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Response to Reviewer #1 comments 1 

 2 

The PM2.5 data has been widely used for human exposure risk assessment and air quality management. 3 

However, as the author said, given the absence of an open access and quality assured in situ PM2.5 4 

concentration dataset in China, it is urgent need to open a stable and reliable PM2.5 data access method. 5 

This paper attempted to generate a long-term coherent in situ PM2.5 concentration dataset for scientific 6 

community to use in future applications. Methods involving missing value reconstruction, change 7 

point detection, and bias adjustment were applied sequentially to deal with data gaps and 8 

inhomogeneities in raw PM2.5 observations. It is a nice and well-organized paper with a clear focus. 9 

In my opinion, there are some minor problems need to be solved before publishing. My biggest concern 10 

is whether the data set will continue to be updated. I suggest that the author add a statement in the 11 

conclusion, stating the update frequency and download link of the homogenized PM2.5 datasets. In 12 

the change points detection, how long is the breakpoint interval? 13 

Reply: We are grateful to the anonymous referee for his or her valuable comments on our manuscript. 14 

All of these comments and concerns raised by the referee have been explicitly considered and 15 

incorporated into this revision. For clarity, we have listed the referee's comments in black plain font, 16 

followed by our point-by-point replies in green plain font.  17 

 18 

1)“My biggest concern is whether the data set will continue to be updated” 19 

Reply: The homogenized in situ PM2.5 concentration dataset will be regularly updated for every six-20 

month based on our newly retrieved data records, and the extended dataset is also freely accessible per 21 

the user’s request. A full dataset will be then published online on PANGAEA once we have one-year’s 22 

new measurements.  23 

 24 

2) “I suggest that the author add a statement in the conclusion, stating the update frequency and 25 

download link of the homogenized PM2.5 datasets” 26 
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Reply: Per your suggestion, we will clearly state the updating frequency of the dataset in our revised 27 

manuscript.  28 

 29 

3) “In the change points detection, how long is the breakpoint interval?” 30 

Reply: The PMT method was hereby applied to detect possible break points in each PM2.5 31 

concentration time series in reference to the generated reference series. As the default configuration in 32 

the RHtests v4 software package, a length scale of 5 was defined as the minimum interval between 33 

two possible change points, which means that no change point would be detected from the 5 adjacent 34 

observations. More technique details of PMT method can be found in the following reference, which 35 

has been also cited in section 3. 36 

 37 

References: 38 

Wang, X.L. Accounting for Autocorrelation in Detecting Mean Shifts in Climate Data Series Using 39 

the Penalized Maximal t or F Test. J. Appl. Meteorol. Climatol. 2008, 47, 2423–2444, 40 

doi:10.1175/2008JAMC1741.1. 41 
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Response to Reviewer #2 comments 42 

 43 

This paper developed a homogenized daily in situ PM2.5 concentration dataset from national air 44 

quality monitoring network in China. The topic has important climate implications in evaluating air 45 

quality variations at an interannual scale. The paper is well organized and written. The findings of this 46 

study are worth of publication in the journal after minor revision as following:  47 

Reply: We are grateful to the anonymous referee for his or her valuable comments on our manuscript. 48 

All of these comments and concerns raised by the referee have been explicitly considered and 49 

incorporated into this revision. For clarity, we have listed the referee's comments in black plain font, 50 

followed by our point-by-point replies in green plain font.  51 

 52 

1. The reference station is very import for the adjustment. So the regional representativeness for the 53 

selected stations should be clarified.  54 

Reply: Thanks for your insightful comment. Yes, the reference series is vital to the detection and 55 

adjustment of possible inhomogeneities in each data series. In this study, we have developed a complex 56 

data integration scheme to derive reference series rather than using one data series sampled at an 57 

adjacent station. The representativeness of each selected data series was also taken into account which 58 

was even used as the first screening criteria (R>0.8 and CV<0.2). More details related to the 59 

construction of reference series can be found in section 3.3.1 in the revised manuscript.   60 

 61 

2. The scales of most maps are missing.  62 

Reply: Thanks for pointing it out. We have added the scale bar in each map in the revised 63 

manuscript. 64 

 65 

3. Why you only chose these three stations for analysis in figure 5?  66 

Reply: Figure 5 illustrated three typical inhomogeneities that frequently emerged in PM2.5 time series, 67 

including abrupt changes during a short time period, a long-term chronic drift, and site relocation 68 

related drifts. So, the reason to choose these three stations is mainly due to the variation pattern of 69 
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inhomogeneities detected in these PM2.5 time series is informative and thus can be used as a good 70 

illustration. We have clarified this in the revised manuscript to ease the readership. 71 

 72 

4. Suggest that regional trend in the Northwest and Northeast China should be added in table 1.  73 

Reply: Per your suggestion, we have added the regional trend of PM2.5 concentration in these two 74 

regions in Table 1 in the revised manuscript. 75 

 76 

5. What is your standard on the daily average from hourly data? Similar with China National 77 

Environmental Monitoring Center? 78 

Reply: Actually, there is no data gap in our derived PM2.5 dataset since we had filled the missing 79 

values in raw PM2.5 time series using the gap filling method that we developed recently. In other words, 80 

PM2.5 daily averages were calculated based on 24-h observations rather than only using available 81 

observations within each 24-h. Such a treatment significantly reduced the bias level in PM2.5 daily 82 

averages given no missing values. More details related to the gap filling method can be found in section 83 

3.2. Missing value only presented for days with less than four observations during each 24-h of the 84 

day. 85 

  86 
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Abstract 105 

In situ PM2.5 concentration observations have long been used as critical data sources in haze related 106 

studies. Due to the frequently occurred haze pollution events, China started to regularly monitor PM2.5 107 

concentration nationwide from the newly established air quality monitoring network since 2013. 108 

Nevertheless, the acquisition of these invaluable air quality samples is challenging given the absence 109 

of public available data download interface. In this study, we provided a homogenized in situ PM2.5 110 

concentration dataset that was created on the basis of hourly PM2.5 data retrieved from the China 111 

National Environmental Monitoring Center (CNEMC) via a web crawler between 2015 and 2019. 112 

Methods involving missing value imputation, change point detection, and bias adjustment were applied 113 

sequentially to deal with data gaps and inhomogeneities in raw PM2.5 observations. After excluding 114 

records with limited samples, a homogenized PM2.5 concentration dataset comprising of 1,309 five-115 

year long PM2.5 data series at a daily resolution was eventually compiled. This is the first thrust to 116 

homogenize in situ PM2.5 observations in China. The trend estimations derived from the homogenized 117 

dataset indicate a spatially homogeneous decreasing tendency of PM2.5 across China at a mean rate of 118 

about –7.6% per year from 2015 to 2019. In contrast to raw PM2.5 observations, the homogenized data 119 

record not only has a complete data integrity but is more consistent over space and time. This 120 

homogenized daily in situ PM2.5 concentration dataset is publicly accessible at 121 

https://doi.pangaea.de/10.1594/PANGAEA.917557 (Bai et al., 2020a), which can be applied as a 122 

promising dataset for PM2.5 related studies such as satellite-based PM2.5 mapping, human exposure 123 

risk assessment, and air quality management.  124 

Keywords: PM2.5; Data homogenization; Bias correction; In situ observation; Air quality indicators 125 
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1  Introduction 136 

A consistent PM2.5 concentration dataset is vital to the analysis of variations in PM2.5 loadings 137 

over space and time as well as in support of its risk analysis for air quality management, meteorological 138 

forecasting, and health-related exposure assessment (Lelieveld et al., 2015; Yin et al., 2020). Ground-139 

based monitoring network is commonly built to measure concentrations of air pollutants across the 140 

globe. Suffering from extensive and severe haze pollution events in the past few years (Guo et al., 141 

2014; Ding et al., 2016; Wang et al., 2016; Cai et al., 2017; Huang et al., 2018; Luan et al., 2018; Ning 142 

et al., 2018), China launched the operational ambient air quality sampling late in 2012 on the basis of 143 

the sparsely distributed aerosol observation network. To date, this in situ network has been enlarged 144 

to cover almost all major cities in China consisting of about 1500 monitoring stations. Concentrations 145 

of six key air pollutants including PM2.5, PM10, NO2, SO2, CO, and O3, are routinely measured on an 146 

hourly basis while the sampled data are released publicly online by the China National Environmental 147 

Monitoring Center (CNEMC) since 2013. 148 

Although in situ PM2.5 concentration data have played critical roles in improving our 149 

understanding of regional air quality variations and relevant influential factors (Yang D. et al., 2018; 150 

Yang Q. et al., 2019; Zheng et al., 2017), little concern was raised to the quality of such dataset itself 151 

(Bai et al., 2019a, 2019c; He and Huang, 2018; Zhang et al., 2019, 2018; Zou et al., 2016). Meanwhile, 152 

few studies provided a detailed description of the accuracy or bias level (uncertainty) of the observed 153 

PM2.5 data in recent years (Xin et al., 2015; You et al., 2016; Guo et al., 2017; Shen et al., 2018). The 154 

primary reason lies in the fact that neither quality assurance flag nor metadata information 155 

documenting the uncertainty other than data samplings were provided, making such quality assessment 156 

infeasible. 157 

The data quality, in particular the data homogeneity, is of critical importance to the exploration 158 

of the given dataset, especially for trend analysis (Bai et al., 2019c; C. Lin et al., 2018; Liu et al., 2018; 159 

Ma et al., 2015) and data integration (Bai et al., 2019b, 2020b; T. Li et al., 2017; Zhang et al., 2019) 160 

in which a homogeneous dataset is absolutely essential for downstream applications. Since two distinct 161 

kinds of instruments are used in the current air quality monitoring network to measure near surface 162 

Deleted: in due course 163 
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PM2.5 concentration in China (Bai et al., 2020), imperfect instrumental calibration and intermittent 164 

replacement of instruments may thus introduce obvious issue of discontinuity in PM2.5 observations. 165 

Such inhomogeneity may result in large uncertainty and even biased results in the subsequent analysis, 166 

especially in context-based and data driven PM2.5 concentration mapping (Bai et al., 2019b, 2019a; He 167 

and Huang, 2018; Wei et al., 2020), in which in situ PM2.5 concentration observations are used as the 168 

ground truth to characterize complex statistical relationships with other possible contributing factors. 169 

Given the absence of an open access and quality assured in situ PM2.5 concentration dataset in 170 

China, in this study, we attempted to generate a long-term coherent in situ PM2.5 concentration dataset 171 

for scientific community to use in future applications. A set of methods involving missing value 172 

imputation, change point detection, and bias adjustment were geared up seamlessly in a big data 173 

analytic manner toward the improvement of data integrity and the removal of possible discontinuities 174 

in raw PM2.5 observations. Such an analytical process is also referred to as data homogenization in 175 

data science or big data analytics (Cao and Yan, 2012; Wang et al., 2007). To our knowledge, this is 176 

the first thrust to homogenize a large-scale dataset of in situ PM2.5 concentration observations in China. 177 

In the following sections, we will introduce the data source as well as detailed big data analytics 178 

methods used for the creation of a homogenized PM2.5 concentration dataset. 179 

2  In situ PM2.5 concentration observations  180 

In this study, the hourly PM2.5 concentration data sampled from more than 1,600 state-controlled 181 

air quality monitoring stations across China between January 1, 2015 and December 31, 2019 were 182 

utilized. These PM2.5 concentration data were measured on an hourly basis using either beta-183 

attenuation monitors or Tapered Element Oscillating Microbalance (TEOM) analyzer. The ordinary 184 

instrumental calibration and quality control were performed according to the national ambient air 185 

quality standard of GB3095-2012 and HJ 618–2011 (Guo et al., 2009, 2017). Generally, TEOM can 186 

measure PM2.5 concentration within the range of 0–5,000 μg m-3 at a resolution of 0.1 μg m-3, with 187 

precisions of ±0.5 μg m-3 for 24-h average and ±1.5 μg m-3 for hourly average (Guo et al., 2017; Xin 188 

et al., 2012; Xin et al., 2015). The PM2.5 measurements were publicly released online by the China 189 
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National Environmental Monitoring Center (CNEMC) via the National Urban Air Quality Real-time 206 

Publishing Platform (http://106.37.208.233:20035/) within one hour after the direct sampling.  207 

Although the sampled data were publicly released, the acquisition of these valuable samplings is 208 

always challenging because no data download interface is provided to the public by the CNEMC 209 

website. Therefore, it is impossible for users to retrieve the historical observations from the given 210 

website. Rather, science community has to count on other measures such as an automatic web crawler 211 

for the retrieval of these online updated data samples from the data publishing platform. Nevertheless, 212 

the data records retrieved through such an approach suffered from significant data losses due to various 213 

unexpected reasons like power outage and internet interruption. Consequently, the data integrity 214 

becomes problematic and further treatments like gap filling are thus essential to accounting for such 215 

defects at least. 216 

Moreover, hourly PM2.5 concentration observations that were sampled at five embassies of United 217 

States in China from January 2015 to June 2017 were used as an independent dataset to evaluate the 218 

fidelity of the homogenized PM2.5 concentration dataset. Geographic locations of these five embassies 219 

have been shown in Table S1. These PM2.5 data were measured independently under the U.S. 220 

department of state air quality monitoring program and can be acquired from the 221 

http://www.stateair.net/. To be in line with the homogenized dataset, the hourly PM2.5 concentration 222 

data were aggregated to the daily level by averaging the 24-h observations sampled on each date while 223 

daily averages were calculated only for days with more than 12 valid samples of a possible 24-h. 224 

3  Homogenization of in situ PM2.5 concentration data 225 

For the creation of a long-term coherent in situ PM2.5 concentration dataset, it is necessary to 226 

create an analytical framework of the big data analytics which seamlessly gears up several methods as 227 

a whole for the purposes of missing value imputation, change point detection, and discontinuity 228 

adjustment, given the presence of data gaps and possible discontinuity in raw PM2.5 observations . 229 

Figure 1 shows a schematic illustration of the general workflow toward generating a homogenized 230 

PM2.5 concentration dataset and the whole process can be outlined as follows. 231 
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(1) It is necessary to perform essential quality control and gap filling on raw PM2.5 observations so 242 

that the bias arising from large outliers and resampling errors due to incomplete observations can 243 

be reduced. 244 

 245 

Figure 1. A schematic flowchart for the creation of a homogenized daily in situ PM2.5 concentration 246 

dataset. 247 

  248 

(2) Short-term time series due to sites relocation were temporally merged to attain a long-term record. 249 

Then, PM2.5 concentration time series with a temporal coverage of less than four-year during the 250 

study period were excluded. Subsequently, the quality-controlled observations of hourly in situ 251 

PM2.5 concentrations were resampled to daily and monthly scales to initiate the homogeneity test.  252 

(3) Reference time series were constructed for each long-term PM2.5 concentration record on the basis 253 

of data measured from adjacent monitoring sites. For PM2.5 concentration records failing to 254 

produce a reliable reference series, no homogeneity test was performed for such datum due to the 255 

absence of essential reference data series.  256 
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(4) The discontinuity identified in each daily long-term PM2.5 concentration time series were corrected 263 

using the quantile-matching (QM) adjustment method according to the change points detected in 264 

each monthly data record with the support of reference series.  265 

(5) Post-processing measures such as nonpositive value correction and another round gap filling were 266 

further performed on the homogenized records to attain a quality-assured in situ PM2.5 267 

concentration dataset. More details of each analytic method were described in the following 268 

subsections. 269 

3.1 Quality control 270 

Given the possibility of the presence of abnormal samplings, it is necessary to remove the outliers 271 

detected in raw PM2.5 observations to reduce the false alarm rate in change point detection during the 272 

subsequent homogeneity test. Specifically, hourly PM2.5 concentration data values meeting one of the 273 

following criteria were excluded: 1) out of the range between 1 and 1,000 μg m-3, and 2) more than 274 

three standard deviations from the median of observations within a 15-h time window. Both criteria 275 

aimed to remove large outliers which could result in biased daily averages. Overall, 3.46% of PM2.5 276 

samples were treated as outliers and were then excluded accordingly (treated as missing values). 277 

3.2  Gap filling and resampling 278 

As indicated in our recent study (Bai et al., 2020b), missing value related data gaps become a 279 

big obstacle in the exploitation of raw PM2.5 observations that were retrieved from the CNEMC website 280 

as PM2.5 observations on 40% of sampling days suffered from data losses due to unexpected reasons. 281 

To reduce the impact of missing value related sampling (from hourly to daily) bias on the subsequent 282 

homogeneity test, we filled those missing value related data gaps that were found in each 24-h PM2.5 283 

observations by applying the DCCEOF method developed very recently (Bai et al., 2020b). Such a 284 

gap filling effort enabled us to improve the percentage of days without missingness during the study 285 

time period from 58.8% to 97.3%. 286 

In spite of the improvement of data integrity after gap filling, the resultant PM2.5 time series 287 

remain temporally discontinuous due to the emergence of several long-lasting (e.g., more than 24 288 

consecutive hours) data missing episodes. Also, the hourly time series are still too noisy to be handled 289 
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by the current homogeneity test software due to the significant variation in PM2.5 concentration over 304 

space and time. In such context, the hourly PM2.5 concentration records were aggregated to daily and 305 

monthly scales to initiate the homogeneity test. Moreover, the monthly series was primarily used to 306 

detect the possible change points while the daily series was adjusted in reference to the corresponding 307 

reference series based on the change points detected from the monthly series. To avoid large 308 

resampling bias, monthly averages were calculated only for those with at least 20 valid daily means of 309 

a possible month at each site. The frequency of missing values in each month was also calculated as a 310 

possible metadata information to further examine the detected change points. 311 

3.3  Homogeneity test 312 

A commonly used homogeneity test software, the RHtestsV4 package, was hereby applied to 313 

detect the possible discontinuities in raw PM2.5 data series that were retrieved from the CNEMC 314 

website. As suggested in Wang and Feng (2013), RHtestsV4 is capable of detecting and adjusting 315 

change points in a data series with first-order autoregressive errors. Given the low false alarm rate via 316 

change point detection and the capability to adjust discontinuity, the RHtests software packages have 317 

been widely used to homogenize climate data records such as temperature (Cao et al., 2013; Xu et al., 318 

2013; Zhao et al., 2014), precipitation (Wang et al., 2010a; Nie et al., 2019), and other datum like 319 

boundary layer height (Wang and Wang, 2016). Two typical methods, namely the PMTred and 320 

PMFred, were embedded in a recursive testing algorithm in RHtestsV4, with the former relying on the 321 

penalized maximal t test (PMT) while the latter based on the penalized maximal F test (PMF) ( Wang 322 

et al., 2007; Wang, 2008a). With the incorporation of these empirical penalty functions (Wang, 2008a, 323 

b), the problem of uneven distribution of false alarm rate is largely alleviated with the aid of RHtestsV4. 324 

In contrast to the PMF which works without a reference series, the PMT uses a reference series to 325 

detect change points and the results are thus far more reliable (Wang, 2008a, b). The way to generate 326 

reference series will be described in the next subsection. Also, the RHtestsV4 is capable of making 327 

essential adjustments to the detected discontinuities by taking advantage of the QM adjustment method 328 

(Wang and Feng, 2013).  329 

Deleted: available 330 

Deleted: variability 331 

Deleted: of332 

Deleted: resampled 333 



 
 

13 

Here the PMT method rather than the PMF was used to detect change points given the higher 334 

confidence of the former method in change point detection due to the involvement of reference series 335 

(Wang and Feng, 2013). To ensure the reliability of detected discontinuities, change point was defined 336 

and confirmed at a nominal 99% confidence level, and the data records were then declared to be 337 

homogeneous once no change point was identified. Subsequently, the QM adjustment method was 338 

applied to correct PM2.5 observations with evident drifts with the support of reference series, namely, 339 

to homogenize PM2.5 concentration data series. To avoid large sampling uncertainty in the estimate of 340 

QM adjustments, the Mq (i.e., the number of categories on which the empirical cumulative distribution 341 

function is estimated) was automatically determined by the software to ensure adequate samples for 342 

the estimation of mean difference and probability density function. Meanwhile, the number to 343 

determine the base segment (i.e., Iadj) was set to zero so that datum in other segments were all adjusted 344 

to the segment with the longest temporal coverage. 345 

3.3.1  Construction of reference series 346 

A good reference series is vital to the relative homogeneity test because it helps pinpoint possible 347 

discontinuities in each base series (the data series to be tested) and determines the performance of the 348 

subsequent data adjustment. In general, reference series can be organized by using one specific record 349 

either measured from one adjacent station or aggregated from multiple observations (Cao and Yan, 350 

2012; Peterson and Easterling, 1994; Xu et al., 2013; Wang et al., 2016). The most straightforward 351 

way is to use the neighboring data series either measured at the nearest station or series that are highly 352 

correlated with the base series (Peterson and Easterling, 1994; Cao and Yan, 2012; Wang and Feng, 353 

2013). Such methods, however, fail to take the representativeness of the neighboring series into 354 

account since the neighboring series may also suffer from discontinuities.  355 

To avoid the misuse of inhomogeneous PM2.5 concentration records as reference series, a 356 

complex yet robust data integration scheme was hereby developed to screen, organize, and construct 357 

reference series for each in situ PM2.5 concentration data series. For each daily PM2.5 concentration 358 

data series, all the neighboring series were firstly identified from its surroundings with a lag distance 359 

as large as of 50 km. No reference series was constructed once there was no neighboring series 360 

available within the given radius and in turn the homogeneity of the given record was not examined. 361 
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Otherwise, both correlation coefficient (R) and coefficient of variation (CV) were calculated between 371 

the given base series and each selected neighboring series to assess their representativeness (Shi et al., 372 

2018; Rodriguez et al., 2019). Then, neighboring series with R greater than 0.8 and CV smaller then 373 

0.2 were selected as candidates to construct the reference series for a given base series.  374 

The reference series was then constructed by averaging both the base and the candidate series at 375 

each observation time if there was only one candidate series. For the situation with more than one 376 

candidate series, the empirical orthogonal function (EOF) method was applied to these multiple 377 

candidates and then the original fields were reconstructed with the leading principal components when 378 

the accumulated variance explained by them exceeded 80%. This was expected to reduce the possible 379 

impacts of abnormal observations and short-term discontinuities in the neighboring candidates on the 380 

resultant reference series. Subsequently, the reference series were organized and constructed through 381 

a spatial weighting scheme as each reconstructed record was assigned a spatially resolved weight 382 

according to their relative distances to the base series over space. Here we applied a Gaussian kernel 383 

function to estimate the weight of each neighboring observation that can influenced the base series in 384 

space and such a scheme has been proven to be effective in assessing the spatial autocorrelation of 385 

PM2.5 concentration (Bai et al., 2019b). Mathematically, the reference series can be constructed from 386 

the following equations: 387 

𝑃𝑀!"# =$
𝑤$ ∗ 𝑃𝑀%&'(

$

∑𝑤$

)

$*+

																																																												(1) 388 

𝑤 = exp/
−𝑑,

2ℎ,4																																																																								(2) 389 

where 𝑃𝑀!"#  and 𝑃𝑀%&'(  denote the reference and candidate series, respectively. N is the total 390 

number of candidate series while 𝑤 is the spatially resolved weight assigned to each candidate series 391 

and d is the spatial lag distance between the base and the corresponding candidate series. h is a spatial 392 

correlation length that is used to modulate the relative influence of a distant observation on the data 393 

measured at the base site. In this study, an empirical value of 50 km was used according to the estimated 394 

semi-variogram results (Bai et al., 2019b).  395 

For any record having neighboring series within 50 km but poorly correlated (R<0.8 or CV>0.2) 396 

to all its neighbors (meaning the base series differ from the neighbors), the reference series were 397 
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created by following the same procedures as those detailed above by taking the nearest neighbor as the 405 

base series. For the situation with only one candidate series available, it is logical to compare both the 406 

base and the candidate series against another data to check which one should be corrected. In this study, 407 

the PM2.5 time series estimated from the MERRA-2 aerosol reanalysis in the same way as described 408 

in He et al. (2019) was used. The one with higher correlation to this external PM2.5 time series was 409 

then used as the reference (deemed as homogeneous) while the other was considered as the base series 410 

(i.e., implies to be adjusted). Such an inclusive scheme empowered us to screen and construct reference 411 

series for 1,262 long-term PM2.5 concentration records across the board. In contrast, no reference series 412 

were constructed for 47 isolated records.  413 

3.3.2  Post-processing measures 414 

Several post-processing measures were applied to the adjusted data records to further improve 415 

the quality of this dataset. Since nonpositive values may appear in the QM adjusted data series if the 416 

original values are close to zero (Wang et al., 2010b), nonpositive values were replaced with the 417 

smallest valid PM2.5 concentration amount measured at each monitoring site during the study period. 418 

Subsequently, the data gaps in the adjusted datum due to long-lasting missingness were filled by first 419 

calibrating the corresponding data values in the reference series measured on the same date (if available) 420 

to the homogenized datum level. The modified quantile-quantile adjustment (MQQA) method 421 

proposed in Bai et al. (2016) was hereby used given its adaptive data adjustment principle. For the 422 

predicted values, such MQQA scheme rendered higher accuracy than those interpolated from data 423 

values measured on adjacent dates because PM2.5 concentration is spatially more correlated than in the 424 

temporal domain (Bai et al., 2019b). For the remaining data gaps, those missing values were 425 

reconstructed in a similar procedure as the DCCEOF method (Bai et al., 2020b). Note that the matrix 426 

used for EOF analysis in the context of DCCEOF was constructed using the neighboring data series 427 

measured within a radius of 100 km with a temporal lag of 30 days at most. Finally, all data values 428 

were rounded to integer to be in line with the original PM2.5 concentration observations. 429 

4  Results and discussion 430 

4.1  Descriptive statistics 431 
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Prior to data homogenization, we first need to exclude those short-term and less reliable records. 435 

Figure 2 shows the temporal variations of the number of air quality monitoring stations deployed in 436 

China during 2015–2019 as well as the spatial patterns of the frequency of missing values for each 437 

long-term PM2.5 concentration record. It shows that a total of about 1,630 air quality monitoring 438 

stations had been deployed in China before 2020. Nevertheless, about 1,500 sites routinely providing 439 

PM2.5 observations were kept up in operation since 2015 (Figure 2a). By referring to the data continuity 440 

of PM2.5 observations, it is noticeable that 100 monitoring stations had been withdrawn before 2020 441 

because no PM2.5 observations were provided for more than three consecutive months since the release 442 

of their last valid data (Figure 2b). Meanwhile, 42 pairs of stations were found to be relocated since 443 

new stations at nearby started to provide PM2.5 observations soon after the suspension of the original 444 

site. This is also corroborated by the temporal lags of PM2.5 observations between original and newly 445 

deployed stations as many of them were found to have a time lag less than 15-day. Also, 94 sites were 446 

found with limited data records due to short temporal coverage (newly deployed). Finally, 1,353 long-447 

term PM2.5 concentration records were identified with their first valid data released earlier than 2015. 448 

In regard to the frequency of missing value, it is indicative that data gaps were obvious in these long-449 

term PM2.5 concentration records, with about 6% of hourly data values missed on ~47% of sampling 450 

days on average. This also motivates us to first fill such data gaps to improve the data integrity.     451 

  452 

Figure 2. Spatial and temporal patterns of air quality monitoring stations in China. (a) Temporal 453 

variations of the total number of air quality monitoring stations in China. (b) Spatial patterns of the 454 
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frequency of missing value in each long-term hourly PM2.5 concentration record measured from 457 

January 1, 2015 to December 31, 2019. Stations were categorized into distinct groups according to 458 

their data length and temporal continuity. The frequency of missingness was calculated as the ratio of 459 

the number of missing values in each PM2.5 concentration record to the total number of samplings from 460 

the time of the release of the first valid data to December 31, 2019. 461 

4.2  Homogenization of in situ PM2.5 data 462 

A total of 1,395 long-term (with five-year observations) PM2.5 concentration records were 463 

acquired with the inclusion of 42 temporally merged data series at those relocated stations. After 464 

removing those suffering from more than three consecutive months data losses, 1,309 long-term yet 465 

consecutive PM2.5 concentration records were obtained. The homogeneity test was finally performed 466 

on 1,262 records due to the availability of reference series. Figure 3 shows the spatial patterns of the 467 

total number of change points detected in 1,262 monthly PM2.5 concentration records. The ubiquitous 468 

change points imply that there is an obvious inhomogeneity in this in situ PM2.5 concentration dataset. 469 

About 57% (719 out of 1,262) of records failed to pass the homogeneity test due to the presence of 470 

change points. Given the overall good agreement between the base and reference series (refer to Figure 471 

S1 for the correlation coefficient and root mean square error between them), it indicted that these PM2.5 472 

concentration records did suffer from evident discontinuities. Meanwhile, the vast majority (~80%) of 473 

the inhomogeneous PM2.5 records suffered from no more than two change points (Figure 3), suggesting 474 

the mean shift could be the primary reason for the detected discontinuities. Moreover, 20 records were 475 

even found suffering from no less than five significant change points, indicating phenomenal 476 

discontinuities in these records. 477 

Figure 4 shows the temporal variability of the number of change points detected in monthly PM2.5 478 

concentration records. As indicated, change points were detected in every specific month of the year 479 

from May 2015 to July 2019, especially in late spring (e.g., May), in which change pointes were more 480 

likely to be detected (Figure 4b). This is attributable to the seasonality of PM2.5 loading in China as 481 

high PM2.5 concentrations are always observed in the winter whereas low values in the summer. 482 

Consequently, change points were more likely to be detected during the chronic transition periods (e.g., 483 

spring to summer). In addition, it is noteworthy that a large volume of change points was detected in 484 
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early 2015, indicating the existence of phenomenal discontinuities during this period (Figure 4a). After 491 

checking the temporal variations of PM2.5 concentration, findings indicate that PM2.5 observations 492 

varied with large deviations among each other during this period. This could be linked to the imperfect 493 

instrument calibration or irregular operation in the early stage. 494 

 495 

Figure 3. Spatial patterns of the total number of change points detected in each long-term yet 496 

consecutive PM2.5 concentration records. Gray dot indicates there was no change point detected in this 497 

PM2.5 concentration record.   498 

 499 

Figure 4. Temporal variations of the number of change points detected in (a) each specific month from 500 

2015 to 2019 and (b) each month of the year. National mean PM2.5 concentration in each month of the 501 

year was calculated based on PM2.5 data measured at our selected 1309 sites during 2015–2019. 502 

Due to the lack of essential metadata information, it is a challenge for us to verify each detected 503 

change point through a manual inspection. Rather, the variations in the base and reference series was 504 
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explored to identify the possible reasons for the detected discontinuities. Figure 5 presents three typical 506 

inhomogeneous PM2.5 time series with different number of change points. The inter-comparisons 507 

between the base and reference series indicate an overall good agreement among them in terms of the 508 

long-term variation tendency. However, obvious drifts were still phenomenal in their residual series, 509 

which were even more evident by referring to their mean-shift series. For example, both the residual 510 

and mean-shift series shown in Figure 5d clearly illustrate a typical discontinuity as there was an 511 

obvious departure of mean PM2.5 concentration level during the period of January to October 2016. In 512 

contrast, the Figures. 5b and 5e present another typical inhomogeneity as statistically significant 513 

decreasing trend was found in the residual series with monthly PM2.5 concentration deviations 514 

decreased from nearly 5 μg m-3 to –4 μg m-3 step wise. Such inhomogeneity would undoubtedly result 515 

large bias in the trend estimations over that region. The bottom panel (Figures. 5c and 5f) shows the 516 

change points detected in the merged PM2.5 time series at a pair of relocated sites. It is noteworthy that 517 

the detected discontinuity should be largely ascribed to the inconsistency emerged in the first data 518 

series rather than due to the site relocation. 519 

 520 

Figure 5. Temporal variations of three typical inhomogeneous PM2.5 concentration records during 521 

2015–2019. (Top) Significant deviations during a short time period, (middle) long-term chronic drifts 522 
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with statistically significant varying trend detected in the residual series, (bottom) discontinuity due to 523 

site relocation. The left panel compares the base series with the reference and the neighboring series 524 

used to compose the reference while the right panel shows the residual series between the base and 525 

reference series as well as their mean-shift series.  526 

 527 

Figure 6 shows the estimated linear trends for PM2.5 residual series that failed to pass the 528 

homogeneity test. Approximately 89% of the residual series were found exhibiting statistically 529 

significant linear trends, suggesting the vital importance to homogenize such PM2.5 concentration 530 

records as the trend estimations at these stations could be prone to large bias if no essential adjustments 531 

are performed. Further comparisons of the percentage of data gaps between homogeneous and 532 

inhomogeneous records (Figure S2) as well as the spatial distance between the base and the reference 533 

series (Figure S3) indicate that both the frequency of data gaps and spatial distance have no obvious 534 

impact on the change point detection. In other words, the detected change points have no linkage with 535 

neither missing value frequency nor spatial distance between the base and neighboring series, 536 

suggesting a high confidence level of the identified discontinuities in these PM2.5 concentration records. 537 

 538 

Figure 6. Trend estimations for the residual PM2.5 concentration data series that failed to pass the 539 

homogeneity test during 2015–2019. The solid circles indicate trends are statistically significant at the 540 

95% confidence level. 541 
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Given the emergence of obvious discontinuities in more than half of the selected long-term PM2.5 542 

concentration records, the QM adjustment method was applied to correct the discontinuities detected 543 

in each PM2.5 concentration record. Figure 7 shows an example of homogenization on PM2.5 544 

concentration data series that suffered from evident drifts from its reference (large drifts shown in 545 

Figure 5d). The inter-comparisons of PM2.5 concentration data between the base and reference series 546 

indicate that the PM2.5 concentration level was obviously underestimated by the raw observations 547 

compared with the reference, especially during the middle of 2016 (Figure 7a). Such evident drifts 548 

were remarkably diminished after the homogenization (Figure 7b), which shows a good agreement of 549 

the mean PM2.5 concentration level between the homogenized datum and the reference series. 550 

 551 

Figure 7. Comparison of daily mean PM2.5 concentration before and after homogenization at one 552 

monitoring site in Guangdong province (24.69°N/113.60°E) from November 2015 to December 2016 553 

(large drifts shown in Figure 5d). 554 

 555 

4.3  Validation with independent dataset 556 

In this study, PM2.5 observations that were collected independently by five consulates of United 557 

States distributed in five major Chinese cities between 2015 and 2017 were used to evaluate the 558 

consistency of the derived PM2.5 concentration records. Figure 8 shows site-specific comparisons of 559 

daily PM2.5 concentration between homogenized and observed data in Beijing, Shanghai, Chengdu, 560 

Deleted:  561 

Deleted: ¶562 

Deleted: ¶563 

Deleted: ¶564 
Formatted: Normal, Space Before:  0 pt, Line spacing: 
single



 
 

22 

Shenyang, and Guangzhou, respectively. It is indicative that the homogenized daily PM2.5 565 

concentration data were in good agreement with PM2.5 observations sampled at US consulates, with a 566 

correlation coefficient value of >0.95 and root mean square error of <15 μg m-3. Given the 567 

independent measurement of PM2.5 concentration data at US consulates, we argue that the 568 

homogenized PM2.5 records are accurate enough in characterizing the variability of PM2.5 loadings in 569 

China. It is also noteworthy that the homogenized PM2.5 records are temporally complete whereas 570 

missing values are found in PM2.5 observations sampled at US consulates.   571 

 572 

Figure 8. Comparisons of the homogenized PM2.5 concentration (red) against PM2.5 observations (blue) 573 

measured at five consulates of United States in China from January 2015 to June 2017. (a–e) Temporal 574 

variations of daily PM2.5 concentration and (f–j) the associated scatter plots. 575 

  576 
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4.4  PM2.5 trends estimated from the homogenized dataset 579 

A homogenized data record is essential to trend analysis. Figure 9 presents the annual mean 580 

concentration of PM2.5 across China between 2015 and 2019. As shown, there is a phenomenal 581 

reduction of PM2.5 concentration in China in the past five years, especially over North China Plain (the 582 

region outlined by a red rectangle shown in Figure 9f) where the annual mean PM2.5 concentration 583 

decreased from more than 100 μg m-3 in 2015 to about 60 μg m-3 in 2019. Such an evident decrease in 584 

PM2.5 concentration clearly demonstrates the effectiveness of clean air actions that were implemented 585 

in recent years.  586 

 587 

Figure 9. Annual mean PM2.5 concentration derived from the homogenized daily PM2.5 concentration 588 

dataset at 1,309 monitoring stations in China between 2015 and 2019. The North China Plain was 589 

outlined by the red rectangle in panel (f). 590 

 591 

To evaluate the benefits of data homogenization on PM2.5 trend estimations, PM2.5 trends 592 

estimated from both the raw observations and homogenized dataset were compared. Prior to trend 593 

analysis, each PM2.5 concentration record was standardized in reference to its mean annual cycle (i.e., 594 

PM2.5 concentration on the same date of the year between 2015 and 2019 was averaged) to reduce the 595 

Formatted: Subscript

Deleted: T596 

Deleted: estimations 597 

Deleted: from598 

Deleted: to 599 

Deleted: in the600 

Deleted: as 601 

Formatted: Subscript

Formatted: Indent: First line:  0 cm



 
 

24 

impacts of seasonality and spatial variations. Figure 10 shows a site-specific comparison of PM2.5 trend 602 

estimations derived from raw observations and homogenized datasets during 2015–2019. In general, 603 

trend estimations from both datasets showed an evident decreasing tendency of PM2.5 concentration 604 

across China during the study period. Nevertheless, noteworthy is that trend estimations derived from 605 

raw PM2.5 observations suffered from obvious inhomogeneity over space, being evidenced by 606 

antiphase (positive versus negative) trend estimations even at adjacent stations, especially for those 607 

with positive trends whereas all adjacent neighbors exhibited negative trends. These antiphase trend 608 

estimations over a small region also corroborate the existence of obvious inhomogeneity in raw 609 

observed in situ PM2.5 concentration dataset. 610 

 611 

Figure 10. Linear trends for (a) raw observed and (b) homogenized daily PM2.5 concentration data 612 

during 2015–2019. Solid circles indicate trends are statistically significant at the 95% confidence 613 

interval. Numbers shown in the lower left of each panel indicate the overall trend derived from (top) 614 

all available stations and (bottom) the stations with significant trends at the 95% confidence interval 615 

while the numbers shown in brackets are the corresponding number of data records. Each PM2.5 time 616 

series were standardized by its mean annual cycle during the study period to account for spatial 617 

variations of PM2.5. 618 

 619 

The dotted antiphase trend estimations were substantially diminished after data homogenization, 620 

resulting in a spatially much more homogeneous decreasing tendency of PM2.5 concentration across 621 

Deleted: observed 622 

Deleted: from 2015 to 2019623 

Deleted: However624 

Deleted: PM2.5 625 

Deleted: exhibit 626 

Deleted: , which is clearly 627 

Deleted: the 628 

Deleted:  629 

Deleted: Such 630 

Deleted: in 631 

Deleted: very 632 

Deleted: demonstrate 633 

Formatted: Indent: First line:  0 cm

Deleted: After homogenization, 634 

Deleted: t635 

Deleted: phenomena of636 

Deleted: over the local region 637 

Deleted: as638 



 
 

25 

China (Figure 10b). It is indicative that after data homogenization the national mean PM2.5 trend was 639 

enlarged from -7.01% a-1 to -7.25% a-1 while the uncertainty was reduced from 0.25% a-1 to 0.22% a-640 

1. Also, the number of PM2.5 records with statistically significant trends was increased from 1,208 to 641 

1,248. These results collectively justify the effectiveness of the QM adjustment method in mitigating 642 

data inhomogeneity in PM2.5 observations, which also highlight the critical importance of data 643 

homogenization in accounting for discontinuities in this in situ PM2.5 concentration dataset. Overall, 644 

our results indicate an obvious decreasing trend of PM2.5 concentration in China in the past five years 645 

at a mean rate of –7.25±0.22% a-1. Table 1 further compares the regional mean PM2.5 trend between 646 

2015 and 2019. Compared with other regions of interest (ROIs) such as Pearl River Delta (PRD, refer 647 

to Figure S4 for the location) and northern part of Xinjiang (XJ), PM2.5 loading over Beijing-Tianjin-648 

Hebei (BTH), Heilongjiang-Jilin-Liaoning (HJL), and Central China (CC) decreased even more 649 

prominently.  650 

 651 

Table 1. Regional mean trend for PM2.5 concentrations over eight major ROIs in China during 2015–653 

2019 before and after the data homogenization. Uncertainty in trend estimations were characterized at 654 

the 95% confidence interval. Locations of these ROIs can be found in Figure S4.  655 

ROI Raw observation (% a-1) Homogenized record (% a-1) 

Beijing-Tianjin-Hebei (BTH) -9.03 ± 0.78 -9.19 ± 0.69 

Yangtze River Delta (YRD) -7.07 ± 0.54 -7.33 ± 0.40 

Central China (CC) -8.47 ± 0.51 -8.58 ± 0.41 

Sichuan Basin (SCB) -7.39 ± 1.02 -7.84 ± 0.89 

Pearl River Delta (PRD) -4.30 ± 0.51 -4.60 ± 0.39 

Heilongjiang-Jilin-Liaoning (HJL) -8.89 ± 0.73 -9.15 ± 0.63 

Shaanxi-Gansu-Ningxia (SGN) -4.85 ± 0.95 -5.30 ± 0.69 

North Xinjiang (XJ) -4.61 ± 1.96 -4.67 ± 1.60 

 656 

To further assess the improvement of the data quality after homogenization, the daily in situ 657 

PM2.5 concentration records at a 1° × 1° grid cell resolution were grouped across China. In each grid 658 
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cell, the regional mean correlation coefficient among PM2.5 concentration time series and standard 747 

deviation of PM2.5 trends were estimated from the raw observed and homogenized daily PM2.5 748 

concentration time series, respectively. Their relative differences were then calculated to show the 749 

improvements of data homogeneity within each grid cell. As shown in Figure 11, the correlation among 750 

PM2.5 concentration datum was enhanced ubiquitously after homogenization, especially in the 751 

southwest of China (e.g., Yunnan) where obvious inhomogeneity was observed in the raw PM2.5 752 

observations (Figure 10a). Meanwhile, the standard deviation of PM2.5 trends within each grid cell was 753 

also substantially reduced, even by more than two folds in the magnitude (Figure 11b). These results 754 

also demonstrate the critical need to homogenize the observed PM2.5 concentration data from a large-755 

scale monitoring network to reduce temporal inconsistency and spatial inhomogeneity that were not 756 

even noticed before. 757 

 758 

Figure 11. Spatial distributions of (a) the improvements of mean correlation coefficient among PM2.5 759 

concentration records before and after homogenization at a 1° × 1° grid cell resolution across China, 760 

and (b) their corresponding standard deviations of PM2.5 trends. 761 

 762 

5  Data availability 763 

The raw observations of in situ PM2.5 concentration data in China used in this study were 764 

retrieved via a web crawler from the National Urban Air Quality Real-time Publishing Platform 765 

(http://106.37.208.233:20035) between 2014 and 2019. Given the deployment of many new 766 
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monitoring sites in 2014, we decided to generate a coherent PM2.5 concentration dataset starting from 770 

2015 to include as many PM2.5 data records as possible. The homogenized daily in situ PM2.5 771 

concentration dataset developed in this study is publicly accessible at 772 

https://doi.pangaea.de/10.1594/PANGAEA.917557 (Bai et al., 2020a). To provide a long-term 773 

coherent PM2.5 concentration dataset to the scientific community, the homogenized PM2.5 774 

concentration dataset will be regularly updated for each half a year by including new PM2.5 775 

observations that are retrieved during the past six months. 776 

6  Conclusions 777 

In this study, a homogenized yet temporally complete daily in situ PM2.5 concentration dataset 778 

was generated based on the discrete hourly PM2.5 concentration records that were retrieved from the 779 

China National Urban Air Quality Real-time Publishing Platform using a web crawler during the 780 

period of 2015–2019. To create such a long-term coherent dataset, a set of analytic methods were 781 

geared up seamlessly and applied sequentially to the retrieved raw PM2.5 concentration records, 782 

involving quality control, gap filling, data merging, change point detection, and bias correction. This 783 

new dataset would help scientific community better elucidate the temporal and spatial variability of 784 

haze pollution in China in the recent years, which is expected to improve the understanding of 785 

underlying causes.    786 

The raw PM2.5 concentration records were found to be suffering from phenomenal 787 

inhomogeneity caused by data inconsistency and temporal discontinuity as well as the relocation and 788 

repeal of a bunch of monitoring stations. More than half of the long-term PM2.5 concentration records 789 

were found failing to pass the homogeneity test due to the presence of substaintial change points. 790 

Further investigation confirms that large yet short-term mean shifts and chronic drifts are two primary 791 

reasons for the detected discontinuities in raw PM2.5 concentration records.  792 

Based on the homogenized dataset, the long-term trends of PM2.5 concentration in China were 793 

estimated. In contrast to the inhomogeneous trend estimations that were derived from raw PM2.5 794 

concentration records, the homogenized dataset yielded a spatially much more homogeneous 795 

decreasing tendency of PM2.5 concentration across China at a mean rate of about –7.3% per year. Such 796 
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an improvement of homogeneity was also evidenced by the enhanced correlation and reduced standard 804 

deviation of trend estimations between homogenized PM2.5 concentration time series in the 805 

surroundings. These results clearly demonstrate the benefits of data homogenization on the 806 

improvement of the quality of this PM2.5 concentration dataset as evident discontinuities have been 807 

removed after homogenization. Overall, our results clearly indicate the presence of discontinuities in 808 

the raw in situ PM2.5 concentration observations that were measured in China, and the homogenization 809 

actions are essential to the acquisition of a long-term coherent PM2.5 concentration dataset that can be 810 

used to advance PM2.5 pollution related policy making and public health risk assessment.  811 
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