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Abstract. China has witnessed extensive development of the marine aquaculture industry over recent years. However, such 

rapid and disordered expansion posed risks to coastal environment, economic development, and biodiversity protection. This 10 

study aimed to produce an accurate national-scale marine aquaculture map at a spatial resolution of 16 m, using a proposed 

deep convolution neural networks (CNNs) based model and applied it to satellite data from China’s GF-1 sensor in an end-

to-end way. The analyses used homogeneous CNNs to extract high-dimensional features from the input imagery and 

preserve information at full resolution. Then, a hierarchical cascade architecture was followed to capture multi-scale features 

and contextual information. This hierarchical cascade homogeneous neural network (HCHNet) was found to achieve better 15 

classification performance than current state-of-the-art models (FCN-32s, Deeplab V2, U-Net, and HCNet). The resulting 

marine aquaculture area map has an overall classification accuracy >95% (95.2%-96.4, 95% confidence interval). And 

marine aquaculture was found to cover a total area of ~1100 km2 (1096.8 km2-1110.6 km2, 95% confidence interval) in 

China, of which more than 85% are marine plant culture areas, with 87% found in the Fujian, Shandong, Liaoning, and 

Jiangsu provinces. The results confirm the applicability and effectiveness of HCHNet when applied to GF-1 data, identifying 20 

notable spatial distributions of different marine aquaculture areas and supporting the sustainable management and ecological 

assessments of coastal resources at a national scale. The national-scale marine aquaculture map at 16 m spatial resolution is 

published in the Google Maps kmz File Format with georeferencing information at https://doi.org/10.5281/zenodo.3881612 

(Fu et al., 2020). 

1 Introduction 25 

Marine aquaculture, which refers to the breeding, rearing, and harvesting of aquatic plants or animals in marine waters, has 

significant potential for food production, economic development, and environmental protection in coastal areas (Burbridge et 

al., 2001; Campbell and Pauly, 2013; Gentry et al., 2017). It has become a fast-growing industry in China due to the 

significant increase in the demand for seafood, support from policies, and technology innovation (Liang et al., 2018). The 

marine aquaculture production in China has increased from 10.6 million tons in 2000 (Bureau of Fisheries of the Ministry of 30 
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Agriculture, 2001) to 20.7 million tons in 2019 (Bureau of Fisheries of the Ministry of Agriculture, 2020). However, such 

rapid and disordered growth may cause severe economic losses and environmental problems, such as water pollution (Tovar 

et al., 2000), biodiversity decrease (Galil, 2009; Rigos and Katharios, 2010), and marine sediment pollution (Porrello et al. , 

2005; Rubio-Portillo et al., 2019). Therefore, accurate mapping and monitoring of marine aquaculture can provide evidence 

to support the sustainable management of coastal marine resources. 35 

Previous research in this domain can be grouped into visual interpretation, analyses enhanced by including ancillary data 

such as information about spatial structure, object-based image analysis (OBIA), and deep learning based methods. Visual 

interpretation is used less frequently as it requires too much time and effort. Enhanced analyses that incorporate features 

such as texture or average filtering (Fan et al., 2015; Lu et al., 2015; Xiao et al., 2013) are commonly employed for pixel-

based approaches. However, these are subject to noise (the salt-and-pepper effect) and decreased accuracy (Zheng et al., 40 

2017). OBIA has been widely used for the detailed interpretation of marine aquaculture from remote sensing images (Fu et 

al., 2019a; Wang et al., 2017; Zheng et al., 2017). It first partitions the image into segments and then classifies segments 

based on their internal properties (Blaschke et al., 2014). However, since almost all these methods are proposed based on the 

handcrafted features, it is inherently difficult for them to achieve balance between high discriminability and good robustness 

(L. Zhang et al., 2016). To solve such problems, the remote sensing community has started to incorporate deep fully 45 

convolutional neural networks (FCN) within marine aquaculture detection tasks using high spatial resolution (HSR) images 

at local scales (Cui et al., 2019; Fu et al., 2019b; Shi et al., 2018). However, the opportunities associated with analyses of the 

high volumes of publicly available and free remote sensing data at medium resolution, such as Landsat, Sentinel-2 A/B, and 

GaoFen-1 wide-field-of-view (GF-1 WFV) imagery, have not been exploited. Therefore, it is necessary to develop a 

detection system applying deep FCNs to such data to provide more reliable and effective mapping and monitoring over 50 

wider areas, supporting evaluations of marine aquaculture areas at a national scale. 

However, there are several critical limitations for accurate mapping of marine aquaculture areas using deep FCN-based 

methods when applied to medium-resolution data. The first is the coexistence of multi-scale objects, such as the large sea 

areas as well as small aquaculture areas, making it difficult to focus FCN on small marine aquaculture objects. A common 

approach is to use inputs of different sizes from the original images (Eigen and Fergus, 2015; Liu et al., 2016; Zhao and Du, 55 

2016) to ensure that different object sizes are prominent in different parts of the FCN structure, but such methods take more 

time due to the repetitive sampling of the input imagery. Some researchers have generated multi-scale features using atrous 

convolution (Chen et al., 2018) or pooling operations at different scales (He et al., 2015; Zhao et al., 2017). However, such 

approaches may be limited to a certain range of receptive fields, as operations may be applied to invalid zones when pooling 

with a larger pooling size or atrous convolution with a higher atrous rate. The second critical limitation is that the final 60 

features may have a smaller size than the input imagery due to consecutive pooling operations in FCN, making it hard to 

identify land cover details. To solve this problem, researchers have used deconvolution operation (Noh et al., 2015) or fused 

features (Pinheiro et al., 2016; Ronneberger et al., 2015), but FCN may fail to identify relatively small marine aquaculture 

areas. Finally, some researchers have tried to refine the classification approach by including known boundaries (Bertasius et 
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al., 2016; Fu et al., 2019c; Marmanis et al., 2018), but such methods require additional classification steps to perform 65 

boundary extraction. 

In conclusion, although present methods have been successfully applied for dense classifications, the challenge of using 

them to accurately extract the marine aquaculture areas from medium resolution images at a national scale remains.To 

overcome these limitations, we proposed a novel framework for the large-scale marine aquaculture mapping. The main 

contributions of our study can be summarized as follows: 70 

(1) We present a unified CNN-based framework for national-scale marine aquaculture extraction. 

(2) A hierarchical cascade homogeneous neural network (HCHNet) model is proposed to learn discriminative and robust 

features.  

(3) We provide the first detailed national-scale marine aquaculture map with a spatial resolution of 16 m.  

The rest of the paper proceeds as follows. Section 2 briefly presents a description of the study area and different types of 75 

marine aquaculture. Section 3 introduces the input data and method to develop the proposed deep learning architectures, 

implementation details, and methodological choices. The results are presented in Section 4. Section 5 then discusses the 

methods and the limitations of using deep learning methods with medium resolution data, and finally, Section 6 concludes 

the paper. 

2 Study area 80 

The study area included all of the potential marine aquaculture areas in China’s coastal regions (Fig. 1). Due to the large 

amount of coastline and associated resources, many coastal marine aquaculture areas have rapidly developed in coastal 

regions. After a visual inspection on the HSR images from Google Earth, we empirically set the width of the study area 

along with the coastal line for detection as 30 km. According to the types of cultivated aquatic products, the marine 

aquaculture areas in China can be classified into marine animal culture (MAC) areas and marine plant culture (MPC) areas.  85 

MAC areas are cultured with marine animals, such as fish, crustaceans, shellfish, etc., in connected cages (Fig. 2k), or 

wooden rafts (Fig. 2d). Most of the cages and rafts are small (normally 3 × 3 or 5 × 5 m in size) and simple in form 

(normally square). The materials used to construct these cages are collected locally and include bamboo, wooden boards, 

plastic foam floats, and polyvinyl chloride or nylon nets. Because of the low investment costs and ease of construction, 

farmers typically make the cages themselves. As they cannot withstand waves generated by typhoons or sea currents, most of 90 

cages must be installed in inshore waters and sheltered sites (Fig. 2c, i). 

MPC areas are generally cultivated with seaweed, such as kelp, undaria, gracilaria, etc. Most of the seaweed is twisted 

around ropes about 2 m in length. The ropes are linked or tied to one (Fig. 2 f) or two floating lines (Fig. 2j), which are about 

60 m long and kept at the sea surface by buoys made from foam or plastic and anchored by lines tied to wooden pegs driven 

into the sea bottom. As most of the MPC are submerged in the sea water, the features of MPC in remotely sensed images are 95 

usually influenced by different environments (Fig. 2b, e, g, h , j), making it difficult for classification. 
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Figure 1: Location of the study area, the spatial distribution of labeled samples, and acquired GF-1 wide-field-of-view (WFV) 

image swaths in China. 
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Figure 2: Location of the Sampling points (a). And image examples of typical marine aquaculture areas on ground or from 

high spatial resolution (HSR) images: (b) (e) (g) (h) (i) Marine plant culture (MPC) areas from HSR images; (c) (i) Marine 

animal culture (MAC) areas from HSR images; (d) (k) photos of MAC areas on ground; (f) (j) photos of MPC areas on ground. 

3 Materials and methods 

Due to the large number of factors that could potentially affect classification performance, implementation of the FCN-based 105 

method at the national scale is a challenge. To reduce the influence of various land covers, we used the coastal line vector 

(Chuang et al., 2019) to exclude mainland areas after preprocessing all the input images (Fig. 3); then, we produced the 

marine aquaculture map by utilizing the HCHNet method, which was trained and tested on dataset validated by field survey 

or HSR images. 
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Figure 3: Schematic flowchart of the marine aquaculture mapping (ROI: region of interest. HCHNet: hierarchical cascade 

homogeneous neural network). 

3.1 Data and preprocessing 

In this study, images from the WFV sensors of GF-1 were selected as the primary data source. The GF-1 satellite, which is 

the first satellite of the China high-resolution earth observation satellite program, was launched by the China Aerospace 115 

Science and Technology Corporation in April 2013. This satellite carries four integrated WFV sensors, providing multi-

spectrum data with a two-day revisit cycle and a swath width of 800 km when the four sensors are combined. Each WFV 

sensor has four multi-spectral bands at 16 m spatial resolution: B1 (450–520 nm, blue), B2 (520–590 nm, green), B3 (630–

690 nm, red), and B4 (770–890 nm, near infrared). Compared with other frequently used medium resolution satellite 

imagery (e.g. Landsat, Sentinel), the wide coverage ability, high-frequency revisit time, and 16-m spatial resolution of the 120 

data significantly improves the capabilities for large-scale marine aquaculture areas observation and monitoring. A total of 

35 quantified GF-1 WFV images spanning the 2016–2019 period were finally selected from the China Centre for Resources 

Satellite Data and Application to cover the whole coastal region in China and to filter for cloud coverage (Fig. 1). The 

product filenames are listed in Table S1 of the Supplementary material. 

The images were projected into the UTM map projection, and atmospheric correction was undertaken using the FLAASH 125 

atmospheric correction model embedded in the ENVI software (v5.3.1). The “Maritime” model was set as Aerosol Model. 

And all the other parameters can be automatically set by using the extension tools (https://github.com/yyong-
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fu/ENVI_FLAASH_EasyToUse). A 30 km buffer was used to extract the images of the coastal areas, and the final set of 

clipped images consisted of four image bands at a spatial resolution of 16 m, used as inputs in the following parts. 

3.2 Hierarchical cascade homogeneous neural network 130 

As shown in Fig. 4, the proposed HCHNet is an FCN-based neural network, which can be trained and applied to a large area 

in an end-to-end way. Specifically, a homogeneous CNN was designed to extract high-dimensional features from the input 

images. A hierarchical cascade structure was followed to extract multi-scale contextual information gradually based on high-

dimensional features. The following subsections introduce three important components of the proposed HCHNet method, 

including (1) an encoder based on a homogeneous CNN; (2) hierarchical cascade structure; and (3) a loss function. 135 

 

Figure 4: Overview of the proposed HCHNet approach. 

3.2.1 Encoder based on a homogeneous CNN 

Traditional CNN uses down-sampling process to improve the local invariance, and the prediction results are usually only 

labels at the patch level. For semantic segmentation, FCN can enlarge the down-sampling feature maps to full-sized outputs 140 

by using interpolation (Badrinarayanan et al., 2017) or deconvolution (Noh et al., 2015). However, foreground objects, such 

as the marine aquaculture areas in our study, occupy a smaller portion of the GF-1 WFV images than in the natural images, 

making it hard for the FCN to recover the details missing from consecutive pooling operations via learning. 

As representations with high-resolution are important for the preservation of detailed information, the homogeneous CNN 

(Shi et al., 2018) was used as the encoder. One of the advantages of the homogeneous CNN is that it retains the full 145 

resolution of features by removing all of the pooling operations. As shown in Fig. 4, we built the encoder based on the 

widely used VGG-16 model. The VGG-16 is constructed of thirteen convolutional layers and followed by three fully 

connected layers. To preserve the spatial information and control the model size, the fully connected layer was removed and 
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convolutional kernels in the corresponding layers was reduced. As a result, the encoder can preserve full resolution features 

as the input image. 150 

3.2.2 Hierarchical cascade structure 

Although removing of  pooling operations can preserve more detailed information, it can also decrease the receptive field of 

the underlying neural network (Liu et al., 2018). In this case, with fixed and limited receptive fields, it may cause more 

misclassifications because of the loss of multi-scale contextual information. To solve this problem, the hierarchical cascade 

structure proposed in a previous study (Fu et al., 2019b) was used. This structure generally enlarges the receptive field and 155 

increases the sampling rate by creating a hierarchical cascade structure using the atrous convolution layers (as shown in the 

central part of Fig. 4). To reduce memory usage, batch normalization operations were used to replace the attention modules, 

allowing feature maps from different levels to be concatenated and easing the training process (Ioffe and Szegedy, 2015). 

Each atrous convolution layer in the proposed structure is formulated as follow: 

𝐹1 = 𝐶k,D1
[𝐹𝑜], (1) 

𝐹𝑙 = 𝐶k,D𝑙
[ℒ(𝐹𝑜○C 𝐹1○C 𝐹2○C 𝐹3○C …○C 𝐹𝑙−1)], 𝑙 > 1, (2) 

𝐷1 < 𝐷2 < 𝐷3 < ⋯ < 𝐷𝑙 , (3) 

where Fo denotes the feature maps from the output of our encoder network. 𝐶k,D𝑙
[∙] denotes an atrous convolution operation 160 

with the kernel size of K×K and dilation rate of d at the l-level. Fl (l = 1,… , n) denotes the features at the l-level in the 

structure. ‘○C ’ denotes the concatenation operation. ′ℒ(∙)′ denotes the batch normalization. Dl denotes the dilation rate value 

at the l-level. 

3.2.3 Loss function 

A significant problem during the training of FCN is the imbalance of classes. Such imbalances can make training inefficient, 165 

with relatively small marine aquaculture areas contributing little to the model training process. In contrast, much of the 

coastal area contains negative samples, such as the sea area, which may dominate the training process and decrease marine 

aquaculture identification accuracy. To address this class imbalance problem, Eigen and Fergus (2015) proposed reweighting 

each class based on a loss calculation. Following this idea, the weighted loss was used to deal with the class imbalance 

problem and to allow effective training of all examples. The loss was defined as: 170 

WL(p, q) = −∑𝛼𝑖𝑝(𝑥𝑖)

𝑛

𝑖=1

log(𝑞(𝑥𝑖)), (4) 

where p ∈ {0,1} represents the ground truth class, q ∈ [0,1] is the predictive probability from the model for the classes, and 

𝛼𝑖 represents the weight for each class. 
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3.3 Implementation details 

As shown in Fig. 4, the encoder was first applied, which is a homogenous CNN with 13 layers (Table 1), to produce high-

dimensional and abstract features with full resolution from the input imagery. And then, multi-scale contextual information 175 

was captured by using the hierarchical cascade structure with atrous rates of 3, 6, and 9. To regulate the model’s memory 

consumption and to prevent it growth too wide, 1 × 1 kernels were employed in the hierarchical cascade structure to keep all 

the channels of concatenated features fixed to 128, which have the same output feature maps of other atrous convolution 

layers. 

Table 1: Detailed configuration of the encoder in the proposed HCHNet method. (l, k×k×n, s) of configurations means there 180 

are l convolution layers with n convolution kernels and their size is k×k and stride is s. (h, w, c) of the output size means the 

output image or feature maps have a height of h, a width of w, and a channel of c. 

Layer name Layer type Configurations Output size 

Input Image data - 256 × 256 × 4 

B1 Convolution, ReLU 2, 3 × 3 × 32, 1 256 × 256 × 32 

B2 Convolution, ReLU 2, 3 × 3 × 64, 1 256 × 256 × 64 

B3 Convolution, ReLU 3, 3 × 3 × 128, 1 256 × 256 × 128 

B4 Convolution, ReLU 3, 3 × 3 × 256, 1 256 × 256 × 256 

B5 Convolution, ReLU 3, 3 × 3 × 256, 1 256 × 256 × 256 

As for the training and testing of HCHNet, we selected a total of 705 patches. Each one of them has non-overlapping 256 

× 256 pixels from raw images (Fig. 1). The ground truth maps for each patch were obtained by visual interpretation. From 

them, we randomly selected 80% to construct the training dataset. Considering the relatively small training dataset, data 185 

augmentation was applied to make the training process more effective and reduce overfitting: each patch was flipped in the 

horizontal and vertical direction and was rotated counterclockwise by 90. As a result, there were 4656 patches can be used 

for the training of HCHNet. 

In the experiment, we trained the HCHNet for 30 epochs using a batch size of 4 and the Adam optimizer. The Adam 

parameters were set as: β1 = 0.9, β2 = 0.999, and a learning rate of 0.0001. The HCHNet was built and implemented using 190 

the Keras (v2.2.4) on top of Tensorflow (v1.8.0). All of the experiments were undertaken on a computer with an graphics 

processing unit (GPU) of NVIDIA GeForce GTX 1070. 

3.4 Comparing methods and accuracy assessment 

3.4.1 Comparing methods 

To assess the effectiveness and advantage of our proposed method, we provided a comparison with four state-of-the-art 195 

FCN-based methods. We summarized the main information as follows: 

FCN-32s: the first FCN-based method proposed by Zhang et al. (2015) for semantic segmentation. It was constructed 

based on the VGG-16, in which the original fully connected layers are convolutionized. The model predicts classification 

results by upsampling the final feature maps 32 times directly. It does not use any structure to extract multi-scale feature 



10 

 

maps or get more detailed information from the shallow layers. Thus, it can be used as a baseline model for our proposed 200 

HCHNet methods. 

U-Net: a typical FCN-based model with encoder–decoder structure,which was proposed by Ronneberger et al. (2015) for 

semantic segmentation of medical images. The encoder has a similar structure to VGG-16. Different from the FCN 32s, U-

Net combined the feature maps in the decoder and mirrored feature maps in the encoder by using long-span connections to 

provide precise localization and high classification accuracy. 205 

Deeplab V2: Chen et al. (2018) proposed the Deeplab V2 (VGG-16 as the backbone) model for semantic segmentation, 

which used the atrous spatial pyramid pooling (ASPP) structure to capture multi-scale contextual information, and then used 

the fully connected conditional random fields (CRFs) as a post-processing tool to refine the prediction results. 

HCNet: HCNet was proposed by Fu et al. (2019b) to map the detailed spatial distribution of marine aquaculture from HSR 

images. This model has a variant of VGG-16 as an encoder, in which the stride and padding of the last two pooling layers are 210 

set as one for high- resolution feature maps. It combines the long-span connections, while also combining a hierarchical 

cascade structure. 

The above models are suitable for classification and comparison purposes, because nearly all of these methods are VGG-

16 based neural networks and employed typical structures for multi-scale information extraction. In the training phase, all of 

the above models, including the proposed HCHNet, were trained from scratch using the same patches and experimental 215 

settings as in the HCHNet method. 

3.4.2 Accuracy assessment and comparison 

To ensure representativeness of each class in the whole sample population for accuracy assessment, we followed the widely 

used random stratified sampling method (Padilla et al., 2014; Ramezan et al., 2019) to generated 4000 randomly selected 

points in the coastal zone. Based on the visual interpretation results from HSR images, several commonly-used accuracy 220 

statistics were calculated from the error matrix, such as producer accuracy (PA), user accuracy (UA), overall accuracy (OA), 

and the kappa coefficient. Meanwhile, we also conducted the area accuracy assessment (the percentage of overlapping areas 

in the ground truth) based on more than 120 randomly selected 256×256 patches, which accounts for nearly 20% of the total 

samples. 

After that, we compared the performances of our proposed method with four state-of-the-art FCN-based models. The 225 

accuracy comparison was undertaken using the test dataset. To provide a quantitative assessment between our proposed 

method and other methods, we calculated the widely-used F1 score (F1), precision, and recall (POWERS, 2011) as follows: 

Precision =
TP

TP + FP
. (5) 

Recall =
TP

TP + FN.
 (6) 
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F1 =
2 × Precision × Recall

Precision + Recall
. (7) 

where TP is the number of true positives, FP is the number of false positives, and FN is the number of false negatives. 

To compare different models’ discriminate ability for the marine aquaculture areas, these accuracy values were calculated for 

each class, and the mean F1 values of the MAC and MPC areas were used to assess the performance of the different methods. 230 

4 Results 

4.1 Spatial distribution of marine aquaculture areas in China 

 

Figure 5: Spatial distribution of China’s marine aquaculture and zoom views of imagery and prediction results for typical 

areas of (a), (b), (c), and (d). 235 
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The final classification results are shown in Fig. 5, with the corresponding Google Maps kmz file are published at 

https://doi.org/10.5281/zenodo.3881612 (Fu et al., 2020). The prediction results of typical areas (Fig. 5a–d) demonstrate the 

applicability and robustness of the HCHNet method to different marine aquaculture areas (i.e., MPC and MAC) over 

different study sites (i.e., from Liaoning to Guangxi provinces). 

  

(a) (b) 

  

(c) (d) 

Figure 6: The amount (area) and percentage of different types of marine aquaculture distribution in the coastal provinces of China. 240 

LN, SD, JS, ZJ, FJ, GX, and GD indicate Liaoning, Shandong, Jiangsu, Zhejiang, Fujian, Guangxi, and Guangdong provinces, 

respectively. 

According to the classification results, the total area of marine aquaculture in China is approximately 1103.67 km2. As can 

be seen from Fig. 6a, marine aquaculture is mainly distributed in the coastal areas of Fujian, Shandong, Liaoning, and 

Jiangsu provinces. Fujian and Shandong provinces have the largest areas of over 300 and 450 km2, respectively. Furthermore, 245 

nearly 100 km2 of marine aquaculture areas are found in Liaoning and Jiangsu provinces, respectively. Figure 6b shows that 

over 85% of the marine aquaculture areas in these four coastal areas are MPC. Fig. 6b also shows that the provinces in North 

China, such as Liaoning and Shandong, tend to have more MPC areas, with the provinces in South China having more MAC 

areas. 
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Figure 6c shows that most of the marine aquaculture areas in China are MPC areas, with an area of over 950 km2, six 250 

times larger than the MAC area. Guangxi and Fujian provinces have the largest areas of MAC, which account for more than 

70% of the total MAC areas in China (Fig. 6d). The largest areas of MPC are found in Fujian and Shandong provinces, 

accounting for more than 70% of the total MPC areas in China. 

4.2 Accuracy assessment of the marine aquaculture area map in China 

To quantitatively evaluate the classification performance of our proposed HCHNet method, we used the random stratified 255 

sampling method to perform the evaluation. A total of 4000 reference pixels were randomly selected, with 1000 pixels from 

the classification results for each classes. We then obtained the ground truth of each point by visual interpretation based on 

HSR images from Google Earth point-by-point. 

As shown in Table 2, the error matrix shows that the overall accuracy was 95.83%, and the kappa coefficient was 0.94. 

The land and sea areas get the highest classification accuracy with both of the PA and UA values greater than 91%. The 260 

MPC areas have relatively high PA and UA values of approximately 95%. Most of the misclassifications of MPC areas are 

related to the sea area. This is because the MPC areas are submerged in a complex sea environment, which can easily be 

affected by waves, seafloor topography, shadows of clouds, etc. The MAC areas have a relatively lower UA value of 89.1%, 

which may be caused by the relatively high complexity and small numbers of training patches of MAC areas. 

Table 2: Accuracy assessment of the classification results in China based on visual interpretation (pixels). (PA: producer 265 

accuracy. UA: user accuracy) 

Predicted class 
Ground truth   

Sea Land MPC MAC Sum UA 

Sea 981 12 5 2 1000 98.10% 

Land 5 987 3 5 1000 98.70% 

MPC 20 3 974 3 1000 97.40% 

MAC 31 76 2 891 1000 89.10% 

Sum 1037 1078 984 901   

PA 94.60% 91.56% 98.98% 98.89%   

Overall accuracy 95.83%      

Kappa coefficient 0.94      

After that, we employed the bootstrapping (Efron and Tibshirani, 1997), which is suitable for estimating classification 

accuracy (Duan et al., 2020; Lyons et al., 2018), to estimate the uncertainty level. We bootstrapped the overall accuracy from 

4000 independent reference points. The bootstrapping was performed for 1000 iterations, and the mean of the distribution 

used for the evaluation and the confidence intervals was set as 95% quantile. Eventually, we obtained the overall accuracy of 270 

95.8% (95.2%-96.4, 95% confidence interval). Meanwhile, we derived that the marine aquaculture area in China is 1103.67 

km2 (1096.8 km2-1110.6 km2, 95% confidence interval). 
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To further assess the validity of our proposed HCHNet method, we also evaluated the area accuracy (percentage of the 

over lapping area) based on the test dataset, including 120 randomly selected patches with a size of 256 × 256, which 

accounts for 20 % of the labeled samples. As shown in Table 3, the land and sea areas have the best classification accuracy 275 

with the area accuracy values greater than 93%. Meanwhile, the MPC and MAC also have a relatively high area accuracy 

values of 81.8% and 72.5%, respectively. 

Table 3. Area accuracy assessment of different classes based on randomly selected patches. 

Class Sea area Land area RCA CCA 

Area accuracy: 93.6% 98.4% 81.8% 72.5% 

4.3 Comparison with the state-of-the-art methods 

To assess the quality of the proposed HCHNet method, the performance was compared with the results from other state-of- 280 

the-art FCN-based methods, using the same test dataset. As can be seen from the prediction results in Fig. 7, FCN-32s and 

Deeplab V2 are unable to reliably identify marine aquaculture, especially the small and isolated marine aquaculture areas 

(Fig. 7b,d,e) with much coarser predicted results than other approaches. HCHNet identified more MPC and MAC areas than 

U-Net and HCNet (Fig. 7a,d,e), and also identified detailed information, even with the narrow channels among neighboring 

MPC areas (Fig. 7b,e). 285 

To provide a quantitative comparison, several commonly-used accuracy metrics were calculated from the test dataset for 

MAC and MPC areas. Table 4 shows that the FCN-32s and Deeplab V2 achieved similar accuracy values, with mean F1 

values less than 40%. The U-Net and HCNet achieved a similar classification performance, with the mean F1 values of 

approximately 70%. Compared with these state-of-the-art methods, our proposed HCHNet approach obtained the best 

classification performance, with the mean F1 value of 76.3%. Besides, the HCHNet also achieved a good balance between 290 

precision and recall values of MAC, identifying more accurate and existing MAC areas. The difference between them is less 

than 4% for the HCHNet, while the difference values of other methods are more than 28%. 

Table 4. Quantitative comparison of MPC and MAC areas between our method and other methods, where the best accuracy 

values are in bold (%). 

Methods 
MPC MAC Avg. 

Precision (%) Recall (%) F1 (%) Precision (%) Recall (%) F1 (%) mean F1 (%) 

FCN-32s 66.1 54.2 59.6 63.9 8.60 15.2 37.4 

DeeplabV2 70.4 40.9 51.7 53.7 5.71 10.3 31.0 

U-Net 83.8 77.6 80.6 81.8 53.1 64.4 72.5 

HCNet 77.3 79.0 78.1 74.0 40.0 51.9 65.0 

Ours-HCHNet 82.2 81.8 82.0 68.7 72.5 70.6 76.3 

 295 

 



15 

 

 
(a) (b) (c) (d) (e) 

Image 

     

Ground truth 

     

FCN 32s 

     

DeeplabV2 
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Figure 7: The classification results of MPC and MAC areas comparing the proposed HCHNet method with other approaches. 

The black  solid outlined areas indicate where HCHNet obtains better results. The dotted line shows same locations in other 

images. The purple, yellow, blue, and green areas in the classification maps represent the MPC, MAC, sea, and land areas, 

respectively. 300 
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5 Discussion 

5.1 Date and algorithms for the mapping of marine aquaculture areas in China 

This study developed a new algorithm to separate two typical marine aquaculture types based on the most advanced FCN- 

based models. The HCHNet was applied to medium spatial resolution images from China’s GF-1 WFV sensors to map the 

marine aquaculture areas in China. The input data and the algorithm used in our study were different from current state-of- 305 

the-art methods in many ways. 

First, China’s GF-1 WFV sensors provide a larger number of valid image scenes that are suitable for a wide range of 

analyses of marine aquaculture areas with high temporal resolution. MPC areas are only visible in several specific months 

due to phenological development stages. However, it is difficult to capture appropriate images that clearly represent the 

marine culture areas in these months from other similar satellites, such as Landsat, which are frequently influenced by clouds 310 

or waves. The high temporal resolution of the GF-1 WFV data (repeats each 2 days) means that it is possible to observe 

marine aquaculture areas with much greater frequencies than data from other sources. Additionally, the relatively wide swath 

of the data makes them highly suitable for such large-scale mapping in China. In addition, it is possible to directly obtain 

images with 16 m spatial resolution without any additional computations, such as pan-sharping operations, making the GF-1 

WFV data a reliable data source for large-scale marine aquaculture area observation and monitoring. 315 

Second, the proposed FCN-based HCHNet method improves the classification accuracy and efficiency. Much previous 

research has used OBIA approaches (Fu et al., 2019a; Wang et al., 2017) and other FCN-based methods (Fu et al., 2019b; 

Shi et al., 2018). The accuracy of the OBIA method depends on segmentation, which does not have universal methods for 

evaluating the selection of appropriate segmentation parameters (Blaschke, 2010). It also takes a large amount of time to 

undertake the segmentation process and to design effective features or rules for hard classifications (Zheng et al., 2017), 320 

making such approaches more difficult to be implemented operationally for national-scale studies. The proposed HCHNet 

achieved the best classification performance for three reasons: (1) all of the pooling operations were removed to avoid the  

shrinking of features, which helps improve the identification of smaller foreground objects; (2) the hierarchical structure was 

used to enlarge the receptive field to capture more contextual information, which is helpful for reducing the influence of 

local variance; (3) the weighted loss function was employed to solve the classes imbalance problem. 325 

Third, masking out coastal land areas that do not intersect with marine aquaculture areas was undertaken using publicly 

available data and provided a simple and straightforward methodological refinement to constrain the marine aquaculture 

mapping. This was important because of the scale of the classification over large coastal areas in China, which contain 

various land covers outside of the aims of this study. Previous studies have used a threshold value (Zheng et al., 2017) to 

mask out these land areas, but in this study, this was done directly. 330 
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5.2 Uncertainty and limitations of the marine aquaculture map in China 

Accurate mapping of marine aquaculture areas at a regional scale is challenging. There are several potential uncertainties in 

our methods for mapping marine aquaculture areas. First, because of the medium spatial resolution imagery and the 

relatively small size of MAC area (Fig. 8a), it is difficult to accurately identify the boundaries of small and isolated MAC 

areas (generally less than 10 pixels). Overestimation of MAC may occur, where the sea waters among several MAC areas 335 

are misclassified as MAC. The HCHNet failed to detect the small MPC areas (Fig. 8b) and harvested MPC areas (Fig. 8c), 

causing an issue of underestimation. As shown in Fig. 8d, some vegetation that is submerged or close to the sea waters may 

be misclassified as MPC areas, since these pixels share similar spectrum and shape features. 

 

Source (a) (b) (c) (d) 

GF-1 WFV 

    

Google Earth 

    

Google Earth 

(zoom view) 

    

Figure 8: Illustration of potential sources of error in the HCHNet algorithm: the boundaries of relatively small and separate 340 

MAC (a) or MPA (b) areas are difficult to accurately identify; (c) harvested MPC areas are also difficult to detect due to 

shallow waters and the disappeared dark tone; (d) vegetation located close to the water bodies may be misclassified as MPC 

areas. The first row highlights typical misclassified areas from GF-1 WFV data. The second row shows high spatial resolution 

images from Google Earth (© Google Maps). The third row is a zoom view of the Google Earth images in the second row (© 

Google Maps). The red and yellow areas indicate the classification results of MPC and MAC areas, respectively. 345 

There are also some limitations of the proposed HCHNet approach. First, the training process requires a large number of 

high-quality ground truth labels, which may require much manual work and professional interpretation experience. Therefore, 
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further research on accelerating the training or inference process through weak supervision (Lin et al., 2016; Pathak et al., 

2015) or a series of model compression methods (Li et al., 2017; Yim et al., 2017; X. Zhang et al., 2016) will be undertaken 

to enhance the applicability of the approach. Second, our proposed methods can only be used for the monitoring of marine 350 

aquaculture areas in surface water; it is unable to detect the submerged cages in some places (such as coastal area of 

Shandong province in northeastern China). 

6 Data availability 

The map of marine aquaculture in China’s coastal zone at 16 m spatial resolution have been published in the Google Maps 

kmz File Format with georeferencing information at https://doi.org/10.5281/zenodo.3881612 (Fu et al., 2020). 355 

7 Conclusions 

Marine aquaculture areas and the coastal environment they rely on are of significant ecological and socioeconomic value. 

Accurate and effective mapping approaches are imperative for the monitoring, planning, and sustainable development of 

marine and coastal resources across local, regional, and global scales. The increasing public availability of remote sensing 

data, ancillary data, and advanced computer vision algorithms, together provided an effective route for identifying marine 360 

aquaculture areas at a national scale. By using the powerful and inherent self-learning mechanism of deep learning, a new 

algorithm was carefully designed based on the FCN structure and applied to the GF-1 WFV data. The application of this 

algorithm produced a marine aquaculture area map of China with an overall classification accuracy >95% (95.2%-96.4, 95% 

confidence interval). The total area of China’s marine aquaculture areas was estimated to be approximately 1100 km2 

(1096.8 km2-1110.6 km2, 95% confidence interval), of which more than 85% is MPC areas. Most of the marine aquaculture 365 

areas are distributed along the coastal areas of Fujian, Shandong, Liaoning, and Jiangsu provinces. Guangxi and Fujian 

provinces have the largest areas of MAC, and Fujian and Shandong have the largest areas of MPC. The algorithm could be 

implemented at other regional and global scales with the collection of sufficient samples and the careful investigation of 

marine aquaculture phenology in these areas. 

Author Contributions 370 

Funding acquisition, J.D., W.Y and A.C.; methodology, Y.F.; supervision, J.D. and K.W.; writing—original draft, Y.F.; 

writing—review & editing, H.W., A.C., S.Y., Y.L., and W.W. 



19 

 

Acknowledgements 

This research was funded by the National Natural Science Foundation of China (71974171), Ministry of Science and 

Technology of China (2016YFC0503404), Natural Science Foundation of Zhejiang Province (LY18G030006), Science and 375 

Technology Department of Zhejiang Province (2018F10016), and the Natural Environment Research Council 

(NE/E523213/1). 

Competing interests 

The authors declare that they have no conflict of interest. 

References 380 

Badrinarayanan, V., Kendall, A. and Cipolla, R.: SegNet: A Deep Convolutional Encoder-Decoder Architecture for 

Image Segmentation., IEEE Trans. Pattern Anal. Mach. Intell., 39(12), 2481–2495, doi:10.1109/TPAMI.2016.2644615, 

2017. 

Bertasius, G., Shi, J. and Torresani, L.: Semantic Segmentation with Boundary Neural Fields, in 2016 IEEE Conference 

on Computer Vision and Pattern Recognition (CVPR), pp. 3602–3610, IEEE, Las Vegas, NV, USA., 2016. 385 

Blaschke, T.: Object based image analysis for remote sensing, ISPRS J. Photogramm. Remote Sens., 65(1), 2–16, 

doi:10.1016/j.isprsjprs.2009.06.004, 2010. 

Blaschke, T., Hay, G. J., Kelly, M., Lang, S., Hofmann, P., Addink, E., Queiroz Feitosa, R., van der Meer, F., van der 

Werff, H., van Coillie, F. and Tiede, D.: Geographic Object-Based Image Analysis - Towards a new paradigm, ISPRS J. 

Photogramm. Remote Sens., 87, 180–191, doi:10.1016/j.isprsjprs.2013.09.014, 2014. 390 

Burbridge, Hendrick, Roth and Rosenthal: Social and economic policy issues relevant to marine aquaculture, J. Appl. 

Ichthyol., 17, 194–206, doi:10.1046/j.1439-0426.2001.00316.x, 2001. 

Bureau of Fisheries of the Ministry of Agriculture: China Fishery Statistical Yearbook 2001, China Agriculture Press, 

Beijing, China., 2001. 

Bureau of Fisheries of the Ministry of Agriculture: China Fishery Statistical Yearbook 2020, China Agriculture Press, 395 

Beijing, China., 2020. 

Campbell, B. and Pauly, D.: Mariculture: A global analysis of production trends since 1950, Mar. Policy, 39, 94–100, 

doi:10.1016/j.marpol.2012.10.009, 2013. 

Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K. and Yuille, A. L.: DeepLab: Semantic Image Segmentation 

with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs., IEEE Trans. Pattern Anal. Mach. 400 

Intell., 40(4), 834–848, doi:10.1109/TPAMI.2017.2699184, 2018. 

Chuang, L., Ruixiang, S., Yinghua, Z., Yan, S., Junhua, M., Lizong, W., Wenbo, C., Doko, T., Lijun, C., Tingting, L., 



20 

 

Zui, T. and Yunqiang, Z.: Global Multiple Scale Shorelines Dataset Based on Google Earth Images (2015), , 

doi:10.3974/geodb.2019.04.13.V1, 2019. 

Cui, B., Fei, D., Shao, G., Lu, Y. and Chu, J.: Extracting Raft Aquaculture Areas from Remote Sensing Images via an 405 

Improved U-Net with a PSE Structure, Remote Sens., 11(17), 2053, doi:10.3390/rs11172053, 2019. 

Duan, Y., Li, X., Zhang, L., Chen, D., Liu, S. and Ji, H.: Mapping national-scale aquaculture ponds based on the 

Google Earth Engine in the Chinese coastal zone, Aquaculture, 520, 734666, doi:10.1016/j.aquaculture.2019.734666, 

2020. 

Efron, B. and Tibshirani, R.: Improvements on cross-validation: The .632+ bootstrap method, J. Am. Stat. Assoc., 410 

92(438), 548–560, doi:10.1080/01621459.1997.10474007, 1997. 

Eigen, D. and Fergus, R.: Predicting depth, surface normals and semantic labels with a common multi-scale 

convolutional architecture, in 2015 IEEE International Conference on Computer Vision (ICCV), pp. 2650–2658, IEEE, 

Santiago, Chile., 2015. 

Fan, J., Chu, J., Geng, J. and Zhang, F.: Floating raft aquaculture information automatic extraction based on high 415 

resolution SAR images, in 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 3898–

3901, IEEE, Milan, Italy., 2015. 

Fu, Y., Deng, J., Ye, Z., Gan, M., Wang, K., Wu, J., Yang, W. and Xiao, G.: Coastal aquaculture mapping from very 

high spatial resolution imagery by combining object-based neighbor features, Sustain., doi:10.3390/su11030637, 2019a. 

Fu, Y., Ye, Z., Deng, J., Zheng, X., Huang, Y., Yang, W., Wang, Y. and Wang, K.: Finer Resolution Mapping of 420 

Marine Aquaculture Areas Using WorldView-2 Imagery and a Hierarchical Cascade Convolutional Neural Network, 

Remote Sens., 11(14), 1678, doi:10.3390/rs11141678, 2019b. 

Fu, Y., Liu, K., Shen, Z., Deng, J., Gan, M., Liu, X., Lu, D. and Wang, K.: Mapping Impervious Surfaces in Town–

Rural Transition Belts Using China’s GF-2 Imagery and Object-Based Deep CNNs, Remote Sens., 11(3), 280, 

doi:10.3390/rs11030280, 2019c. 425 

Fu, Y., Deng, J., Wang H., Comber, A., Yang, W., Wu, W., You X., Lin Y. and Wang, K.: A new satellite-derived 

dataset for marine aquaculture in the China's coastal region, Data set, Zenodo, https://doi.org/10.5281/zenodo.3833225, 

2020. 

Galil, B. S.: Taking stock: Inventory of alien species in the Mediterranean sea, Biol. Invasions, 11(2), 359–372, 

doi:10.1007/s10530-008-9253-y, 2009. 430 

Gentry, R. R., Froehlich, H. E., Grimm, D., Kareiva, P., Parke, M., Rust, M., Gaines, S. D. and Halpern, B. S.: 

Mapping the global potential for marine aquaculture, Nat. Ecol. Evol., 1, 1317–1324, doi:10.1038/s41559-017-0257-9, 

2017. 

He, K., Zhang, X., Ren, S. and Sun, J.: Spatial Pyramid Pooling in Deep Convolutional Networks for Visual 

Recognition, IEEE Trans. Pattern Anal. Mach. Intell., 37(9), 1904–1916, doi:10.1109/TPAMI.2015.2389824, 2015. 435 

Ioffe, S. and Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift, 



21 

 

in Proceedings of the International Conference on Machine Learning, pp. 448–456, Lille, France., 2015. 

Li, H., Kadav, A., Durdanovic, I., Samet, H. and Graf, H. P.: Pruning Filters for Efficient ConvNets, in International 

Conference on Learning Representations, pp. 1–13, Toulon, France., 2017. 

Liang, Y., Cheng, X., Zhu, H., Shutes, B., Yan, B., Zhou, Q. and Yu, X.: Historical Evolution of Mariculture in China 440 

During Past 40 Years and Its Impacts on Eco-environment, Chinese Geogr. Sci., 28(3), 363–373, doi:10.1007/s11769-

018- 0940-z, 2018. 

Lin, D., Dai, J., Jia, J., He, K. and Sun, J.: ScribbleSup: Scribble-Supervised Convolutional Networks for Semantic 

Segmentation, in 2016 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3159–3167, IEEE, Las 

Vegas, NV, USA., 2016. 445 

Liu, Y., Zhong, Y., Fei, F. and Zhang, L.: Scene semantic classification based on random-scale stretched convolutional 

neural network for high-spatial resolution remote sensing imagery, in 2016 IEEE International Geoscience and Remote 

Sensing Symposium (IGARSS), pp. 763–766, IEEE, Beijing, China., 2016. 

Liu, Y., Yu, J. and Han, Y.: Understanding the effective receptive field in semantic image segmentation, Multimed. 

Tools Appl., 77(17), 22159–22171, doi:10.1007/s11042-018-5704-3, 2018. 450 

Lu, Y., Li, Q., Du, X., Wang, H. and Liu, J.: A Method of Coastal Aquaculture Area Automatic Extraction with High 

Spatial Resolution Images, Remote Sens. Technol. Appl., 30(3), 486–494, doi:10.11873/j.issn.1004-0323.2015.3.0486, 

2015. 

Lyons, M. B., Keith, D. A., Phinn, S. R., Mason, T. J. and Elith, J.: A comparison of resampling methods for remote 

sensing classification and accuracy assessment, Remote Sens. Environ., 208, 145–153, doi:10.1016/j.rse.2018.02.026, 455 

2018. 

Marmanis, D., Schindler, K., Wegner, J. D., Galliani, S., Datcu, M. and Stilla, U.: Classification with an edge: 

Improving semantic image segmentation with boundary detection, ISPRS J. Photogramm. Remote Sens., 135, 158–172, 

doi:10.1016/j.isprsjprs.2017.11.009, 2018. 

Noh, H., Hong, S. and Han, B.: Learning deconvolution network for semantic segmentation, in 2015 IEEE International 460 

Conference on Computer Vision (ICCV), pp. 1520–1528, IEEE, Santiago, Chile., 2015. 

Padilla, M., Stehman, S. V. and Chuvieco, E.: Validation of the 2008 MODIS-MCD45 global burned area product 

using stratified random sampling, Remote Sens. Environ., 144, 187–196, doi:10.1016/j.rse.2014.01.008, 2014. 

Pathak, D., Krahenbuhl, P. and Darrell, T.: Constrained convolutional neural networks for weakly supervised 

segmentation, in 2015 IEEE International Conference on Computer Vision, pp. 1796–1804, IEEE, Santiago, Chile., 465 

2015. 

Pinheiro, P. O., Lin, T. Y., Collobert, R. and Dollár, P.: Learning to refine object segments, in european conference on 

computer vision, pp. 75–91, Springer Nature, Amsterdam, The Netherlands., 2016. 

Porrello, S., Tomassetti, P., Manzueto, L., Finoia, M. G., Persia, E., Mercatali, I. and Stipa, P.: The influence of marine 

cages on the sediment chemistry in the Western Mediterranean Sea, Aquaculture, 249(1–4), 145–158, 470 



22 

 

doi:10.1016/j.aquaculture.2005.02.042, 2005. 

POWERS, D. M. W.: Evaluation: From precision, recall and f-measure to roc, informedness, markedness and 

correlation, J. Mach. Learn. Technol., 2(1), 37–63, doi:10.1.1.214.9232, 2011. 

Ramezan, C. A., Warner, T. A. and Maxwell, A. E.: Evaluation of sampling and cross-validation tuning strategies for 

regional-scale machine learning classification, Remote Sens., 11(2), 185, doi:10.3390/rs11020185, 2019. 475 

Rigos, G. and Katharios, P.: Pathological obstacles of newly-introduced fish species in Mediterranean mariculture: A 

review, Rev. Fish Biol. Fish., 20(1), 47–70, doi:10.1007/s11160-009-9120-7, 2010. 

Ronneberger, O., Fischer, P. and Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmentation, in 

Proceedings of the Medical Image Computing and Computer-Assisted Intervention (MICCAI 2015), pp. 234–241, 

Munich, Germany., 2015. 480 

Rubio-Portillo, E., Villamor, A., Fernandez-Gonzalez, V., Antón, J. and Sanchez -Jerez, P.: Exploring changes in 

bacterial communities to assess the influence of fish farming on marine sediments, Aquaculture, 506, 459–464, 

doi:10.1016/j.aquaculture.2019.03.051, 2019. 

Shi, T., Xu, Q., Zou, Z. and Shi, Z.: Automatic Raft Labeling for Remote Sensing Images via Dual-Scale Homogeneous 

Convolutional Neural Network, Remote Sens., 10, 1130, doi:10.3390/rs10071130, 2018. 485 

Tovar, A., Moreno, C., Mánuel -Vez, M. P. and García -Vargas, M.: Environmental impacts of intensive aquaculture in 

marine waters, Water Res., 34(1), 334–342, doi:10.1016/S0043-1354(99)00102-5, 2000. 

Wang, M., Cui, Q., Wang, J., Ming, D. and Lv, G.: Raft cultivation area extraction from high resolution remote sensing 

imagery by fusing multi-scale region-line primitive association features, ISPRS J. Photogramm. Remote Sens., 123(1), 

104– 113, doi:10.1016/j.isprsjprs.2016.10.008, 2017. 490 

Xiao, L., Haijun, H., Xiguang, Y. and Liwen, Y.: Method to extract raft-cultivation area based on SPOT image, Sci. 

Surv. Mapp., 38(2), 41–43, doi:10.16251/j.cnki.1009-2307.2013.02.033, 2013. 

Yim, J., Joo, D., Bae, J. and Kim, J.: A gift from knowledge distillation: Fast optimization, network minimization and 

transfer learning, in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1063–6919, 

IEEE, Honolulu, HI, USA., 2017. 495 

Zhang, L., Zhang, L. and Du, B.: Deep learning for remote sensing data: A technical tutorial on the state of the art, 

IEEE Geosci. Remote Sens. Mag., 4(2), 22–40, doi:10.1109/MGRS.2016.2540798, 2016a. 

Zhang, X., Zou, J., He, K. and Sun, J.: Accelerating Very Deep Convolutional Networks for Classification and 

Detection, IEEE Trans. Pattern Anal. Mach. Intell., 38(10), 1943–1955, doi:10.1109/TPAMI.2015.2502579, 2016b. 

Zhang, Y., Qiu, Z., Yao, T., Liu, D. and Mei, T.: Fully Convolutional Adaptation Networks for Semantic Segmentation, 500 

in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 3431–3440, 

Boston, MA, USA., 2015. 

Zhao, H., Shi, J., Qi, X., Wang, X. and Jia, J.: Pyramid scene parsing network, in 2017 IEEE Conference on Computer 

Vision and Pattern Recognition (CVPR), pp. 6230–6239, IEEE, Honolulu, HI, USA., 2017. 



23 

 

Zhao, W. and Du, S.: Learning multiscale and deep representations for classifying remotely sensed imagery, ISPRS J. 505 

Photogramm. Remote Sens., 113, 155–165, doi:10.1016/j.isprsjprs.2016.01.004, 2016. 

Zheng, Y., Wu, J., Wang, A. and Chen, J.: Object-and pixel-based classifications of macroalgae farming area with high 

spatial resolution imagery, Geocarto Int., 1–16, doi:10.1080/10106049.2017.1333531, 2017. 


