

The *fortedata* R package: open-science datasets from a manipulative experiment testing forest resilience

Jeff W. Atkins¹, Elizabeth Agee², Alexandra Barry¹, Kyla M. Dahlin³, Kalyn Dorheim⁴, Maxim S. Grigri¹, Lisa T. Haber¹, Laura J. Hickey¹, Aaron G. Kamoske³, Kayla Mathes¹, Catherine McGuigan¹, Evan Paris⁵,
5 Stephanie C. Pennington⁴, Carly Rodriguez⁶, Autym Shafer¹, Alexey Shiklomanov⁷, Jason Tallant⁸,
Christopher M. Gough¹, Ben Bond-Lamberty⁴

¹Department of Biology, Virginia Commonwealth University, Richmond, VA 23059, USA

²Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 10 37831, USA

³Department of Geography, Environment, & Spatial Sciences, Michigan State University, East Lansing, MI 48824, USA

⁴Joint Global Change Research Institute at the University of Maryland, Pacific Northwest National Laboratory, College Park, MD, 20740, USA

⁵Vassar College, Poughkeepsie, NY, 12604, USA

15 ⁶Western Colorado University, Gunnison, CO, 81231, USA

⁷NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA

⁸University of Michigan Biological Station, Pellston, MI, 49769, USA

Correspondence to: Jeff W. Atkins (jwatkins6@vcu.edu)

20 Abstract.

The *fortedata* R package is an open data notebook from the Forest Resilience Threshold Experiment (FoRTE)--a modeling and manipulative field experiment that tests the effects of disturbance severity and disturbance type on carbon cycling dynamics in a temperate forest. Package data consists of measurements of carbon pools and fluxes and ancillary measurements to help analyse and interpret carbon cycling over time. Currently the package includes data and metadata from the first 25 three FoRTE field seasons, and serves as a central, updatable resource for the FoRTE project team and is intended as a resource for external users over the course of the experiment and in perpetuity. Further, it supports all associated FoRTE publications, analyses, and modeling efforts. This increases efficiency, consistency, compatibility, and productivity, while minimizing duplicated effort and error propagation that can arise as a function of a large, distributed and collaborative effort. More broadly, 30 *fortedata* represents an innovative, collaborative way of approaching science that unites and expedites the delivery of complementary datasets to the broader scientific community, increasing transparency and reproducibility of taxpayer-funded science. *fortedata* is available via GitHub: <https://github.com/FoRTEExperiment/fortedata> and detailed documentation on the access, used, and applications of *fortedata* are available at: <https://fortexperiment.github.io/fortedata/> The first public release, version 1.0.1 is also archived at: <https://doi.org/10.5281/zenodo.3936146> (Atkins et al. 2020b). All data products are also available outside of the package as .csv files: <https://doi.org/10.6084/m9.figshare.12292490.v3> (Atkins et al. 2020c).

1 Introduction

40 Disturbance alters multiple carbon (C) cycling processes and, as a result, may affect forest C uptake and storage (Williams et al. 2016). The magnitude, timing and duration of changes in the C cycle following disturbance vary among forests (Amiro et al. 2010, Luo and Weng 2011, Coomes et al. 2012, Hicke et al. 2012, Gough et al. 2013, Peters et al. 2013, Vanderwel et al. 2013, Flower and Gonzalez-Meler 2015; Gu et al. 2019). These responses may differ as a function of disturbance severity, type, and frequency along with the physical, structural, and biological properties of the affected ecosystem (Amiro et al., 2010; 45 Williams et al., 2012; Scheuermann et al. 2018; Rebane et al. 2019; Fahey et al. 2020; Atkins et al. 2020a). Understanding which forest ecosystems are most vulnerable to disturbance and, conversely, what characteristics of an ecosystem confer C cycling stability, remains an important frontier crucial to forecasting changes in the terrestrial C sink in the face of rising global disturbance frequencies (Frelich and Reich, 1999; White and Jentsch, 2001; Johnstone et al. 2010; 2016). Large-scale manipulative experiments may be particularly useful to identify the C fluxes and drivers that determine ecosystem C balance 50 following disturbance (Fahey et al., 2020; Gough et al., 2013; Shiels and González, 2014).

Honing the prediction of how forests respond to disturbance, however, requires the parallel examination of mechanisms leading to the stability or decline of multiple C stocks and fluxes to changing disturbance regimes. The calculation and interpretation of forest ecosystem C balance necessitates repeated measurements of aboveground C stocks and fluxes through tree and 55 litterfall inventories and belowground processes including root production and soil respiration--the total CO₂ efflux from roots and microbes to the atmosphere. Complementary process and structural measurements such as leaf physiology, morphology and chemistry along with remotely sensed measures of canopy structure and physiology provide important ancillary data useful to the interpretation of changes in C fluxes following disturbance. Few comprehensive datasets from such experiments exist in the public domain, and those that exist are almost never published in near-real-time concurrently as an experiment is 60 conducted, which limits testing hypotheses related to forest resilience and functional change beyond the focus of the project and slows the scientific enterprise more broadly (Falster et al. 2019).

The “open data” movement in science emphasizes transparency, reproducibility, and the moral imperative of making publicly funded research products broadly available (Culina et al. 2018). A specific example of this is ‘open notebook’ science where 65 the entire data record of a research project is made publicly available in near-real time with the goal of generating, integrating, documenting, and reporting heterogeneous data streams (e.g. Bond-Lamberty et al. 2016; Falster et al. 2019). Open notebook science helps create accountability and transparency by documenting the provenance of research data from conceptualization to publication, and fights against the ‘file drawer’ effect of lost data (Rosenthal 1979). The ability for a project team to pull

from one well-documented and consistent open data notebook increases research productivity and efficiency--streamlining the
70 process of data curation and manipulation, and eliminating errors or inconsistencies that may otherwise be introduced from multiple copies of datasets across multiple workstations. In turn, this increases the potential for reproducibility and data use outside of a core project (Powers and Hampton, 2019; Schapira et al., 2019, Gallagher et al. 2020). Open data notebooks also perfectly complement mentoring and teaching—simultaneously serving to rapidly and effectively onboard new team members to the project, while also providing project-based learning opportunities in the classroom that teach open science and data
75 science skills.

The goal of this manuscript is to (i) describe the scientific context and goals of the Forest Resilience Threshold Experiment (FoRTE), (ii) describe its experimental design and high-level measurement protocols, and (iii) document the open-source *fortedata* package that serves as the project data repository. The systematically documented and transparent approach to
80 science outlined in this manuscript and in the *fortedata* package surpasses the data-sharing expectations of publishers and funding bodies—specifically the publication of data prior to manuscript(s) submission--and may be considered as a model for future experiments and projects that is in line with widely-adopted principles concerning the management and stewardship of scientific data (See FAIR Principles, Wilkinson et al. 2016).

85 **2 The FoRTE Project**

FoRTE is a modeling and manipulative experiment that aims to identify the mechanisms underlying C cycling response to disturbance—specifically net primary productivity (NPP) resilience and its decline following disturbance. It centers on a manipulative field experiment located in northern, lower Michigan at the University of Michigan Biological Station (45.58 N, 84.71 W) with experimental plots that span ~8 ha of regionally representative landforms and forest types (Fig. 1). Data
90 from the field experiment also informs a series of modeling experiments; specifically, data included in this package is used to initialize, calibrate, and validate dynamic vegetation model simulations of forest function and its responses to disturbance (e.g. Shiklomanov et al. *In Press*).

The experimental design follows a hierarchical structure with four replicates (A, B, C, D) of each factorial combination of
95 disturbance severity (4 levels) and type (2 levels) (Fig. 1a, 1b). Within each replicate, each 0.5 ha plot was randomly assigned a disturbance severity level of 0, 45, 65, or 85% gross defoliation, respectively (Fig 1a). Each plot is bisected, with each half subjected to a disturbance treatment preferentially targeting large (top-down) or small (bottom-up) canopy trees (Fig. 1). All trees larger than 8 cm in diameter-at-breast-height (DBH) are classified as canopy trees. An intensively surveyed 0.1 ha subplot is nested within each disturbance severity-treatment combination—there are a total of 32 subplots (Fig. 1). The standard
100 nomenclature for subplots is a concatenation of the replicate (A, B, C, D) plot number (01, 02, 03, 04) and subplot location (E for east side of the plot, or W for the west side of the plot) referred to in datasets by the variable name of *subplot_id* (Fig. 1b;

Table S1-S3). Within each subplot, all canopy trees are measured (DBH) and geolocated (Total no. of measured trees 3165; Fig. 2) and terrestrial laser scans using both 2D and 3D lidar (light detection and ranging) are taken to estimate canopy structural traits (Atkins et al. 2018; Fahey et al. 2019).

105

Within each subplot, a series of C cycling and environmental measurements are taken at nested subplots. There are two types of nested subplot: 1) nested subplots 0, 1, 3, 5, 7 are 1 m² plots located at plot center (0) and 10 m off plot center at cardinal directions (1 = north, 3 = east, 5 = south, and 7 = west) (Fig. 1b) where environmental measurements such as soil volumetric water content, soil temperature, soil CO₂ efflux, and hemispherical imagery are taken; 2) nested subplots 2, 4, 6, and 8 are 4 m² vegetation survey plots located 8 m from plot center at intercardinal directions (2 = northeast, 4 = southeast, 6 = southwest, and 8 = northwest)(Fig. 1b) where understory leaf physiology, morphology, and chemistry measurements are taken. Additionally, all stems in the 4m² vegetation survey plots, including those below the 8 cm DBH canopy threshold, are counted and identified to the species level. The data detailed above are meant to be illustrative, but not entirely inclusive, of what is being measured in FoRTE. Additional environmental measurements will be taken as FoRTE matures and added to *fortedata* prior to incorporation in conventional data products such as research papers—including, but not limited to, soil chemical and physical properties, dendrometer readings, canopy profiles from 3D terrestrial lidar, fine root production, root density profiles, and data products from a NEON Airborne Observation Platform 2019 fly-over.. The *fortedata* readme file includes updates on the progress of current and future data availability.

120 **3.1 The *fortedata* Package**

fortedata is a package for the R language (R Core Team, 2020) that includes field data from FoRTE. *fortedata* version 1.0.1 (Atkins et al. 2020b) includes: leaf physiology, canopy structural traits, soil respiration, litterfall, soil micrometeorology, and forest inventory data for the years 2018, 2019, and 2020. Additional project data and data products will be incorporated over the lifetime of the project (initial FoRTE NSF funding 2018-2022).

125

3.2 Versioning and Archiving

fortedata uses semantic versioning (<https://semver.org/>), meaning version numbering follows an “x.y.z” format where x is the major version number, y the minor version number, and z is the patch version number. For example, this manuscript specifically details version 1.0.0. The major version number (x) only changes when there is a major change in overall package structure or there is expansive update in data—for example, following the inclusion of all data for a given field season. The minor version number (y) changes follow less notable changes, such as minor changes in functionality or the addition of minor data products. Changes in the patch version number (z) represent minor bug fixes or error corrections that do not affect package structure. Following each (major) release a DOI will be issued and the data archived by Zenodo (<https://zenodo.org/>). All

changes to data and code are immediately available through the GitHub repository, but only official releases will be issued a

135 DOI.

3.3 Package License

fortedata is under a CC-BY-4 license (<https://creativecommons.org/licenses/by/4.0/>); see the "LICENSE file in the repository.

This is identical to that used by e.g. Ameriflux and FLUXNET Tier 1. This license provides that users may copy and

140 redistribute this R package and its associated data in any medium or format, adapting and building upon them for any scientific or commercial purpose, as long as appropriate credit is given. We request that users cite this manuscript (see Section 3.4), and strongly encourage them to (i) cite all constituent dataset primary publications (see *fd_publications()*), and (ii) involve data contributors as co-authors when possible and appropriate.

3.4 Citing the FoRTE Data Package

145 Papers or other research products using any FoRTE data should cite both this publication and the *fortedata* package, including the package version used. Appropriate citations can be found via the command *citation("fortedata")*.

4.1 Using the FoRTE Data Package to Access FoRTE Data

It is necessary to install and use the *fortedata* R package in order to access FoRTE data. *fortedata* can be installed directly

150 from GitHub (<https://github.com/FoRTEExperiment/fortedata>) (Atkins et al. 2020b) using the *devtools* package in R (Wickham et al. 2020):

```
devtools::install_github("FoRTEExperiment/fortedata")
library(fortedata)
```

155 We plan to submit *fortedata* to the Comprehensive R Archive Network (CRAN), the common clearing house for all standardized R software packages.

4.2 FoRTE Data Package Structure

The package is structured as a collection of independent datasets with standardized plot notation, date (ISO 8601 standard YYYY-MM-DD) and time (HH:MM:SS TZ) formatting (see *fd_plot_metadata* and Tables S1-S3 for more information).

160 Datasets are available via user-facing, external functions outlined below. Additional metadata, instrument specifications, and

abbreviated measurement protocols are available in supplementary information (Tables S1-S11) and in package documentation. Currently available functions: include:

* *fd_inventory()* returns a single dataset of the forest inventory data, including diameter-at-breast height (DBH), latitude, longitude, species, as well as information on vitality and canopy position (Fig. 3; Table S4). There are 3165 observations, all measured in 2018 (Fig. 2, 3). DBH measurements were taken with a Haglof PDII Digital Caliper (Haglof, Inc., Madison, MS, USA). Longitude and latitude were measured using a Trimble R1 GNSS Receiver (Trimble; Sunnyvale, CA, USA) which has an accuracy range of +/- 30 cm. Re-measurement of DBH is slated for 2022. Additionally, mortality assignments per tree can be found in the *fd_mortality()* function which is structurally similar to *fd_inventory()*.

* *fd_soil_respiration()* returns a single dataset currently with 3908 observations each of soil CO₂ efflux (μmol CO₂ m⁻² s⁻¹), soil temperature (°C; integrated from 0 to 7 cm depth), and volumetric water content (%) for the years 2019 and 2020 (Figs. 2, 4; Table S5). Soil CO₂ efflux was measured using a LI-6400 XT (LI-COR Biosciences; Lincoln, NE) with a soil CO₂ flux chamber model 6400-09 attachment with a measurement accuracy of +/- 5 μmol mol⁻¹ maximum deviation. Soil temperature was measured using the attached soil temperature probe, with an accuracy of +/- 1.5 °C. Soil moisture was measured using a Campbell HS2 HydroSense II time domain reflectometer (Campbell Scientific; Logan, UT, USA) with a measurement accuracy of +/- 3% and accurate range of 0 – 50%.

* *fd_leaf_spectrometry()* returns a single dataset of vegetation indices derived from leaf-level spectrometry data collected via a CI-710 handheld spectrometer (Table S6). The dataset currently includes 6873 observations from 2018 and 2020 of spectral indices for three species each in eight subplots within the D replicate (Figs. 1 and 2).

* *fd_photosynthesis()* returns a single dataset of leaf physiology variables, including photosynthesis, transpiration, etc, measured using a LI-6400 XT (LI-COR Biosciences; Lincoln, NE)(Table S7) with a measurement accuracy of +/- 5 μmol mol⁻¹ maximum deviation.. The dataset includes 2215 observations from 2018 (Fig. 2).

* *fd_litter()* returns a single dataset of litter mass collected via litter traps (four in each subplot, at nested sampling points 1, 3, 5, 7). The data include the tare + oven-dried mass for each litter fraction as well as the tare weight (the empty bag), by subplot (Fig. 5; Table S7). The data are coded by litter fraction, denoted in the “fraction” column as either leaf, fwd (fine woody debris) or misc (miscellaneous, unidentifiable leaf fragments). Litter mass can be calculated by subtracting the tare weight from the mass + tare. There are a total of 340 observations included in the dataset from 2018 with 2019 and 2020 data to be processed and added in early 2021 (Fig. 5).

* *fd_hemi_camera()* returns a single dataset that includes derived estimates of leaf area index, gap fraction, clumping index, and NDVI (normalized difference vegetation index) from terrestrial, upward-facing hemispherical photos looking into the forest canopy taken 1 meter above-ground (Table S9). The dataset includes 1028 observations of each variable from 2018 and 2019 (Fig. 2).

* *fd_canopy_structure()* returns a single dataset that includes estimates of canopy structural traits such as height, area/density, openness, complexity, and arrangement derived from terrestrial lidar and processed using *forestr* version 1.0.1 (Atkins et al.

195 2018) in R Version 3.6.2 (R Core Team, 2020). The package includes 195 observations for each metric (28 canopy structural metrics are included in *forestr* v1.0.1 that estimate canopy structural traits such as area/density, openness, arrangement, heterogeneity, and layering (Atkins et al. 2018; Fahey et al. 2019)) from 2018, 2019, and 2020 (Table S10).

* *fd_ceptometer()* returns a single dataset that includes estimates of the fraction of photosynthetically available radiation (faPAR) absorbed by the canopy as well as leaf area index (LAI)--each derived from a handheld ceptometer (LP-80; Decagon Devices)(Table S11) with a resolution of $1 \mu\text{mol m}^{-2} \text{s}^{-1}$ and accuracy of +/- 5%. The dataset includes 32 observations of each variable from 2019 and 16 from 2018 (Fig. 2).

Additionally, *fortedata* includes functionality beyond simple data ingestion:

* Brief summaries of certain datasets are available via summary functions, such as *fd_inventory_summary()*, which returns a summary of the *fd_inventory()* dataset that includes stocking density (in stems per ha) and mean basal area (m² per ha) averaged at the subplot level (n = 32) grouped by Replicate, Plot, and Subplot variables. *fd_canopy_structure_summary()* returns a similar table of canopy structural trait data.

* Experimental design information, including plot metadata such as disturbance severity or treatment assignments can be accessed via *fd_plot_metadata()* (see FoRTE Working with Data vignette for a worked example).

* Biomass estimates from plot forest inventory data are available using the *calc_biomass()* function which uses regionally relevant allometries with a power law function to convert tree diameter to biomass in kilograms of C and *calc_lai()* estimates leaf area index (LAI) from FoRTE litter data found in *fd_litter()* using site-derived specific leaf area (SLA) data (see Leaf Litter vignette for further information).

215 4.3 Accessing FoRTE Data without Using *fortedata*

All data contained in *fortedata* can also be accessed directly via FigShare (<https://doi.org/10.6084/m9.figshare.12292490.v3>, Atkins et al. 2020c) as a compressed file containing all output generated from each function in *fortedata* (Atkins et al. 2020c). This mirror of the dataset will be updated with each major release of *fortedata*.

220 4.4 FoRTE Documentation and Vignettes

This manuscript serves as the primary documentation for FoRTE data and all code to reproduce this manuscript—including the tables and plots herein—are available in the package (<https://github.com/FoRTEExperiment/fortedata/tree/master/essd>). The package also includes additional supporting documentation via R's standard help system. Vignettes, which are guided tutorials that include example code or background information such as experimental design and proposal narratives, are also included 225 both in the package and online and can be accessed via *BrowseVignettes("fortedata")*. Vignettes are currently available for the functions above and additional vignettes will be added as new data products are incorporated into *fortedata*.”

Supporting project information, including detailed methods and data collection information (introduced briefly below and in Supplementary Information Tables S1-S11), can be found within package documentation: function help files (e.g. 230 `?fd_inventory()`) and package vignettes--which can be accessed via `browseVignettes("fortedata")` or online: <https://fortexperiment.github.io/fortedata/>. The funded project narrative (NSF DEB-165509) can be accessed directly within in the package via `vignette("fd_forte_proposal_vignette")` and outlines hypotheses, objectives, proposed methods, and supporting literature for the project.

235 **4.5 Testing and Quality Assurance**

The *fortedata* R package has a wide variety of unit tests that test code functionality, typically via assertions about function behavior, but also by verifying behavior of those functions when importing datasets. As datasets within *fortedata* differ in composition and format, they may create a variety of errors. Unit tests, detailed below, ensure that entries in these datasets are 240 realistic and valid. These tests are run automatically every time *fortedata* code or data is updated on GitHub, ensuring continuing package validity for end users. These tests include error checks on:

- Appropriate date and timestamp formatting
- Data class verification (e.g. plot numbers as integer values, soil CO₂ efflux measurements as numeric, etc.)
- Out of bounds latitude or longitude values

245 - Appropriately formatted plot metadata that adheres to FoRTE naming conventions

- Out of bound values (e.g. unreasonable, unrealistic, erroneous entries) for environmental measurements (e.g. negative values for tree DBH, soil water content < 0 or >100, etc.).

The appropriate method of uncertainty quantification for any given dataset herein *fortedata* may vary based on the use, 250 application, or analyses of these data. To this end, we have provided extensive documentation for end users to make these calculations based on their own judgement, discretion, or discipline specific needs. This is why there is no direct quantification of uncertainty for datasets contained within *fortedata*. These data are “raw” and represent unmodified point measurements, taken according to each instrument’s or method’s standards. Any uncertainties associated with measurements, either instrument or method specific, are detailed above in section 4.2 and in tables S5-S11.

255 **4.6 Reporting Issues**

We use the *fortedata* GitHub issue tracker (<https://github.com/FoRTEExperiment/fortedata/issues>) to track and categorize user improvement suggestions, problems or errors with the R package code and included data, as well as requests for new variables

or functionality, and/or other questions. All past and current issues are viewable to the public, and new issues can be contributed by anyone with a (free) GitHub account.

260

5 Conclusion

The lack of existing publicly available datasets comprehensively documenting forest and ecosystem manipulations limits our ability to test hypotheses related to forest resilience and functional change, broadly. While projects such as FoRTE push our boundaries of understanding the mechanisms that facilitate ecological resilience, the additional effort to make the project as

265 open and transparent as possible, including the expeditious delivery of project data increases the impact of the project. FoRTE and the *fortedata* package serve as one model for future experiments and projects by showcasing the advantages of supplying centralized project data openly and to investigators within and external to the project. This approach is above and beyond the typical requirements and expectations for data availability, particularly in field-based–ecology where standard conventions for data availability, if and where they do exist, call for reporting only upon project completion or publication. The results of such
270 modular practices often limit data availability to single spreadsheets of varying quality with limited, sometimes non-existent, metadata. We argue that open-notebook science should be the new science normal, whenever possible—when we fail to provide timely, open, and usable data, we fall short of our duty as scientists, and in doing so jeopardize scientific advancement and its societal benefits:

275 *“...the free, open, and responsible practice of science is fundamental to scientific advancement for both human and environmental well-being. Science requires freedom of movement, collaboration, and communication, as well as equitable access to data and resources. It requires scientists to conduct and communicate scientific work for the benefit of society, with excellence, integrity, respect, fairness, trustworthiness, clarity, and transparency.”* – “The Responsibilities and Rights of Scientists”, American Geophysical Union, 2017

280

We do acknowledge there may be legitimate barriers for some scientists/project teams—such as limited access to reliable internet, to resources to acquire necessary computational skills, to budgeted time, to supportive and collaborative environments where open-science is rewarded—these challenges require our attention and support. In addition, some types of data (proprietary, human-subject) clearly require different standards and practices. That said, where there exists the privilege of
285 having access to the necessary resources to conduct science openly and equitably, choosing to do otherwise is unconscionable. Open science approaches should be the rule, not the exception and we anticipate that the release of *fortedata* in near-real time will motivate external collaboration, facilitate data exchange within the project, and provide project-wide data transparency, consistency, and availability, as well as increased team member efficiency and productivity.

290 **Data Availability**

fortedata is available via GitHub (<https://github.com/FoRTEExperiment/fortedata>) and can be installed and accessed directly within the R programming language as outlined above. Additionally, the first version of *fortedata* (version 1.0.1) outlined in this paper is archived at: <https://doi.org/10.5281/zenodo.3936146> (Atkin et al. 2020b). We have also made all package data products accessible as formatted .csv files with accompanying documentation available via Figshare:
295 <https://doi.org/10.6084/m9.figshare.12292490.v3> (Atkins et al. 2020c).

Author Contributions

JWA, BBL, and CMG wrote the manuscript. JWA, EAA, AB, KMD, LTH, LJH, MSG, AGK, KM, CM, EP, CR, AS, and JT collected, processed, and provisioned data for the package, including providing details on methods and metadata included
300 within the manuscript and in package documentation. JWA, BBL, KD, SCP, and AS contributed code and package oversight. BBL and CMG envisioned, proposed, and oversaw the project. All authors contributed to manuscript discussion, editing, and revision.

Acknowledgements

305 FoRTE is funded by the National Science Foundation [DEB-1655095]. NEON AOP data collection was supported by NSF award #1702379 to KMD. CR, LJH, and EP, whole or in part, were supported by the UMBS REU Program (NSF #1659338). We'd also like to gratefully acknowledge the University of Michigan Biological Station for their continued support.

References

American Geophysical Union (2017) The Responsibilities and Rights of Scientists. <<https://www.agu.org/Share-and-Advocate/Share/Policymakers/Position-Statements/Rights-and-responsibilities-of-scientists>> Accessed April, 23, 2020.
310

Amiro, B. D., Barr, A. G., Barr, J. G., Black, T. A., Bracho, R., Brown, M., Chen, J. M., Clark, K. L., Davis, K. J., Desai, A. R., Dore, S., Engel, V., Fuentes, J. D., Goldstein, A. H., Goulden, M. L., Kolb, T. E., Lavigne, M. B., Law, B. E., Margolis, H. A., Martin, T. A., McCaughey, J. H., Misson, L., Montes-Helu, M., Noormets, A., Randerson, J. T., Starr, and G. Xiao, J.:
315 Ecosystem carbon dioxide fluxes after disturbance in forests of North America, JGR-Biogeosciences, 115, G00K02, 2010.

Atkins, J. W., Bohrer, G., Fahey, R. T., Hardiman, B. S., Morin, T. H., Stovall, A. E., ... & Gough, C. M.: Quantifying vegetation and canopy structural complexity from terrestrial LiDAR data using the forestr r package. Methods in Ecology and Evolution, 9(10), 2057-2066, 2018.

320

Atkins, J. W., Bond-Lamberty, B., Fahey, R. T., Hardiman, B. S., Haber, L., Stuart-Haëntjens, E., ... & Tallant, J.: Multidimensional Structural Characterization is Required to Detect and Differentiate Among Moderate Disturbance Agents, *Ecosphere*, 11(6), 1-19, e03156, <https://doi-org.proxy.library.vcu.edu/10.1002/ecs2.3156>, 2020a.

325 Atkins, J. W. Bond-Lamberty, B., Dorheim, K., Pennington, S. & Shiklomanov, A. forteedata v1.0.0 (Version 1.0.1). Zenodo. <https://doi.org/10.5281/zenodo.3936146>, 2020b

Atkins, Jeff; Bond-lamberty, Ben; Dorheim, Kalyn; Pennington, Stephanie C; Shiklomanov, Alexey; Agee, Elizabeth; et al. (2020): forteedata-1.0.1. figshare. Dataset. <https://doi.org/10.6084/m9.figshare.12292490.v3> 2020c

330 Bond-Lamberty, B., Smith, A. P., & Bailey, V. Running an open experiment: transparency and reproducibility in soil and ecosystem science. *Environmental Research Letters*, 11(8), 084004. 2016

Coomes, D. A., Holdaway, R. J., Kobe, R. K., Lines, E. R., & Allen, R. B.: A general integrative framework for modelling woody biomass production and carbon sequestration rates in forests. *Journal of Ecology*, 100(1), 42-64, 2012.

335 Culina, A., Baglioni, M., Crowther, T. W., Visser, M. E., Wouterse-Windhouwer, S., and Manghi, P.: Navigating the unfolding open data landscape in ecology and evolution. *Nature E and E*, 2, 3, 420-426, 2018

340 Fahey, R. T., Atkins, J. W., Gough, C. M., Hardiman, B. S., Nave, L. E., Tallant, J. M., ... & Haber, L. T.: Defining a spectrum of integrative trait-based vegetation canopy structural types. *Ecology letters*, 22(12), 2049-2059, 2019.

Fahey, R. T., Atkins, J. W., Campbell, J. L., Rustad, L. E., Duffy, M., Driscoll, C. T., Fahey, T. J., and Schaberg, P. G.: Effects of an experimental ice storm on forest canopy structure, *Can. J. For. Res.*, 50(2), 136–145, 2020.

345 Falster, D. S., FitzJohn, R. G., Pennell, M. W., & Cornwell, W. K. (2019). Datastorr: a workflow and package for delivering successive versions of evolving data directly into R. *GigaScience*, 8(5), giz035, 2019.

Flower, C. E., & Gonzalez-Meler, M. A.: Responses of temperate forest productivity to insect and pathogen disturbances. *Annual review of plant biology*, 66, 547-569, 2015

350 Frelich, L. E. and Reich, P. B.: Minireviews: Neighborhood Effects, Disturbance Severity, and Community Stability in Forests, *Ecosystems*, 2(2), 151–166, 1999.

Gallagher, R. V., Falster, D. S., Maitner, B. S., Salguero-Gómez, R., Vandvik, V., Pearse, W. D., ... & Ankenbrand, M. J.:
355 Open Science principles for accelerating trait-based science across the Tree of Life. *Nature E and E*, 1-10, 2020.

Gough, C. M., Hardiman, B. S., Nave, L. E., Bohrer, G., Maurer, K. D., Vogel, C. S., Nadelhoffer, K. J. and Curtis, P. S.:
Sustained carbon uptake and storage following moderate disturbance in a Great Lakes forest, *Ecol. Appl.*, 23(5), 1202–1215,
2013.

360 Gu, H., Williams, C. A., Hasler, N., and Zhou, Y.: The carbon balance of the southeastern US forest sector as driven by recent
disturbance trends. *JGR-Biogeo.*, 124, 9, 2786-2803, 2019.

Hicke, J. A., Allen, C. D., Desai, A. R., Dietze, M. C., Hall, R. J., Hogg, E. H., ... & Vogelmann, J.: Effects of biotic
365 disturbances on forest carbon cycling in the United States and Canada. *Global Change Biology*, 18(1), 7-34, 2012.

Johnstone, J. F., McIntire, E. J., Pedersen, E. J., King, G., & Pisaric, M. J.: A sensitive slope: estimating landscape patterns of
forest resilience in a changing climate. *Ecosphere*, 1(6), 1-21, 2010.

370 Johnstone, J. F., Allen, C. D., Franklin, J. F., Frelich, L. E., Harvey, B. J., Higuera, P. E., ... & Schoennagel, T.: Changing
disturbance regimes, ecological memory, and forest resilience. *Frontiers in Ecology and the Environment*, 14(7), 369-378,
2016

Luo, Y., & Weng, E.: Dynamic disequilibrium of the terrestrial carbon cycle under global change. *Trends in Ecology &*
375 *Evolution*, 26(2), 96-104, 2010.

Peters, E. B., Wythers, K. R., Bradford, J. B., & Reich, P. B.: Influence of disturbance on temperate forest productivity.
Ecosystems, 16(1), 95-110, 2013.

380 Powers, S. M. and Hampton, S. E.: Open science, reproducibility, and transparency in ecology, *Ecol. Appl.*, 29(1), e01822,
2019.

Rebane, S., Jõgiste, K., Põldveer, E., Stanturf, J. A., & Metslaid, M.: Direct measurements of carbon exchange at forest
disturbance sites: a review of results with the eddy covariance method. *Scandinavian Journal of Forest Research*, 34(7), 585-
385 597, 2019.

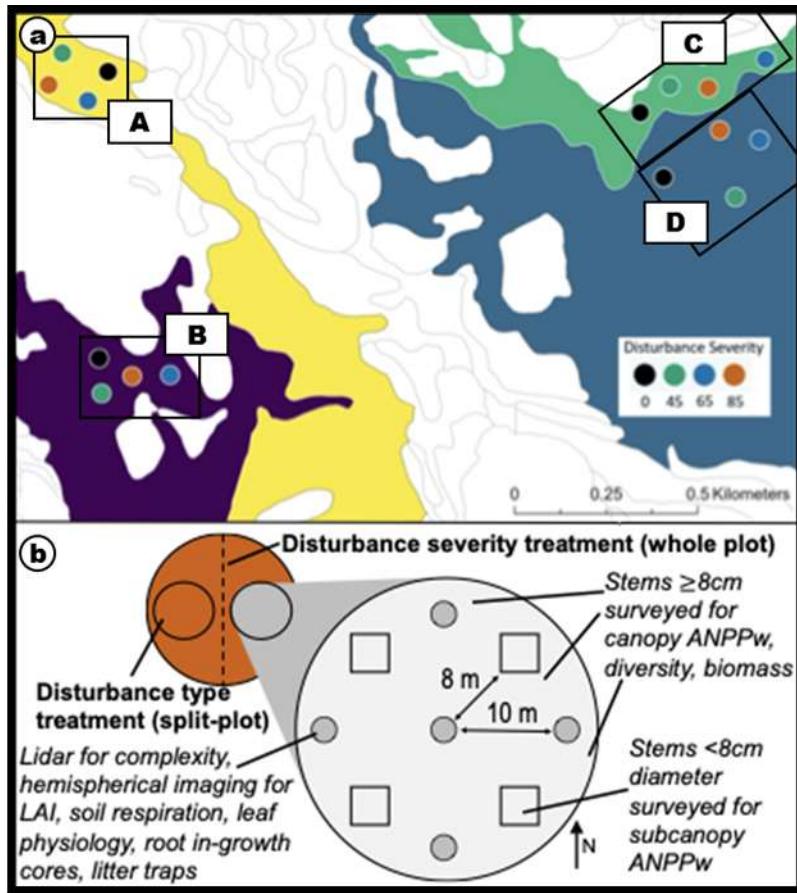
Schapira, M., Harding, R. J. and The Open Lab Notebook Consortium: Open laboratory notebooks: good for science, good for society, good for scientists, *F1000Research*, 8, 87, doi:10.12688/f1000research.17710.1, 2019.

390 Scheuermann, C. M., Nave, L. E., Fahey, R. T., Nadelhoffer, K. J., and Gough, C. M.: Effects of canopy structure and species diversity on primary production in upper Great Lakes forests. *Oecologia*, 2, 405-415, doi:10.1007/s00442-018-4236-x, 2018.

Shiels, A. B. and González, G.: Understanding the key mechanisms of tropical forest responses to canopy loss and biomass deposition from experimental hurricane effects, *For. Ecol. Manage.*, 332, 1–10, 2014.

395 Shiklomanov, A.N.; Bond-Lamberty, B.; Atkins, J.; Gough, C. M.. Structure and parameter uncertainty in centennial projections of forest community structure and carbon cycling. *Global Change Biology*. In review.

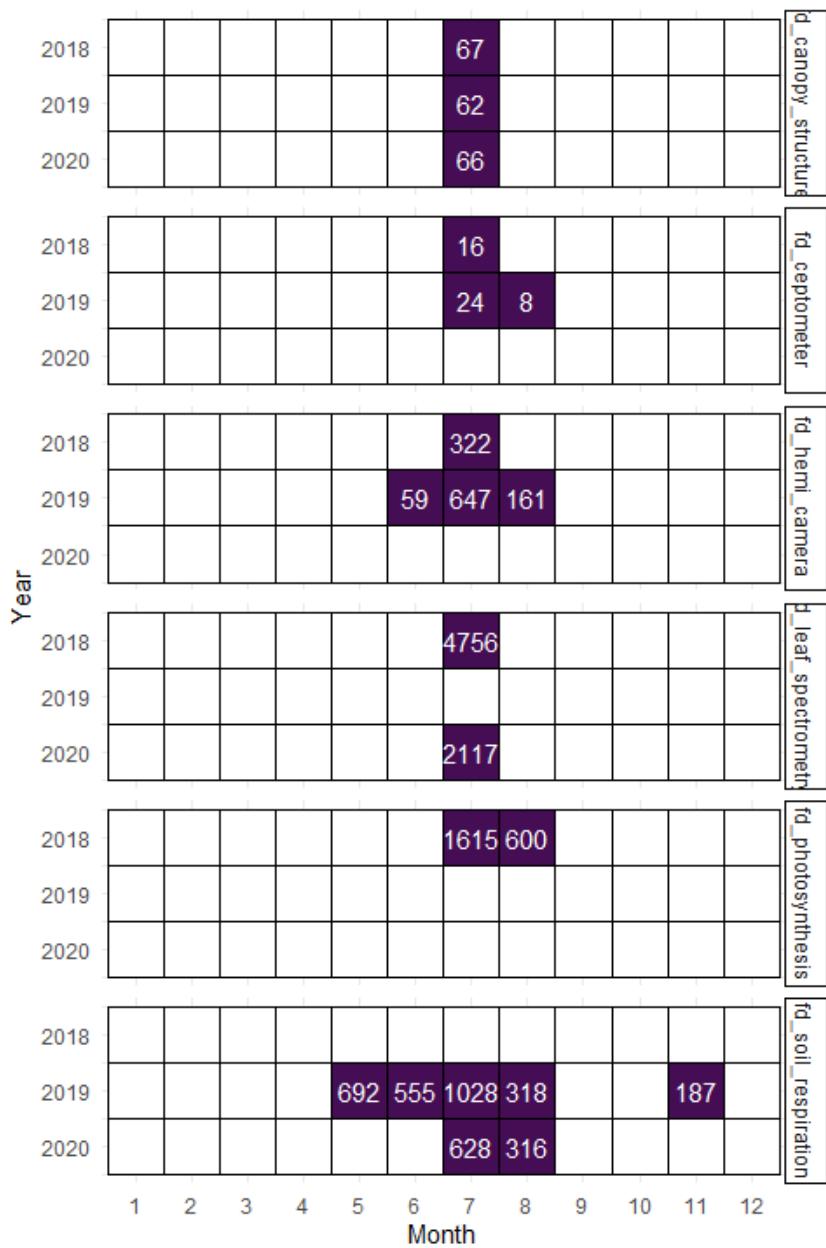
400 Vanderwel, M. C., Coomes, D. A., & Purves, D. W.: Quantifying variation in forest disturbance, and its effects on aboveground biomass dynamics, across the eastern United States. *Global change biology*, 19(5), 1504-1517, 2013.


White, P. S. and Jentsch, A.: The Search for Generality in Studies of Disturbance and Ecosystem Dynamics, in *Progress in Botany: Genetics Physiology Systematics Ecology*, edited by K. Esser, U. Lüttge, J. W. Kadereit, and W. Beyschlag, pp. 399–450, Springer Berlin Heidelberg, Berlin, Heidelberg., 2001.

405 Wickham, H., Hester, J., and Chang, W. (2020) *devtools*: Tools to Make Developing R Packages Easier. R package version 2.3.0. <https://CRAN.R-project.org/package=devtools>

Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, Baak A, Blomberg N, Boiten JW, da Silva Santos LB, 410 Bourne PE, Bouwman J. The FAIR Guiding Principles for scientific data management and stewardship. *Scientific data*. 2016;3.

Williams, C. A., Collatz, G. J., Masek, J. G. and Goward, S. N.: Carbon consequences of forest disturbance and recovery across the conterminous United States, *Global Biochemical Cycles*, 26, GB1005, 2012.


415 Williams, C. A., Gu, H., MacLean, R., Masek, J. G., & Collatz, G. J. (2016). Disturbance and the carbon balance of US forests: A quantitative review of impacts from harvests, fires, insects, and droughts. *Global and Planetary Change*, 143, 66-80.

420

Figure 1: (a) Map showing the distribution of plots in relation to landform types (asterisks)—colors indicate assigned severity levels. Plot replicates are grouped (A, B, C, D); (b) Subplot diagram showing position of nested subplots for sampling and arrangement of subplots within the plot (orange).

No. of observations currently available
in each function as of: 2020-12-13

425

Figure 2: Number of available records as of December 13, 2020 for time-series datasets including canopy structural traits from *fd_canopy_structure*, light availability from *fd_ceprometer()*, camera derived LAI, gap fraction, and NDVI from *fd_hemi_camera*, leaf-level vegetation spectra indices from *fd_spectrometry*, photosynthesis and stomatal conductance from *fd_photosynthesis*, and soil CO₂ efflux, soil temperature, and soil water content from *fd_soil_respiration*.

430

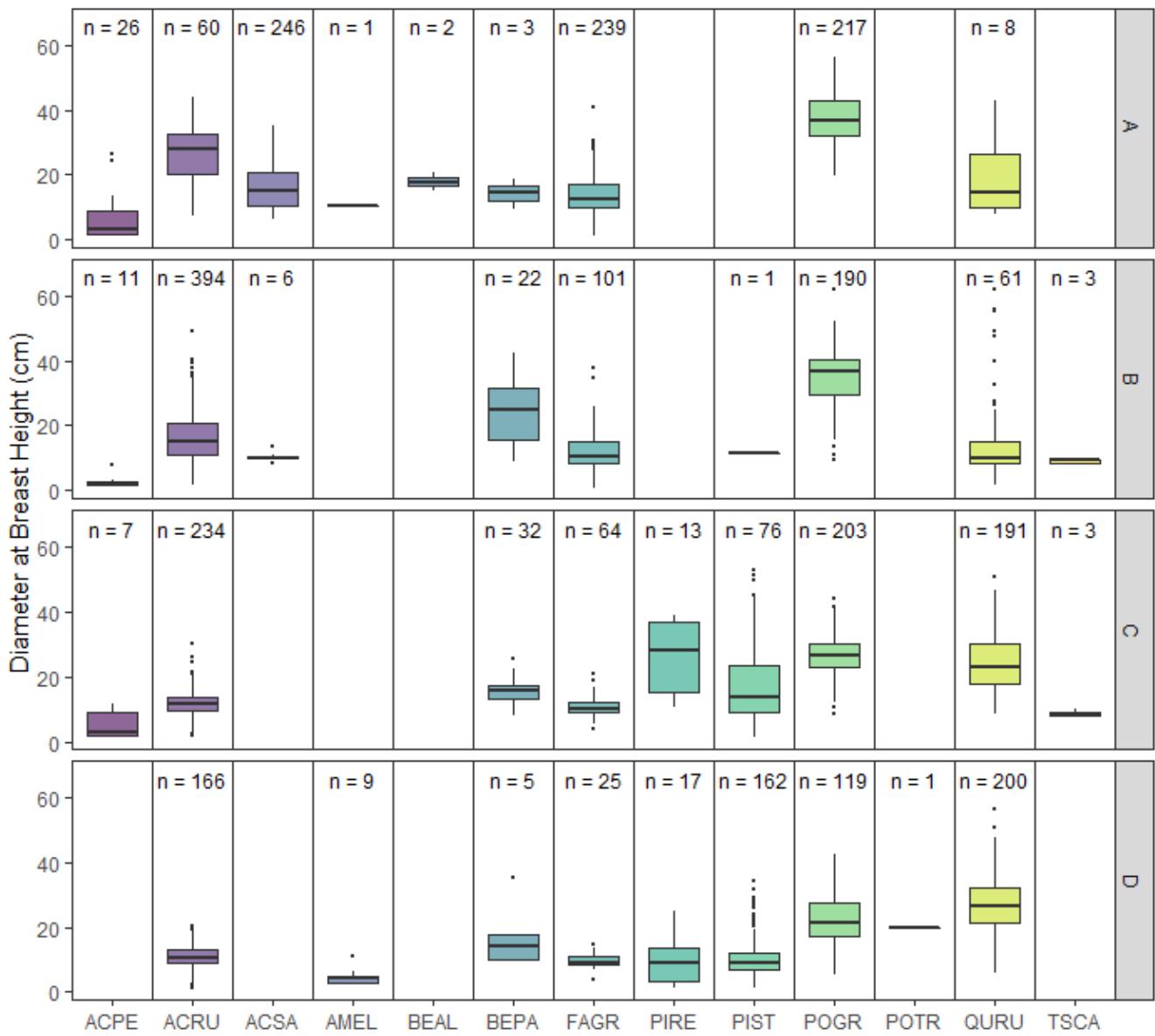
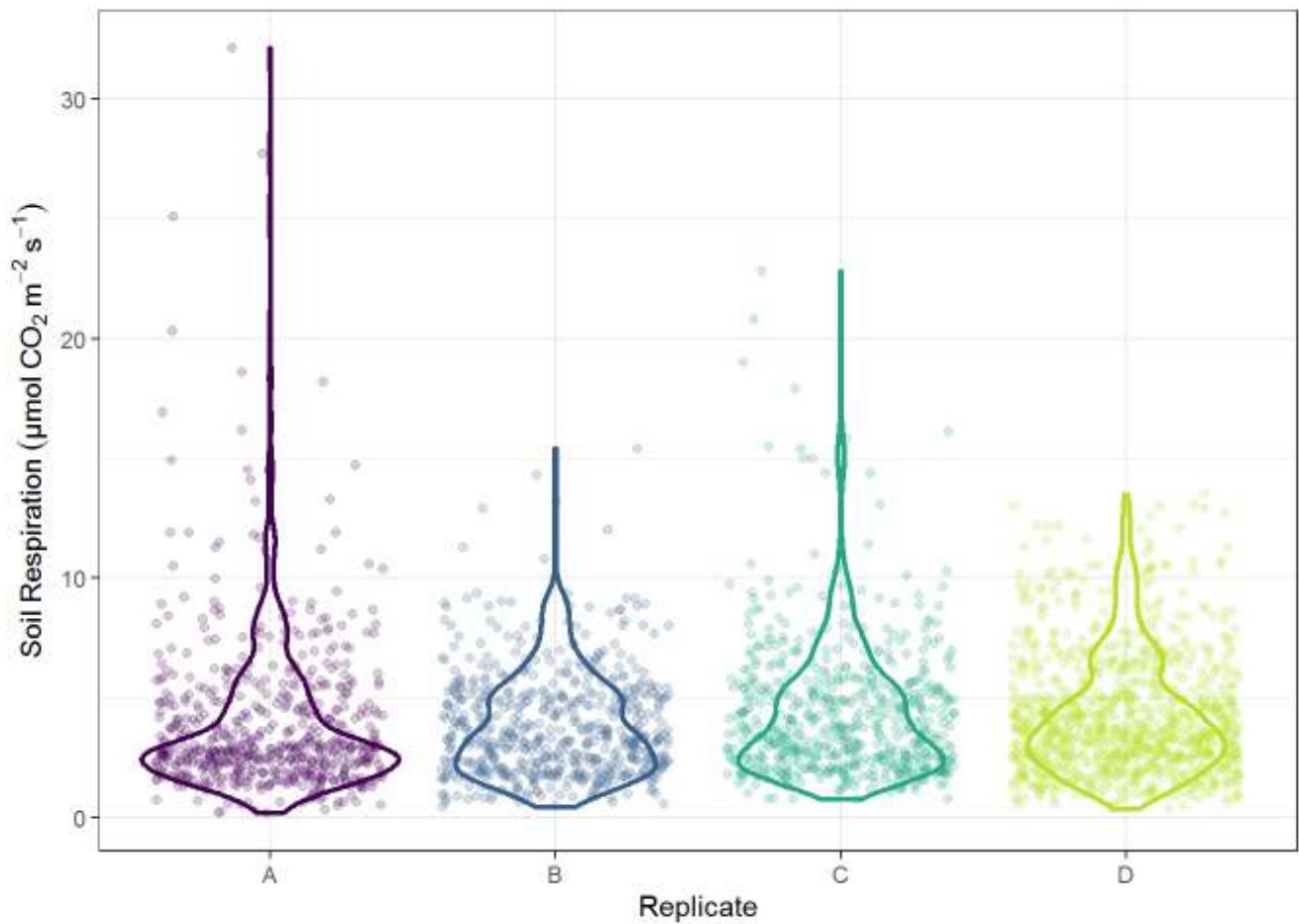
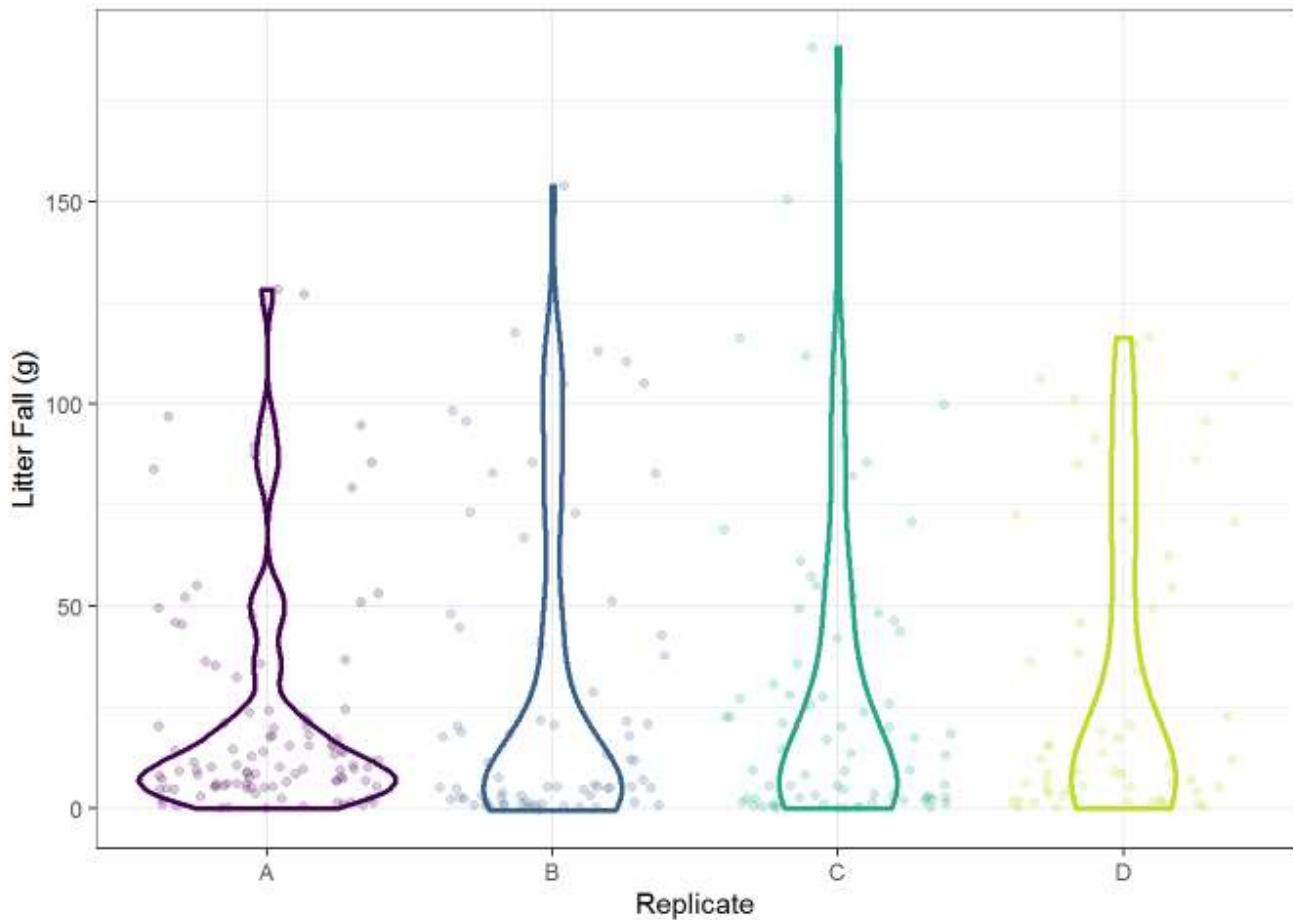




Figure 3: Diameter-at-breast height (DBH) distributions for each species, grouped by replicate. The bounds of each box in the boxplot represents the 25th percentile at the lower bound, and the 75th percentile at the upper, and the horizontal line is the median. Lines extending from the lower and upper bounds represent values that are 1.5 times the interquartile range for the minimum and maximum values, respectively, while black circles indicate outliers. Above each box plot, n is the number of observations.

Figure 4: Distribution of soil CO₂ Efflux values from May-November, 2019 by replicate. Lines represent distribution while points are individual measures.

440

Figure 5. Distribution of litter mass values for 2018 by replicate. Lines represent distribution while points are individual measures.