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Abstract. Information on global cropland distribution and agricultural production is critical for the world’s agricultural 

monitoring and food security. We present datasets of cropland extent and agricultural production in the two-paper series 

of a cultivated planet in 2010. In the first part, we propose a new Self-adapting Statistics Allocation Model (SASAM) to 

develop the global map of cropland distribution. SASAM is based on the fusion of multiple existing cropland maps and 15 

multilevel statistics of the cropland area, which is independent of training samples. First, cropland area statistics are used 

to rank the input cropland maps, and then a scoring table is built to indicate the agreement among the input datasets. 

Secondly, statistics are allocated adaptively to the pixels with higher agreement scores, until the cumulative cropland area 

is close to the statistics. The multi-level allocation results are then integrated to obtain the extent of cropland. We applied 

SASAM to produce a global cropland synergy map with a 500 m spatial resolution circa 2010. The accuracy assessments 20 

show that the synergy map has higher accuracy than the input datasets, and better consistency with the cropland statistics. 

The synergy cropland map is available via an open-data repository (DOI: https://doi.org/10.7910/DVN/ZWSFAA. Lu et 

al., 2020). This new cropland map has been used as an essential input to the Spatial Production Allocation Model (SPAM) 

for producing the global dataset of agricultural production circa 2010, which is described in the second part of the two-

paper series. 25 

1 Introduction 

Agricultural land satisfies global demands for human food, stock feed, and biofuel, which are increasing at an 

unprecedented rate with the continuing population and consumption growth (Gibbs et al., 2010; Godfray et al., 2010). 

Feeding the growing population and meeting this rising consumption remain a great challenge (Kastner et al., 2012; Zhang 
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et al., 2016; Gao and Bryan., 2017). Accurate spatial information about cropland is vital baseline information for 30 

agricultural monitoring and food security (Eitelberg et al., 2015; Yu et al., 2019). Satellite-derived land cover datasets have 

been widely used for this purpose. For example, the Famine Early Warning Systems Network funded by the United States 

Agency for International Development has been using cropland distribution and other remote sensing data to provide timely 

and dependable early warning and vulnerability information related to emerging and evolving food security issues (Brown 

and Brickley, 2012). However, there is significant disagreement and high uncertainty among the various land cover datasets 35 

(Fritz et al., 2013; Tsendbazar et al., 2015). The uncertainty and inconsistency are particularly high for cultivated lands 

(cropland and managed pasture) compared to other natural vegetation types, such as tree cover (Congalton et al., 2014). 

One of the challenges when working with existing cropland datasets is the lack of consistent and reliable data on the 

location and areal extent of cropland. 

 40 

Uncertainties and inconsistencies in cropland information are ubiquitous because of the differences in application purposes, 

cropland definitions and classification methods (Fritz et al., 2013; Verburg et al., 2011; Yang et al., 2017). Globally, spatial 

agreement in the four global land cover datasets, i.e., IGBP DISCover, the University of Maryland land cover product, the 

MODIS land cover product, and Global Land Cover 2000 (GLC2000) is about 71.5% (Herold et al., 2008). At the regional 

scales, Pérez-Hoyos et al. (2017) compared nine cropland products, including FAO-GLCshare (Food and Agriculture 45 

Organization of the United Nations’ Global Land Cover Network), GLC2000, GlobCover, Globeland30, and so on, and 

found that the areas of full agreement in Africa, America, and Asia were only 2.15%, 1.39%, and 11.90%, respectively. 

Cropland uncertainty is generally higher than that of other land cover classes, especially in transition zones and areas with 

high landscape fragmentation. For example, disagreements in the Sahelian belt of Africa are prominent because crops are 

more scattered and often coexist with grassland (Pérez-Hoyos et al., 2017). In China, the uncertainties and inconsistencies 50 

in northwestern and southwestern regions, characterized by high elevations and fragmented landscapes, are higher than 

those in northern and northeastern areas with more homogeneous landscapes (Lu et al., 2016). 

 

Cropland areas estimated from satellite-based datasets are often inconsistent with statistics, which limits their applications 

in agricultural economics and food policy. First, the existing datasets usually focus on the land cover rather than land use 55 

because of the direct nature of remote sensing observation (Kerr and Cihlar, 2003; Zeng et al., 2018). Cropland, as an 

integration of land cover and land use, not only is defined as the crops covering the land surface, but also is influenced by 

the human activities for food production. However, satellite-based cropland maps may fail to detect cropland features of 
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land use (Zeng et al., 2018). For example, according to estimates using GlobeLand30, the cropland area in Europe increased 

by 22,090 km2 from 2000 to 2010 (Xiang et al., 2018). Yet, the official statistics from FAO indicate a decrease of cropland 60 

in Europe over the same period. One of the main reasons is agricultural land abandonment, which cannot be easily captured 

by remote sensing. Secondly, inconsistent definitions of cropland lead to discrepancies between satellite-based estimates 

and official statistics. For example, GlobCover 2005/2009, Climate Change Initiative Land Cover (CCI-LC) and MODIS 

Collection 5 (MODSI C5) include mosaic classes that mix cropland with other land cover types. Therefore, these products 

often under- or overestimate cropland areas, depending on how these mosaic classes are counted (Zeng et al., 2018). 65 

Agricultural statistics are usually collected by interviews and sample surveys, and then computed by aggregating then with 

administrative data (Gallego et al., 2010). These statistics provide highly suitable land use information that is not collected 

by remote sensing, but often lack spatial details because they are aggregated to the level of administrative units. 

 

Data synergy approaches can take advantage of complementarities between land cover datasets and statistics to solve the 70 

above issues. These approaches can integrate all available satellite-based maps and statistics into a single product, giving 

improved accuracy. Synergy approaches are broadly categorized into two types: agreement scoring methods and regression 

methods (Lu et al., 2017). The former assumes that the statistical data provide the “true” areas of agricultural land and 

spatially disaggregate statistics to pixels according to the agreements of satellite-based datasets. For example, Ramankutty 

et al. (2008) used this method to develop global cropland and pasture extent maps of a 1 km spatial resolution circa 2000. 75 

Fritz et al. (2011, 2015) ranked the input datasets and assigned different weights based on their assessed accuracies to 

produce the International Institute for Applied Systems Analysis (IIASA)-International Food Policy Research Institute 

(IFPRI) cropland map 2005. Regression methods, such as logistic regression and geographically weighted regression 

(GWR), establish a regression relationship of cropland percentage between training sample points and input datasets, and 

then predict cropland percentage in regions without samples (Brunsdon et al., 1998; Chen et al., 2019). GWR allows 80 

regression parameters to vary over space and has a better fit with the observational data (Chen et al., 2019). GWR has been 

used to create global land cover maps and forest maps by using crowdsourced validation data from Geo-Wiki (See et al. 

2015; Schepaschenko et al., 2015). However, the above methods generally need sufficient in-situ samples for training. 

Agreement scoring methods require training samples to assess the qualities of input datasets, and regression models need 

training samples to estimate the model parameters at each location. Although crowdsourcing platforms are available for 85 

the sample collection, e.g., Geo-Wiki (www.geo-wiki.org), LACO-Wiki (https://laco-wiki.net), and Collect Earth 

(http://www.openforis.org/tools/collect-earth.html), the quality and consistency of samples cannot be assured because the 

domain knowledge of the contributors are varied (Bey et al., 2016; Fritz et al., 2009; See et al., 2015). 
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The objective of this research is to address the issue of training samples for global cropland mapping, and to improve the 90 

consistency with statistics and the accuracy of cropland map. We propose a Self-adapting Statistics Allocation Model 

(SASAM) by fusing multiple statistics and satellite-based cropland datasets to produce a global synergy cropland map. 

This method is based on agreement among the input cropland datasets, and it is independent of training samples. Cropland 

area statistics are used to rank the input cropland maps and build a scoring table to indicate the agreement of the input 

datasets. Statistics at the national, first and second subnational levels are allocated to the pixels with higher cropland scores, 95 

and then the results are integrated to obtain the cropland extent. Using this method, we have produced a global cropland 

synergy map circa 2010 with a spatial resolution of 500 m. The remainder of this paper is organized as follows. We present 

the input data sources in Section 2 and describe the SASAM in detail in Section 3. The results and analysis are presented 

in Section 4, data accessibility is described in Section 5, followed by the discussion and conclusion in Section 6. 

2 Data sources 100 

The data sources used in this study include global and regional satellite-based cropland products and multilevel statistics 

for cropland areas. 

2.1 Satellite-based maps and data pre-processing 

At the global scale, five cropland products around 2010 were selected from GlobeLand30, CCI-LC, GlobCover 2009, 

MODIS C5, and the Unified Cropland Layer (Table 1). GlobeLand30 was produced from Landsat images and China HJ 105 

images by using the Pixel-Object-Pixel (POK) classification method (Chen et al., 2015). CCI-LC and GlobCover 2009 

were generated by the European Space Agency (ESA) with similar classification strategies of unsupervised clustering and 

supervised learning (Bontemps et al., 2017; Defourny et al., 2017). MODIS C5 was generated from MODIS time series 

data using the decision tree method (Friedl et al., 2010). The Unified Cropland Layer is a hybrid map based on a 

combination of the fittest products according to four dimensions: timeliness, legend, resolution, and confidence (Waldner 110 

et al., 2015). 

 

At the regional scale, we selected publicly available products with high spatial resolution and quality in Europe and North 

America (Table 1). CORINE Land Cover (CLC) 2012 covers 39 European countries with a total area of over 5.8 million 

km2. CLC2012 is an update of CLC2006 developed using computer-assisted photointerpretation of high-resolution satellite 115 
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images from 2011 and 2012 (Hościło & Tomaszewska, 2015). The North American Land Change Monitoring System, 

cooperating with Natural Resources Canada, the United States Geological Survey, and three Mexican organizations, 

produced the 2010 North American Land Cover 30 m dataset for Canada, USA, and Mexico. Each country developed its 

own classification method to identify land cover classes and then provided an input layer to produce a continental land 

cover map across North America.  120 

 

In addition, we collected land cover maps in two countries, i.e., Australia and China, as supplements. The Land Use of 

Australia 2010–2011 was produced by the Australian Bureau of Agricultural and Resource Economics and Sciences 

operated under the Australian Government Department of Agriculture, and the agricultural land use data are based on the 

Australian Bureau of Statistics’ 2010–2011 agricultural census data (Smart, 2016). The National Land Use/cover Database 125 

of China (NLUD-C) 2010 was updated from NLUD-C 2008 based on images with approximately 30 m spatial resolution 

using visual interpretation, field surveys, and large amounts of auxiliary information (Zhang et al., 2014). 

 

Pre-processing of these satellite-based maps was essential because of their differences in coordinate systems, spatial 

resolution, and classification schemes. First, we masked non-agricultural areas in the satellite datasets. Then, the geographic 130 

latitude/longitude coordinate system with WGS84 datum was chosen as the base projection for coordinate transformation. 

Because the spatial resolutions of regional and global products vary from 30 m to 500 m, a standard geographical grid with 

0.0041667° (i.e., about 500 m) resolution was employed to aggregate the input products with cropland percentages. 

 

(insert Table 1 here) 135 

Table 1: Input satellite-based products.  

 

The critical part of the data pre-processing is the cropland definition harmonization. We used FAO’s definition of cropland 

as “arable lands and permanent crops.” Arable land is the land under temporary agricultural crops (multiple-cropped areas 

are counted only once), temporary meadows for mowing or pasture, land under market and kitchen gardens, and land 140 

temporarily fallow (less than five years). Permanent crops are the land cultivated with long-term crops which do not have 

to be replanted for several years (such as cocoa and coffee), land under trees and shrubs producing flowers (such as roses 

and jasmine), and nurseries (except those for forest trees, which should be classified as “forest”). Abandoned land resulting 

from shifting cultivation and permanent meadows or pastures are excluded from cropland in our study. The cropland-related 
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classes of each dataset were extracted given percentage weights according to their cropland definition: pure cropland classes 145 

were assigned higher percentage weights, and mosaic cropland classes were assigned lower weights (Lu et al. 2017). 

Through this process, we produced cropland percentage maps derived from each satellite-based product at a 500 m 

resolution with the same coordinate system. 

2.2 Statistics of the cropland area 

We collected statistics of the cropland area at the national, first and second subnational levels circa 2010. The national 150 

statistics were acquired from FAO’s FAOSTAT Land Use database (http://www.fao.org/faostat/en/#data/RL), which covers 

about 200 countries and territories of the world. The statistics are widely useful for market management, production 

forecasts, and policy-making in the agricultural and food sectors. Following our adopted cropland definition, the item 

“Arable lands and permanent crops” was selected from the statistics. Because the satellite-based products were mainly 

from 2009 to 2011, the average values from 2009 to 2011 were calculated to provide more stable estimates for the synergy 155 

cropland in 2010. The cropland area statistics available at the national level are shown in Fig. 1(a), which covers almost all 

countries in the world.  

 

While statistics of the national cropland area are available from FAO, subnational statistics are not provided by a single 

multinational institution, and they are rarely available at the global scale. Nevertheless, for several decades, IFPRI and its 160 

partners have collected the subnational agricultural statistics on cropland and individual crops in many countries throughout 

the world, and paid particular attention to developing countries in Africa, Latin America, and Asia. If a cropland value 

exists for a subnational unit, this value is taken and the harvested areas of individual crops within the unit are ignored. 

Otherwise, the cropland area is calculated by adding the harvested areas of all crops growing within the administrative unit 

divided by the cropping intensities of the individual crops. The cropping intensity varies by rainfed or irrigated systems 165 

and by countries. The intensity data were collected from various sources such as seasonable harvested area, expert 

judgments and household surveys (Yu et al., 2020). Because of possible missing areas or missing crops, the cropland value 

at the subnational level is a minimum estimate of the actual cropland of that unit. 

 

(insert Fig. 1 here)  170 

Figure 1: The statistics of cropland area at the national (a), first subnational (b), and second subnational (c) levels. 
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There are two levels of subnational statistics. The first subnational level indicates a lower unit than the national 

administrative division, such as provinces in China or Canada, and states in the United States or India. We collected the 

statistics for 64.91% of the first subnational units in most countries, not in a few countries in Africa (Fig. 1(b)). The second 175 

subnational level indicates smaller administrative units such as prefecture-level cities of China, counties of the United 

States, and departments of France. Statistics for 34.76% of the second subnational units were obtained (Fig. 1(c)). 

3 Methodology 

The principle of SASAM is to automatically allocate the cropland area taken from the statistics to the pixels with higher 

cropland likelihood. The cropland distribution is adjusted adaptively until the cumulative cropland area is close to the 180 

statistics. The model has three main steps, i.e., agreement ranking establishment, self-adapting statistics allocation, and 

integration of multilevel allocation results. First, the national statistics are used to assess the accuracies and set weights for 

the satellite-based cropland input maps, and then a scoring table is built based on the weights of the input maps to generate 

agreement ranking results. The national and subnational statistics are self-adaptively allocated to the pixels according to 

their agreement ranking. Lastly, the allocated results are integrated to generate a synergy cropland map. 185 

3.1 Agreement ranking establishment 

Generally, the higher agreement among input datasets indicates a higher likelihood of cropland. The assessed accuracies of 

the input datasets also affect synergetic confidence (Fritz et al., 2015; Lu et al., 2017). We use the national statistics to 

assess the accuracies of satellite-based datasets, and then adaptively establish agreement ranking scores according to the 

accuracies and agreements of the input datasets. 190 

 

For each input dataset, the cropland area in each country is estimated as: 

𝑎𝑖,𝑗 = ∑ (𝑚𝑛 × 𝑝𝑛)
𝑁
𝑛=1                                                                                             (1) 

where 𝑎𝑖,𝑗 is the cropland area of country j estimated by input dataset i, n is the pixel labeled as cropland, and Pn is the 

percentage of cropland in pixel n after data processing. Because we use a geographic latitude/longitude coordinate system, 195 

the pixel area mn is calculated by equal-area projection (Lu et al., 2017). Then the absolute difference 𝐷𝑖𝑓𝑓𝑖,𝑗 between the 

cropland area estimated from input dataset i and the statistics is calculated to assess the accuracy of the input map, as shown 

in Eq. (2): 
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𝐷𝑖𝑓𝑓𝑖,𝑗 = 𝑎𝑏𝑠 (
𝑎𝐹𝐴𝑂,𝑗−𝑎𝑖,𝑗

𝑎𝐹𝐴𝑂,𝑗
)                                                                                      (2) 

where 𝑎𝐹𝐴𝑂,𝑗  is the cropland area statistics of country j derived from FAO. A lower value of 𝐷𝑖𝑓𝑓𝑖,𝑗  indicates better 200 

agreement with the official statistics, and a higher ranking for the input map. 

 

An agreement ranking score is established using a table reflecting the agreement and rankings of the input datasets. If there 

are five input datasets, their rank from the highest to the lowest are labeled A, B, C, D, and E (Table 2). The agreement 

levels ranging from 0 to 5 indicate the number of input datasets identifying a pixel as cropland. Because there are 32 205 

permutations for the five input datasets (25 = 32), the scores are from 0 to 31. A higher score value indicates a higher 

likelihood of cropland. The agreement level of 5 means that all the input datasets identify the pixel as cropland and the 

pixel has the highest score of 31, while the agreement level 0 indicates that all the datasets classify the pixel as non-cropland 

and the pixel has the lowest score of 0. For other agreement levels, there are various permutations. For example, when the 

agreement level is 4, there are five combinations for the datasets with score values set from 26 to 30. Because A, B, C, and 210 

D have higher rankings, if all four indicate cropland, then the score value is set as 30, which is higher than other 

combinations. According to these rules, we obtained values for the full scoring table with five input datasets (Table 2). 

Similarly, we utilized this method to obtain the scoring table ranging from 0 to 63 with six input datasets. The scoring table 

is then used to transform the input cropland layers into an agreement ranking map. Meanwhile, the average cropland 

percentages of the input datasets are calculated with a spatial resolution of 500 m. 215 

 

(insert Table 2 here)  

Table 2: The ranking scoring table for five input datasets.  

 

3.2 Self-adapting statistics allocation 220 

The self-adapting statistics allocation is to allocate cropland area statistics to the pixels with higher ranking scores 

automatically, and this process is adjusted adaptively until the cumulative cropland area is close to the statistics. Figure 2 

shows the flowchart of statistics allocation with five input datasets as an example. First, the pixels with the highest score 

of 31 are selected, and their total area is calculated by Eq. (3): 

𝐴31 = ∑(𝑚31,𝑛 × 𝑝
31,𝑛

)                                                                       (3) 225 

where 𝑚31,𝑛 and 𝑝31,𝑛 are the pixel area and average percentage of pixel n labeled as the score 31. Then the area is 



9 

 

compared with the statistics. If the area is much smaller than the statistics, the cropland pixels with the next lower agreement 

ranking, such as 30, are chosen, and the total area is then calculated as in Eq. (3). The cumulative cropland area with the 

score of 30 and above is compared with the statistics. If the cumulative area is very close to the statistics, the pixels labeled 

with scores of 31 and 30 are selected as cropland pixels. Otherwise, pixels with lower scores are selected and added until 230 

the cumulative area reaches the statistics. In Fig. 2, when the cumulative area with the score 29 is the closest to the statistics, 

the pixels with score values from 29 to 31 are selected as the cropland extent. We obtain the cropland percentages and 

scores of the cropland pixels. The values of the scores indicate the agreements of the input cropland datasets, which reflects 

the confidence level of the cropland pixel. The scores range from 0 to 31 for five input datasets, and from 0 to 63 for six 

input datasets. Therefore, min-max normalization is used to normalize the scores to the same scale. The normalization 235 

results are the confidence levels with values from 0 to 100%.  

 

(insert Fig. 2 here)  

Figure 2: The flowchart of cropland area statistics allocation with five input products. 

 240 

Allocation results include the score values and the average percentage maps comprising the selected cropland pixels. Using 

the above method, we allocated the national, first and second subnational statistics to the pixels respectively, and obtained 

multilevel allocation results. 

 

3.3 Integration of multilevel allocation results 245 

The qualities of the cropland area statistics are various. At the national level, the FAO statistical system includes a quality 

framework and a mechanism to ensure the compliance of FAO statistics to this framework. Therefore, it is reasonable to 

consider that national statistics have higher reliability. Subnational statistics are estimated by the harvested crop areas and 

the cropping intensity factors when the official statistics are unavailable. In some subnational units, especially at the second 

subnational level, only a few harvested areas of some crops are available, so the estimated cropland areas may be much 250 

lower than the actual cropland amount (You et al., 2014; Fritz et al., 2015). Meanwhile, some cropland area statistics are 

absent in subnational units. We collected the statistics for 64.91% of the first subnational units, and 34.76% of the second 

subnational units (Fig. 1). Therefore, it is reasonable to consider that the national statistics are more reliable than the 

subnational ones, and the first subnational statistics are more reliable than the second ones. The integration principle is that 
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the overall cropland area at the national level should be consistent with the statistics, and the cropland area of the lower 255 

level should be equal to or greater than the statistics. 

 

We take San Luis Province in Argentina as an example to describe the integration process. The first and second subnational 

allocation results with cropland are shown in Fig. 3(a) and (b). This province consists of nine departments, labeled A-I in 

Fig. 3(b). The cropland areas of the second subnational allocation results in departments C, D, E, F, and G are 0 because of 260 

the absence of the second subnational statistics. The cropland areas of the first subnational allocation results in each 

department are calculated (Table 3). The integration of the first and second subnational allocation results uses the following 

rules: 

 

(1). For the departments which have statistics, when the cropland area in the second subnational unit is higher than the area 265 

at the first subnational level, the second subnational allocation results are used for this department. Otherwise, the first 

subnational allocation results are used. As shown in Table 3, the total cropland area of the second subnational units (692.09 

km2) in the department I is higher than that for the first subnational area (291.46 km2). The result for the second subnational 

units is selected as the allocation result for department I. For departments A, B, and H, the results of the two levels are the 

same, and the allocation is unchanged (Fig. 3(c), Table 3).  270 

 

(2). Next, the departments with no statistics are merged. The cropland area differences between the first and second 

subnational allocation results are calculated and allocated to the merged departments. For example, in Fig. 3, the total 

cropland area of the first subnational allocation results and the second subnational results are 4,909.10 km2 and 4,144.12 

km2, and their difference, 764.98 km2, is allocated to the merged departments of C, D, E, F, and G (Fig. 3(c), Table 3). 275 

 

(3). The self-adapting statistics allocation in Section 3.2 is rerun for the merged departments of C, D, E, F, and G with a 

cropland area 764.98 km2. Based on the agreement ranking scores established in Section 3.1, the cropland area 764.98 km2 

is allocated to the pixels with higher ranking scores automatically until the cumulative cropland area is close to the 764.98 

km2. Then, we obtained the allocation results of the merged region, as shown in Fig. 3(d). 280 

 

 

According to the above integration rules, we first integrated the first and second subnational results to obtain subnational 
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cropland results, and then combined the subnational and national allocation results to create the final synergy cropland map. 

 285 

(insert Fig. 3 here)  

Figure 3: The integration of the first and second subnational allocation results in San Luis Province, Argentina: (a) the first 

subnational allocation result, (b) the second subnational allocation result, (c) the combination of the departments with no 

statistics, and (d) the allocation results of the departments with no statistics. 

 290 

(insert Table 3 here)  

Table 3: Cropland areas of each department from the first and second subnational allocation results, and their coordination 

in San Luis Province of Argentina. 

 

3.4 Validation of the global cropland map and comparison with IIASA-IFPRI method 295 

The accuracies of the spatial location and cropland area for the global cropland map were assessed. The percentage cropland 

map was first reclassified into a binary map of cropland/no cropland, where a cropland percentage greater than zero was 

assigned to the cropland category. The spatial accuracies were assessed by using an error matrix based on training samples. 

These samples originated from the Tsinghua University in their development of the FROM-GLC land cover product (Gong 

et al., 2013). The samples types were identified manually by hundreds of students, researchers, and experts using Google 300 

Earth images in or around 2010. We selected the samples between 70°N and 60°S where almost all cropland in the world 

lies. The test data consisted of 5,743 cropland samples and 28,076 non-cropland samples. The cropland areas of cropland 

maps were calculated in each country, and then compared with FAO statistics using the correlation coefficient (R) and root 

mean square error (RMSE) to assess the consistency.  

 305 

We compared the SASAM with the IIASA-IFPRI method (Fritz et al. 2015) in China. Unlike SASAM, the IIASA-IFPRI 

method needs training samples to assess the accuracies of input datasets for building the weighted scoring table (Fritz, et 

al., 2015). Training samples from China (1,387 cropland and 1,430 non-cropland) were employed to assess the accuracies 

of the input datasets. Then, the spatial location and the cropland area accuracies for the results of SASAM and IIASA-

IFPRI method were calculated and compared. 310 
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4 Results and analysis 

4.1 Results of global synergy cropland 

Agreement ranking was used to generate scores and average cropland percentages for the satellite-based input data. The 

ranges of scores were determined by the amount of the input datasets. Regional cropland maps in Europe, USA, Canada, 

Mexico, Australia, China, and South Africa were available, so agreement ranking scores ranged from 1 to 63. The 315 

agreement ranking score map with values from 1 to 63 is shown in Fig. 4(a) for Europe. In the other regions, e.g., Africa 

(Fig. 4(c)), the scores ranged from 1 to 31 with the five global input datasets used for cropland synergy. Meanwhile, average 

cropland percentages were obtained by taking the mean percentages of the input datasets. Maps for Europe and Africa are 

shown in Fig. 4(b) and Fig. 4(d), respectively. The areas with higher scores usually have higher average cropland 

percentages. 320 

 

(insert Fig. 4 here)  

Figure 4: Agreement ranking score maps and average cropland percentages in Europe and Africa: (a) and (b) are the score 

map and cropland percentage of Europe; (c) and (d) are the score map and cropland percentage of Africa. 

 325 

After the agreement rankings were determined, the statistics were allocated to pixels with higher scores, and then the 

national, first and second subnational statistics allocation results were obtained. In Europe, all the national statistics were 

collected, and the national synergy results are shown in Fig. 5(a). We obtained the first subnational statistics for 510 out of 

the 586 administrative units (87.03%), and the second subnational statistics for 951 out of the 3,313 administrative units 

(28.71%). Therefore, the cropland extent of the national level is greater than that of the subnational level, and the first 330 

subnational level has more cropland extent than the second subnational level (Fig. 5(a–c)). In Africa, the national synergy 

results are shown in Fig. 5(d). At the first subnational level, 618 of the 796 administrative units have statistics (77.63%). 

We did not have the first subnational statistics for Central African Republic, Congo, Seychelles, Libyan, Equatorial Guinea, 

Eritrea, Western Sahara, and Cape Verde. Therefore, in these countries, there are no the first subnational synergy results. 

At the second subnational level, only 13.89% (770 out of the 5541) of the administrative units have statistics. About 37 335 

countries, including Nigeria, Sudan, and Namibia, do not have the second subnational statistics. As a result, the 

corresponding areas do not have allocation results (Fig. 5(f)). 
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(insert Fig. 5 here)  

Figure 5: Statistics allocation results in Europe and Africa: (a) and (d) are the national allocation results; (b) and (e) are the 340 

first subnational allocation results, (c) and (f) are the second subnational allocation results. 

 

The allocation results of the national, first and second subnational levels were integrated using the rules described in Section 

3.3. First, the first and second subnational allocation results were combined to obtain the subnational allocation results, and 

then the results were integrated with the national allocation results to generate the final synergy cropland map at the global 345 

scale (Fig. 6(a)). The confidence level map of synergy results was created by normalizing the agreement ranking scores of 

the synergy cropland pixels (Fig. 6(b)). The results indicate that India, China, America, Russia, Kazakhstan, and Ukraine 

have large cropland areas. Latin America is becoming an important grain-producing area because new agricultural land has 

been established from intact and disturbed forests since the 1980s (Gibbs et al., 2010). The higher confidence levels are 

usually in homogeneous areas, while lower confidence levels are in areas with heterogeneous landscapes or at the margins 350 

of cropland extent (Fig. 6(b)). 

 

(insert Fig. 6 here)  

Figure 6: The results of global synergy cropland: (a) cropland percentage map, (b) confidence level of synergy cropland. 

 355 

4.2 Accuracy assessments and analysis 

4.2.1 Spatial accuracy assessment 

The spatial accuracies of the five global input datasets and the synergy cropland map were assessed at the continent and 

global scales (Table 4). The accuracy of the synergy cropland mapping is 90.8%, which is higher than those of the five 

input datasets at the global scale. In North America, Europe, Oceania, and Asia, the overall accuracies are 92.4%, 93.7%, 360 

96.5%, and 88.3% respectively, which are higher than any of the five input datasets. In South America, the accuracy of the 

synergy cropland (89.4%) is somewhat lower than GlobeLand30 (90.1%). Also, in Africa, the accuracy of synergy cropland 

(89.1%) is slightly lower than GlobeLand30 (89.9%). In North America, Europe, Oceania, and Asia, the regional cropland 

data are available, while the regional datasets are unavailable in South America and Africa. This is one reason why the 

accuracies of the synergy results in South America and Africa are slightly lower than some of the input datasets. 365 
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(insert Table 4 here)  

Table 4: Overall accuracies of input datasets and synergy cropland at the continent and global scales. 

 

4.2.2 Statistical consistency 370 

The cropland areas of the global input datasets and the synergy cropland map in each country were calculated and correlated 

with the statistics (Fig. 7). The correlation coefficient of the synergy map is 0.99 and higher than any of the input datasets 

(Fig. 7(f)). The high correlation is because the synergy map is produced by the fusion of statistics and landcover maps. 

GlobeLand30 and MODIS Collection 5 have higher correlation coefficients (0.97) than other input datasets, while CCI-LC 

and GlobCover have lower correlation coefficients (0.88 and 0.89, respectively). In addition, RMSE is used as another 375 

indicator to assess the dispersion between the cropland maps and the statistics. Although the correlation coefficients of the 

synergy cropland map, GlobeLand30, and MODIS C5 are similar, the RMSE of the synergy cropland (3.41104) is much 

lower than that of GlobeLand30 and MODIS C5, which are 8.75104 and 7.03104, respectively. Therefore, the synergy 

map has the best consistency with the national statistics. 

 380 

(insert Fig. 7 here)  

Figure 7: The consistency analysis between cropland areas estimated from products and statistics: (a) GlobeLand30, (b) 

Unified Cropland, (c) CCI-LC, (d) GlobCover 2009, (e) MODIS C5, and (f) synergy map. 

 

The cropland areas of the synergy map are higher than the statistics in some countries (Fig. 7). SASAM is a process that 385 

accumulates cropland areas from high to low scores until the accumulated area reaches the statistics. Because cumulative 

areas are not continuous, the cropland area estimated by the synergy map might not be very close to the required statistics. 

Sometimes the difference may be substantial. For example, in Japan’s case, the national statistics for the cropland area is 

45,977.50 km2. The accumulated cropland areas with scores above 27 and above 26 are 40,618.13 km2 and 52,867.19 km2, 

respectively. If we take all pixels with scores above 26, the national area estimated by the synergy map (52,867.19 km2) is 390 

almost 15% more than the national statistics. Meanwhile, in a few countries, such as Niger, Saudi Arabia, and Dominica, 

the areas of synergy cropland are slightly lower than the statistics. This is because the cropland areas estimated from the 

input datasets are all lower than the statistics. For example, in Niger, the cropland area of national statistics is 152,250 km2, 

while the cropland areas estimated by GlobeLand30, Unified Cropland, CCI-LC, GlobCover, and MODIS C5 (i.e., 66,163 

km2, 140,259 km2, 139,734 km2, 21,925 km2, and 76,018 km2, respectively) are all smaller than the statistics. The synergy 395 
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map is based on these input cropland layers, and so the synergy cropland area, 140,022 km2, is inevitably smaller than the 

statistics. 

4.2.3 Comparison with the IIASA-IFPRI method 

For the IIASA-IFPRI method, the rankings from high to low are MODIS C5, Unified Cropland, CCI-LC, NLUC-C, 

GlobeLand30, and GlobCover by using the training samples in China. The input datasets were ranked according to their 400 

accuracies for the scoring table, and then national statistics were allocated to the pixels with higher scores (Fritz et al., 

2015). From the highest score of 63, the accumulated area was calculated until the score of 59 where the cropland area was 

closest to the statistics of 1.23106 km2 (Table 5(a)). At the same time, SASAM was employed for synergy cropland 

estimation using the same input datasets and statistics. The cropland areas of the input datasets were estimated and 

compared with statistics for ranking, giving the ranks from high to low as MODIS C5, NLUC-C, GlobeLand30, Unified 405 

Cropland, CCI-LC, and GlobCover. The accumulated area was calculated from the score of 63 to the score of 58, which is 

closest to the statistics (Table 5(b)). 

 

There are a few slight differences between the results derived from the IIASA-IFPRI and SASAM methods. Validation 

samples, i.e., 1403 cropland and 1430 non-cropland, were employed to compare the accuracies of the results. The overall 410 

accuracy of the IIASA-IFPRI result is 77.68%, and that of SASAM is 77.75%. The cropland areas estimated from the 

IIASA-IFPRI method and SASAM are 1.23106 km2 and 1.25106 km2, respectively, which are both consistent with the 

national statistics of 1.23106 km2. The comparison in Table 5(a) and (b) shows that the selected combinations of input 

datasets are similar, except that SASAM has one more combination with the score of 58. SASAM provides excellent 

performance without training samples, which is a cost-effective way to map cropland using the synergy between datasets. 415 

 

(insert Table 5 here)  

Table 5: Calculation of accumulated areas from high score value to low: (a) IIASA-IFPRI method, (b) SASAM.  

5 Data and code accessibility 

The global cropland map and the confidence level map are open access and available at: 420 

https://doi.org/10.7910/DVN/ZWSFAA (Lu et al., 2020). The subnational statistics of cropland area are available at: 

https://doi.org/10.7910/DVN/PRFF8V (International Food Policy Research Institute, 2019). All the code with annotations 

used for the synergy cropland mapping is shared at this website: https://sourceforge.net/projects/globalmapping/ . 

https://doi.org/10.7910/DVN/ZWSFAA
https://doi.org/10.7910/DVN/PRFF8V
https://sourceforge.net/projects/globalmapping/
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6 Discussion and conclusion 

The cropland areas estimated from satellite-based products are generally inconsistent with statistics, which hinders the 425 

application of cropland maps in some studies, such as food security, agricultural sustainability, and the carbon cycle. In this 

study, a synergy method (SASAM) was developed to produce a new global cropland map for the year 2010 with a 500 m 

spatial resolution. Our research makes two contributions to cropland mapping at the global scale. First, SASAM addresses 

the issue of requiring lots of training samples for global cropland mapping. Secondly, we have considerably improved the 

accuracy of the final cropland map for 2010, which is consistent with official statistics. 430 

 

SASAM does not rely on training samples, which is more cost-effective for cropland mapping. Traditional synergy methods 

usually need a relatively large amount of training samples to assess the accuracy of the input datasets. Although the 

crowdsourcing tools, such as Geo-Wiki, provide a new low-cost way of gathering samples, quality and uncertainty issues 

cannot be ignored because the samples are collected mostly by volunteers. Our method uses official statistics as the 435 

reference to assess the accuracies of the input datasets. Datasets with higher accuracies generally have greater consistencies 

with statistics (Lu et al., 2015, 2016). For example, the accuracies of GlobeLand30 and MODIS C5 are higher, and their 

consistencies are also better than other input datasets. By contrast, GlobCover has lower overall accuracy and consistency 

with statistics (Table 4 and Fig. 7). Hence, statistics can replace training samples to assess the input datasets. The 

comparison with the IIASA-IFPRI method in China confirms that SASAM, without training samples, performs well in 440 

cropland synergy. 

 

The accuracy of the synergy cropland map and its consistency with statistics are higher than the input datasets. At the global 

scale, the accuracy of the synergy cropland mapping (90.8%) is higher than the five input global datasets. At the regional 

scale, the continents with regional input datasets, such as North America, Europe, Oceania, and Asia, have the highest 445 

overall accuracies. For the continents without regional datasets, such as South America and Africa, the accuracies of the 

synergy cropland are a little lower than GlobeLand30. Therefore, the regional datasets are essential for improving the 

accuracy of the synergy map. The higher correlation coefficient and lower RMSE indicates that the synergy map has better 

consistency with statistics than the input datasets. SASAM is a process that selects pixels with a high likelihood of cropland 

until the cumulative area reaches the statistics. The synergy map combines the advantages of land cover products and 450 

statistics, taking into account the land use and land cover characteristics for cropland.  
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The cropland areas estimated by the synergy map are close, but not exactly equal to the statistics. The scoring table is 

discrete, and its values range from 0 to 2n-1 where n is the number of input datasets. The agreement ranking scores are from 

0 to 31 for the five input datasets, and from 0 to 63 for six input datasets. The cumulative cropland area is calculated from 455 

high to low scores until it is close to the statistics. The final cumulative area is slightly higher than the statistical areas to 

further support the spatial production allocation model (SPAM), which is described in the second part for the two-paper 

series of a cultivated planet in 2010. The allocation rule can be adjusted to suit various applications of cropland mapping. 

If the synergy result needs to be strictly consistent with the statistics, the closest cumulative area, which may be lower than 

the statistics, can be selected. We employed the national, first and second subnational statistics for SASAM. Subnational 460 

statistics are critical, especially for large countries such as India, China, and the USA, because the subnational statistics not 

only consider the spatial heterogeneity of cropland distribution, but also reduce the allocation errors from the national 

statistics. 

 

Although we have shown that cropland extraction from multiple sources in this study is efficient, we also recognize that 465 

there are uncertainties associated with this approach. First, the agricultural landscape is an essential factor affecting the 

agreements of the input datasets for the cropland synergy map. In homogeneous areas, the high agreements among the 

input datasets are dominant, so the selected cumulative areas have high agreement ranking scores, such as India, America, 

Argentina, and Brazil. In heterogeneous areas, the agreements of the input datasets are lower, so the synergy results have 

more uncertainties. Secondly, differences in the cropland definition can also affect the agreement among the input datasets. 470 

For CCI-LC and GlobCover, some mosaic classes of cropland and forest are common in hilly areas. For example, in 

Indonesia, Malaysia and Philippines, CCI-LC and GlobCover classified permanent crops (coffee, cocoa, and rubber) as 

cropland, while GlobeLand30 classified these as forests. Besides, because pastures have similar features with cropland, 

GlobeLand30 employing textural and spectral features for classification usually classifies pastures as cropland. Therefore, 

the cropland synergy map has uncertainties in farming-pastoral zones. Thirdly, subnational statistics at the global scale 475 

were collected from multiple sources, and uncertainties are high because of differences in data processing and quality 

criteria across countries. In Europe, America, Canada, China, and other regions, the official censuses of cropland area at 

subnational level are available and reliable. While the cropland areas are the ratios between harvested areas of all crops 

and the cropping intensities, in some developing countries of Africa, Latin America, and Asia, the cropland area statistics 

in these regions are less reliable because of possible missing harvested areas of crops. 480 
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We will collect more reliable input data and explore the integration of synergy approach and machine learning in the future 

to solve the above uncertainties and further improve the quality of the cropland dataset. The quantity and quality of the 

input datasets are the basis of the synergy approach. We will collect more existing cropland maps with a high spatial 

resolution to refine the agreement ranking scores. SASAM accumulates cropland areas from high to low scores until the 485 

accumulated area reaches the statistics. The cumulative cropland area will be closer to the statistics with more input 

cropland datasets. Meanwhile, we will collect more statistics of cropland area at the subnational level. If all the subnational 

statistics at the global scale were available, the integration of multilevel allocation results would not be needed, which 

would greatly simplify the synergy process. To improve the method, we will explore the integration of synergy approach 

and machine learning according to the agreement of the input data and the geographical landscape. The synergy method is 490 

economical and efficient for cropland mapping in those regions with highly homogeneous landscapes. The regions with 

heterogeneous landscapes usually have lower agreements with higher uncertainties. Therefore, we will employ deep 

learning for cropland classification based on using high spatial resolution images with training samples from the agreements 

of existing cropland maps.  

 495 

We applied SASAM to produce a global cropland map for 2010 with a 500 m spatial resolution. The synergy map has 

higher accuracy and better consistency with statistics than the original datasets, and it combines the advantages of the land 

cover products and statistical datasets. Therefore, the map can better support relevant studies such as hydrological modeling, 

land use assessment and agricultural monitoring. In particular, the current synergy cropland dataset underpins the 

development of SPAM2010: the latest global gridded agricultural production maps in 2010, which is introduced in the 500 

second part of the two-paper series (Yu et al., 2020). Although some products of more recent years are available, such as 

CCI-LC for 2015, the quantity of the input datasets is still not sufficient to support SASAM to produce a more recent 

cropland map. With the development of new individual cropland maps, we will update the synergy cropland map in the 

future and further improve the accuracy of synergistic mapping, especially in regions with heterogeneous landscapes. 
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Figures and tables 625 

 

 

Figure 1: The statistics of cropland area at the national (a), first subnational (b), and second subnational (c) levels. 
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Figure 2: The flowchart of cropland area statistics allocation with five input products. 
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Figure 3: The integration of the first and second subnational allocation results in San Luis Province, Argentina: (a) the first 

subnational allocation result, (b) the second subnational allocation result, (c) the combination of the departments with no 640 

statistics, and (d) the allocation results of the departments with no statistics. 

 

 

  



27 

 

 645 

Figure 4: Agreement ranking score maps and average cropland percentages in Europe and Africa: (a) and (b) are the score map 

and cropland percentage of Europe; (c) and (d) are the score map and cropland percentage of Africa. 
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Figure 5: Statistics allocation results in Europe and Africa: (a) and (d) are the national allocation results; (b) and (e) are the first 650 

subnational allocation results, (c) and (f) are the second subnational allocation results. 
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Figure 6: The results of global synergy cropland: (a) cropland percentage map, (b) confidence level of synergy cropland. 
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Figure 7: The consistency analysis between cropland areas estimated from products and statistics: (a) GlobeLand30, (b) Unified 

Cropland, (c) CCI-LC, (d) GlobCover 2009, (e) MODIS C5, and (f) synergy map. 
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Table 1: Input satellite-based products.  660 

Scale Products Time Resolution Producer & source 

Global GlobeLand30 2010 30 m National Geomatics Center of China 

http://www.globallandcover.com/GLC30Download/index.aspx 

CCI-LC  2010 300 m European Space Agency  

http://maps.elie.ucl.ac.be/CCI/viewer/download.php 

GlobCover 2009 2009 300 m European Space Agency  

http://due.esrin.esa.int/page_globcover.php 

MODIS Collection 5 2010 500 m Boston University 

https://lpdaac.usgs.gov/products/mcd12q1v006/  

Unified Cropland 

Layer  

2010 250 m Université catholique de Louvain  

https://figshare.com/articles/ucl_2014_v2_0_tif/2066742 

Regional 
 

CORINE Land Cover  

(39 Europe countries) 

2012 100 m European Space Agency  

https://land.copernicus.eu/pan-european 

Land Cover of North 

America  

(Canada, USA, 

Mexico) 

2010 30 m North American Land Change Monitoring System 

http://cec.org/tools-and-resources/map-files/land-cover-2010-

landsat-30m  
 

Australia The Land Use of 

Australia  

2010 50 m Australian Government Department of Agriculture 

http://www.agriculture.gov.au/abares/aclump 

China National Land 

Use/Cover Database 

2010 30 m Chinese Academy of Sciences 

http://www.resdc.cn/data.aspx?DATAID=99 
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Table 2: The ranking scoring table for five input datasets.  

Agreement level of input datasets Score A B C D E 

5 31 1 1 1 1 1 

4 30 1 1 1 1 0 

29 1 1 1 0 1 

28 1 1 0 1 1 

27 1 0 1 1 1 

26 0 1 1 1 1 

3 25 1 1 1 0 0 

24 1 1 0 1 0 

23 1 0 1 1 0 

22 0 1 1 1 0 

21 1 1 0 0 1 

20 1 0 1 0 1 

19 0 1 1 0 1 

18 1 0 0 1 1 

17 0 1 0 1 1 

16 0 0 1 1 1 

2 15 1 1 0 0 0 

14 1 0 1 0 0 

13 1 0 0 1 0 

12 1 0 0 0 1 

11 0 1 1 0 0 

10 0 1 0 1 0 

9 0 1 0 0 1 

8 0 0 1 1 0 

7 0 0 1 0 1 

6 0 0 0 1 1 

1 5 1 0 0 0 0 

4 0 1 0 0 0 

3 0 0 1 0 0 

2 0 0 0 1 0 

1 0 0 0 0 1 

0 0 0 0 0 0 0 
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Table 3: Cropland areas of each department from the first and second subnational allocation results, and their coordination in 

San Luis Province of Argentina. 

Departments Cropland area of the first 

subnational allocation result 

(km2) 

Cropland area of the second 

subnational allocation result 

(km2) 

Coordination of the two levels 

(km2) 

A 93.51 93.51 93.51 

B 86.59 86.59 86.59 

C 1.87 0 

4909.10–4144.12 

=764.98 

D 45.80 0 

E 496.55 0 

F 537.24 0 

G 84.15 0 

H 3271.93 3271.93 3271.93 

I 291.46 692.09 692.09 
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Table 4: Overall accuracies of input datasets and synergy cropland at the continent and global scales. 

 

CCI-LC GlobCover GlobeLand30 MODIS C5 Unified Cropland Synergy map 

 (%) (%) (%) (%) (%) (%) 

North America 90.4 87.4 92.1 90.0 92.3 92.4 

South America 78.8 78.9 90.1 87.5 89.7 89.4 

Europe 89.7 87.5 87.1 89.4 88.6 93.7 

Africa 79.1 83.1 89.9 88.7 86.1 89.1 

Oceania 93.9 88.3 95.4 95.0 95.4 96.5 

Asia 82.6 77.5 86.0 86.7 84.9 88.3 

Global 84.5 83.0 89.3 88.8 88.1 90.8 
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Table 5: Calculation of accumulated areas from high score value to low: (a) IIASA-IFPRI method, (b) SASAM.  

(a) IIASA-IFPRI method 675 

Score 

value 

Accumulated area 

(km2) 

GlobeLand30 Unified Cropland GlobCover CCI-

LC 

MODIS C5 NLUC-C 

63 9.58105 1 1 1 1 1 1 

62 1.08106 1 1 0 1 1 1 

61 1.11106 0 1 1 1 1 1 

60 1.17106 1 1 1 1 1 0 

59 1.23106 1 1 1 0 1 1 

(b) SASAM 

Score 

value 

Accumulated area 

(km2) 

GlobeLand30 Unified Cropland GlobCover CCI-

LC 

MODIS C5 NLUC-C 

63 9.58105 1 1 1 1 1 1 

62 1.08106 1 1 0 1 1 1 

61 1.14106 1 1 1 0 1 1 

60 1.17106 1 0 1 1 1 1 

59 1.19106 0 1 1 1 1 1 

58 1.25106 1 1 1 1 1 0 

 

 


