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Thank you for the comments and suggestions. These comments were very helpful for 

revising and improving our paper. We have responded to the comments point by point 

and made the detailed revisions embedded in the manuscript with the line numbers 

indicated in the responses. 

Comment 1: The authors present multi-year maps of urban imperviousness and 

greenness of China, which were estimated based on hand-drawn urban boundary and 

the relationship between vegetation greenness and surface imperviousness. Despite the 

data might be valuable to a variety of urban-related applications, there are many 

uncertainties remain. As a data set, these uncertainties should be clearly addressed so 

that users could better use it. First, using NDVI as the only indicator to estimate surface 

imperviousness is problematic. The NDVI-based method would overestimate the extent 

of impervious surfaces because of their similar characteristics as some land uses/covers 

on NDVI images, especially bare ground. This is especially true in most Chinese cities 

as they have seen substantial expansions during the study period and the extent of bare 

ground cannot be ignored. Second, calibration of NDVI-ISA relationship is not clear in 

many aspects. For example, how was ISA reference measured for model calibration? 

What was the performance of region averaged model compared to city-specific ones? 

Was the model calibrated once and applied through time or annually?  

Response: Thank you for your comments. Recently, we published a 2020 annual report 

by Global Ecosystems and Environment Observation Analysis Research Cooperation 

(http://www.chinageoss.org/geoarc/2020/) through cooperation between the Global 

Earth Observation System of Systems (GEOSS) and the National Remote Sensing 

http://www.chinageoss.org/geoarc/2020/
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Center of China at the Ministry of Science and Technology. We developed a set of new 

algorithms to retrieve the UIS and UGS fractions using sub-pixel decomposition 

method through random forest algorithm using Google Earth Engine (GEE) platform. 

In newly developed CLUD-Urban product, we adopted the advantage of high accuracy 

and long-time series in mapping urban land from CLUD. We also utilized the highly 

efficient computation and large storage capacities on GEE platform. In mapping 

CLUD-Urban product, we proposed to quantitively retrieve the UIS and UGS fractions 

using random forest. The new CLUD-Urban product exhibits a high accuracy and 

reliability in delineating urban land surface property. Therefore, we uploaded the new 

version datasets on national UIS and UGS fractions dataset with 30m resolution in 2000, 

2005, 2010, 2015 and 2018. 

Changes in manuscript: We rewrote the fifth part on “5. Method of mapping UIS and 

UGS fractions using GEE platform”, including three sub-sections: the collection of 

training samples, retrieval of settlement and vegetation fractions using random forest, 

and mapping of UIS and UGS fractions in L170-205. 

5 Mapping UIS and UGS fractions using GEE platform 

5.1 Collection of training samples  

The training samples of UIS and UGS fractions are a pivotal input parameter in random 

forest model for mapping national settlement and vegetation fraction. In light of large 

discrepancies among UIS and UGS composites in different climate zones with various 

geographical and social economic conditions, we collected a total of 2,570 samples from 

randomly selected cities in different climate zones (Schneider et al. 2010) (Fig. 5). Here we 

also refer to the existing UIS dataset to acquire samples with 10% intervals of the ISA fraction, 

and those samples primarily distributed in the homogeneous UIS or UGS areas, which might 

provide more effective samples and decrease the impact of imagery mismatch. The samples 

of UIS and UGS covered with diversified types, including buildings, roads and squares, and 
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grass, trees from parks, road and residential green spaces. The UIS and UGS percentages were 

interpreted within each sample using Google Earth images (Fig. 5b1-b4). Finally, the training 

samples in 2000, 2005, 2010, 2015 and 2018 were used for training the random forest model, 

respectively. 

 

Figure 5: Distribution of sampling cities in China and training samples in selected cities. (The images were 

provided by Geospatial Data Cloud site, Computer Network Information Center, Chinese Academy of 

Sciences (http://www.gscloud.cn). The administrative boundaries were provided by National Geomatics 

Center of China (http://www.webmap.cn)) 

5.2 Retrieval of settlement and vegetation fractions using random forest model  

Many previous studies have indicated that random forest is more effective and accurate 

in classifying urban land types than other machine learning approaches such as support 

vector machine (SVM) and artificial neural network (ANN) (Zhang et al., 2020). Random forest 

exhibits a strong capacity in processing high-dimensional datasets and has been successfully 

applied to mapping global ISA at 30-m resolution (Zhang et al., 2020). In this research, we 

proposed a strategy to acquire the settlement and vegetation percentage at pixel scale using 

the advantage of random forest and big-data processing based on GEE platform.  

According to sixteen global urban ecoregions based on temperature, precipitation, 
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topographic conditions and social economic factors (Schneider et al. 2010), China has three 

urban ecoregions. In each urban ecoregion, the annual maximum NDVI, and spectral bands 

in Landsat TM/ETM+/OLI, and the slope index derived from SRTM DEM with 30-m resolution 

were selected as the input parameters to run random forest model. The Landsat images were 

from January 1 to December 31 of each baseline year. The annual maximum NDVI ( 𝑁𝐷𝑉𝐼𝑚𝑎𝑥) 

was retrieved using equation (1): 

𝑁𝐷𝑉𝐼𝑚𝑎𝑥 = ma x(𝑁𝐷𝑉𝐼1, 𝑁𝐷𝑉𝐼2, ⋯ , 𝑁𝐷𝑉𝐼𝑖)                    (1)  

where 𝑁𝐷𝑉𝐼𝑖 is the NDVI value of the i
th
 image. Individual NDVI was calculated from Landsat 

images in the period between January 1 to December 31 and all images were collected using 

GEE (Gorelick et al., 2017). 

In GEE platform, the settlement and vegetation fractions were calculated for each urban 

ecoregion through using the training parametrizations. The lawn, forest or their mosaicked 

areas were selected as input samples in mapping UGS. A post-processing was implemented 

to remove the pixels with NDVI values of greater than 0.5 or DEM slope values of greater than 

15º. In arid and semi-arid areas, the enhanced bare soil index (EBSI) was utilized to separate 

UIS from bare soils (As-syakur et al., 2012; Li et al., 2019). As a result, the settlement and 

vegetation fractions with 30 mХ30 m in 2000, 2005, 2010, 2015 and 2018 were generated 

for developing CLUD-Urban product (Fig. 6).  

 
Figure 6: Distribution of sampling cities in China and training samples in selected cities. (The 
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administrative boundaries and residential points information were provided by National Geomatics Center 

of China (http://www.webmap.cn)) 

5.3 Mapping of UIS and UGS fractions 

The settlement and vegetation fractions with 1ºХ1ºgrid of each period were downloaded 

from GEE platform. In ARCGIS 10.0 software, the settlement and vegetation layers were 

merged respectively at provincial scale with 30 m Х30 m. The national UIS and UGS fractions 

with 30 m Х30 m resolution in 2000, 2005, 2010, 2015 and 2018 were produced through 

overlaying the urban boundaries of CLUD with settlement and vegetation fractions, 

respectively (Fig. 7, Fig. 8 and Fig. 9). 

 

 

Figure 7: Spatial distribution of urban impervious surface (UIS) in 2000–2018 across China. (The 

administrative boundaries were provided by National Geomatics Center of China (http://www.webmap.cn)) 
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Figure 8: Spatial distribution of urban green space (UGS) in 2000–2018 across China. (The administrative 

boundaries were provided by National Geomatics Center of China (http://www.webmap.cn)) 

 

http://www.webmap.cn)/
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Figure 9: The change of urban impervious surface (UIS) in selected cities from coastal, central, eastern and 

western zones from 2000 to 2018. (DEM dataset was downloaded from SRTM 90 m Digital Elevation Data 

(http://srtm.csi.cgiar.org/)) 

Comment 2: Third, the modeling was based on an existing product (i.e., CLUD), which 

was based on visual interpretation if I am correct). More details about how urban 

boundary was extracted and updated should be stated. Without this information, it is 

hard for readers to know whether urban expansion captured by CLUD was true 

urbanization or just hand-drawn inconsistency.  

Response: Thank you for your comments. In mapping CLUD, the interpretation 

symbols were built, and the uniform technological flow and classification system were 

used in human-computer digitalization interpretation environment. Time series of urban 

boundaries and their expansions have good performance in accuracy and data quality. 



8 

At present human-computer interpretation is generally regarded as a the most accurate 

method in classifying urban land use/cover changes, especially in detecting changing 

information and extracting vector polygons as whole geo-features. 

Changes in manuscript: We added the fourth part “4. Extraction of urban boundaries 

from CLUD”, including three sub-sections: the classification system and 

interpretation symbols, land use and dynamic polygon interpretation, and retrieval of 

multitemporal urban boundaries.  

4 Extraction of urban boundaries from CLUD 

4.1 The classification system and interpretation symbols 

CLUD with 30-m resolution was developed by the Chinese Academy of Sciences and has 

been updated from 2000 to 2018 every five or three years. This dataset can delineate land 

use or land cover change associated with human activities, including urbanization at a scale 

of 1:100,000 (Liu, Liu, Tian et al., 2005; Liu, Liu, Zhuang et al., 2005; Liu et al., 2010). This 

product adopted a hierarchical classification system covering the first-level six classes and the 

second-level twenty-five classes. Here the first-level six classes include cropland, woodland, 

grassland, water body, construction land, and unused land. The detailed description of each 

class can be found in previous publications (Liu, Liu, Zhuang et al., 2005; Zhang et al., 2014). 

The construction land was divided into three second-level classes, including urban land, rural 

settlements, and industrial and mining lands beyond cities. Urban land was defined as a built-

up area of the concentrated construction, i.e. buildings, roads, squares, green infrastructure 

and other lands for providing the living, industrial production, and ecosystem services for the 

dwellers of cities or towns (Kuang, 2020a). According to the classification system, the 

interpretation symbols from the second-level classes were built for the false-color composite 

images as a reference to aid the human-computer interpretation (Fig. 2) (Zhang et al., 2014). 
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Figure 2: The interpretation symbols and extracted urban boundaries from Landsat images in Beijing city. 

(The images were provided by Geospatial Data Cloud site, Computer Network Information Center, Chinese 

Academy of Sciences (http://www.gscloud.cn). 

4.2 Land use and dynamic polygon interpretation 

According to CLUD classification system, the vector polygons of land use classes in 2000 

were digitalized through overlying the false-colour composite images in aid of interpretation 

symbols and the geoknowledge from each zone (Fig. 3). In the digitalization environment, 

each vector polygon was assigned with a code of the second-level classes. The vector 

polygons of land use classes in 2000 were double checked to ensure the correct type in 

interpretation. The dynamic polygons were extracted through comparing the difference of 

two-date images and assigned the codes including the types before and after changes (Fig. 

3). The land use changes within five or three years were detected using the uniform method. 

Finally, the land use maps in 2000, 2005, 2010, 2015 and 2018 and their changes at five- or 

three-year interval were generated for CLUD. The detailed technological flow can be found 

in previous publications (Liu, Liu, Zhuang et al., 2005; Zhang et al., 2014). An example of land 

use map in 2010 in Conghua district of Guangzhou city and their dynamic changes in 2010-

2015 is illustrated in Fig. 3. 
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Figure 3: Land use classification and extracted vector polygons as an example with Conghua district of 

Guangzhou city. 

4.3 Retrieval of multitemporal urban boundaries  

The vector boundaries of urban extents were extracted from the CLUD land use maps in 

each period (Kuang et al., 2016). We also examined 10,732 urban vector polygons in 2000.The 

number of polygons increase to 50,061 in 2018. The vector polygons of urban boundaries 

were converted to raster data with 30 mХ30 m cell size. The dataset on urban land across 

China in 2000, 2005, 2010, 2015 and 2018 were generated with 30-m resolution. Here we 

showed urban boudaries and expansion process with 30-m resolution in cities of Xi’an, 
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Wuhan, Guangzhou and Urumqi (Fig. 4). 

 

Figure 4: The urban boundaries extracted from CLUD with 30-m resolution in selected cities. (The 

administrative boundaries were provided by National Geomatics Center of China (http://www.webmap.cn)) 

 

Comment 3: How was the accuracy of CLUD assessed? Because the definition of 

urban in CLUD is more based on administrative perspective instead of surface 

imperviousness, I want to know more how accuracy of 92-99% was calculated (Lines 

149-150).  

Response: Thank you for your comments. The accuracy assessment of CLUD in 2015 

and 2018 was assessed here, and we also referred a series of publications on CLUD 

before 2015. The accuracy of the first-level six classes – cropland, forest, grassland, 

built-up area, water body and unused and of the second-level land use/cove types, 

including urban land, rural settlements, industrial and traffic lands was assessed using 

the Google Earth images. 
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Changes in manuscript: We added the description of the assessment method in “6.1 

Accuracy assessment of the CLUD-Urban product”. 

 

Comment 4: Last, data uncertainties and limitations should be further addressed. For 

example, what are spatial and temporal accuracy variations? How consistent was the 

estimation over time (i.e., is it reliable to use this data set to capture real ISA change)? 

Response: Thank you for your suggestions. To address the issue, the land use changes 

within five or three years were detected using the uniform method. The dynamic 

polygons were extracted through comparing the difference of two-date images and 

assigned the codes including the types before and after changes. Therefore, our product 

has a good consistent in spatial and temporal accuracy.  

Changes in manuscript: We added a section “8.3 Limitations of the method and 

dataset” in discussions in L320-330. 

 


