAV of NBE agrees with Figure 4 in 436 
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Sellers et al. (2018). The top-down global annual NBE anomaly is within the 1.0 GtC/yr 437 

uncertainty of residual NBE (i.e., fossil fuel – atmospheric growth – ocean sink) calculated from 438 

GCB-2019 (Friedlinston et al., 2019) (Figure 6). 439 

 440 

Figure 7 shows the annual NBE anomalies and uncertainties over a few selected regions based on 441 

RM1. Positive NBE indicates reduced net uptake relative to the 2010–2018 mean, and vice versa. 442 

Also shown in Figure 7 are GPP anomalies estimated from FLUXSAT. Positive GPP indicates 443 

increased productivity, and vice versa. GPP drives NBE in years where anomalies are inversely 444 

correlated (e.g., positive NBE and negative GPP), and TER drives NBE in years where anomalies 445 

of GPP and NBE have the same sign or are weakly correlated. Over tropical SA evergreen 446 

broadleaf forest, the largest positive NBE anomalies occur during the 2015–2016 El Niño, 447 

corresponding to large reductions in productively, consistent with Liu et al. (2017). In 2017, the 448 

region sees increased net uptake and increased productivity, implying a recovery from the 2015–449 

2016 El Niño event. The variability in GPP explains 80% of NBE variability over this region over 450 

the nine-year period. In Australian shrubland, our inversion captures the increased net uptake in 451 

2010 and 2011 due to increased precipitation (Poulter et al., 2014) and increased productivity. The 452 

variability in GPP explains 70% of the interannual variability in NBE. Over tropical south America 453 

savanna, the NBE interannual variability also shows strong negative correlations with GPP, with 454 

GPP explaining 40% of NBE interannual variability. Over the mid-latitude regions where the IAV 455 

is small, the R2 between GPP and NBE is also small (0.0–0.5) as expected. But the increased net 456 

uptake generally corresponds to increased productivity. We also do not expect perfect negative 457 

correlation between NBE anomalies and GPP anomalies, as discussed in section 2.5. The 458 



 20 

comparison between NBE and GPP provides insight into when and where net fluxes are likely 459 

dominated by productivity.  460 

 461 

4.4 Seasonal cycle  462 

We provide the regional mean NBE seasonal cycle, its variability, and uncertainty based on the 463 

three regional masks (Table 5). Here we briefly describe the characteristics of the NBE seasonal 464 

cycle over the 11 TransCom regions, and its comparison to three independent top-down inversion 465 

results based on surface CO2, which are CT-Europe (e.g., van der Laan-Luijkx et al., 2017) CAMS 466 

(Chevallier et al., 2005), and Jena CarbonScope (Rödenbeck et al., 2003). CMS-Flux-NBE differs the 467 

most from surface-CO2 based inversions over the South American Tropical, Northern Africa, 468 

tropical Asia, and NH boreal regions. The CMS-Flux NBE has a larger seasonal cycle amplitude 469 

over tropical Asia and Northern Africa, where the surface CO2 constraint is weak, while it has a 470 

smaller seasonal cycle amplitude over the boreal region; this may be due to the sparse satellite 471 

observations over the high latitudes and weaker seasonal amplitude of the prior CARDAMOM 472 

fluxes. The comparison to FluxSat GPP can only qualitatively evaluate the NBE seasonal cycle, 473 

but cannot differentiate among different estimates. In general, the months that have larger 474 

productivity corresponds to months with a net uptake of carbon from the atmosphere, especially 475 

over the NH (Figure 8). More research is still needed to understand the  seasonal cycles of NBE, 476 

including its phase (i.e., transition from source to sink) and amplitude (peak-to-trough difference), 477 

and its relationships with GPP and respiration.  478 

 479 

5 Evaluation against independent aircraft CO2 observations   480 

5.1 Comparison to aircraft observations over nine sub-regions 481 
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In this section, we evaluate posterior CO2 against aircraft observations over the nine sub-regions 482 

listed in Table 4 and Figure 2. We compare the posterior CO2 to aircraft CO2 mole fractions above 483 

the planetary boundary layer and up to mid troposphere (1–5 km) at the locations and time of 484 

aircraft observations, and then calculate the monthly mean error statistics between 1–5 km. The 485 

aircraft observations between 1–5 km are more sensitive to regional fluxes (Liu et al., 2015; Liu 486 

and Bowman, 2016). Scatter plots in the left column of Figure 9 show regional monthly mean de-487 

trended aircraft CO2 observations (x-axis) versus the simulated detrended posterior CO2 (y-axis). 488 

We used the NOAA global CO2 trend to detrend both the observations and model simulated mole 489 

fractions (ftp://aftp.cmdl.noaa.gov/products/trends/co2/co2_trend_gl.txt). Over the NH regions (A, 490 

B, C, D) and Africa (F), the R2 is greater than or equal to 0.9, which indicates that the posterior 491 

CO2 captures the observed seasonality. The low R2 (0.7) value in South Asia is caused by one 492 

outlier. Over the Southern Ocean, Australia, and SA, the R2 is between 0.2 and 0.4, reflecting 493 

weaker CO2 seasonality over these regions and possible bias in ocean flux estimates (see 494 

discussions later).  495 

 496 

The right panel of Figure 9 shows the monthly mean differences between posterior CO2 and aircraft 497 

observations (black), RMSE (equation 2) (blue line), and RMSEMC (equation 3) (red line). The 498 

magnitude of the mean differences between the posterior CO2 and aircraft observations is less than 499 

0.5 ppm except over the Southern Ocean, which has a -0.8 ppm bias. The mean differences between 500 

posterior CO2 and aircraft observations are primarily caused by errors in transport and biases in 501 

assimilated satellite observations, while RMSEMC is ‘internal flux error’ projected into mole 502 

fraction space.  With the exception of the Southern Ocean, for all regions mean bias is significantly 503 

less than RMSEMC, which suggests that transport and data bias in satellite observations may be 504 
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much smaller than the internal flux errors. Note that RMSEMC is smaller than RMSE over the first 505 

~six months of simulation, which may indicate a dominant impact of errors in transport and initial 506 

CO2 concentration on posterior CO2 RMSE.  507 

 508 

As demonstrated in section 2.5, comparing RMSE and RMSEMC is a test of the accuracy of posterior 509 

flux uncertainty estimate. Over all the regions, the differences between RMSE and RMSEMC are 510 

smaller than 0.3 ppm, which indicates a comparable magnitude between empirical posterior flux 511 

uncertainty estimates from the Monte Carlo method and the actual posterior flux uncertainty over 512 

the regions that these aircraft observations are sensitive to. These aircraft observations are sensitive 513 

to NBE over a broad region as shown in Figure B5. Note, Figure B5 and Figures B8-B10 are 514 

calculated using equation (8).  515 

 516 

5.2 Comparison to aircraft observations from ATom and HIPPO aircraft campaigns 517 

Figures 10 and 11 show comparisons to aircraft CO2 from ATom 1–4 campaigns spanning four 518 

seasons, and HIPPO 3–5 over the Pacific Ocean between 1–5 km. The vertical curtain comparisons 519 

are shown in Figure B6 and B7. The mean differences between posterior CO2 and aircraft CO2 are 520 

quite uniform (within 0.5 ppm) throughout the column except over the Atlantic Ocean during 521 

ATom 1–2 and the Southern Ocean during ATom 1 (Figures S6 and S7). Also shown in Figures 522 

10 and 11 are RMSE of each aircraft campaign (middle column) and the ratio between RMSE and 523 

RMSEMC (right column). A ratio larger than one between RMSE and RMSEMC indicates errors in 524 

either transport or underestimation of the posterior flux uncertainty (section 2.5).  525 

 526 
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Over most of the flight tracks during ATom 1–4, the posterior CO2 errors are between -0.5 and 0.5 527 

ppm, the RMSE is smaller than 0.5 ppm, and the ratio between RMSE and RMSEMC is smaller than 528 

or equal to 1. However, off the coast of Africa during ATOM -1 and -2 and over the Southern 529 

Ocean during ATOM-1, the mean differences between posterior CO2 and aircraft observations are 530 

larger than 0.5 ppm. During ATOM-1 (29 July – 23 Aug 2016), the mean differences between 531 

posterior CO2 and aircraft CO2 show large negative biases, while during ATOM-2 (26 Jan 2017–532 

21 Feb 2017), it has large positive biases off the coast of Africa. The ratio between RMSE and 533 

RMSEMC is significantly larger than one over these regions, which indicates an underestimation of 534 

posterior flux uncertainty or large magnitude of transport errors during that time period.  535 

 536 

We further run adjoint sensitivity analyses over the three regions with ratios significantly larger 537 

than one to identify the posterior fluxes that could contribute to the large differences between 538 

posterior CO2 and aircraft observations during ATOM 1–2. We run the adjoint model backward 539 

for three months from the observation time and calculate Si as defined in equation (7). The adjoint 540 

sensitivity analysis indicates that the large mismatch between aircraft observations and model 541 

simulations during ATOM-1 and -2 off the coast of Africa could be potentially driven by errors in 542 

posterior fluxes over tropical Africa (Figure B8). The large posterior CO2 errors and large ratio 543 

between RMSE and RMSEMC over the Southern Ocean during ATOM-1 are driven by flux errors 544 

in oceanic fluxes around 30°S and over Australia (Figure B9), which also contribute to the large 545 

errors in comparison to aircraft observations over the Southern Ocean shown in Figure 9 H.  546 

 547 

During the HIPPO aircraft campaigns, the absolute errors in posterior CO2 across the Pacific are 548 

less than 0.5 ppm except over the Arctic Ocean and over Alaska in summer (Figure 11), consistent 549 
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with Figure 10A. The large errors over the Arctic Ocean may be related to both transport errors 550 

and the accuracy of high latitude fluxes. Byrne et al. (2020) provide a brief summary of the 551 

challenges in simulating CO2 over high latitudes using a transport model with 4° x 5° resolution. 552 

Increasing the resolution of the transport model may reduce transport errors over high latitudes. 553 

 554 

We run adjoint sensitivity analysis over the high-latitude regions where the differences between 555 

posterior CO2 and aircraft observations are large (Figure 11). The adjoint sensitivity analysis 556 

(Figure B10) shows that the large errors over these regions could be driven by errors in fluxes over 557 

Alaska as well as broad NH mid-latitude regions.  558 

 559 

5.3 Comparison to MBL reference sites 560 

Since MBL reference sites sample air over broad regions, the comparison to detrended MBL 561 

observations indirectly evaluates the NBE over large regions. Figure 12 shows the comparison 562 

over four latitude bands. The uncertainty of posterior CO2 concentration is from the MC method. 563 

Except over 90°S-20°S, the differences between observations and posterior CO2 are within 564 

posterior CO2 uncertainty estimates. The posterior CO2 concentrations have the smallest bias and 565 

random errors over the tropical latitude band. The R2 is above 0.9 over NH mid to high latitudes, 566 

consistent with Figure 9. Over 90°S-20°S, the posterior CO2 has positive bias in 2013 and 2014 567 

and negative bias and much weaker seasonality between Jan 2015 – Dec 2018 compared to 568 

observations, which indicates possible biases in Southern Ocean flux estimates (Figure B11). The 569 

low bias over the Southern Ocean is consistent with aircraft comparison during OCO-2 period 570 

(Figures 9-10, Figure B9). The changes of performance after 2013 over 90°S-20°S is most likely 571 

due to the prior ocean carbon fluxes. Evaluation of ocean carbon fluxes is out of scope of this study. 572 
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Note, since we only assimilate land-nadir XCO2 observations in this study due to known issues with 573 

the OCO-2 v9 ocean glint observations (O’Dell et all., 2018), the constraint of top-down inversion 574 

on air-sea CO2 exchanges is weak (not shown). The ocean glint observations of OCO-2 v10 575 

observations have been improved compared to v9 (Osterman et al., 2020). We expect to have better 576 

estimate of ocean carbon fluxes over the Southern Ocean when assimilating both land and ocean 577 

XCO2 observations from GOSAT and OCO-2 in the future.    578 

 579 
6 Discussion 580 

Evaluation of posterior flux uncertainty estimates by comparing posterior CO2 error statistics 581 

(RMSE, Equation 2) with the standard deviation of ensemble simulated CO2 from Monte Carlo 582 

uncertainty quantification method (RMSEMC, equation 3) has its limitations. A comparable RMSE 583 

and RMSEMC indicates a small magnitude of transport errors and reasonable posterior uncertainty 584 

estimates. A much larger RMSE than RMSEMC could be due to errors in either transport or 585 

underestimation of the posterior flux uncertainty or both. The presence of transport errors makes 586 

the interpretation of the RMSE and RMSEMC complex. A better, independent quantification of 587 

transport errors is needed in the future in order to rigorously use the comparison statistics between 588 

aircraft observations and posterior CO2 to diagnose flux errors.  589 

 590 

Comparison to aircraft observations shows regionally-dependent accuracy in posterior fluxes. 591 

ATom observations show seasonally-dependent biases over the Atlantic, implying possible 592 

seasonally dependent errors in posterior fluxes over northern to central Africa. Therefore, we 593 

recommend combining NBE with other ancillary variables, e.g., GPP, to better understand carbon 594 

dynamics. Combining NBE with component carbon fluxes can shed light on the processes 595 
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controlling the changes of NBE (e.g., Bowman et al, 2017; Liu et al., 2017). NBE can be written 596 

as: 597 

NBE= TER + fire - GPP   (8)  598 

where TER is total ecosystem respiration (TER) (Figure 1). Satellite carbon monoxide (CO) 599 

observations provide constraints on fire emissions (Arellano et al, 2006, van der Werf, 2008; Jones 600 

et al, 2009; Jiang et al., 2015, Bowman et al, 2017; Liu et al., 2017). In addition to the  FLUXSAT-601 

GPP product used here, solar induced chlorophyll fluorescence (SIF) can be directly used as a 602 

proxy for GPP (e.g., Parazoo et al, 2014). Once NBE, fire, and GPP carbon fluxes are quantified, 603 

TER can be calculated as a residual (e.g., Bowman et al, 2017; Liu et al., 2017, 2018).  604 

 605 

Because of the diffusive manner of atmospheric transport and the limited observation coverage, 606 

the gridded flux values are not independent from each other. The errors and uncertainties of the 607 

fluxes at each individual grid point are larger than regional aggregated fluxes. Interpreting NBE at 608 

each individual grid point requires caution. But at the same time, satellite CO2 constrained NBE 609 

can potentially resolve fluxes at spatial scales smaller than the traditional TransCom regions. Here, 610 

we provide regional fluxes at two predefined regions in addition to TransCom. We encourage data 611 

users to use the data at appropriate regional scales.   612 

 613 

The variability and changes are more robust than the mean NBE fluxes from top-down flux 614 

inversions in general (Baker et al., 2006b). The errors in transport and potential biases in 615 

observations are mostly stable in time, so biases in the mean fluxes tend to cancel out when 616 

computing interannual variability and year-to-year changes (Schuh et al., 2019; Crowell et al., 617 

2019).  618 
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 619 

The global fossil fuel emissions have ~5% uncertainty (GCB-2019). However, they are regionally 620 

inhomogeneous. We neglect the uncertainties in fossil fuel emissions, which will introduce 621 

additional error in regions of rapid fossil fuel growth or in areas with noisier statistics (Yin et al., 622 

2019). In the future, we will account for uncertainties in fossil fuel emissions. 623 

 624 

The posterior NBE includes all types of land fluxes except fossil fuel emissions, which is 625 

equivalent to the sum of land use change fluxes, land sinks, and residual imbalance published by 626 

the GCB-2019. The sum of regional NBE and fossil fuel emissions is an index of the contribution 627 

of any specific region to the changes of the atmospheric CO2 growth rate. Since the predicted 628 

changes of NBE in the future have large uncertainties (Lovenduski and Bonan, 2017), quantifying 629 

regional NBE is critical to monitoring regional contributions to atmospheric CO2 growth rate, and 630 

ultimately to guide mitigation to limit warming to 1.5°C above pre-industrial levels (IPCC, 2018).  631 

 632 

7 Summary   633 

Terrestrial biosphere carbon fluxes are the largest contributor to the interannual variability of the 634 

atmospheric CO2 growth rate. Therefore, monitoring its change at regional scales is essential for 635 

understanding how it responds to CO2, climate and land use. Here, we present the longest terrestrial 636 

flux estimates and their uncertainties constrained by XCO2 from 2010–2018 on self-consistent 637 

global and regional scales (CMS-Flux NBE 2020). We qualitatively evaluate the NBE estimates 638 

by comparing its variability with GPP variability, and provide comprehensive evaluation of 639 

posterior fluxes and the uncertainties by comparing posterior CO2 with independent CO2 640 

observations from aircraft and the NOAA MBL reference sites. This dataset can be used in 641 



 28 

understanding controls on regional NBE interannual variability, evaluating biogeochemical 642 

models, and supporting the monitoring of regional contributions to changes in atmospheric CO2.  643 

 644 

8 Data availability and future update 645 

The CMS-Flux NBE 2020 data are available at:  https://doi.org/10.25966/4v02-c391 (Liu et al., 646 

2020). The regional aggregated fluxes are provided as csv files with file size ~10MB, and the 647 

gridded data is provided in NetCDF format with file size ~1.4 GB. The full ensemble of posterior 648 

fluxes used to estimate posterior flux uncertainties are provided in NetCDF format with file size 649 

~30MB. Table 7 lists the sources of the data used in producing and evaluating the CMS-Flux NBE 650 

2020 data product. 651 

 652 

The quality of XCO2 from satellite observations is continually improving. The OCO-2 v10 XCO2 653 

has been released in June 2020 along with the full GOSAT record (June 2009–Jan 2020) processed 654 

by the same retrieval algorithm as OCO-2. Continuing to improving the quality of satellite 655 

observations and extending the NBE estimates beyond 2018 in the future will help us better 656 

understand interactions between terrestrial biosphere carbon cycle and climate and provide support 657 

in monitoring the regional contributions to the changes of atmospheric CO2. Thus, we plan a future 658 

update of the dataset on an annual basis, with a goal to support current scientific research and 659 

policy making. 660 
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Appendix A 690 

As shown in Kalnay (2003): 691 

𝑅𝑀𝑆𝐸1 = +
,
∑ (𝑅"," + (𝐻𝑃!𝐻>)","),
"2+  (A.1) 692 

where 𝑅"," is the ith aircraft observation error variance, and 𝑃! is the posterior flux error covariance. 693 

The H is linearized observation operator, which transfers posterior flux errors to aircraft 694 

observation space, and 𝐻>  is its adjoint. In the Monte Carlo method, the posterior flux error 695 

covariance 𝑃! is approximated by:  696 

𝑃! = +
,-,.

𝑋!𝑋!> (A.2) 697 

where 𝑋! is the ensemble perturbations written as:  698 

𝑋! = 𝑥! − 𝑥̅! (A.3) 699 

where 𝑥! is the ensemble posterior fluxes from Monte Carlo, and 𝑥̅! is the mean.  700 

Therefore, 𝐻𝑃!𝐻> can be written as:  701 

𝐻𝑃!𝐻> = +
,-,.

[ℎ(𝑥!) − ℎ(𝑥̅!)][ℎ(𝑥!) − ℎ(𝑥̅!)]> (A.4) 702 

The sum of diagonal elements in the right-hand side of A.4 is the same as the definition of RMSEMC 703 

in the main text.  704 

Therefore, when the posterior flux uncertainty estimated by Monte Carlo method represents the 705 

actual uncertainty in posterior fluxes, equation (A.1) can be written as: 706 

𝑅𝑀𝑆𝐸1 = +
,
∑ 𝑅",",
"2+ + 𝑅𝑀𝑆𝐸)*1     (A.5).  707 

It is the same as equation (4) in the main text.  708 
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Appendix B 709 

In this Appendix, we include figures to support the main text.  710 

 711 

Figure B1 Annual mean net biosphere exchanges from CARDAMOM (A) and its interannual 712 
variability between 2010 and 2017 (B).  713 
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 714 

Figure B2 An example of absolute mean NBE (A) and its uncertainty (B) simulated by CARDAMOM. This 715 
is for July 2010.  716 

 717 
 718 
 719 
 720 
 721 
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 722 
 723 
 724 
 725 
Figure B3 Daily number of ACOS-GOSAT b7.3 (A) and OCO-2 super observations (B) 726 
assimilated in the top-down inversions.  727 
 728 
 729 
 730 
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 731 
Figure B4 Regional mean FlUXSAT GPP and its variability between 2010 –2018. (A, B, and C) 732 
Regional mean GPP aggregated with the three regional masks; (D, E, and F) GPP variability 733 
between 2010 –2018.  Unit: GtC/year.  734 
  735 
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 736 

 737 
Figure B5 The relative sensitivity of root mean square errors (RMSE) of posterior CO2 (Figure 9 738 
in the main text) relative to NBE at every grid point. The adjoint model is carried out over Sep 739 
2014–Dec 2018.  740 
 741 
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 742 

 743 
Figure B6 Differences between posterior CO2 and ATOM 1-4 aircraft CO2 observations over the 744 
Pacific (A1-D1) and Atlantic Ocean (A2-D2) as a function of latitude and altitude (unit: km). 745 
Unit: ppm.  746 
 747 
 748 
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 749 
Figure B7 Differences between posterior CO2 and HIPPO 3-5 aircraft CO2 observations over the 750 
Pacific (A-C) as a function of latitude and altitude. Unit: ppm.  751 
 752 
 753 
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 754 
Figure B8 The relative sensitivity of RMSE of posterior CO2 to NBE over land and air-sea net 755 
carbon exchange over ocean at every grid point. The RMSE is calculated against aircraft CO2 756 
observations from ATom-1 (A) and ATom-2 (B) between 40°W-0°, 20°S-20°N. The adjoint 757 
model is carried out over June – August 2016 (A) and Dec 2016 – Feb 2017 (B). Unit: %.  758 
 759 
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 775 

 776 
 777 
Figure B9 The relative sensitivity of RMSE of posterior to NBE over land and air-sea net carbon 778 
exchange over ocean at every grid point. The RMSE is calculated against aircraft CO2 observations 779 
from ATom-1 between 175°W-20°W, 80°S-30°S. The adjoint model is carried out over June – 780 
August 2016. Unit: %.  781 
 782 
 783 
 784 
  785 
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 786 

 787 
Figure B10 The relative sensitivity of RMSE of posterior to NBE over land and air-sea net carbon 788 
exchange over ocean at every grid point. The RMSE is calculated against aircraft CO2 observations 789 
from HIPPO-4 between 180°W-130°W, 50°N-90°N. The adjoint model is carried out over April 790 
– July 2011. Unit: %.  791 
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 811 
Figure B11 Monthly posterior air-sea CO2 exchanges between 85°S-30°S. (unit: gC/m2/day) 812 
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 1218 

Figure: 1 Data flow diagram with the main processing steps to generate regional net 1219 
biosphere change (NBE). TER: total ecosystem respiration; GPP: gross primary production. 1220 
The green box is the inversion system. The blue boxes are the inputs for the inversion system. 1221 
The red boxes are the data outputs from the system. The black box is the evaluation step, 1222 
and the grey boxes are the future additions to the product. 1223 
 1224 
 1225 
 1226 
 1227 

 1228 
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 1229 

Figure: 2 The spatial and temporal distributions of aircraft observations used in evaluation 1230 
of posterior NBE. (A) The total number of aircraft observations between 1–5 km between 1231 
2010–2018 at each 4° x 5°grid point. The rectangle boxes show the range of the nine sub 1232 
regions. (B) The total number of monthly aircraft observations at each longitude as a 1233 
function of time.  1234 
 1235 

 1236 
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 1237 

Figure: 3 Three types of regional masks used in calculating regional fluxes. A: the mask is 1238 
based on a combination of condensed seven MODIS IGBP plant functional types, 1239 
TRANCOM-3 regions (Gurney et al., 2004), and continents. B: the mask is based on latitude 1240 
and continents. C: the TransCom region mask. 1241 
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 1250 

Figure: 4 Global flux estimation and uncertainties from 2010 –2018 (black: fossil fuel; green: 1251 
posterior land fluxes; blue: ocean fluxes; magenta: estimated CO2 growth rate; red: the 1252 
NOAA CO2 growth rate).  1253 
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 1255 

 1256 
Figure: 5 Mean annual regional NBE (A, B, and C), uncertainty (D, E, and F), and variability 1257 
between 2010–2018 (G, H, and I) with the three types of regional masks (Figure 3). The first 1258 
column uses a region mask based on PFT and continents (RM1). The second column uses a 1259 
region mask based latitude and continents (RM2), and the third column uses TransCom 1260 
mask.  1261 
  1262 
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 1263 

 1264 

Figure: 6 The NBE interannual variability over the globe (black), the tropics (20°S–20°N), 1265 
SH mid-latitudes (60°S–20°S), and NH mid-latitudes (20°N–9°0N). For reference, the 1266 
residual net land carbon sink from GCB-2019 (Friedlingstein et al., 2019) and its uncertainty 1267 
is also shown (magenta).  1268 
 1269 
 1270 
 1271 
 1272 
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 1273 

Figure: 7 The NBE interannual variability over six selected regions. Blue: annual NBE 1274 
anomaly and its uncertainties. Green: annual GPP anomaly based on FLUXSAT. 1275 
 1276 
 1277 
 1278 
 1279 
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 1280 
Figure: 8 The NBE climatological seasonality over TransCom regions. The seasonal cycle is 1281 
calculated over 2010-2017 since CT-Europe only covers till 2017. Black: CMS-Flux-NBE and 1282 
its uncertainty; blue shaded: mean NBE seasonality based on surface CO2 inversion results 1283 
from CAMS, CT-Europe, and Jena CarbonScope; red: CAMS; magenta: CT-Europe; green: 1284 
Jena CarbonScope. The names of each region are shown on individual subplots. 1285 
 1286 
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 1291 

Figure: 9 Comparison between posterior CO2 mole fraction and aircraft observations. Left 1292 
panel: detrended posterior CO2 (y-axis) vs. detrended aircraft CO2 (x-axis) over nine regions. 1293 
The dashed line is 1:1 line; right panel: black: the differences between posterior CO2 and 1294 
aircraft CO2 as a function of time; blue: RMSE (unit: ppm); red: RMSEMC.  1295 
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 1297 
 1298 

 1299 

Figure: 10 Left column: the mean differences between posterior CO2 and aircraft 1300 
observations from ATOM 1–4 aircraft campaigns between 1–5 km (A–D). Middle column: 1301 
the Root Mean Square Errors (RMSE) between aircraft observations and posterior CO2 1302 
between 1–5 km. The color bar is the same as the left column. Right column: the ratio 1303 
between RMSE and RMSEMC based on ensemble CO2 from the Monte Carlo uncertainty 1304 
estimation method.  1305 
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 1306 

Figure: 11 Left column: the mean differences between posterior CO2 and aircraft 1307 
observations from HIPPO 3-5 aircraft campaigns between 1–5 km (A–C) (unit: ppm). (unit: 1308 
ppm). The time frame of each campaign is in the figure. Middle column: the Root Mean 1309 
Square Errors (RMSE) between aircraft observations and posterior CO2 between 1–5 km 1310 
(unit: ppm). The color bar is the same as the left column. Right column: the ratio between 1311 
RMSE and RMSEMC based on ensemble CO2 from the Monte Carlo method.  1312 
 1313 
 1314 
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 1315 
Figure: 12 Comparison between posterior CO2 and the NOAA marine boundary layer (MBL) 1316 
reference sites. Black: observations averaged over each latitude bands; blue and shaded area: 1317 
posterior CO2 and its uncertainty. The global mean CO2 1318 
(https://www.esrl.noaa.gov/gmd/ccgg/trends/global.html ) was subtracted from both the 1319 
NOAA MBL reference and posterior CO2 before the comparison.  1320 
  1321 
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 1322 
 1323 
 1324 
 1325 
 1326 
 1327 
Table: 1 Configurations of the CMS-Flux atmospheric inversion system 1328 

 Model setup  Configuration  Reference 
Inversion general 
setup 
 

Spatial scale 
Spatial resolution 
Time resolution 
Minimizer of cost 
function 
 
Control vector 

Global 
4° latitude x 5° longitude 
monthly 
L-BFGS 
 
Monthly net terrestrial 
biosphere fluxes and 
ocean fluxes 

-- 
 
 
Byrd et al., 1994;  
Zhu et al., 1997 

Transport model  
 

Model name 
 
 
 
Meteorological forcing 
 

GEOS-Chem and its 
adjoint 
 
 
GEOS-5 (2010–2014) and 
GEOS-FP (2015–2019) 

Suntharalingam et al., 
2004 
Nassar et al., 2010 
Henze et al., 2007 
Rienecker et al., 2008 
 

 1329 
  1330 
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 1331 
Table: 2 Description of the prior fluxes and assumed uncertainties in the inversion system  1332 

Prior fluxes Terrestrial 
biosphere fluxes 

Ocean fluxes 
 

Fossil fuel emissions 
 

Model name CARDAMOM-v1 ECCO-Darwin ODIAC 2018 
Spatial resolution 4° x 5° 0.5° 1° x 1°  
Frequency  3-hourly 3-hourly hourly 
Uncertainty Estimated from 

CARDAMOM 
100% same as Liu et al. 
(2017) 

No uncertainty  

References Bloom et al., 2006; 
2020 

Brix et al, 2015; Carroll et al., 
2020 
 

Oda et al., 2016; 2018 

 1333 

  1334 
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 1335 

 1336 
Table: 3 Description of observation and evaluation dataset. Data sources are listed in Table 7. 1337 

 Dataset name and version References 
Satellite XCO2  ACOS-GOSAT v7.3 O’Dell et al., (2012) 

OCO-2 v9 O’Dell et al., (2018) 
Aircraft CO2 observations ObsPack OCO-2 MIP CarbonTracker team (2019) 

HIPPO 3-5 Wofsy et al. (2011) 
ATom 1-4 Wofsy et al. (2018) 

INPE Gatti et al., (2014) 
ORCAS Stephens et al. (2017) 

ACT-America Davis et al. (2018) 
NOAA marine boundary 
layer (MBL) reference 

NOAA MBL reference Conway et al., 1994 
 

GPP FLUXSAT-GPP Joiner et al., (2018) 
Top-down NBE estimates 

constrained by surface CO2  
CarbonTracker-Europe van der Laan-Luijkx et al. 

(2017) 
Peters et al., (2010) 
Peters et al. (2007) 

 
Jena CarbonScope 

s10oc_v2020 
Rödenbeck et al., 2003 

CAMS v18r1 Chevallier et al., 2005 
  1338 
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 1339 
 1340 
Table: 4 Latitude and longitude ranges for seven sub regions.  1341 

Region Alaska Mid-lat NA  Europe            East Asia South Asia 
Longitude 

range 
180°W–125° W 125°W–65°W 5°W–45°E 110°E–160°E 65°E–110°E 

Latitude 
range 

58°N–89°N 22°N-58°N 30°N–66°N 22°N–50°N 10°S–32°N 

Region Africa South 
America 

Australia Southern 
Ocean 

Longitude 
range 

5°W–55°E 95°W–50°W 120°E–160°E 110°W–40°E 

Latitude 
range 

2°N–18°N 20°S–2°N 45°S–10°S 80°S–30°S 

 1342 

  1343 
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Table: 5 List of the data products. 1344 

Product Spatial resolution Temporal 
resolution when 

applicable 

Data format Sample data 
description in the 

text 
Total fossil fuel, 

ocean, and land fluxes 
Global Annual csv  Figure 4 (section 

4.1) 
Climatology mean 

NBE, variability, and 
uncertainties 

PFT and continents 
based 28 regions 

N/A csv Figure 5  (section 
4.2) 

Geographic-based 
13 regions 

csv 

TransCom regions csv 
Hemispheric NBE 
and uncertainties 

 NH (20°N-90°N), 
tropics (20°S-
20°N), and SH 

(60°S-20°S) 

Annual  csv Figure 6 (section 
4.3) 

NBE variability and 
uncertainties 

PFT and continents 
based 28 regions 

Annual csv 
 

Figure 7 (section 
4.3) 

Geographic -based 
13 regions 

csv 

TransCom regions csv 
NBE seasonality and 

its uncertainties 
PFT and continents 

based 28 regions 
Monthly  csv 

 
Figure 8 (section 

4.4) 
Geographic -based 

13 regions 
csv 

TransCom regions csv 
Monthly NBE and 

uncertainties 
PFT and continents 

based 28 regions 
Monthly csv 

 
N/A 

Geographic -based 
13 regions 

csv 

TransCom csv 
Gridded posterior 

NBE, air-sea carbon 
exchanges, and 
uncertainties 

4° (latitude) x 5° 
(longitude) 

Monthly  NetCDF   N/A 

Gridded prior NBE 
and air-sea carbon 

exchanges 

4° (latitude) x 5° 
(longitude) 

Monthly and 3-
hourly 

NetCDF N/A 

Gridded fossil fuel 
emissions 

4° (latitude) x 5° 
(longitude) 

Monthly mean and 
hourly 

NetCDF N/A 

Region masks PFT and continents 
based 28 regions 

N/A csv 
 

Figure 3 (section 
2.4) 

Geographic -based 
13 regions 

TransCom regions 
 1345 

  1346 
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Table: 6 The nine-year mean regional annual fluxes, uncertainties, and variability. Regions 1347 
are based on the mask shown in Figure 5A (Figure 5.csv). Unit: GtC/year 1348 

Region name (Figure4.csv) Mean NBE Uncertainty Variability 
NA shrubland -0.14 0.02 0.05 

NA needleleaf forest -0.22 0.04 0.06 
NA deciduous forest -0.2 0.04 0.07 

NA  crop natural vegetation -0.41 0.06 0.18 
NA grassland -0.04 0.03 0.03 
NA savannah 0.03 0.02 0.03 

Tropical South America (SA) evergreen broadleaf 0.04 0.1 0.28 
SA savannah -0.09 0.06 0.18 
SA cropland -0.07 0.03 0.07 

SA shrubland -0.03 0.02 0.08 
Eurasia shrubland savanna -0.44 0.07 0.14 

Eurasia needleleaf forest -0.41 0.07 0.12 
Europe cropland -0.46 0.09 0.16 
Eurasia grassland 0.02 0.08 0.13 

Asia cropland -0.37 0.13 0.08 
India 0.14 0.09 0.14 

Tropical Asia savanna -0.12 0.11 0.08 
Tropical Asia evergreen broadleaf -0.09 0.09 0.12 

Australia (Aus) savannah grassland -0.11 0.02 0.09 
Aus  shrubland -0.07 0.01 0.05 
Aus cropland -0.01 0.01 0.03 

African (Afr) northern shrubland 0.04 0.02 0.03 
Afr grassland 0.03 0.01 0.01 

Afr northern savanna 0.54 0.15 0.49 
Afr southern savanna -0.27 0.18 0.33 

Afr evergreen broadleaf 0.1 0.07 0.09 
Afr southern shrubland 0.01 0.01 0.01 

Afr desert 0.06 0.01 0.04 

 1349 

  1350 
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Table: 7 Lists of data sources used in producing and evaluating posterior NBE product.  1351 

Data name Data Source 
ECCO-Darwin 
ocean fluxes 

 https://doi.org/10.25966/4v02-c391 

CARDAMOM  
NBE and uncertainties 

https://doi.org/10.25966/4v02-c391 

ODIAC http://db.cger.nies.go.jp/dataset/ODIAC/DL_odiac2019.html 
GOSAT b7.3  https://oco2.gesdisc.eosdis.nasa.gov/data/GOSAT_TANSO_Level2/

ACOS_L2S.7.3/ 
OCO-2 b9 https://disc.gsfc.nasa.gov/datasets?page=1&keywords=OCO-2 
ObsPack https://www.esrl.noaa.gov/gmd/ccgg/obspack/data.php 
ATom 1-4 https://daac.ornl.gov/ATOM/guides/ATom_merge.html 
HIPPO 3-5 https://www.eol.ucar.edu/field_projects/hippo 
INPE https://www.esrl.noaa.gov/gmd/ccgg/obspack/data.php?id=obspack_

co2_1_INPE_RESTRICTED_v2.0_2018-11-13 
and  

FLUXSAT-GPP https://gs614-avdc1-pz.gsfc.nasa.gov/pub/tmp/FluxSat_GPP/ 
NOAA MBL 
reference 

https://www.esrl.noaa.gov/gmd/ccgg/mbl/index.html 

CarbonTracker-
Europe NBE 

https://www.carbontracker.eu/download.shtml 

Jena CarbonScope 
NBE 

http://www.bgc-jena.mpg.de/CarboScope/?ID=s 

CAMS NBE https://apps.ecmwf.int/datasets/data/cams-ghg-
inversions/?date_month_slider=2009-12,2018-
12&param=co2&datatype=ra&version=v17r1&frequency=mm&qua
ntity=surface_flux 

Posterior NBE https://doi.org/10.25966/4v02-c391 
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