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Abstract 19 

In situ PM2.5 concentration observations have long been used as critical data sources in haze related 20 

studies. Due to the frequently occurred haze pollution events, China started to regularly monitor PM2.5 21 

concentration nationwide from the newly established air quality monitoring network since 2013. 22 

Nevertheless, the acquisition of these invaluable air quality samples is challenging given the absence 23 

of public available data download interface. In this study, we provided a homogenized in situ PM2.5 24 

concentration dataset that was created on the basis of hourly PM2.5 data retrieved from the China 25 

National Environmental Monitoring Center (CNEMC) via a web crawler between 2015 and 2019. 26 

Methods involving missing value imputation, change point detection, and bias adjustment were applied 27 

sequentially to deal with data gaps and inhomogeneities in raw PM2.5 observations. After excluding 28 

records with limited samples, a homogenized PM2.5 concentration dataset comprising of 1,309 five-29 

year long PM2.5 data series at a daily resolution was eventually compiled. This is the first thrust to 30 

homogenize in situ PM2.5 observations in China. The trend estimations derived from the homogenized 31 

dataset indicate a spatially homogeneous decreasing tendency of PM2.5 across China at a mean rate of 32 

about –7.6% per year from 2015 to 2019. In contrast to raw PM2.5 observations, the homogenized data 33 

record not only has a complete data integrity but is more consistent over space and time. This 34 

homogenized daily in situ PM2.5 concentration dataset is publicly accessible at 35 

https://doi.pangaea.de/10.1594/PANGAEA.917557 (Bai et al., 2020a), which can be applied as a 36 

promising dataset for PM2.5 related studies such as satellite-based PM2.5 mapping, human exposure 37 

risk assessment, and air quality management.  38 

Keywords: PM2.5; Data homogenization; Bias correction; In situ observation; Air quality indicators 39 
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1  Introduction 40 

A consistent PM2.5 concentration dataset is vital to the analysis of variations in PM2.5 loadings 41 

over space and time as well as in support of its risk analysis for air quality management, meteorological 42 

forecasting, and health-related exposure assessment (Lelieveld et al., 2015; Yin et al., 2020). Ground-43 

based monitoring network is commonly built to measure concentrations of air pollutants across the 44 

globe. Suffering from extensive and severe haze pollution events in the past few years (Guo et al., 45 

2014; Ding et al., 2016; Wang et al., 2016; Cai et al., 2017; Huang et al., 2018; Luan et al., 2018; Ning 46 

et al., 2018), China launched the operational ambient air quality sampling late in 2012 on the basis of 47 

the sparsely distributed aerosol observation network. To date, this in situ network has been enlarged 48 

to cover almost all major cities in China consisting of about 1500 monitoring stations. Concentrations 49 

of six key air pollutants including PM2.5, PM10, NO2, SO2, CO, and O3, are routinely measured on an 50 

hourly basis while the sampled data are released publicly online by the China National Environmental 51 

Monitoring Center (CNEMC) since 2013. 52 

Although in situ PM2.5 concentration data have played critical roles in improving our 53 

understanding of regional air quality variations and relevant influential factors (Yang D. et al., 2018; 54 

Yang Q. et al., 2019; Zheng et al., 2017), little concern was raised to the quality of such dataset itself 55 

(Bai et al., 2019a, 2019c; He and Huang, 2018; Zhang et al., 2019, 2018; Zou et al., 2016). Meanwhile, 56 

few studies provided a detailed description of the accuracy or bias level (uncertainty) of the observed 57 

PM2.5 data in recent years (Xin et al., 2015; You et al., 2016; Guo et al., 2017; Shen et al., 2018). The 58 

primary reason lies in the fact that neither quality assurance flag nor metadata information 59 

documenting the uncertainty other than data samplings were provided, making such quality assessment 60 

infeasible. 61 

The data quality, in particular the data homogeneity, is of critical importance to the exploration 62 

of the given dataset, especially for trend analysis (Bai et al., 2019c; C. Lin et al., 2018; Liu et al., 2018; 63 

Ma et al., 2015) and data integration (Bai et al., 2019b, 2020b; T. Li et al., 2017; Zhang et al., 2019) 64 

in which a homogeneous dataset is absolutely essential for downstream applications. Since two distinct 65 

kinds of instruments are used in the current air quality monitoring network to measure near surface 66 
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PM2.5 concentration in China (Bai et al., 2020), imperfect instrumental calibration and intermittent 67 

replacement of instruments may thus introduce obvious issue of discontinuity in PM2.5 observations. 68 

Such inhomogeneity may result in large uncertainty and even biased results in the subsequent analysis, 69 

especially in context-based and data driven PM2.5 concentration mapping (Bai et al., 2019b, 2019a; He 70 

and Huang, 2018; Wei et al., 2020), in which in situ PM2.5 concentration observations are used as the 71 

ground truth to characterize complex statistical relationships with other possible contributing factors. 72 

Given the absence of an open access and quality assured in situ PM2.5 concentration dataset in 73 

China, in this study, we attempted to generate a long-term coherent in situ PM2.5 concentration dataset 74 

for scientific community to use in future applications. A set of methods involving missing value 75 

imputation, change point detection, and bias adjustment were geared up seamlessly in a big data 76 

analytic manner toward the improvement of data integrity and the removal of possible discontinuities 77 

in raw PM2.5 observations. Such an analytical process is also referred to as data homogenization in 78 

data science or big data analytics (Cao and Yan, 2012; Wang et al., 2007). To our knowledge, this is 79 

the first thrust to homogenize a large-scale dataset of in situ PM2.5 concentration observations in China. 80 

In the following sections, we will introduce the data source as well as detailed big data analytics 81 

methods used for the creation of a homogenized PM2.5 concentration dataset. 82 

2  In situ PM2.5 concentration observations  83 

In this study, the hourly PM2.5 concentration data sampled from more than 1,600 state-controlled 84 

air quality monitoring stations across China between January 1, 2015 and December 31, 2019 were 85 

utilized. These PM2.5 concentration data were measured on an hourly basis using either beta-86 

attenuation monitors or Tapered Element Oscillating Microbalance (TEOM) analyzer. The ordinary 87 

instrumental calibration and quality control were performed according to the national ambient air 88 

quality standard of GB3095-2012 and HJ 618–2011 (Guo et al., 2009, 2017). Generally, TEOM can 89 

measure PM2.5 concentration within the range of 0–5,000 μg m-3 at a resolution of 0.1 μg m-3, with 90 

precisions of ±0.5 μg m-3 for 24-h average and ±1.5 μg m-3 for hourly average (Guo et al., 2017; Xin 91 

et al., 2012; Xin et al., 2015). The PM2.5 measurements were publicly released online by the China 92 
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National Environmental Monitoring Center (CNEMC) via the National Urban Air Quality Real-time 93 

Publishing Platform (http://106.37.208.233:20035/) within one hour after the direct sampling.  94 

Although the sampled data were publicly released, the acquisition of these valuable samplings is 95 

always challenging because no data download interface is provided to the public by the CNEMC 96 

website. Therefore, it is impossible for users to retrieve the historical observations from the given 97 

website. Rather, science community has to count on other measures such as an automatic web crawler 98 

for the retrieval of these online updated data samples from the data publishing platform. Nevertheless, 99 

the data records retrieved through such an approach suffered from significant data losses due to various 100 

unexpected reasons like power outage and internet interruption. Consequently, the data integrity 101 

becomes problematic and further treatments like gap filling are thus essential to accounting for such 102 

defects at least. 103 

Moreover, hourly PM2.5 concentration observations that were sampled at five embassies of United 104 

States in China from January 2015 to June 2017 were used as an independent dataset to evaluate the 105 

fidelity of the homogenized PM2.5 concentration dataset. Geographic locations of these five embassies 106 

have been shown in Table S1. These PM2.5 data were measured independently under the U.S. 107 

department of state air quality monitoring program and can be acquired from the 108 

http://www.stateair.net/. To be in line with the homogenized dataset, the hourly PM2.5 concentration 109 

data were aggregated to the daily level by averaging the 24-h observations sampled on each date while 110 

daily averages were calculated only for days with more than 12 valid samples of a possible 24-h. 111 

3  Homogenization of in situ PM2.5 concentration data 112 

For the creation of a long-term coherent in situ PM2.5 concentration dataset, it is necessary to 113 

create an analytical framework of the big data analytics which seamlessly gears up several methods as 114 

a whole for the purposes of missing value imputation, change point detection, and discontinuity 115 

adjustment, given the presence of data gaps and possible discontinuity in raw PM2.5 observations . 116 

Figure 1 shows a schematic illustration of the general workflow toward generating a homogenized 117 

PM2.5 concentration dataset and the whole process can be outlined as follows. 118 
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(1) It is necessary to perform essential quality control and gap filling on raw PM2.5 observations so 119 

that the bias arising from large outliers and resampling errors due to incomplete observations can 120 

be reduced. 121 

 122 

Figure 1. A schematic flowchart for the creation of a homogenized daily in situ PM2.5 concentration 123 

dataset. 124 

  125 

(2) Short-term time series due to sites relocation were temporally merged to attain a long-term record. 126 

Then, PM2.5 concentration time series with a temporal coverage of less than four-year during the 127 

study period were excluded. Subsequently, the quality-controlled observations of hourly in situ 128 

PM2.5 concentrations were resampled to daily and monthly scales to initiate the homogeneity test.  129 

(3) Reference time series were constructed for each long-term PM2.5 concentration record on the basis 130 

of data measured from adjacent monitoring sites. For PM2.5 concentration records failing to 131 

produce a reliable reference series, no homogeneity test was performed for such datum due to the 132 

absence of essential reference data series.  133 
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(4) The discontinuity identified in each daily long-term PM2.5 concentration time series were corrected 134 

using the quantile-matching (QM) adjustment method according to the change points detected in 135 

each monthly data record with the support of reference series.  136 

(5) Post-processing measures such as nonpositive value correction and another round gap filling were 137 

further performed on the homogenized records to attain a quality-assured in situ PM2.5 138 

concentration dataset. More details of each analytic method were described in the following 139 

subsections. 140 

3.1 Quality control 141 

Given the possibility of the presence of abnormal samplings, it is necessary to remove the outliers 142 

detected in raw PM2.5 observations to reduce the false alarm rate in change point detection during the 143 

subsequent homogeneity test. Specifically, hourly PM2.5 concentration data values meeting one of the 144 

following criteria were excluded: 1) out of the range between 1 and 1,000 μg m-3, and 2) more than 145 

three standard deviations from the median of observations within a 15-h time window. Both criteria 146 

aimed to remove large outliers which could result in biased daily averages. Overall, 3.46% of PM2.5 147 

samples were treated as outliers and were then excluded accordingly (treated as missing values). 148 

3.2  Gap filling and resampling 149 

As indicated in our recent study (Bai et al., 2020b), missing value related data gaps become a 150 

big obstacle in the exploitation of raw PM2.5 observations that were retrieved from the CNEMC website 151 

as PM2.5 observations on 40% of sampling days suffered from data losses due to unexpected reasons. 152 

To reduce the impact of missing value related sampling (from hourly to daily) bias on the subsequent 153 

homogeneity test, we filled those missing value related data gaps that were found in each 24-h PM2.5 154 

observations by applying the DCCEOF method developed very recently (Bai et al., 2020b). Such a 155 

gap filling effort enabled us to improve the percentage of days without missingness during the study 156 

time period from 58.8% to 97.3%. 157 

In spite of the improvement of data integrity after gap filling, the resultant PM2.5 time series 158 

remain temporally discontinuous due to the emergence of several long-lasting (e.g., more than 24 159 

consecutive hours) data missing episodes. Also, the hourly time series are still too noisy to be handled 160 
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by the current homogeneity test software due to the significant variation in PM2.5 concentration over 161 

space and time. In such context, the hourly PM2.5 concentration records were aggregated to daily and 162 

monthly scales to initiate the homogeneity test. Moreover, the monthly series was primarily used to 163 

detect the possible change points while the daily series was adjusted in reference to the corresponding 164 

reference series based on the change points detected from the monthly series. To avoid large 165 

resampling bias, monthly averages were calculated only for those with at least 20 valid daily means of 166 

a possible month at each site. The frequency of missing values in each month was also calculated as a 167 

possible metadata information to further examine the detected change points. 168 

3.3  Homogeneity test 169 

A commonly used homogeneity test software, the RHtestsV4 package, was hereby applied to 170 

detect the possible discontinuities in raw PM2.5 data series that were retrieved from the CNEMC 171 

website. As suggested in Wang and Feng (2013), RHtestsV4 is capable of detecting and adjusting 172 

change points in a data series with first-order autoregressive errors. Given the low false alarm rate via 173 

change point detection and the capability to adjust discontinuity, the RHtests software packages have 174 

been widely used to homogenize climate data records such as temperature (Cao et al., 2013; Xu et al., 175 

2013; Zhao et al., 2014), precipitation (Wang et al., 2010a; Nie et al., 2019), and other datum like 176 

boundary layer height (Wang and Wang, 2016). Two typical methods, namely the PMTred and 177 

PMFred, were embedded in a recursive testing algorithm in RHtestsV4, with the former relying on the 178 

penalized maximal t test (PMT) while the latter based on the penalized maximal F test (PMF) ( Wang 179 

et al., 2007; Wang, 2008a). With the incorporation of these empirical penalty functions (Wang, 2008a, 180 

b), the problem of uneven distribution of false alarm rate is largely alleviated with the aid of RHtestsV4. 181 

In contrast to the PMF which works without a reference series, the PMT uses a reference series to 182 

detect change points and the results are thus far more reliable (Wang, 2008a, b). The way to generate 183 

reference series will be described in the next subsection. Also, the RHtestsV4 is capable of making 184 

essential adjustments to the detected discontinuities by taking advantage of the QM adjustment method 185 

(Wang and Feng, 2013).  186 
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Here the PMT method rather than the PMF was used to detect change points given the higher 187 

confidence of the former method in change point detection due to the involvement of reference series 188 

(Wang and Feng, 2013). To ensure the reliability of detected discontinuities, change point was defined 189 

and confirmed at a nominal 99% confidence level, and the data records were then declared to be 190 

homogeneous once no change point was identified. Subsequently, the QM adjustment method was 191 

applied to correct PM2.5 observations with evident drifts with the support of reference series, namely, 192 

to homogenize PM2.5 concentration data series. To avoid large sampling uncertainty in the estimate of 193 

QM adjustments, the Mq (i.e., the number of categories on which the empirical cumulative distribution 194 

function is estimated) was automatically determined by the software to ensure adequate samples for 195 

the estimation of mean difference and probability density function. Meanwhile, the number to 196 

determine the base segment (i.e., Iadj) was set to zero so that datum in other segments were all adjusted 197 

to the segment with the longest temporal coverage. 198 

3.3.1  Construction of reference series 199 

A good reference series is vital to the relative homogeneity test because it helps pinpoint possible 200 

discontinuities in each base series (the data series to be tested) and determines the performance of the 201 

subsequent data adjustment. In general, reference series can be organized by using one specific record 202 

either measured from one adjacent station or aggregated from multiple observations (Cao and Yan, 203 

2012; Peterson and Easterling, 1994; Xu et al., 2013; Wang et al., 2016). The most straightforward 204 

way is to use the neighboring data series either measured at the nearest station or series that are highly 205 

correlated with the base series (Peterson and Easterling, 1994; Cao and Yan, 2012; Wang and Feng, 206 

2013). Such methods, however, fail to take the representativeness of the neighboring series into 207 

account since the neighboring series may also suffer from discontinuities.  208 

To avoid the misuse of inhomogeneous PM2.5 concentration records as reference series, a 209 

complex yet robust data integration scheme was hereby developed to screen, organize, and construct 210 

reference series for each in situ PM2.5 concentration data series. For each daily PM2.5 concentration 211 

data series, all the neighboring series were firstly identified from its surroundings with a lag distance 212 

as large as of 50 km. No reference series was constructed once there was no neighboring series 213 

available within the given radius and in turn the homogeneity of the given record was not examined. 214 
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Otherwise, both correlation coefficient (R) and coefficient of variation (CV) were calculated between 215 

the given base series and each selected neighboring series to assess their representativeness (Shi et al., 216 

2018; Rodriguez et al., 2019). Then, neighboring series with R greater than 0.8 and CV smaller then 217 

0.2 were selected as candidates to construct the reference series for a given base series.  218 

The reference series was then constructed by averaging both the base and the candidate series at 219 

each observation time if there was only one candidate series. For the situation with more than one 220 

candidate series, the empirical orthogonal function (EOF) method was applied to these multiple 221 

candidates and then the original fields were reconstructed with the leading principal components when 222 

the accumulated variance explained by them exceeded 80%. This was expected to reduce the possible 223 

impacts of abnormal observations and short-term discontinuities in the neighboring candidates on the 224 

resultant reference series. Subsequently, the reference series were organized and constructed through 225 

a spatial weighting scheme as each reconstructed record was assigned a spatially resolved weight 226 

according to their relative distances to the base series over space. Here we applied a Gaussian kernel 227 

function to estimate the weight of each neighboring observation that can influenced the base series in 228 

space and such a scheme has been proven to be effective in assessing the spatial autocorrelation of 229 

PM2.5 concentration (Bai et al., 2019b). Mathematically, the reference series can be constructed from 230 

the following equations: 231 

𝑃𝑀!"# =$
𝑤$ ∗ 𝑃𝑀%&'(

$

∑𝑤$

)

$*+

																																																												(1) 232 

𝑤 = exp/
−𝑑,

2ℎ,4																																																																								
(2) 233 

where 𝑃𝑀!"#  and 𝑃𝑀%&'(  denote the reference and candidate series, respectively. N is the total 234 

number of candidate series while 𝑤 is the spatially resolved weight assigned to each candidate series 235 

and d is the spatial lag distance between the base and the corresponding candidate series. h is a spatial 236 

correlation length that is used to modulate the relative influence of a distant observation on the data 237 

measured at the base site. In this study, an empirical value of 50 km was used according to the estimated 238 

semi-variogram results (Bai et al., 2019b).  239 

For any record having neighboring series within 50 km but poorly correlated (R<0.8 or CV>0.2) 240 

to all its neighbors (meaning the base series differ from the neighbors), the reference series were 241 
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created by following the same procedures as those detailed above by taking the nearest neighbor as the 242 

base series. For the situation with only one candidate series available, it is logical to compare both the 243 

base and the candidate series against another data to check which one should be corrected. In this study, 244 

the PM2.5 time series estimated from the MERRA-2 aerosol reanalysis in the same way as described 245 

in He et al. (2019) was used. The one with higher correlation to this external PM2.5 time series was 246 

then used as the reference (deemed as homogeneous) while the other was considered as the base series 247 

(i.e., implies to be adjusted). Such an inclusive scheme empowered us to screen and construct reference 248 

series for 1,262 long-term PM2.5 concentration records across the board. In contrast, no reference series 249 

were constructed for 47 isolated records.  250 

3.3.2  Post-processing measures 251 

Several post-processing measures were applied to the adjusted data records to further improve 252 

the quality of this dataset. Since nonpositive values may appear in the QM adjusted data series if the 253 

original values are close to zero (Wang et al., 2010b), nonpositive values were replaced with the 254 

smallest valid PM2.5 concentration amount measured at each monitoring site during the study period. 255 

Subsequently, the data gaps in the adjusted datum due to long-lasting missingness were filled by first 256 

calibrating the corresponding data values in the reference series measured on the same date (if available) 257 

to the homogenized datum level. The modified quantile-quantile adjustment (MQQA) method 258 

proposed in Bai et al. (2016) was hereby used given its adaptive data adjustment principle. For the 259 

predicted values, such MQQA scheme rendered higher accuracy than those interpolated from data 260 

values measured on adjacent dates because PM2.5 concentration is spatially more correlated than in the 261 

temporal domain (Bai et al., 2019b). For the remaining data gaps, those missing values were 262 

reconstructed in a similar procedure as the DCCEOF method (Bai et al., 2020b). Note that the matrix 263 

used for EOF analysis in the context of DCCEOF was constructed using the neighboring data series 264 

measured within a radius of 100 km with a temporal lag of 30 days at most. Finally, all data values 265 

were rounded to integer to be in line with the original PM2.5 concentration observations. 266 

4  Results and discussion 267 

4.1  Descriptive statistics 268 
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Prior to data homogenization, we first need to exclude those short-term and less reliable records. 269 

Figure 2 shows the temporal variations of the number of air quality monitoring stations deployed in 270 

China during 2015–2019 as well as the spatial patterns of the frequency of missing values for each 271 

long-term PM2.5 concentration record. It shows that a total of about 1,630 air quality monitoring 272 

stations had been deployed in China before 2020. Nevertheless, about 1,500 sites routinely providing 273 

PM2.5 observations were kept up in operation since 2015 (Figure 2a). By referring to the data continuity 274 

of PM2.5 observations, it is noticeable that 100 monitoring stations had been withdrawn before 2020 275 

because no PM2.5 observations were provided for more than three consecutive months since the release 276 

of their last valid data (Figure 2b). Meanwhile, 42 pairs of stations were found to be relocated since 277 

new stations at nearby started to provide PM2.5 observations soon after the suspension of the original 278 

site. This is also corroborated by the temporal lags of PM2.5 observations between original and newly 279 

deployed stations as many of them were found to have a time lag less than 15-day. Also, 94 sites were 280 

found with limited data records due to short temporal coverage (newly deployed). Finally, 1,353 long-281 

term PM2.5 concentration records were identified with their first valid data released earlier than 2015. 282 

In regard to the frequency of missing value, it is indicative that data gaps were obvious in these long-283 

term PM2.5 concentration records, with about 6% of hourly data values missed on ~47% of sampling 284 

days on average. This also motivates us to first fill such data gaps to improve the data integrity.     285 

  286 

Figure 2. Spatial and temporal patterns of air quality monitoring stations in China. (a) Temporal 287 

variations of the total number of air quality monitoring stations in China. (b) Spatial patterns of the 288 

frequency of missing value in each long-term hourly PM2.5 concentration record measured from 289 
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January 1, 2015 to December 31, 2019. Stations were categorized into distinct groups according to 290 

their data length and temporal continuity. The frequency of missingness was calculated as the ratio of 291 

the number of missing values in each PM2.5 concentration record to the total number of samplings from 292 

the time of the release of the first valid data to December 31, 2019. 293 

4.2  Homogenization of in situ PM2.5 data 294 

A total of 1,395 long-term (with five-year observations) PM2.5 concentration records were 295 

acquired with the inclusion of 42 temporally merged data series at those relocated stations. After 296 

removing those suffering from more than three consecutive months data losses, 1,309 long-term yet 297 

consecutive PM2.5 concentration records were obtained. The homogeneity test was finally performed 298 

on 1,262 records due to the availability of reference series. Figure 3 shows the spatial patterns of the 299 

total number of change points detected in 1,262 monthly PM2.5 concentration records. The ubiquitous 300 

change points imply that there is an obvious inhomogeneity in this in situ PM2.5 concentration dataset. 301 

About 57% (719 out of 1,262) of records failed to pass the homogeneity test due to the presence of 302 

change points. Given the overall good agreement between the base and reference series (refer to Figure 303 

S1 for the correlation coefficient and root mean square error between them), it indicted that these PM2.5 304 

concentration records did suffer from evident discontinuities. Meanwhile, the vast majority (~80%) of 305 

the inhomogeneous PM2.5 records suffered from no more than two change points (Figure 3), suggesting 306 

the mean shift could be the primary reason for the detected discontinuities. Moreover, 20 records were 307 

even found suffering from no less than five significant change points, indicating phenomenal 308 

discontinuities in these records. 309 

Figure 4 shows the temporal variability of the number of change points detected in monthly PM2.5 310 

concentration records. As indicated, change points were detected in every specific month of the year 311 

from May 2015 to July 2019, especially in late spring (e.g., May), in which change pointes were more 312 

likely to be detected (Figure 4b). This is attributable to the seasonality of PM2.5 loading in China as 313 

high PM2.5 concentrations are always observed in the winter whereas low values in the summer. 314 

Consequently, change points were more likely to be detected during the chronic transition periods (e.g., 315 

spring to summer). In addition, it is noteworthy that a large volume of change points was detected in 316 

early 2015, indicating the existence of phenomenal discontinuities during this period (Figure 4a). After 317 
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checking the temporal variations of PM2.5 concentration, findings indicate that PM2.5 observations 318 

varied with large deviations among each other during this period. This could be linked to the imperfect 319 

instrument calibration or irregular operation in the early stage. 320 

 321 
Figure 3. Spatial patterns of the total number of change points detected in each long-term yet 322 

consecutive PM2.5 concentration records. Gray dot indicates there was no change point detected in this 323 

PM2.5 concentration record.  324 

 325 

Figure 4. Temporal variations of the number of change points detected in (a) each specific month from 326 

2015 to 2019 and (b) each month of the year. National mean PM2.5 concentration in each month of the 327 

year was calculated based on PM2.5 data measured at our selected 1309 sites during 2015–2019. 328 

 329 

Due to the lack of essential metadata information, it is a challenge for us to verify each detected 330 

change point through a manual inspection. Rather, the variations in the base and reference series was 331 

explored to identify the possible reasons for the detected discontinuities. Figure 5 presents three typical 332 
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inhomogeneous PM2.5 time series with different number of change points. The inter-comparisons 333 

between the base and reference series indicate an overall good agreement among them in terms of the 334 

long-term variation tendency. However, obvious drifts were still phenomenal in their residual series, 335 

which were even more evident by referring to their mean-shift series. For example, both the residual 336 

and mean-shift series shown in Figure 5d clearly illustrate a typical discontinuity as there was an 337 

obvious departure of mean PM2.5 concentration level during the period of January to October 2016. In 338 

contrast, the Figures. 5b and 5e present another typical inhomogeneity as statistically significant 339 

decreasing trend was found in the residual series with monthly PM2.5 concentration deviations 340 

decreased from nearly 5 μg m-3 to –4 μg m-3 step wise. Such inhomogeneity would undoubtedly result 341 

large bias in the trend estimations over that region. The bottom panel (Figures. 5c and 5f) shows the 342 

change points detected in the merged PM2.5 time series at a pair of relocated sites. It is noteworthy that 343 

the detected discontinuity should be largely ascribed to the inconsistency emerged in the first data 344 

series rather than due to the site relocation. 345 

 346 

Figure 5. Temporal variations of three typical inhomogeneous PM2.5 concentration records during 347 

2015–2019. (Top) Significant deviations during a short time period, (middle) long-term chronic drifts 348 

with statistically significant varying trend detected in the residual series, (bottom) discontinuity due to 349 

site relocation. The left panel compares the base series with the reference and the neighboring series 350 
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used to compose the reference while the right panel shows the residual series between the base and 351 

reference series as well as their mean-shift series.  352 

 353 

Figure 6 shows the estimated linear trends for PM2.5 residual series that failed to pass the 354 

homogeneity test. Approximately 89% of the residual series were found exhibiting statistically 355 

significant linear trends, suggesting the vital importance to homogenize such PM2.5 concentration 356 

records as the trend estimations at these stations could be prone to large bias if no essential adjustments 357 

are performed. Further comparisons of the percentage of data gaps between homogeneous and 358 

inhomogeneous records (Figure S2) as well as the spatial distance between the base and the reference 359 

series (Figure S3) indicate that both the frequency of data gaps and spatial distance have no obvious 360 

impact on the change point detection. In other words, the detected change points have no linkage with 361 

neither missing value frequency nor spatial distance between the base and neighboring series, 362 

suggesting a high confidence level of the identified discontinuities in these PM2.5 concentration records. 363 

 364 

Figure 6. Trend estimations for the residual PM2.5 concentration data series that failed to pass the 365 

homogeneity test during 2015–2019. The solid circles indicate trends are statistically significant at the 366 

95% confidence level. 367 

 368 

Given the emergence of obvious discontinuities in more than half of the selected long-term PM2.5 369 

concentration records, the QM adjustment method was applied to correct the discontinuities detected 370 
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in each PM2.5 concentration record. Figure 7 shows an example of homogenization on PM2.5 371 

concentration data series that suffered from evident drifts from its reference (large drifts shown in 372 

Figure 5d). The inter-comparisons of PM2.5 concentration data between the base and reference series 373 

indicate that the PM2.5 concentration level was obviously underestimated by the raw observations 374 

compared with the reference, especially during the middle of 2016 (Figure 7a). Such evident drifts 375 

were remarkably diminished after the homogenization (Figure 7b), which shows a good agreement of 376 

the mean PM2.5 concentration level between the homogenized datum and the reference series. 377 

 378 

Figure 7. Comparison of daily mean PM2.5 concentration before and after homogenization at one 379 

monitoring site in Guangdong province (24.69°N/113.60°E) from November 2015 to December 2016 380 

(large drifts shown in Figure 5d). 381 

 382 

4.3  Validation with independent dataset 383 

In this study, PM2.5 observations that were collected independently by five consulates of United 384 

States distributed in five major Chinese cities between 2015 and 2017 were used to evaluate the 385 

consistency of the derived PM2.5 concentration records. Figure 8 shows site-specific comparisons of 386 

daily PM2.5 concentration between homogenized and observed data in Beijing, Shanghai, Chengdu, 387 

Shenyang, and Guangzhou, respectively. It is indicative that the homogenized daily PM2.5 388 

concentration data were in good agreement with PM2.5 observations sampled at US consulates, with a 389 
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correlation coefficient value of >0.95 and root mean square error of <15 μg m-3. Given the 390 

independent measurement of PM2.5 concentration data at US consulates, we argue that the 391 

homogenized PM2.5 records are accurate enough in characterizing the variability of PM2.5 loadings in 392 

China. It is also noteworthy that the homogenized PM2.5 records are temporally complete whereas 393 

missing values are found in PM2.5 observations sampled at US consulates.   394 

 395 
Figure 8. Comparisons of the homogenized PM2.5 concentration (red) against PM2.5 observations (blue) 396 

measured at five consulates of United States in China from January 2015 to June 2017. (a–e) Temporal 397 

variations of daily PM2.5 concentration and (f–j) the associated scatter plots. 398 

 399 

 4.4  PM2.5 trends estimated from the homogenized dataset 400 
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A homogenized data record is essential to trend analysis. Figure 9 presents the annual mean 401 

concentration of PM2.5 across China between 2015 and 2019. As shown, there is a phenomenal 402 

reduction of PM2.5 concentration in China in the past five years, especially over North China Plain (the 403 

region outlined by a red rectangle shown in Figure 9f) where the annual mean PM2.5 concentration 404 

decreased from more than 100 μg m-3 in 2015 to about 60 μg m-3 in 2019. Such an evident decrease in 405 

PM2.5 concentration clearly demonstrates the effectiveness of clean air actions that were implemented 406 

in recent years. 407 

 408 

Figure 9. Annual mean PM2.5 concentration derived from the homogenized daily PM2.5 concentration 409 

dataset at 1,309 monitoring stations in China between 2015 and 2019. The North China Plain was 410 

outlined by the red rectangle in panel (f). 411 

 412 

To evaluate the benefits of data homogenization on PM2.5 trend estimations, PM2.5 trends 413 

estimated from both the raw observations and homogenized dataset were compared. Prior to trend 414 

analysis, each PM2.5 concentration record was standardized in reference to its mean annual cycle (i.e., 415 

PM2.5 concentration on the same date of the year between 2015 and 2019 was averaged) to reduce the 416 

impacts of seasonality and spatial variations. Figure 10 shows a site-specific comparison of PM2.5 trend 417 

estimations derived from raw observations and homogenized datasets during 2015–2019. In general, 418 
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trend estimations from both datasets showed an evident decreasing tendency of PM2.5 concentration 419 

across China during the study period. Nevertheless, noteworthy is that trend estimations derived from 420 

raw PM2.5 observations suffered from obvious inhomogeneity over space, being evidenced by 421 

antiphase (positive versus negative) trend estimations even at adjacent stations, especially for those 422 

with positive trends whereas all adjacent neighbors exhibited negative trends. These antiphase trend 423 

estimations over a small region also corroborate the existence of obvious inhomogeneity in raw 424 

observed in situ PM2.5 concentration dataset. 425 

 426 

Figure 10. Linear trends for (a) raw observed and (b) homogenized daily PM2.5 concentration data 427 

during 2015–2019. Solid circles indicate trends are statistically significant at the 95% confidence 428 

interval. Numbers shown in the lower left of each panel indicate the overall trend derived from (top) 429 

all available stations and (bottom) the stations with significant trends at the 95% confidence interval 430 

while the numbers shown in brackets are the corresponding number of data records. Each PM2.5 time 431 

series were standardized by its mean annual cycle during the study period to account for spatial 432 

variations of PM2.5. 433 

 434 

The dotted antiphase trend estimations were substantially diminished after data homogenization, 435 

resulting in a spatially much more homogeneous decreasing tendency of PM2.5 concentration across 436 

China (Figure 10b). It is indicative that after data homogenization the national mean PM2.5 trend was 437 

enlarged from -7.01% a-1 to -7.25% a-1 while the uncertainty was reduced from 0.25% a-1 to 0.22% a-438 
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1. Also, the number of PM2.5 records with statistically significant trends was increased from 1,208 to 439 

1,248. These results collectively justify the effectiveness of the QM adjustment method in mitigating 440 

data inhomogeneity in PM2.5 observations, which also highlight the critical importance of data 441 

homogenization in accounting for discontinuities in this in situ PM2.5 concentration dataset. Overall, 442 

our results indicate an obvious decreasing trend of PM2.5 concentration in China in the past five years 443 

at a mean rate of –7.25±0.22% a-1. Table 1 further compares the regional mean PM2.5 trend between 444 

2015 and 2019. Compared with other regions of interest (ROIs) such as Pearl River Delta (PRD, refer 445 

to Figure S4 for the location) and northern part of Xinjiang (XJ), PM2.5 loading over Beijing-Tianjin-446 

Hebei (BTH), Heilongjiang-Jilin-Liaoning (HJL), and Central China (CC) decreased even more 447 

prominently.  448 

    449 

Table 1. Regional mean trend for PM2.5 concentrations over eight major ROIs in China during 2015–450 

2019 before and after the data homogenization. Uncertainty in trend estimations were characterized at 451 

the 95% confidence interval. Locations of these ROIs can be found in Figure S4.  452 

ROI Raw observation (% a-1) Homogenized record (% a-1) 

Beijing-Tianjin-Hebei (BTH) -9.03 ± 0.78 -9.19 ± 0.69 

Yangtze River Delta (YRD) -7.07 ± 0.54 -7.33 ± 0.40 

Central China (CC) -8.47 ± 0.51 -8.58 ± 0.41 

Sichuan Basin (SCB) -7.39 ± 1.02 -7.84 ± 0.89 

Pearl River Delta (PRD) -4.30 ± 0.51 -4.60 ± 0.39 

Heilongjiang-Jilin-Liaoning (HJL) -8.89 ± 0.73 -9.15 ± 0.63 

Shaanxi-Gansu-Ningxia (SGN) -4.85 ± 0.95 -5.30 ± 0.69 

North Xinjiang (XJ) -4.61 ± 1.96 -4.67 ± 1.60 

 453 

To further assess the improvement of the data quality after homogenization, the daily in situ 454 

PM2.5 concentration records at a 1° × 1° grid cell resolution were grouped across China. In each grid 455 

cell, the regional mean correlation coefficient among PM2.5 concentration time series and standard 456 

deviation of PM2.5 trends were estimated from the raw observed and homogenized daily PM2.5 457 
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concentration time series, respectively. Their relative differences were then calculated to show the 458 

improvements of data homogeneity within each grid cell. As shown in Figure 11, the correlation among 459 

PM2.5 concentration datum was enhanced ubiquitously after homogenization, especially in the 460 

southwest of China (e.g., Yunnan) where obvious inhomogeneity was observed in the raw PM2.5 461 

observations (Figure 10a). Meanwhile, the standard deviation of PM2.5 trends within each grid cell was 462 

also substantially reduced, even by more than two folds in the magnitude (Figure 11b). These results 463 

also demonstrate the critical need to homogenize the observed PM2.5 concentration data from a large-464 

scale monitoring network to reduce temporal inconsistency and spatial inhomogeneity that were not 465 

even noticed before. 466 

 467 
Figure 11. Spatial distributions of (a) the improvements of mean correlation coefficient among PM2.5 468 

concentration records before and after homogenization at a 1° × 1° grid cell resolution across China, 469 

and (b) their corresponding standard deviations of PM2.5 trends. 470 

 471 

5  Data availability 472 

The raw observations of in situ PM2.5 concentration data in China used in this study were 473 

retrieved via a web crawler from the National Urban Air Quality Real-time Publishing Platform 474 

(http://106.37.208.233:20035) between 2014 and 2019. Given the deployment of many new 475 

monitoring sites in 2014, we decided to generate a coherent PM2.5 concentration dataset starting from 476 

2015 to include as many PM2.5 data records as possible. The homogenized daily in situ PM2.5 477 
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concentration dataset developed in this study is publicly accessible at 478 

https://doi.pangaea.de/10.1594/PANGAEA.917557 (Bai et al., 2020a). To provide a long-term 479 

coherent PM2.5 concentration dataset to the scientific community, the homogenized PM2.5 480 

concentration dataset will be regularly updated for each half a year by including new PM2.5 481 

observations that are retrieved during the past six months. 482 

6  Conclusions 483 

In this study, a homogenized yet temporally complete daily in situ PM2.5 concentration dataset 484 

was generated based on the discrete hourly PM2.5 concentration records that were retrieved from the 485 

China National Urban Air Quality Real-time Publishing Platform using a web crawler during the 486 

period of 2015–2019. To create such a long-term coherent dataset, a set of analytic methods were 487 

geared up seamlessly and applied sequentially to the retrieved raw PM2.5 concentration records, 488 

involving quality control, gap filling, data merging, change point detection, and bias correction. This 489 

new dataset would help scientific community better elucidate the temporal and spatial variability of 490 

haze pollution in China in the recent years, which is expected to improve the understanding of 491 

underlying causes.    492 

The raw PM2.5 concentration records were found to be suffering from phenomenal 493 

inhomogeneity caused by data inconsistency and temporal discontinuity as well as the relocation and 494 

repeal of a bunch of monitoring stations. More than half of the long-term PM2.5 concentration records 495 

were found failing to pass the homogeneity test due to the presence of considerable change points. 496 

Further investigation confirms that large yet short-term mean shifts and chronic drifts are two primary 497 

reasons for the detected discontinuities in raw PM2.5 concentration records.  498 

Based on the homogenized dataset, the long-term trends of PM2.5 concentration in China were 499 

estimated. In contrast to the inhomogeneous trend estimations that were derived from raw PM2.5 500 

concentration records, the homogenized dataset yielded a spatially much more homogeneous 501 

decreasing tendency of PM2.5 concentration across China at a mean rate of about –7.3% per year. Such 502 

an improvement of homogeneity was also evidenced by the enhanced correlation and reduced standard 503 

deviation of trend estimations between homogenized PM2.5 concentration time series in the 504 
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surroundings. These results clearly demonstrate the benefits of data homogenization on the 505 

improvement of the quality of this PM2.5 concentration dataset as evident discontinuities have been 506 

removed after homogenization. Overall, our results clearly indicate the presence of discontinuities in 507 

the raw in situ PM2.5 concentration observations that were measured in China, and the homogenization 508 

actions are essential to the acquisition of a long-term coherent PM2.5 concentration dataset that can be 509 

used to advance PM2.5 pollution related policy making and public health risk assessment.  510 
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