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Abstract. Accurate and timelynags of urban undesling land properesatthenational scalare of significance in improving
habitat environment and achieving ®isable development goaldrbanimpervious surfac€UIS) and urban green space
(UGS) aretwo core componestfor characterizingurbanunderlyingenvironmets. However, the UIS and UG&re often
mosaickedn the urban landscape with complsttuctures andcompositesThe 6 har d cl assi ficat.i
cannot be usedffectively to delineatespatially explicit urban land surface propert&lthough six mainstreantdatasets on
global or national urban land use/cover produdts 30-m spatialrelution have been develeg, they only providethe
binary pattern or dynamic oé single urban land typewvhich cannot effectively delineatthe quantitativecomponentsor
structure ofintra-urbanland cover.Here we propogka new mapping strategyo acqure the multitemporaand fractional
information ofthe essentialirban landcover types at national scaflerough synergiing the advantage of both big data
processingandhuman interpretation in aid of geoknowledgé@stly, the vectompolygonsof urbanboundariesn 2000, 2005,
2010, 2015 and 2018 weextracedfrom Chinas Land Use/cover Dataset (CLUBgrived from Landsat imageSecondly,
the nationalsettlement and vegetation percentagere retrievediusing subpixel decompositiormethod through radom
forest algorithnusingGoogle Earth Engin€GEE) platform. Finally, theproducsof C h i rJiSarsdUGSfractions (CLUD-
Urban) at 30-meter resolutiorwere develope in 2000, 2005, 2010, 2015 and 2018e alsocompared our products with
existing six mainstream datasets quality and accuracylhe assessmengsultsshowedthatthe CLUD-Urban product has
higheraccuragesin urbanboundariegnd urban expansion detectithian other product$n addition thatheaccurate UIS and
UGS fractiorns weredevebpedin each periodThe overallaccuracyof urbanboundaries in 200Q@018areover92.65%; and
thecorrelation coefficient (Randroot mean square errof@MSE)of UIS and UGS fractiomare0.91 and).10 and0.89 and
0.11, respectivelyOur resultindicates thathe 71% pixels ofurban landvere mosaicketly the UIS and UGSwithin citiesin
2018 whichsingle UIS classification malyighly increasethe mapping uncertaintyThe high spatiaheterogeneity of urban
underlyingcoverswas exhibitedvith averag fractionsof 68.21% for UIS and22.30% for UGSin 2018at national scalerhe
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UIS and UGS increasaahprecedentdy with annual rates df,605.56 km?/yr and627.78km?2/yr in 20062018 drivenby fast

urbanization The CLUD-Urbanmappingcanfill the knowledge gapn understanding impacts the UIS and UGS pattesn
on ecasystem serviceandhabitatenvironmentsandis valuable fordetecing the hotspots of waterlognd improing urban

greening for planning and management practices The datasets can be wiooaded from
https://doi.org/10.5281/zenodo.40341(&uang et al., 280).

1 Introduction

The effects of rapid urbanization emvironmens have been witnessetoundthe world (Seto et al., 2012Bai et al.,
2018) andprofoundy contribute to thechange in biosphere, hydrosphere and atmosphere (J. Wu et al.,, Kihg et al.,
2018).In China, arapid urbanizatioprocessappearedn the 22 century(Xu and Min, 2013; Ma et al., 2014; Bai et &014;
Kuang, 2012; Kuang et al., 2016)esuling in rapid increase imrbanimpervious surface argd@1S) (Kuang et al., 2013;
Kuang& Dou, 202Q Lu et al., 2008 This process further triggeradhrious urban environmental problems such as urban heat
island and urban flooding (Haase et al., 20H4indi & Schayes; 200Kuang, 2011; Kuang et al., 2015; Kuang et al., 2017;
Xu, 2006;Zhang et al., 2017). Althougmanygreenareaswvere constructed i€hinese cities recently, China has relatively
lower urban geen spaceUGS) percentage thadeveloped countriesuch as United Stat€Blowak and Greenfield, 2012;
Kuang et al., 2014)These urban environmental problems triggered the urgendgwlopingaccurate urban landover
datasetsvith high spatial resolidn for delineating theinderlyingurban environment#long with the development of earth
observation technologies, remote sensing has become the mainstream method forig@pidd)GSand moiitoring their
changs (Weng, 2012; Wang et al., 2013; Luadt, 2014 Lu et al., 2018Zhang et al., 2009

Variouslanduse productsuch aghe Global Land Cover product (Globand30) (Chen et al., 2015}he University of
Maryland (UMD) Land Cover Classification (Hansen et al., 2000pderate Resolution Imagj Spectroradiometer
(MODIS)-based land use/cover produciried| et al.,, 2010), GlobCover (Bontemps et al., 2011) famet resolution

observatiorand monitoring of global land cover (FRGGILC) (Gong et al., 2013refreely availableworldwide (Grekouss

et al., 2015; Dong et al., 2811 These products have different definitions of urban areas or settlements due to their different

classification systemsuch ashe International GeospheBiosphere Programm@GBP) (Belward, 199%. Some urban land
dataet, such asNormalized Urban Areas Composite Index (NUAQKhich wereconstructed by supervised learning
approachesverereleasedat national or global scale wipatial resolutiosfrom 30 m to 1km (Liu et al., 2018; He et al.,
2019; Gong et al., 2019Ptherssuch asbuilt-up grid of the Global Human Settlement Layer (GHS Built) (Pesaresi et al.,
2013)andGlobal Urban Botprint (GUF) (Esch et al., 2017, 20X&vebeenpublishedtoo. Most urban land products foad

on built-up land or urban aredassification but camot delineate urban land as ateBrogeneousnit consisting ofUIS, UGS

and othergChen et al., 2015)herefore few urban land productgrovidedintra-urbanUIS and UGSfractionsat the sub

pixel level
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DetailedUIS dataseinside a diy is requiredas aprimaryurban environmenal index Numerous studies ampervious
surfacemappingatthe national scale mainlgely on mediumlow spatialresolution remoty sengd datassuch asviODIS and
Defense Meteorological Satellite Program's Openal Linescan SystenDMSP-OLS) (Gong et al., 201%hou et al., 2014;
Grekousis et al., 2@] Zhou et al., 2015Kuang et al., 201;6&Zhou et al., 2018 Recentlymore researcts shifted to employ
mediunthigh spatial resolutiodata(e.g., Landsat) tanprove the productd.i et al., 2018L.iu et al., 2018Gong et al., 2019
Gong et al.2020; Li et al., 2020; Lin et al., 20R0rhe U.S. Geological Survedevelomd the National Land Cover Database
(NLCD) andprovided impervious surfacéraction, percentree canopy, landoverclassesand their changes with a spatial

resolution of 30 m (Haone and Homer, 201X ang et al., 2018 However, detailed intrarbanUIS and UGSdataset with

30 m spatial resolutiofor China atthe national scalés not availdle yet, makingit difficult to conductdetaied analysiof

suchapplicationsasurban living environments

A systematic assessmemnt urban langnappingalgorithmsindicates that previous research mainly classifidzan land

into a single typavith6 mub a n

ampendods sorface arekSA), which limitsthe recognition on urban environméReba

& Seto, 2020)There are two critical challenges in mapping urban land cover comp&sisdy., the conceptial definition of

urban landor ISA in previows researchs urclear, thus,the spatial extentis inconsistat, resuling in large divergencein

statistical area of urban lanMeanwhile the segmentation on urbamral boundariesvas notaccuratefrom moderate
resolutionsatellite imagesising computebasedautomatic classification owing to the difémces in geographic conditign

social econoric conditionsand land polies Therefore, accurate mappid urbarrrural boundaries is pivotal in detecting

urban landcover change. Secolyd thespatial leterogeneity of urban surface property resultedifficulty in decomposig

urban landcover typesvith complex surface materiadg pixel scalewhich waslimited byhuge amounts of data processing

and storage capacities with-8dresolution.

In reality, the urbarnand-coveris composed of)IS, UGSand othersUIS refers to the urban impervious surface features
caused by artificial landise activities, like buildingaofs, asphalt or cement roads, and parking I06GSis an important
component of the gem infrastructure of cities and provides a range of ecosystem seiwidesling parks, trees and grass
Previous studies have proven tisgectral mixture analysis (SMA) provides an effective tool to retribed)IS and UGS
fractionsfrom Landsat multigectral imageryLu and Weng, 2004, 2006; Peng et al. 2016; Kuang et al., 20@8jever, this
methodneed local knowledge for problesspecific analysis such &gra-urbanland-coveranalysisof a single city or a single
urban agglomeration (Zhang and kige 2016; Xu et al., 2018\though the globally standardiz&MA can effectively extract
substrate, darknd vegetation (Small, 2013), thHS cannot be accurately and directly extracted from multispectral image

without postprocessingonsidering its wdely spectral variation and different meanings betwé&hand substraté_u et al.,

2014) Because of thdiigh correlation betweeblIS and vegetation indices in the urban landscape (Weng 20614,

fractionalUIS dataset can be estimated from vegetatndices using regressidrased approach (Sexton et aD13;Wang

etal., 2017).

To address above issueg proposed ayntheticalstrategyto utilize the advantage of both accurate urbaoundar i e

information fromC h i

naos

Land

YGLED) extracted by Mumananpwdr digitalization anthe retrievalof
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UIS and UGS fractiosthroughthe bigdata processing from GEE platforBasedon the strategywe developed thproduct

100 of nationalUIS and UGSfractionsdatasetit 30-m spatialresoluton in 2000 2005, 2010, 201&nd 2A.8 across ChinaTlhis
daasetprovidesf oundati on for wurban dwell er sé e nheimpaotsnahebanizatiorm n d
on ecological services and functiorad isalso helpful in future researdass and practiceon urban planningand urban

environmentabustainability

2 The strategy of developingCLUD -Urban product

105 To acquire the accurate CLUDrban productthree steps wergenerallyimplemented according to our mapping strategy.
Firsty, natioral urban boundaries in 20018 were extracted from CLUDwhich was generated using the uniform
technological flow and classification system in hursamputer digitalization environmeritime series of urban boundaries
and their expansiahave good perfonance in accuracy and data qualitiie national urbawvectorboundaries ir2000, 2005,
2010, 2015 and 2018 were converted to raster data withi@3olution for further processifigig. 1). Secondly, thesettlement

110 and vegetation fractiawith 36m resdution were retrievedising random forest algorithm GEE platformThirdly, the UIS
and UGS fractions with 30 mesolutionwere mappethrough overlaying the urban boundaries of CLUD with settlement and
vegetation fractionggespectively(Fig. 1). Theaauracyassessment d@oth urban boundaries, and UIS and UGS fractions was
implemented usingamples from Google Earth imag@&ée quality controlvas conducted throughout the data processing in
mapping the CLUBurban product. fie detail description was adgg®din the following sections.

115

[InsertFigurel here]

3 Data sourcesand pre-processing

Landsat is the longestinning satellite series for Earth observatioendsafThematic MapperTM), Enhanced Thematic
Mapper PlusETM+) andOperational Land Imag€OLlI) data withpathrangesof 118 149 and rowanges of 23/ 43 in China
120 were selecteqTable 1). In mappingCLUD, Landsat TM, ETM+and OLI in each periodChinaBrazil Earth Resources
Satellite (CBERS) and Huan JifigJ-1A/B) satellite images 2010were usedto generate thfalse-colourcomposite image
with nearinfrared, red, and green spectral bandeeds greenandblue Theimage enhancememtas processed to improve
thevisualinterpretatiomquality. Theimage to image registratiowas conductetb control themage rectificatiorerrors of less
than2 pixels (60 m) CBERS1 and Huan Jing (HI1A/B) satellite images were only used in extracting the vector polygons of
125 CLUD in 20109 whichwas conductedsingthe wniform data processing with Landsatages
In retrievalof settlement and vegetation fractiohandsat TM, ETM+andOLlI in each periodrom January to December

were collectedusing GEE platform SRTM Digital Elevationmodel dateand NDVI with 30 m resolution were acquired as
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input parametes to retrieve settlement and vegetation fractiddsogle Earth images selected cities with 0.6 m resolution

wereusedto assess the accuracy of CLWDban product.

[Insert Table 1 here]

4 Extraction of urban boundariesfrom CLUD
4.1 The classificatia system anéhterpretation symbols

CLUD with 30-m resolution was developed byet Chinese Acadeynof Science and hasbeenupdatedirom 2000to
2018every fiveor threeyears This dataset camlelineateland useor landcoverchange associated with humactivities,
including urbanization at a scale of 1:100,@0Di, Liu, Tian et al., 2005; Liu, Liu, Zhuang et al., 2005; Liu et al., 2010). This
productadopted &ierarchical classifation systentoveringthe firstlevelsix classeandthe secondeveltwenty-five classes
Here thefirst-level six classesnclude cropland, woodland, grassland, water botiynstruction landand unused land’he
detaikeddescriptionof each classan be foundh previous publicationd {u, Liu, Zhuang et al., 200&hang ¢al., 2014. The
construction langvas divided into threseconédlevelclassesincludingurbanland, ruralkettlementsand industrial and mining
lands beyond citiesUrban landwas defined as a builtp area of the concentrated construction, i.e. mgsliroads, squares,
green infrastructure and other lands for providing the living, industrial production, and ecosystem services for theflwellers
cities or towngKuang, 202@). According tathe classification systertheinterpretation symbolsom the secondevelclasses
were built for thefalse-colour composite imagas a reference aid the humawomputer interpretatiofFig. 2)(Zhang et al.,
2014).

[InsertFigure?2 here]

4.2 Land use and dynamic polygon interpretation

According to CLUDclassifcation systemthe vector polygonsof land useclassesn 2000 were digitalizedthrough
overlying thefalse-colour composite images aid ofinterpretation symboland thegeoknowledgérom each zoe (Fig. 3).
In the digitalization environment, each vacpolygon was assigned withcode ofthe secondevel classesThe vector
polygons ofland useclassesn 2000 were double checked to enstine correct type in interpretationhe dynamic polygons
were extractedhrough comparing the difference wio-dateimagesand assigned the calmcluding the type beforeand
afterchangs (Fig. 3). The land use changesthin five or three years were detected using the uniform method. Fittaly,
land usemapsin 200Q 2005, 2010, 2015 and 2018 and their chamgiéve- or threeyearinterval were generated for CLUD.
The detaiédtechnological flow can be found in previousbfications (iu, Liu, Zhuang et al., 200%hang et al., 2004An
exampleof land usemapin 2010in Conghua district oGuanghoucity and thér dynamicchangein 20102015is illustrated
in Fig. 3.
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[InsertFigure3 here]

4.3 Retrievalof multitemporal urban boundaries

The vector boundaries of urbartens wereextractedrom the CLUD land usemapsin each periodKuanget al., 208).
We abko examinedL0,732urban vector polygons in 200the number of polygonsicrease t®0,061in 2018 The vector
165 polygons of urban boundaries were converted to raster data witk 3Mmcell size The dataset on urban land across China
in 2000, 2005, @10, 2015 and 201®ere generated with 3@ resolutionHere we showedrban boudaries and expansio

process with 30n resolutionin cities ofXi 6 an, Wuhan, Gu &diggdz hou and Urumgqi

[InsertFigure4 here]

170 5Mapping UIS and UGSfractions using GEE platform
5.1 Collection oftraining samples

Thetraining samplesf UIS and UGS fractionare a pivotal input paramet@rrandom forest model fanapping national
settlementaind vegetatioifraction. Inlight of largediscrepancieamongUIS andUGS compaitesin different climatezones
with variousgeographical and social economic conditioms collecteda totalof 2,570 sanplesfrom randomly selected cities

175 in differentclimate zone (Schneider et al. 20)@Fig. 5. Herewe alsorefer tothe existing US dataset to acquire samples
with 10% intervals of the ISA fractigmnd those sampl@simarily distributed in thdhomogerous UlSor UGSareaswhich
might provide more effective samples and decrease the impact ofrimmapgeatch The sample of UIS andUGS covered
with diversifiedtypes, including buildings, roads andsquaresand grasstrees fom paiks, roal ard resicenial green spaces
The UlSand UGSpercerages were interpreted wiih each sample using Google Earth ima@fég. 5btb4). Finally, the

180 trainingsamplesn 2000, 2005, 2010, 2015 and 2018 wesed for trainingherandom forest modetespectively

[InsertFigure5 here]

5.2 Retrievalof settlementind vegetatiofractions using random forest model

Many previous studies havedicated that random forest is more effective and accurate in classifying urban land types
185 than other machine learning approaches sudupgort vectomachine(SVM) andartificial neural networKANN) (Zhang
et al., 2020) Random foresexhibits astrong capaty in processing higldimensional datasetnd hasheen successfully

appliedto mapping globalSA at30-m resolution(Zhang et al., 2020)n this research, we proposed a strategy to acquire the
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settlementand vegetatiopercentage ghixel scaleusing tre advantage of random forest and-taja processingased on
GEE platform.

According tosixteenglobal urban ecoregionbased ortemperature, precipitation, topographic conditions and social
economic factorgSchneider et al. 20)0China has three urbatoregionsin each urban ecoregiorhe annual maximum
NDVI, andspectralbandsin LandsatTM/ETM+/OLI, ard the slope indexierived fromSRTM DEM with 30-m resolution
were selected as the input parametensin random forest modélhe Landsatimageswere from Januaryl to DecembeB1
of each baseline yearhe annual maximum NDV( 0 ‘O » "O) wasretrieved usingquation {):

60w0O | A0 OwMOwh 0m™O (1)
where( 'O o i®the NDVI value of thefimage Individual NDVI was calculated from Landsatagesin the period between
January 1 to December &hd all images were collectedingGEE (Gorelick et al., 2017).

In GEE platformthe settlement and vegetation fractions were calcufamedach wban ecoregiorthrough using the
training parametrizatios. The lawn, forest or theinosaiked areas were selected as input samples in mapping AJG&st
processingvas implementetb remove the pixelwith NDVI values of greatethan 0.5 oDEM slope védues of greatethan
153. In arid and semarid areas, the enhanced bare soil index (EBSI) was utilized to segEBdtem bare soils As-syakur
et al., 2012Li et al., 2019. As a resultthe settlement and vegetation fractiovith 30 nE 30 min 2000,2005, 2010, 2015
and 2018wvere generated for developing CLUrban produc{Fig. 6).

[InsertFigure6 here]

5.3 Mappingof UIS and UGSfractiors

The settlement and vegetation fractomith 13 Dl3grid of each periodvere downloaded from GEE platforrn
ARCGIS 10.0 software, the settlement and vegetation layers were mesgedtivelyat provincial scale with 30 & 30 m
ThenationalUlS and UGS fractions with 30 & 30 m resolutiorin 2000, 2005, 2010, 2015 and 2048re producethrough

overlaying tle uban boundaries of CLUD with settlement and vegetation fractions, respectively,(Fig- 8andFig. 9).

[Insert Figure 7 here]

[Insert Figure 8 here]

[InsertFigure9 here]
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6 Accuracy assessmentf CLUD -urban product

The national urban boundaries and UIS and UGS fractions wergsadstarouglgualitativeand quantitativeindexes,
respectivelyFirsty, we referred on the accuracy of CLUD in 2000, 2005 and 2010 from our previous publi@aticetsal.,
2010; Liu et &, 2014 Zhang et al., 20)4 The accuracy othe firstlevel six classes cropland, forest, grassland, beiilp
area, water body and unusauadof the secondevel land use/covéypes, including urban land, rural settlements, industrial
and traffic land was assessed usithg field investigation data arnlde GoogleEarth imagesl(u et al., 2010; Liu et al., 2014;
Zhang et al., 200)4We also implementeaccuracyassessment arrban boundaries @LUD from 2000 ta2018usingoverall
accuracy, pr oahducseerr®ss @E@g tOujkuaatgwt.al., 2016; Kuang, 2080

Thevalidationsamplegor assessg the accuracy of UIS and UGS fractiomsre collectedvithin urban boundariessing
a stratified random sampling method wiltle ISA fractionat 10% intervals Those samples withweindow size o0f3x3 pixels
(90 m>90 m) wereused todigitalize the UIS and UGS polygons throufie humarcomputerinteractionbased orGoogle
Earth image (Kuang et al., 2014; Kuang, 2020 A total of 1,869validation samples werrandomly acquired in different
regions in ChingFig. 10). Mean UIS and UGSfractionsin each grid were calculatedhe comparison betweesstimated
valuesand validation valugwasconductedising he correlation coefficient (R) and root mean square error (RNISENg
et al., 2014; Kuang, 2020

[InsertFigurel0 here]

7 Results
7.1 Theaccuracy ofCLUD-urban

The quality check and data integration were performed for the ye2806f 2005, 201,(2015and 28 to ensure the
quality and consistency of the interpretation resits: assessmengsultsindicated the overall accuracy off the firstlevel
land usécover types is 98.04% in 2000, 94.3% in 2010, 91.64% in, 2001 91.12% in 201@.iu et al., 2014; Zhang et al.,
2014; Kuang et al., 2016; Ning et al., 20IB)e builtup area has the hightaccuracy amonthesix land uselypesowing to
their clear urban boundariemd theaccuracyreached®8.92% in 2000 and 97.01% in 2005 according to previous assessment
(Zhangetal.,,2014Y h e u s er s @rban tanddypeascelativelyf high with 93.67% in 2010, 92.65% in 2015 and’91.32
in 2018(Table2). Overall the urbarlandaccuracyshows a decreasing trenhich resulted from the fuzandunidentifiable
urbanruralboundaries owing tthe ontinuouspattern of urbasural landdrivenb y  C hfashuebé&ngdevelopmenincethe

215t century In CLUD, the change polygons weidentified based on the human interpretatithe validation ofUIS and

8
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UGS fractions in each periathowedha the RMSEs were 011 0.12 and 0.17 0.12 respectivelyand the R values were 0189
0.91 and 0.8710.90, respectivelyTable 3.

[Insert Table2 here]

[Insert Table3 here]

7.2 Patterns and dynamics of UIS and UGS since the beginniting 21" century

Our result indicatedhat China'sUIS increasedrom 2.46x10* km? in 2000to 5.35x1.0* km? in 2018 (Fig. 7). From the
perspective of the quality ofade | | hahitage@vironmens,t he per cent age of Ul S8is7ha426hi n a
showing a highelJIS density thardevelopedcountrieslike the USA (Kuang et al., 2014However,the UIS percenage in
urban area decreased fram.426 in 2000 t068.21% in 2018 owing to the improvement of urban greening dition. As
shown in Fig.7, theUIS across Chinas mainly distributed in the coastal and central regions amethtively discretein the
westernregiors. The pattern of "high in east and low in wesf"national UlSremained unchangdabetween2000 and 2018
(Fig. 7). China's UGS shows an increasing trend. The td@&$ areaincreased fromi.00x10* km? in 2000 t01.83x10* km?
in 2018 (Fig. 8). Looking at botHJISand UGS in urban areas, our results indicate a stighgasen UGSdensityanddecrease
in UIS density which was resulted from strengthening urban greening #ie1s century The UGS percentage rose from
18.92% in 2000 to22.30% in 2018. As shown in Fig9, UIS ard UGS of citiesfrom coastal, northeastern, and southwestern
Chinahave high spatial heterogeneityn and showed the different urban expansion rate in past 28 years.

The large discrepancies of UIS and UGS percentage in urban area were exhibited among eastern, central, western ai
coastal zoned he coastal zonghowed a remarkable increasing ttérom 16.50% in 2000 to21.66% in 2018(Fig. 9and Fig.

11). We alsofound thatheurban greening conditiomaspositively improved irBeijing at the same perigavhichresulted in
the increase of UGS percentageld decrease of UIS percentagerban aredFig. 9). It means thatirban habitat environment
in coastal zonkbas becomenoreliveable anccomfortable which isassociated with the greening of paahd forest We also
found that the western cities eavelativelylow UGS percentageén urban areas, which has0&886% lower than average of

Chinaowing to the low greening conditiofi@. 9 and Fig. 11).

[InsertFigurell here]

7.3 Comparison®f the CLUD-Urbanproductwith other datasets

We compard the vector boundaes of urban areas with the existing lande products and found their obvious
discrepancies because of the differences in data pfodudata source, resolution and definition of urbandaseltypes. The

spatial resolutions of landover products rangedm 30 m to 1000 m. Fi§j2 provides a comparison of a list of urban land

9



datasets (see Tablefor these datasetsyhowing that ar product has better performance in delineating the detslatial

patternsof intra-urban land coveri.e. the compositef UIS and UGSnote: both the GHS Built and GlobalLand 30 products

haveonly two years) The accuracy of urban boundaries from CL-UEban isover92% and idasicallyinconsistentvith that

of impervious surface map (Zhang et al., 20Z0)r dataset hashagher classification accuracy in urban boundaries than that
280 of GHSL with 90.3%, FROMGLC with 89.8%6, HBASE with 88.0%, GlobeLand®with 88.4% and NUACI with 85.6%

Furthermore, our CLUBJrban product can accurately delineate the spatial heterogenéit$ aihd UGS composites, which

showed the Rvith 0.90and0.89 and RMSE with 0.11 and 0.1despectivelyln those existing datasgtthe UIS and UGS

composites candt b atppbelfsdaleeig i2)v el y decomposed

285 [Insert Tabled here]

[InsertFigure 12 here]

8. Discussions
8.1 Themappirg advantagesmtegrated with humagomputer interpretation and GEE platform
290 In mappingurban landuse/cover change at national sgaleo pivotal steps were requiredgegment the urban land, rural
settlementsand industriabndtraffic lands in periphery of citiefor accuratelyacquiring theurbanboundariesand to retrieve
the UIS and UGS fractiorat pixel scaleThe urban boundaries agenerallymapped using classificationethodssuch as
unswpervisedclassifiers supervisedclassifiers humancomputerinterpretationand other advancedalgorithms(i.e. ANN,
SVM and random fores{Wu & Murray, 20@; Zhang et al., 2020Amongthesemethod, humancomputer interpretatiois
295 widely regarded aa mostaccurate methouh classifying urban land use/cover changes, espeamtigthdetectingchanging
information and extractingector polygons as wholeegfeaturesHowever,this methodakesmore time anananual labour
to digitalizea large numbeof polygons.The CLUD has an advantage for providing the accurate urban boundades
updated a&n interval of every five or three yedrem 2000 to 2018
Cities or towns were classified ab@mogeneouanitin CLUD. We developed the UIS and UGS fractidodill the data
300 gapfor the requirementf urban environmental managemetére we adopted thredvantage ofiigh accuracy and lontime
series in mappg urban landrom CLUD. Meanwhilewe also utilized thénighly efficient computation and large storage

capacities oiGEE platformIn mapping CLUDUrban product, we proposed to quantitively retrieve the UIS &@B8 fdactions

10
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using random foresBecause & usedadvantage of manual interpretation andtelligent compution, the CLUD-Urban

exhibits high accuracy and reliability in delineating urban land surface property

8.2 The potential implications in promoting habitat environmentamansustainabily
CLUD-Urbanproductmay ef fecti vel y-upeémnwi aChineg ditte efaidially lthe maps on

surfaceimperviousness and greening conditisiuéng, 2@0b). The CLUD-Urban can be applied suchfields asenhancing

the quality ofurban habitat environmenigducingurban heat islan@ndimproving prevention ofainstorm andlood disaster
(Huang et al., 20180ur perviousstudyindicatedthatthe thermal dissipain strength of forestanopyor lawnsin cities may
be assesseadt the pixel scale and that the greening projects are moeetéfé in allevianhg urban heat island intensititgang
et al, 2015. The CLUD-Urban product alsbelpsidentify urban flood regulation priority areas based on ecosystem services
approachks(Li et al., 2020.

The analysis of CLUBJrbanindicates unprecedented rate andgnitudeof urban expansion sindbe 215 century The
low UGS of cities in western zongglicates the needs to promdte greening levédKuang & Dou, 2020)The CLUD-Urban
produd canalsobe used to asseS®Gtargets suclas theratio of land consumption to population growth, average share of
the builtup area that ispen space for public us€herefore, theCLUD-Urban canprovide many potential applicatiosin

development ofsstainable, liveable, and resitiecities

8.3 Limitations of the method and dataset

Although stateof-the-art technologiesand methodologiesere appliedo thedevelopment of CLUBUrban(Dong et al.,
2018; Kuang et al., 2020improvement oimappingCLUD-Urbanquality still exists For example, the retrieval of UIS and
UGSwasconducted as argrequisiteof CLUD, whichfocusedon the pixel decomposition of UIS and UGS in urban ardas
the UIS and UGS fractionare parameterized to input into hydrologlcprocess model or urban climatee settlement or
impervious surface located the outskirts ofa city or rural areasireremoved from CLUDTo address tis issue, thdirst-
level classification osecondevel classification on CLUBshould beutilized to merge with UIS and UGSsing the method

in our pervious publicatiofKuang et al., 2028). Mapping CLUD require a largeamount oflabourand timethat many

11



330

335

340

345

interpretersare involvedn this work.Theextraction of urban boundaries mightdubjectiveand here's a time latp mapping
UIS and UGSiIt is needed talevelop some advanteolsto extracturban boundariessingautomaic algorithis.

Fine urban land use/cover changapping anational scale with highesolution multisource datanay be devebped in
the aid of bigdata and cloud platforrfGong et al., 2020)The development of a series of new algorithms and models are
pivotal for improving the accuracy of datasets in retrievirigan boundaries and lalwdver compositedlowever, the geo
knowledge is still essential for retrieving the highality datasetKuang et al., 2018)rheCLUD-Urbancancontribute to the

development of sustainable citissich as GEO and UNabitatin future

9 Data availability

All data presented in this paper aragable inhttps://doi.org/10.5281/zenodo.40341@uang et al., 2R0). This new
versiondataset include the UIS and UGS fractiomsth a 33m spatial resolutioin 2000, 2005, 201@015and 2A8. A

detailed metada description is providedncluding catact information.

10 Conclusion

The CLUD-Urbani C h i nU#S@sd UGS fractiomatasets witl80-m spatialresolutionweregeneratedisingmultiple
data sourcesCLUD-Urbanprovides detaileddelineationof UIS and UGS components Chinafor the years 02000, 2005,
201Q 2015and 2a.8. Comparing to other productthe novelty of thidlatasets to takecities as heterogeneousits at the
pixel level which isconsistedf UIS, UGS and othersThe accuracy of the CLUIrbandatagt isover 92.63% using the
integrated approach efsual interpretation and prior knowledgehe RMSEs oIS andUGS fractions are 0.10 and 0.14,
respectively. Results from the analysis of urban areatuding UIS and UGS, show largeegional differences in China.
CLUD-Urban provides fundamental dataasircesfor examiningurban environmenissuesand for delineaing intra-urban

structure or urban landscapgthe national scale.

Author contribution

KW, ZS and LX designed the research; ZS and LX implemented the resear¢cZ3Ian LD wrote the paper.

12



Competing interests

350 The authors declare no conflict of interest.

Acknowledgments

This study was supported Bational Natural Science Foundation of China (NSH1)871343 and Strategic Priority
Research Program A of the Chinese Acagef SciencedXDA2310020). We thankMasterY ali Hou and Changqin Guo
for processing the data, and Dr. FengyunSunandDr. Rafiq Hamdi for their help in manuscrigditing.

355 References

As-syakur, A. R., Adnyana, I. W. S., Arthana, I. W., Nuarsa, t.BMhanced buitup and bareness index (EBBI) for mapping
built-up and bare land in an urban area. Remote Sens., 4(10),2298) https://doi.org/10.3390/rs4102957, 2012.

Bai, X., Shi, P., and Liu, Y.: Society: realizing China's urban dream, N&i0%e,158 160, https://doi.org/10.1038/5091584,
2014.

360 Bai, X., DawsonR.J., UrgeVorsatz, D., Delgado, G.C., Barau, A.S., Dhakal, S., Dodman, D., Leonardsen, L., Masson
Delmotte, V., Roberts, D., and Schultz, S. Six research priorities for cities andeclitmenge. Nature, 555: 1121.
https://doi.org/10.1038/d4158618-024M-z. 2018.

Belward A. (Ed.): TheIGB®I1 S gl obal 1 km |l and cover data set ADI SCov
the Land Cover Working Group of the IGERS. IGBRDIS Working Paper, No. 13. Stockholm, 1996.

365 Bontemps, S., P. Defourny, Bogaert, O. Arino, V. Kalogirou, and J. Perez. Globcover 2009. Products Description and
Validation Reports, available ahttps://epic.awi.de/31014/16/GLOBCOVER2009 Validat Report 22.pdf (last
access: April 18, 2019), 2011.

Chen, J., Chen, J., Liao, A., Cao, X., Chen, L., Chen, X., He, C., Han, G., Peng, S., Lu, M., Zhang, W., Tong, X., and Mills,
J: Global land cover mapping at 30 m resolution: a Ffaiked operatiohapproach, ISPRS J. Photogramm., 1327/

370 https://doi.org/10.1016/j.isprsjprs.2014.09.002, 2015.

Dong, J., Kuang, W., and Liu, J.: Continuous land cover change monitoring in the imeing big data era, Science China
Earth Sciences, 60, 222224, htps://doi.org/10.1007/s1143W17-9143-3, 2017.

Esch T., Bachofer F., Heldens W., Hirner A., Marconcini M., Palacaeez D., Roth A., Ureyen S., Zeidler J., Dech S. and
Gorelick N.: Wrere we livéd a summary of the achievements and planned evolution gfdbal urban footprint, Remote

375 Sens., 10, 895, https://doi.org/10.3390/rs10060895, 2018.

Esch T., Heldens W., Hirner A., Keil M., Marconcini M., Roth A., Zeidler J., Dech S. and $raBoeaking new ground in
mapping human settlements from spakcethe Global Urban Footprint, Isprs J. Photogramm., 1347420
https://doi.org/10.1016/j.isprsjprs.2017.10.012, 2017.

13


https://epic.awi.de/31014/16/GLOBCOVER2009_Validation_Report_2-2.pdf

Falcone, J. A., and Homer, C. G.: Generation of a U.S. national urlthndarproduct, Photogramm. Eng. Rem. S., 78,1057

380 1068, https://doi.@/10.14358/PERS.78.10.1057, 2012.

Friedl, M. A., SullaMenashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A., and Huang, X.: MODIS Collection 5
global land cover: algorithm nefements and characterization of new datasets, Remote Sens. Efirgnl 68182,
https://doi.org/10.1016/j.rse.2009.08.016, 2010.

Gong P., Li X.-YeaanrdigZhda/n3g hwimamMOset t |l ement changes in Chi

385 stael lite remote sdB683jnhgttBsi b/BulslcopbgRDAITO®B. 024, 201

Gong P., Chen, B., Li, X., Liu, H., Wang, J., Bai, Y., Chen, J., Chen, X., Fang, L. and FeMpsping essential urban land
use categories in China (EULUChina): preliminary results for 2018 Sci. Bull,, 65(3), 182187,
https://doi.org/10.1016/j.scib.2019.12.0@D20Q

Gong, P., Wang, J., Yu, L., Zhao, Y., Zhao, Y., Liang, L., Niu, Z., Huang, X., Fu, H., Liu, S., Li, C., Li, X., Fu, WG.Liu,

390 Xu, Y., Wang, X., @eng, Q., Hu, L., Yao, W., Zhan#i., Zhu, P., Zhao, Z., Zhang, H., Zheng, Y., Ji, L., Zhang, Y.,
Chen, H., Yan, A,, Guo, J., Yu, L., Wang, L., Liu, X., Shi, T., Zhu, M., Chen, Y., Yang, G., Tang, P., Xu, B., Giri, C.,
Clinton, N., Zhu, Z., Chen, J., anchén, J.: Finer resolution obsation and monitoring of global land cover: first
mapping results with Landsat TM and ETM+ data, Int. J. Remote Sens., 34,i286@7
https://doi.org/10.1080/01431161.2012.748992, 2013.

395 Gong, P, Li, X., Wang, J., Bai, Y., €h, B., Hu, T., Liu, X., Xu, B.Yang, J., Zhang, W. and Zhou, Y.: Annual maps of
global artificial impervious area (GAIA) between 1985 and 20Remote Sens. Environ., 236, 111510,
https://doi.org/0.1016/j.rse.2019.111510020.

Gorelick, N., Hancher, M., Dixon, M., llyushchenko, S., Thau, D., and Moore, R.: Google Earth Engine: piscedtary
geospatial analysis for everyori@emote Sens. Environ., 202,128, https://doi.org/10.1016/j.rse.2016.031, 2017.

400 Grekousis, G., Mountrakis, G., and Kavouras, M.: An overview of 21 global and 43 regionablardmapping products,
Int. J. Remote Sens., 36, 538335, https://doi.ord.0.1080/01431161.2015.1093195, 2015.
Haase, D., Larondelle, N., Andeoss E., Artmann, M., Borgstrim, S., Breuste, J., GorBeggethun, E., Gren, A, Hamstead,
Z., Hansen, R., Kabisch, N., Kremer, P., Langemeyer, J., Rall, E. L., McPhearson, T., Bauleiteshi, S., Schwarz,
N., Voigt, A., Wurster, D., and Elmqvist, TA quantitative review of urban ecosystem service assessments: concepts,
405 models, and implementation, Ambio, 43, #433, https://doi.org/10.1007/s132804-05040, 2014.
Hamdi, R, Schayes, G., Sensitivity study of the urban heat island intensity to ghHzacteristics, Int. J. Climatol., 28, 973
982, https:// doi.org/10.1002/joc.1598, 2007.
Hansen, M. C., Defries, R. S., Townshend, J. R. G., and Sohlberg, R.: Global land covatiansit 1 km spatial resolution
using a classification tree approadht. J. Remote Sens., 21, 133864, https://doi.org/10.1080/014311600210209,
410 2000.
He C. , Liu zZ., Gou S., Zhang Q. , Zhang J.t atnkdr eXeu dlLe c: a dDes
fully convolutional ,nédtdwor3kd,00Bnv ihtdamS3Ré6daaltl ®BtGH./) 12019

14


https://doi.org/10.1016/j.scib.2019.12.007,
https://doi.org/10.1016/j.rse.2019.111510

Huang C., Yang J., Jiang P.: Assessing impacts of urban form on landscape structure of urban green spaces in China using
Landsat images based on Google Earth Endimviron. Res. Letf.10(10, 054011, https://doi.org/10.1088/1748
415 9326/10/5/05401,120138.
Kuang, W.: Simulating dynamic urban expansion at regional scale in B&iamgin-Tangshan Metropolitan Area,Geogr.
Sci., 21, 317330, https://doi.org/10.1007/s114821-0847-4, 2011.
Kuang, W.: Evaluating impervious surface growth and its impacts on water environment in Bé&jmig-Tangshan
metropolitan area, J. Geogr. Sci., 22, 183%/, https://doi.org/10(07/s11442012-0945y, 2012.
420 Kuang, W., Liu, J., Zhang, Z., Lu, D., and Xiar®); Spatiotemporal dynamics of impervious surface areas across China
during the early Ztcentury, Chin. Sci. Bull., 58, 1691701, https://doi.org/10.1007/s114842-55682, 2013.
Kuang, W., Chi, W., Lu, D., and Dou, Y.: A comparative analysis of mggagpansions in China and the U.S.: patterns,
rates and driving forces, Landscape Urban Plan., 132 1BBlhttps://doi.org/10.1016/j.landurbplan.2014.08.015, 2014.
Kuang, W., Dou, Y., Zhang, C., Chi, W., Liu, A., Liu, Y., Zhang, R., and Liu, J.: Qyamgifthe heat flux regulation of
425 metropolitan land use/land cover components by coupling remote sensingngedtHiin situ measurement, J. Geophys.
Res:Atmos., 120, 118130, https://doi.org/10.1002/2014JD022249, 2015.
Kuang, W., Liu, J., Dong, J., CH., and Zhang, C.: The rapid and massive urban and industrial land expansions in China
between 1990 and 2018:CLUD-based analysis of their trajectories, patterns, and drivers, Lapeldtban Plan., 145,
217 33, https://doi.org/10.1016/j.landurbplan.201k 001, 2016.
430 Kuang, W., Yang, T., Liu, A., Zhang, C., Lu, D., and Chi, W.: An EcoCity model for regulatbenuand cover structure
and thermal environment: taking Beijing as an example, Sci. China S&art® Sci.,, 60, 1098109,
https://doi.org/10.007/s1143@016-90329, 2017.
Kuang, W., Yang, T., Yan, F.: Examining urban laaaer characteristics and eogical regulation during the construction
of Xiongdan New District, He b elk3, Rtpsd/doiiory/d0e1007/442i018-4462 J . G
435 4, 2018.
Kuang, W., Zhang, S., Li, X., Lu, D.: A 3eter resolution dataset of impervious sugfacea and green space fractions of
China's cities, 200Q018 Zenodo https://doi.orgl0.581/zenodo.3778424£020.
Kuang W., Yan, F.: Urban structural evolution over a century in Changchun citytiéast ChinaJ. Geogr. Scj.28(12)
1877 1895 https://doi.org/10.1007/s114421815697, 2018.
440 Kuang W.: 70 years of urban expansion across China: Trajectory, pattern, and national pd@iciesBull,
https://doi.org/10.1016/j.scib.2020.07.0@820.
Kuang W.: National urbadand-use/cover charmgsince the beginning of the2dentury and its policy implicatioris China.
LandUsePol, 97, 104747 https://doi.org/10.1016/j.landusepol.2020.104,7202.
Kuang W., Dou, Y.: Investigating the patterns and dynamics of urbaegrspace in China's 70 major cities using satellite
445 remote sensindgRemote Sensl2(12),1929 https://doi.orgl0.3390/rs1212192202Q

15


https://doi.org/10.5281/zenodo.2644932
https://doi.org/10.1007/s11442-018-1569-7,
https://doi.org/10.1016/j.scib.2020.07.005,
https://doi.org/10.3390/rs12121929,

450

455

460

465

470

475

Li, H., Wang, C., Zhong, C., Su, A, Xiong, C., Wang, J., LiuMapping urban bare land automatically from Landsat imagery
with a simple index. Remote Sens., 9(3), 2#fs://doi.orgl0.3390/rs9030249, 2019.

Li, X., Zhou, Y., Zhu, Z Liang, L., Yu, B and Cao W.: Mapping annual urban dynamics (128%5) using tire series of
Landsat dataRemote Sens. Envirar216, 674683, https://doi.org/10.1016/j.rse.2018.07.02018.

Li, X., Zhou, Y., Zhu, Zand Cao W.: A national dataset of 30 m annual urbdané dynamics (1982015) in the
conterminous United States. BaByst. Sci. Data, 12(1https://doi.orgl0.5194/essd 2-357-202Q 2020.

Lin, Y., Zhang, H., Lin, H., Gamba, P. E., Liu, X.: Incorgting synthetic aperture radar and optical images to investigate

annual dynamics of anthropogenic impervious surface at large dRalmote Sens. Environ., 242, 111757,
https://doi.org/10.1016/j.rse.2020.111757, 2020.

Liu, J., Liu, M., Tian, H., Zhuag, D., Zhang, Z., Zhang, W., Tang, X., and Deng, X.: Spatiatemgoral patterns of China's
cropland during 199®000: an analysis based on Landsat TM data, Remote Sens. Environ., 9856442
https://doi.org/10.1016/j.rse.2005.08.012, 2005.

Liu, J., Liy, M., Zhuang, D., Zhang, Z., Deng, X.: Study on spatial patteland-use change in China during 192800, Sci.
China Ser. BEarth Sci., 46, 3732002005.

Liu, J., Zhang, Z., Xu, X., Kuang, W., Zhou, W., Zhang, S., Li, R., Yan, C., Yu, D., Wan®&.Jiang, N.: Spatial patterns and
driving forces of land use change China during the early 21st century, J. Geogr. Sci., 20,i 488
https://doi.org/10.1007/s1144210-04834, 2010.

Liu, J., Kuang, W., Zhang, Z., Xu, X., Qin, Y., Ning, J., Zhou, Bhang, S., Li, R., Yan, C., Wu, S., Shi, X., Jiang, N., Yu,
D., PanX., and Chi, W.: Spatiotemporal characteristics, patterns, and causes-abtankdanges in China since the late
1980s, J. Geogr. Sci., 24, 1940, https://doi.org/10.1007/s1140241082-6, 2014.

Liu X., Hu G. , Chen Y., %i: XHée,gdXwt-KXempbbmudB.imapPpi n§. of Wa

using Landsat i mages based on t he Googl e Earid8d, Encg

https:// d®/ij..orgd.1DQUP.102. 055, 2018.

Lu, D., and Weng, Q.: Spectral mixture bsés of the urban landscape in Indianapolis with Landsat ETM plus imagery,
Photogramm. Eng. Rem. S., 70, 105362, https://doi.org/10.14358/PERS.70.9.1053, 2004.

Lu, D., and Weng, Q.: & of impervious surface in urban laanse classification, Remote SerEnviron., 102, 14660,
https://doi.org/10.1016/j.rse.2006.02.010, 2006.

Lu, D., Tian, H., Zhou, G., Ge, H.: Regional mapping of human settlements in southeastern China with mukisenety
sensed data, Remote Sens. Environ., 112,138, httpg/doi.org/10.1016/j.rse.2008.05.009, 2008.

Lu, D, Li, G., Kuang, W., and Moran, E.: Methods to extract impervious surface areas from satellite images, Int. J. Digit.

Earth, 7931112, https://doi.org/10.1080/17538947.2013.866173, 2014.

Lu D, Li L., Li G., Fan P., Ouyang Z., Moran E.: Examining spatial patterns of urban distribution and impacts of physical

conditions on urbanization in coastal and inland metropoles, Remote Berisl 01, https://doi.org/10.3390/rs10071101,
2018.

16


https://doi.org/10.5194/essd-12-357-2020

480

485

490

495

500

505

510

Ma, Q., He, C., Wu, J.,ili, Z., Zhang, Q., and Sun, Z.: Quantifying spatiotemporal patterns of urban impervious surfaces in
China: an improved assessment using nighttime light data, Landscape Urban, BRRBO, 35649,
https://doi.org/10.1016/j.landurbplan.2014.06.009, 2014.

Ning J, Liu J., Kuang W., Xu X., Zhang S., Yan C., Li R.,, Wu S., Hu Y., Du G., Chi W., Pan T., Ning J.: Spatiotemporal
patterns and characteristics of lamsk change in China durin@01Q 2015, J. Geogr. Sci., 28, 542,
https://doi.org/10.1007/s1144218 14900, 2018.

Nowak, D.J., and Greenfield, E.J.: Tree and impervious cover in the United States, Landscape Urban Plaii3Q07, 21
https://doi.org/10.1016/j.landurbplan.2012.04.0P812.

Pesaresi M. , Huadong G. , Bl aesl kdi.a, MEh,r [Kacuhf fDma,n nF eM:r,i K.
Herrera M. A., Quzounis G. K., Scavazzon M., Soille P
from optri/owadlrrs h dat a: concept an®dtarfsi.r,st -Ilr,es 21|

httpspofhgdand. 1109/ ISTARS. 2013. 2271445, 2013.

Peng, J., Shen, H., Wu, W., Liu, Y., and Wang, Y.: Net primary productivity (NPP) dynamics and associated urbanization
driving forces in metropolitan areas: a case study in Beijing City, China, Landscape Ecol.,03T,1092,
https://doi.org/10.1007/s1098015-03199, 2016.

Reba, M, Seto, K.C.: A systematic review and assessment of algorithms to detect, characterize, and monitor drban lan
changeRemote Sens. Enviragr42, 111739https://doi.org/10.1016/j.rse.202117392020.

Schneider, A., Friedl, M. A. & Potere, D.: Mapping global urban areas using MODIS 500 m data: new methods and datasets
based on &édur ban e ckvireng 114, 4733746, Rtpsnidot.oeg/1B1®I64.rse.2010.03.003, 2010.

Sexn J. o. , Song X. , Huang C. , Channan S. , Baker M. E.
Bal ti mor e, MD metropolitan r agibasefdr emtl1 &4 etso 0201 0nple
Sens. Enviib8npist:¥12%0i4drg/10.1016/j.rse.2012.10.025,

Seto, K. C., Guneralp, B., and Hutyra, L. R.: Global forecasts of urban expansion to 2030 and direct impacts on biodiversity
and @arbon pools, P. Nat. Acad. Sci. USA, 109, 160888, https://doi.org/10.10%81as.1211658109, 2012.

Small C. and Milesi C.: Muliscale standardized spectral mixture models, Remote Sens. Environ., 1364,442
https://doi.org/10.1016/j.rse.2013.05.02013.

Wang, H., Lu, S., Wu, B., and Li, X.: Advances in remote sensing of inquensurfaces extraction and its applications,
Advance in Earth Sciences, 28, 3336, 2013.

Wang, P., Huang, C., Brown de Colstoun, E. C., Tilton, J. C., and Tan, B.: GloberHBuiltup And Settlement Extent
(HBASE) dataset from Landsat, NASA Socioegcoric Data and Applications Center (SEDAC), Palisades, NY,
https://doi.org/10.7927/HADN4343017.

Weng, Q.: Remotsensing of impervious surfaces in the urban areas: requirements, methods, and trendsSBesnote
Environ., 117, 3849, https://doi.org/10.1016/j.rse.2011.02.030, 2012.

17


https://doi.org/10.7927/H4DN434S

515

520

525

530

535

540

Weng, Q., Lu, D., and Schubring, J.: Estimation of land surface températgegatiorabundance relationship for urban heat
island studies. Remote Sensing of Environment, 84@#,483, https://doi.org/10.1016/j.rse.2003.11.005. 2004.

Wu, C., and Murray, A. T.: Estimating impervious surface distribution by spectral mixture analysiseRSamst Environ.,

84, 493 505, https://doi.org/10.1016/S003257(02)00138), 2003.

Wu, J.,Xiang, W., and Zhao, J.: Urban ecology in China: historical developments and future directions, Landscape Urban
Plan., 125, 222233, https://doi.org/10.1016/j.lanchplan.2014.02.010, 2014.

Xu, H.: Modification of normalised difference water index (NDWi ehhance open water features in remotely sensed imagery,
Int. J. Remote Sens., 27, 3020833, https://doi.org/10.1080/01431160600589179, 2006.

Xu, J., Zhao, Y., Zbng, K., Zhang, F., Liu, X., and Sun, C.: Measuring speinporal dynamics of imperviousirface in
Guangzhou, China, from 1988 to 2015, using tBedes Landsat imagery, Sci. Total Environ., 627,1284,
https://doi.org/10.1016/j.scitotenv.2018.01.126818.

Xu, X., and Min, X.: Quantifying spatiotemporal patterns of urban expansion in G&ing remote sensing data, Cities, 35,
104 113, https://doi.org/10.1016/j.cities.2013.05.002, 2013.

Yang L., Jin S., Danielson P., Homer C., Gass L., Bender SCaée A., Costello C., Dewitz J., Fry J., Funk M., Granneman
B., Liknes G. C., Rigge Mand Xian G.: A new generation of the United States National Land Cover Database:
Requirements, research priorities, design, and implementation strategies, Isprs ayjrafimat, 146, 1083,
https://doi.org/10.1016/j.isprsjprs.2018.09.006, 2018.

Zhang, L., andVeng, Q.: Annual dynamics of impervious surface in the Pearl River delta, China, from 1988 to 2013, using
time series Landsat imagery, ISPRS J. Photogramm., 113686ttps://doi.org/10.1016/].isprsjprs.2016.01.003, 2016.

Zhang, Z., Wang, X., Zhao, X.|ju, B., Liu, F., Yi, L., Zuo, L., Wen, Q., Xu, J., and Hu, S.: A 2010 update of National Land
Use/Cover Database of China at 1:100000 scale using medium spatiatioessatellite images, Remote Sens. Environ.,
149, 142154, https://doi.org/10.1016/j.r2814.04.004, 2014.

Zhang, Z., Wang, W., Cheng, M., Liu, S., Xu, J., He, Y., and Meng, F.: The contribution of residential coal combustion to PM
2.5 pollution over China's Beijindianjin-Hebei region in winter, Atmos. Environ., 159, 1481,
https://doi.@g/10.1016/j.atmosenv.2017.03.054, 2017.

Zhang, C., Kuang, W., Wu, J., Liu, J. and Tian, IHdustrial land expansion in rural China threatens fawad environmental
securities, Front. Env. Sci. End5(2), 29, https://doi.org/10.1007/s1178®0-1321-2, 2021.

Zhang, Y., Odeh, I. QA., Han, C.: Bitemporal characterization of land surface temperature in relatiorptrvious surface
area, NDVI and [BI, using a sulpixel image analysis, Int. J. Appl. Earth. Obs., 11, 1253,
https://doi.orgl10.1016/j.jag.2009.03.002009.

Zhou, Y., Smith, J. S., Elvidge, C. D., Zhao, K., Thomson, A., M. lambff, L. M.: A clusterbased method to map urban
area from DMSP/OLS nightlightRemote Sens. Environ41, 173 185, https://doi.org/10.1016/j.rse.2014.03.004, 2014.

18


https://doi.org/10.1016/j.jag.2009.03.001

545 Zhou, Y., Smith, J. S., Zhao, K., Imhoff, L. M., Thomson, A. M., Bondlamberty, B.rAStaZhang, X., He, C. and Elvidge,
C. D.: A global map of urban extent from nightlights, Environ. Rest.] 10(5),054011, https://doi.org/10.1088/1748
9326/10/5/054011, 2015.

Zhou, Y., Li, X., Asrar, G. R., Smith, S. dndImhoff, M.: A global record of annual urban dynamics (1°2213) from

nighttime lights Remote Sendnviron, 219, 206220, https://doi.org/10.1016/j.rse.2018.10.026818.

550 Zzhang, X, Liu, L., Wu, C., CheiX., Gao, Y., Xie, S. and Zhang, B.: Development of a globah3fhpervious surface map
using multisource and mukiempaal remote sensing datasets with the Google Earth Engine platform, Earth Syst. Sci.
Data, 12, 16251648,https://doi.org/1(194/essdl 2-16252020 2020.

19


https://doi.org/10.1016/j.rse.2018.10.015,

555 Table 1. The multitemporal data seriesused in this research

Year path Row  Sensor Spatial resolutio (m)
2000 LandsaffM 30
2005 LandsaffM 30
2010 118 149 23 43 LandsaffM/ETM+, H}1, CBERS1 30
2015 Landsa® OLI 30
2018 Landsat8 OLI 30
Data sources Resolution
SRTM Digital ElevatiorModel data 30 m
NDVI 30 m
Google Earth images 0.6m
Table 2: Confusionmatrix of the China Land-Use/Cover Dataset
Accuracy for specific land type Source
Year Land type Samples Producerss User sd ¢ Overall
size accuracy (%) (%) accuracy
2000 Built-up area 8,055 98.92%  (Zhang et al. 2014)
2005 Built-up area 7,382 97.01%  (Zhang et al. 2014)
Built-up area - -
(Kuang, Liu, Dong,
2010 Urban land 7,875 94.30 93.67 Chi, & Zhang
Rural settlement 91.76 91.76 2016)
Industrial and traffic lands 91.67 90.26
Built-up area - -
2015 Urban land 7,235 91.30 92.65
Rural settlement 89.29 93.28
Industrial and traffic lands 95.45 91.30 This Study
Built-up area 7,235 - -
Urban land 90.40 91.32
2018
Rural settlement 88.19 92.18
Industrial and traffic lands 94.43 92.13
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Table 3: Accuracy assessentsfor the extracted urban land, and UIS and UGS fractions.

uis UGS
Year
R RMSE R RMSE

2000 0.91 0.11 0.90 0.11

2005 0.90 0.11 0.90 0.11

2010 0.90 0.11 0.88 0.11

2015 091 0.11 0.88 0.11

2018 0.89 0.12 0.87 0.12
Table 4: A summary of existingurban land products.

Spatial L

Name resolutionAbbrevnatlon Method Reference
Land Cove_r fromModerateresolution Imaging 500m MODIS LC Decision tree classification (Fried et al., 2010)
Spectroradiometer
European Space Agency global lac@er data ~ 300m ESALC g:tse%’t)iiﬁnsw classification and change (Bontemps et al., 2011)
Built-up grid of the Global Human Settlement La30m GHS Built Symbolic machine learning (Pesaresi et al2013)

Pixel-Object Knowledge (POkKbased

Global Land Cover at 30m resolution 30m GlobalLand30 classification (Chen et al., 2015)
Multi-temporal Global Impervious Surface 30m MGIS Normalized urban areas composite index(Liu et al., 2018)
Annual maps of ipbal artificial impervious area 30m GAIA Exclusion/ I ncl usi o(Gongetal., 2020)
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Figure 1. The technologicalflowchart of generating CLUD-Urban product.
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Figure 2: The interpretation symbols and extracted urban boundaries from Landat images inBeijing city. (The images were
provided by Geospatial Data Cloud site, Computer Network Information Center, Chinese Academy of Sciences
(http://lwww.gscloud.cn).
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Figure 3: Land useclassification andextracted vector polygons as an exampleith Conghua district of Guangzhou city
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Figure 4: The urban boundaries extracted from CLUD with 30m resolution in selected cities(The administrative boundaries
were provided by National Geomatics Center o€hina (http://www.webmap.cn), DEM dataset wasdownloaded from SRTM 90 m
Digital Elevation Data (http://srtm.csi.cgiar.org/))
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Figure 5: Distribution of sampling citiesin China and training samplesin selected cities(The images were provided by Geospatial
Data Cloud site, Computer Network Information Center, Chinese Academy of Sciencésttp://www.gscloud.cn). The

595 administrative boundaries were provided by National Geomatics Center of China (http://www.webmap.ch)
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