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Changes in agricultural lands over time is as important as that over space, especially given that the changes in cropping pattern 

and crop yields are more frequent than that at the land cover level (Verburg et al., 2011). While there are four spatially explicit 

datasets on global agricultural production available around the year 2000 (Anderson et al., 2015), three of them, i.e. M3, 

MIRCA, GAEZ, are no longer available after 2000. Agricultural production systems are constantly changing, and these 

changes are not trivial. However, a lot of recent agricultural and environmental assessments were still based on those maps 70 

produced decades ago (Deutsch et al., 2018;Nanni et al., 2019;Estes et al., 2018;Prestele et al., 2018;Erb et al., 2018;Porwollik 

et al., 2019;Yu et al., 2017b), suggesting that an update of existing global agricultural production maps is very desirable for 

subsequent analysis.  

 

SPAM had committed to update maps in every five years (You et al., 2014;Wood-Sichra et al., 2016), which substantially fills 75 

the data gap and extends the work for global agricultural production mapping by operating a global gridscape at the confluence 

between earth and farming systems in multiple time stages. The SPAM model has become a critical tool to many initiatives 

within and beyond the Consultative Group for International Agricultural Research (CGIAR). Moreover, SPAM data are 

frequently downloaded and widely used by researchers and analysts from international originations, academia, governments 

agencies all over the world. The global spatially explicit datasets in multiple time stages enable scientists as well as 80 

policymakers to better address the global change challenges within the anthroposphere and beyond, such as targeting 

agricultural and rural development policies and investments, increasing food security and growth with minimal environmental 

impacts. Successful examples include AGRODEP Library (http://www.agrodep.org/fr/node/1794), GEOGLAM 

(www.geoglam.org), USAID Feed the Future Innovation Lab for Small-scale Irrigation (https://ilssi.tamu.edu/), Africa 

Infrastructure (https://openknowledge.worldbank.org/handle/10986/2692), and so on. In this paper, we introduce SPAM2010, 85 

the latest update of the SPAM family. The next section gives an overview of the SPAM model. Section 3 provides a detailed 

description and improvements of SPAM2010. Section 4 introduces the data preparation, and Section 5 presents some of the 

results produced by SPAM2010. Finally, we conclude with some advice on using the maps and our own plan for the future of 

SPAM. 

2 SPAM overview 90 

The main purpose of SPAM is to disaggregate crop statistics (e.g., harvested area, production quantity and yield) by different 

farming systems, and to further allocate such disaggregated statistics into spatially gridded units (Figure 2). In SPAM, 

disaggregation is processed before allocation, because crop yields are likely to be substantially different between different 

farming systems (e.g., irrigation versus rainfed) even at the same location. The whole procedure entails a data fusion approach 

that combines information from different sources and at different spatial scales by deploying various matching and calibration 95 

processes. Then all the data elements are processed by the optimization model which generates results at the grid level (Figure 

2).  

http://www.agrodep.org/fr/node/1794
http://www.geoglam.org/
https://ilssi.tamu.edu/
https://openknowledge.worldbank.org/handle/10986/2692
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5 Results 

In this section, we briefly showcase some of the main SPAM2010 results, which mainly focus on the staple crops, to illustrate 

how SPAM2010 has been produced.  

 

5.1 Disaggreaged crop statistics 505 

Disaggregation of crop statistics is the first step for running the SPAM model. Table 3 summarizes the disaggregated rice 

harvested area and yield (area-weighted) for global rice production by four farming systems in SPAM2010. At the global level, 

the world has harvested about 160 million ha. of rice around year 2010. The majority of rice production area is irrigated, i.e., 

about 98 million ha., which accounts for 61.2% of the total rice harvested area. This share is followed by high input rainfed 

farming system (17.3%, approximately 27 million ha.), subsistence farming system (16.0%, approximately 26 million ha.) and 510 

low input rainfed farming system (5.5%, approximately 9 milling ha.). The global average rice yield is 4,374 kg/ha, which 

stands at the average yield between irrigated farming system (5,528 kg/ha) and high input rainfed farming system (3,663 kg/ha) 

and is much higher than the average yield of low input rainfed farming system (1,810 kg/ha) and the average yield of 

subsistence farming system (1,604 kg/ha). At the regional level, Asia (South Asia, South East Asia, East Asia together) is the 

largest rice producing region, which has harvested approximately 142 million ha. of rice around year 2010. The majority of 515 

Asia rice production area is also irrigated, and the share, i.e., 63.7 %, is close to the global share of irrigated rice farming 

system. South Asia has more rice area harvested (approximately 60 million ha.) than South East Asia (approximately 49 million 

ha.) and East Asia (approximately 33 million ha.). However, the average rice yield in South Asia (3,553 kg/ha) is lower than 

South East Asia (4,125 kg/ha) and East Asia (6,566 kg/ha). Consequently, the total rice production in these regions is very 

close to each other. Rice production in North America is completely irrigated, and the average yield is relatively high in this 520 

region. Subsistence rice production is mainly in Sub-Sahara Africa (SSA) and South Asia and the rice yield under subsistence 

condition is also the lowest among the four farming systems. 

 

Table 3: Regional values for area and yield of rice from SPAM2010. Unit: area (1000 ha); yield (kg/ha). 

(insert Table 3 here)  525 

 

5.2 Allocated harvested area and yield 

After applying the optimization model in GAMS, the disaggregated crop statistics are spatially allocated to produce the SPAM 

maps. Figure 3 and Figure 4 present the maps of harvested area and yield (after adjustment) for maize, respectively. For all 

farming systems, as shown in Figure 3(e), maize area is highly concertrated in Northen China and Northen America. However, 530 

maize production in North America is mainly rainfed with high input, while in China, rainfed farming system is mainly located 





https://doi.org/10.7910/DVN/PRFF8V
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https://dataverse.harvard.edu/dataverse/harvestchoice
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countries, we may have to allow cropland per pixel to increase by 5 or even 10% than the original input to make the model 

run. In addition, we collected feedback and comments from users, local experts and collaborators as discussed above. They 630 

are sporadic but very useful. We combine all the information together to give a subjective rating on how confidence we, SPAM 

team, think of our final crop maps (both area and yield) based on the judgment on the reliability of input data. Figure 5 shows 

the country-level uncertainty rating with 5 categories (1 represents the lowest uncertainty, 5 the highest). The complete rating 

list is presented in Section S17 in the SI. Not surprisingly, the uncertainty in Africa and Southeast Asia is higher than those 

countries in Europe and America. Although such a validation process is not vigorous, but the result is convincing and such a 635 

rating is highly demanded and explicitly requested by users. 

 

(insert Figure 5 here)  

Figure 5: Subjective uncertainty rating for SPAM2010 by individual countries. 

 640 

Thirdly, we quantitatively evaluated the results by cross comparing the results with statistics at another administrative level 

that have not be used in running the model. We ran SPAM with complete statistics (ADM0, ADM1 and ADM2), and then ran 

them with only ADM0 and ADM1 statistics, to see how the aggregated results to ADM2 compare to the original statistics at 

ADM2, or at least to the aggregated original results at ADM2. The runs were all done at ADM1 and then combined to give 

results for the whole country. We then calculated the coefficient of determination (R2) between the values allocated from model 645 

and obtained from statistics to assess the model performance. In general, a higher R2 indicates for a better performance. This 

approach has already been used for evaluating the performance of SPAM2000 (You et al. 2014). The upper part of Figure 6 

shows the results of such approach applied to Brazil in SPAM2000 for its main food crops, while the bottom part of Figure 6 

shows the results of the same approach applied to the same country for the same crops in SPAM2010. The figure clearly 

indicates that the model performed better in allocating rice than other crops. Moreover, the performance improved greatly from 650 

SPAM2000 to SPAM2010, especially for soybean and potato. We further selected a few smaller countries in Asia and Africa 

to undertake the same assessment, which are believed to have a relatively higher uncertainty in terms of input data (Figure 5). 

Bangladesh, Benin, Senegal, Tanzania were selected as they have good statistical data coverage in SPAM2010. Figure 7 shows 

that the R2 for selected crops (i.e. maize, rice and cotton) ranged between 0.66 to 0.94, suggesting that the overall performance 

of SPAM2010 is good in these selected countries for those selected crops.  655 

 

(insert Figure 6 here)  

Figure 6: Comparison between the allocated crop area and statistics crop area at the ADM2 level in Brazil (log-log scale plot, unit: 
ha.). The upper part is for SPAM2000 and the bottom part is for SPAM2010. 

(insert Figure 7 here)  660 

Figure 7: Comparison between the allocated crop area and statistics crop area at the ADM2 level in Bangladesh, Benin, Senegal and 
Tanzania for maize, rice and cotton (log-log scale plot, unit: ha.). 
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Finally we did regional-level quantitative validations in case that the third-party independent crop maps are available, given 

that it is impossible for us to collect the true spatial distribution of crops (both area and yield) for the time of 2010 on a global 665 

scale. Among the limited third-party, independent spatial crop distribution data, the Cropland Data Layer (CDL, 

https://nassgeodata.gmu.edu/CropScape/) is a crop-specific land cover dataset created for the continental United State using 

moderate resolution satellite imagery and extensive agricultural ground truth, which has been applied to validate our 

SPAM2010 product at the regional scale by correlating the grid level crop area. We focus on the three most popular staple 

crops in the United States, i.e. maize, wheat and soybean, and obtain the crop area maps of 2009, 2000, and 2011 from CDL. 670 

We calculate the 2009-2011 average crop areas at a 5 arc-minute resolution for CDL according to the scheme of SPAM2010, 

and further calculate the coefficient of determination (R2) and the root mean square error (RMSE) between the grid level values 

derived from the two datasets (Figure 8). The values of R2 are between 0.71 and 0.91 and the values of RMSE are between 231 

and 307 ha., indicating a relatively high reliability. In particular, the higher R2 and lower RMSE suggest our maize and soybean 

maps are more reliable than the wheat map. There are potentially many factors affecting the different results if we treat CDL 675 

as the truth, for example, the different accuracy or availability of input data, suitability layers and parameters for the area shares 

and yield ratios. Another possible reason is that we did not distinguish spring wheat and winter wheat in SPAM, which partly 

explains that the agreement for wheat is lower than that for maize and soybean. Moreover, the National Land Cover Dataset 

of China mapped paddy field distribution as a special cropland cover at a 1×1km grid level (NLCD, 

http://www.resdc.cn/data.aspx?DATAID=99). By assuming paddy field will be mostly used for growing rice, we evaluate the 680 

rice area map in China by correlating SPAM2010_rice and NLCD2010_paddy according to the same scheme described above. 

The values of R2 is 0.49 and the value of RMSE is 1024 ha. (Figure 9). Although this result seems not as good as the results 

from the United States by using CDL, it is fairly acceptable because NLCD measures land cover rather than land use and is in 

a relatively coarse spatial resolution. Moreover, the R2 is substantially increased comparing to its predecessors. For example, 

the R2 is assessed as 0.42 for SPAM2005 by using the same approach according to Liu et al. (2013). In addition, there are 685 

regional-level crop distribution maps produced by independent efforts on interpreting remotely sensed images. For example, 

Zhang et al. (2017) provided annual paddy area time series from 2000 to 2010 based on satellite remote sensing for China and 

India. We compared these remote-sensing derived paddy maps with the rice area estimated by SPAM for the year 2010. The 

R2 values are 0.36 and 0.34 for China and India respectively (Figure 10). We could expand this quantitative evaluation when 

more third-party independent crop maps are available. However, it should be noted that errors might exit in the third-party 690 

independent crop maps as well, hence this quantitative evaluation approach also might result in uncertainty. Our results show 

that the uncertainty gradually increase when applying CDL, NLCD and Zhang et al. (2017). 

 

(insert Figure 8 here)  

Figure 8: Grid -by-grid comparison of crop area for maize (a), wheat (b) and soybean (c) between SPAM2010 and CDL2010 in the 695 
continental US. 

https://nassgeodata.gmu.edu/CropScape/
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(insert Figure 9 here)  

Figure 9: Grid -by-grid comparison between SPAM2010 rice area and NLCD2010 paddy field area in China. 

 700 

(insert Figure 10 here)  

Figure 10: Grid -by-grid comparison between SPAM2010 and Zhang et al. (2017) rice area in China and India. 

 

7.2 Data comparison 

There are a few reports which compare SPAM with M3, MIRCA and GAEZ, especially their output maps circa 2000 (Anderson 705 

et al., 2015;Donaldson and Storeygard, 2016). Although it is difficult to make statements about which one is better, there are 

several features that distinguish SPAM products from the M3, MIRCA and GAEZ data. First, the estimates from SPAM can 

be customized using user provided data for one or more of the inputs variables and return results to the provider in a short 

turnaround period. Second, although SPAM runs mainly at a 5 arc-minute resolution, it can be run at higher resolutions 

provided that at least some of the rasterized inputs have also higher resolution data to support such an exercise. Third, 710 

considerable effort is made to compile sub-national crop statistics at administrative level two (e.g., district or county) for all 

possible countries. Fourth, if there is knowledge of crop existence in any area, for any crop, this can be incorporated into the 

model to make a more accurate crop allocation. Moreover, SPAM does not have a large coverage of crops (compared to M3) 

and does not include detailed biophysical parameters (compared to MIRCA and GAEZ), instead it focuses more on agricultural 

production by providing data on crop harvested area and yield disaggregated by farming systems. Finally, SPAM results are 715 

readily available on the internet in several formats (also tabular), for all interested users. We are currently building a SPAM 

model on the cloud where we let any user to supply his/her own input data and run SPAM on his/her own under the Github 

platform. This SPAM on the cloud will be published and communicated to SPAM user community once it is ready. 

 

Anderson et al. (2015) conclude that substantial discrepancies exist across these four global spatially explicit crop production 720 

datasets circa 2000, and the disagreement between models serves as a reminder of the ongoing challenges to the creation of 

spatially explicit estimates of harvested area and yield based on crop statistics. However, it is more challenging to assess the 

disaggregated farming system results such as irrigated rice vs rainfed rice, subsistence maize vs high input rainfed rice, which 

have not been systematically explored in Anderson et al. (2015). We collected additional global datasets which are relevant to 

agricultural production mapping, e.g. the average irrigated and rainfed yields (ca. year 2000) from Siebert and Doll (2010), 725 

and the harvested area and yield for 4 crops (ca. year 2005) from http://www.earthstat.org/. We compared these datasets with 

our SPAM products at the corresponding period. We found that the results are differed from crop to crop, and from farming 
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maps and tabular data in multiple time stages are freely available on the MapSPAM website (http://mapspam.info/), which 860 

also acts as a platform for validating and improving the performance of the SPAM maps by collecting feedbacks from users. 
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Figure and tables 1020 

 

Figure 1: Overview of the global spatially explicit datasets on agricultural production. 

Each dataset is plotted in a coordinate system with the x-axis representing the timespan and the y-axis representing the number 

of crops that have been included. For each dataset, the first row indicates the major measurement(s) of agricultural production, 

the second row indicates the cropland cover layer, and the third row indicates the main approach for allocating production. 1025 

The dash line within the chart indicates the evolution of a dataset family. 
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Figure 2: The overall structure of the SPAM model. 

The rhombuses indicate spatial data inputs/outputs, while the other shapes indicate non-spatial data inputs (see the detailed 

data description in the following section).  1030 

The orange color indicates how crop statistics are disaggregated by administrative unit (k), crop type (j), and farming system 

(l). The green color indicates how the spatial parameters are collected and prepared at a unified spatial resolution (i) and in a 

harmonized manner. The yellow color indicates the spatial allocation inputs/outputs. 

The darker colors, either in orange or in green, highlight the essential elements in SPAM: the former indicates the farming 

system disaggregation scheme while the later indicates (i.e., priors of physical area) a key parameter with which the spatial 1035 

and non-spatial data are connected and the iterative spatial allocation is able to take place. 
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Figure 5: Subjective uncertainty rating for SPAM2010 input data by individual countries. 
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Figure 6: Comparison between the allocated crop area and statistics crop area at the ADM2 level in Brazil (log-log scale plot, unit: 1045 
ha.). The upper part is for SPAM2000 and the bottom part is for SPAM2010. 
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Figure 7: Comparison between the allocated crop area and statistics crop area at the ADM2 level in Bangladesh, Benin, Senegal and 
Tanzania for maize, rice and cotton (log-log scale plot, unit: ha.). 

1050 


























