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Abstract.  

Air pollution in China has changed substantially since 2013, and the effects such changes bring to the human health and 25 

environment has been an increasingly hot topic in many scientific fields. Such studies, however, are often hindered by a lack 

of long-term air quality dataset in China of high accuracy and spatiotemporal resolutions. In this study, a six-year long high-

resolution Chinese air quality reanalysis datasets (CAQRA) has been developed by assimilating over 1000 surface air quality 

monitoring sites from China National Environmental Monitoring Centre (CNEMC) using the ensemble Kalman filter (EnKF) 

and the Nested Air Quality Prediction Modeling System (NAQPMS).  Surface fields of six conventional air pollutants in China, 30 

namely PM2.5, PM10, SO2, NO2, CO and O3 for period 2013–2018, are provided at high spatial (15km×15km) and temporal (1 

hour) resolutions. This paper aims to document this dataset by providing the detailed descriptions of the assimilation system 

and presenting the first validation results for the reanalysis dataset. A five-fold cross validation (CV) method was used to 

assess the quality of CAQRA. The CV results show that the CAQRA has excellent performances in reproducing the magnitude 

and variability of the surface air pollutants in China (CV R2 = 0.52–0.81, CV RMSE = 0.54 mg/m! for CO and 16.4–39.3 35 
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µg/m! for other pollutants at the hourly scale). The interannual changes of the air quality in China were also well represented 

by CAQRA. Through the comparisons with the Copernicus Atmosphere Monitoring Service reanalysis (CAMSRA) produced 

by the European Centre for Medium-Range Weather Forecasts (ECWMF) based on assimilating satellite products, we show 

that the CAQRA has higher accuracy in representing the surface gaseous air pollutants in China due to the assimilation of 

surface observations. The finer horizontal resolution of CAQRA also makes it more suitable for the air quality studies in the 5 

regional scale. We further validate the PM2.5 reanalysis dataset against the independent datasets from the U.S. Department of 

State Air Quality Monitoring Program over China, and the accuracy of PM2.5 reanalysis was also compared to that of the 

satellite estimated PM2.5 concentrations. The results indicate that the PM2.5 reanalysis shows good agreement with the 

independent observations (R2 = 0.74–0.86, RMSE =16.8–33.6 µg/m! in different cities) and its accuracy is higher than most 

satellite estimates. This dataset would be the first high-resolution air quality reanalysis dataset in China that can simultaneously 10 

provide the surface concentrations of six conventional air pollutants in China, which should be of great value for many studies, 

such as the assessment of health impacts of air pollution, investigation of the changes of air quality in China and providing 

training data for the statistical or AI (Artificial Intelligence) based forecast. The whole datasets are freely available at:  

https://doi.org/10.11922/sciencedb.00053 (Tang et al., 2020a), and a teaser product which contains the monthly and annual 

mean of the CAQRA has also been released at https://doi.org/10.11922/sciencedb.00092 (Tang et al., 2020b) to facilitate the 15 

potential users to download and to evaluate the improvement of CAQRA. 

 

1 Introduction 

Air pollution is a critical environmental issue that humanity is facing, which adversely affects the human health and 

intimately connects to the climate change (von Schneidemesser et al., 2015). Exposure to ambient air pollution has been 20 

confirmed by many epidemiological studies to be a leading contributor to the global disease burden, which increases both 

morbidity and mortality (Cohen et al., 2017).  

China, as the largest developing country, has achieved great economic development since 1980s. Such large economic 

expansion, however, is accompanied by a dramatic increase in  emissions of air pollutants, leading to severe air pollution in 

China (Kan et al., 2012). To deal with the increasingly severe air pollution, from 2012 the Chinese government began to 25 

establish the nationwide ground-based air quality monitoring network (Fig. 1) to monitor the surface concentrations of six 

conventional air pollutants in China, namely PM2.5, PM10, SO2, NO2, CO and O3. Since then, this network has consistently 

provided valuable observation data for both the operational use and scientific research, which plays an irreplaceable role in the 

understanding of air pollution in China. In addition, a series of aggressive control measures has been conducted in China to 

reduce the emissions of air pollutants. From 2013 to 2017, the Chinese government has implemented the Action Plan on the 30 

Prevention and Control of Air pollution, leading to a remarkable decrease in emissions of major air pollutants. According to 

the estimates of Zheng et al., 2018b, China’s anthropogenic emissions decreased by 59% for SO2, 21% for NOx, 23% for CO, 
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36% for PM10 and 35% for PM2.5. Concurrently, the air quality in China has changed dramatically over the past six years 

(Silver et al., 2018; Zheng et al., 2017). Such large changes in the Chinese air quality and the effects they brought to the human 

health and environment has become an increasingly hot topic in many scientific fields(e.g. Xue et al., 2019; Zheng et al., 2017). 

Although the ground-based observations could provide valuable information on the spatial and temporal distributions of the 

air pollutants in China, the air quality monitoring sites are sparse with low spatial resolution and are unevenly distributed. As 5 

a result, such studies are often hindered by a lack of long-term air quality datasets in China of high accuracy and spatiotemporal 

resolutions for these years, which is urgently needed to provide a scientific basis for these studies.  

Satellite observations have advantages of high spatial coverage and are widely used in the monitor of air pollution over 

wide domains. A series of satellite retrievals related to the air quality have been developed over the past two decades, such as 

the NO2, SO2 and O3 observations from OMI (Ozone Monitoring Instrument; Levelt et al., 2006), CO observations from 10 

MOPITT (Measurement of Pollution in the Troposphere; Deeter et al., 2003) and AOD observations from MODIS (Moderate 

Resolution Imaging Spectroradiometer; Barnes et al., 1998). However, satellite measurements can only provide the column 

information on the air pollutants. Techniques that relate the surface concentrations to the satellite column measurements are 

thus required to estimate the surface concentrations of air pollutants. For example, various methods have been developed to 

estimate the surface PM2.5 concentrations based on the satellite-derived AOD, including chemical transport models(van 15 

Donkelaar et al., 2016; van Donkelaar et al., 2010), advanced statistical methods(Ma et al., 2014; Ma et al., 2016; Xue et al., 

2019; Zou et al., 2017) and semi-empirical models(Lin et al., 2015; Lin et al., 2018), which have been proven to be an effective 

way to monitor the wide-coverage PM2.5 distributions in a good accuracy (Chu et al., 2016; Shin et al., 2019). However, 

challenges still remain in the satellite-estimated concentrations due to the missing values related to cloud contamination, 

uncertainties in satellite measurement and retrieval algorithms, and the difficulties in modeling the complex relationship 20 

between the surface concentrations and satellite measurements (Shin et al., 2019; van Donkelaar et al., 2016; Xue et al., 2019). 

In addition, most of previous satellite estimates of surface concentrations were limited to specific regions and time period and 

has a daily or even longer temporal resolutions due to the issues with data availability (e.g. incomplete coverage of AOD-

based estimates), which limits their usage in the studies at finer scale, such as the assessment of acute health effects of air 

quality. To our best knowledge, a nationwide long-term estimate of surface concentrations of all conventional air pollutants in 25 

China at the hourly scale has still not been reported by previous satellite estimates.   

A long-term air quality reanalysis of criteria air pollutants would provide constrained estimates of concentrations at all 

locations and times, which optimally combines the accuracy of observations and the physical information and spatial continuity 

of the chemistry transport models (CTMs) through advanced data assimilation techniques. Reanalysis is a uniform, continuous 

and state-of-science best-estimate data product, which has been used by a vast number of research communities. For example, 30 

several long-term meteorology reanalysis has been developed by the weather centres from different regions/countries, such as 

ERA-Interim reanalysis by European Centre for Medium Range Weather Forecasts (ECMWF; Dee et al., 2011), NCEP/NCAR 

Reanalysis by National Centers for Environmental Protection (NCEP; Saha et al., 2010), MERRA-2 by NASA Global 

Modeling and Assimilation Office (NASA-GMAO; Rienecker et al., 2011), JRA-55 by Japan Meteorological Agency 
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(Kobayashi et al., 2015) and CRA-40 by China Meteorological Administration. The use of data assimilation in reanalysis of 

atmospheric chemistry is more recent, and some reanalysis datasets for atmospheric compositions have been produced over 

the past decades, for example the MACC, CIRA, CAMS reanalysis by ECWMF (Flemming et al., 2017; Inness et al., 2019; 

Inness et al., 2013), MERRA-2 aerosol reanalysis by NASA-GMAO (Randles et al., 2017), tropospheric chemistry reanalysis 

(TCR) for years 2005–2012 by Miyazaki et al., 2015 and its latest version TCR-2 (Miyazaki et al., 2020), the global reanalysis 5 

of carbon monoxide by Gaubert, B., 2016, multi-sensor reanalysis of total ozone for years 1970–2012 by van der A et al., 2015 

and Japanese Reanalysis for Aerosol (JRAero) for years 2011–2015 by Yumimoto et al., 2017. These reanalysis datasets have 

promoted our understanding of the atmospheric compositions and are also helpful for the air quality researches. However, 

these are all global datasets having coarse horizonal resolutions (> 50km), which may be insufficient for capturing the high 

spatial variability of the air pollutants at the regional scale. In addition, some of these reanalysis datasets only provided the air 10 

quality data priori to year 2012 and only focused on specific species, for example the aerosol and ozone reanalysis. To our best 

knowledge, there is still no high-resolution air quality reanalysis dataset in China for recent years when China’s air quality 

changed dramatically.  

In view of these discrepancies, in this study we will develop a high-resolution regional air quality reanalysis dataset over 

China for years 2013–2018 (will be extended in the future by adding one year each year) by assimilating over 1000 surface 15 

observation sites from China National Environmental Monitoring Centre (CNEMC) in a post processing mode using our own 

developed chemical data assimilation system (ChemDAS). The developed reanalysis dataset will help fill the gaps in the high 

resolution air quality dataset in China by providing the surface concentration fields of all six conventional air pollutants in 

China at high spatial (15km×15km) and temporal (hourly) resolutions. This dataset would be the first high-resolution air 

quality reanalysis dataset in China that can simultaneously provide the surface concentrations of six conventional air pollutants 20 

in China, which should be of great value in (1) retrospective analysis of air quality in China, (2) assessment of health and 

environmental impacts of air pollution in fine scales; (3) model evaluation and satellite calibration,  and (4) provide basic 

training dataset for statistical or AI (Artificial intelligence) based forecast. 

2 Description of chemical data assimilation system (ChemDAS) 

The Chinese air quality reanalysis dataset was produced by the chemical data assimilation system developed by the 25 

Institute of Atmospheric Physics, Chinese Academy of Sciences (Tang et al., 2011). This system consists of (i) a three-

dimensional chemical transport model (CTM) called Nested Air Quality Prediction Modeling System (NAQPMS) developed 

by Wang et al., 2000, (ii) an ensemble Kalman filter (EnKF) assimilation algorithm, and (iii) surface observations from 

CNEMC with an automatic outlier detection method (Wu et al., 2018). We used an offline analysis scheme in this study since 

there is no previous experiences for the online run of chemical data assimilation system under such high horizontal resolution. 30 

The lessons learned from the offline analysis would feed into the future implementation of online analysis. In the offline 

analysis scheme, a free run of ensemble simulation was first conducted, and then the observations were assimilated using the 
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EnKF and the results of ensemble simulation. The similar offline analysis scheme has also been used in previous reanalysis 

studies, such as Candiani et al., 2013 and Kumar et al., 2012. Detailed descriptions of the ensemble simulation, observations 

and the data assimilation algorithm used in this study are presented below. 

2.1 Air Pollution Prediction model 

Reanalysis focuses on the retrospective analysis over long time periods. It uses the same air pollution model used to 5 

produce forecasts, but the meteorology fields used to drive the CTM are more accurate as they use simulated fields as opposed 

to forecasted fields used to forecast air quality. In addition, reanalysis using a more comprehensive set of observations to 

provide constraints. The same NAQPMS model used as an operational forecast model, which has been used in previous 

assimilation studies(Tang et al., 2011; Tang et al., 2013), has been used for the reanalysis in this study. The model is driven 

by the hourly meteorological fields produced by the Weather Research and Forecasting Model (WRF; Skamarock, 2008). The 10 

gas phase chemistry is simulated with the Carbon-Bond Mechanism Z (CBM-Z) developed by Zaveri and Peters, 1999. 

Aqueous-phase chemistry and wet deposition are simulated based on the Regional Acid Deposition Model (RADM) 

mechanism in the Community Multi-scale Air Quality (CMAQ) version 4.6. For aerosol processes, the thermodynamic model 

ISORROPIA 1.7 (Nenes et al., 1998) is used for the simulations of inorganic atmospheric aerosols. Six secondary organic 

aerosols (SOA) were explicitly treated in NAQPMS based on Li et al., 2011. To simulate the interactions between the particles 15 

and gases, 28 heterogeneous reactions on sulfate, soot, dust and sea salt particles were included based on the previous studies 

(Li et al., 2015; Li et al., 2012). Size-resolved mineral dust emission is calculated online as a function of relative humidity, 

friction velocities, mineral particle size distribution and surface roughness (Li et al., 2012). Sea-salt emission is calculated 

using a scheme of Athanasopoulou et al., 2008. Dry deposition of gases and aerosols is modelled based on the scheme of 

Wesely, 1989, and the advection is simulated with an accurate mass-conservative algorithm from Walcek and Aleksic, 1998.  20 

Figure 1 shows the modeling domain of this study, which covers the most parts of East Asia with a fine horizontal 

resolution of 15km. The vertical coordinate system is set as 20 terrain-following levels with the model top up to 20000 m and 

the first layer about 50m. Nine vertical layers were set within the 2km closet to the surface to better characterise the vertical 

mixings within the boundary layers. Emissions of air pollutants used in this study included monthly anthropogenic emissions 

from HTAP_v2.2 emission inventory at base year of 2010 (Janssens-Maenhout et al., 2015), biomass burning emissions form 25 

Global Fire Emissions Data base (GFED) version 4 (Randerson et al., 2017; van der Werf et al., 2010), biogenic volatile 

organic compounds (BVOC) emissions from MEGAN-MACC (Sindelarova et al., 2014), marine VOCs emissions from POET 

database (Granier et al., 2005), soil NOx emissions from Regional Emission inventory in Asia (Yan et al., 2003) and the 

lightning NOx emissions from Price et al., 1997. The clean initial conditions were used in the air quality simulation with a 

two-week free run of NAQPMS as a spin-up time. Top and boundary conditions were provided by the global chemical transport 30 

model MOZART (The Model for Ozone and Related Chemical Tracers; Brasseur et al., 1998; Hauglustaine et al., 1998) and 

the meteorology fields were provided by the WRF model. In each day’s meteorology simulation, a 36-h free run of WRF was 

conducted with the first 12-h simulation as a spin-up run and the remaining 24-h to provide the meteorology inputs for 
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NAQPMS. Initial and boundary conditions for the meteorology simulation were provided by the National Center for 

Atmospheric Research/National Center for Environment Prediction (NCAR/NCEP) 1° × 1° reanalysis data. 

Previous studies have shown that the emissions are a major contributor to the prediction uncertainty of air quality 

(Carmichael et al., 2008; Hanna et al., 1998; Li et al., 2017). Uncertainties of emission inventories were thus considered in the 

ensemble simulation which was driven by an ensemble of perturbed emissions (𝐸"; 𝑖 = 1, 2,⋯ ,𝑁#$%). The emissions were 5 

perturbed based on their error probability distribution functions (pdf), which were assumed to be Gaussian distribution in this 

study. Table 1 lists the perturbed species considered in this study as well as their corresponding emission uncertainties obtained 

from previous studies. An isotropic correlation model was assumed in the covariance of the emission errors, which was written 

as: 

𝜌(𝑖, 𝑗) = 𝑒𝑥𝑝 7− &
'
9((",+)

-
:
'
;           (1) 10 

where 𝜌(𝑖, 𝑗) represents the correlation between grid i and j, ℎ(𝑖, 𝑗) represents the distance between these two points and 𝑙 

represents the decorrelation length, which was specified as 150km in this study. The ensemble of emissions was simply 

obtained by multiplying the base emissions with a perturbation factor 𝜷 as shown in Eq. (2): 

𝑬𝒊 = 𝑬 ∘ 𝜷𝒊             (2) 

where 𝑬 represents the vector of base emissions and ∘ denotes the schur product. According to the pdf of emission errors, 𝜷 15 

follows the same Gaussian distribution with the emission errors except that its mean equals to 1. The performance of EnKF is 

strongly related to the ensemble size. In this study, the ensemble size was chosen as 50 to maintain a balance between the 

computational cost and the filter performance. Based on the method of Evensen, 1994, fifty smooth pseudo random 

perturbation fields for 𝛃 were generated for each perturbed species. The emission perturbations were kept independent from 

each other to prevent the pseudo correlation among different species.  20 

2.2 Observations 

Surface observations of hourly ambient PM2.5, PM10, SO2, NO2, CO and O3 concentrations from the CNEMC were used 

in this study. The number of observation sites was about 510 in 2013 and increased to 1436 in 2015. Real-time observations 

of these six air pollutants at each monitoring sites are routinely uploaded to the CNEMC and released to the public (available 

at http://www.cnemc.cn/, last access: 17 Apr, 2020) with an hour interval.  25 

The quality control of observations is critical for the data assimilation since outliers of observations can exert catastrophic 

impacts on the performance of assimilation. To deal with it, a fully automatic outlier detection method was developed to filter 

out the outliers of observations (Wu et al., 2018). An automatic way of outlier detection is very important in the chemical data 

assimilation since there is large amount of observation data from multiple species. Four types of outliers characterised by the 

temporal and spatial inconsistency, instrument-induced low variances, periodic calibration exceptions and less PM10 than PM2.5 30 
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in concentrations were detected and removed before the assimilation. More details about the outlier detection method are 

available in Wu et al., 2018.  

A proper estimate of observation error is important for the performance of filter since the observation and background 

error determine the relative weights of the observation and background value on the analysis. The observation error includes 

the measurement error and representativeness error. For each species, the measurement error was given by their instruments, 5 

that is 5% for PM2.5 and PM10, 2% for SO2, NO2 and CO, and 4% for O3 according to the officially released documents of the 

Chinese Ministry of Ecology and Environmental Protection (HJ 193–2013 and HJ 654–2013, available at 

http://www.cnemc.cn/jcgf/dqhj/, last access: 17 Apr, 2020). The representativeness error arises from the different spatial scales 

that the discrete observation data and model simulation represent, which was estimated based on the previous study by Li et 

al., 2019 who estimated the representativeness errors under the 30km horizontal resolution. We extended their estimates to the 10 

15km model resolution in this study according to the method of Elbern et al., 2007 which is formulated by: 

𝑟/#0/ = C
∆2

3!"#!
× 𝜖45%             (3) 

where 𝑟/#0/  represents the representativeness error, ∆𝑥 represents the model resolution, 𝐿/#0/  represents the characteristic 

representativeness length of the observation site and 𝜖45% represents the error characteristic parameters related to different  

species. Most of the observation sites in CNEMN are city sites with 𝐿/#0/ about 2km according to Elbern et al., 2007. Using 15 

the previous estimated representativeness errors under the 30km model resolution, the 𝜖45% could be estimated simply by a 

transformation of Eq. (3). The representativeness errors under other model resolutions were then estimated by specifying the 

∆𝑥 in Eq. (3). 

 

2.3 Data assimilation algorithm  20 

We used a variation of EnKF approach, i.e., a local ensemble transform Kalman filter (LETKF; Hunt et al., 2007), to 

assimilate observations into model state. Like any other EnKF implementation the ETKF uses a stochastic ensemble of model 

realizations to represent the background error covariance matrix, while it solves the analysis equations in the space spanned 

by the ensemble perturbations (Bishop and Toth, 1999). It is a kind of deterministic filter that does not need to perturb the 

observations which avoids the introduction of additional sampling errors. The LETKF is a local implementation of ETKF 25 

which calculates the analysis grid by grid by only using the observations from the region surrounding this analysis grid. By 

performing the analysis locally, there is no need to represent the full error space of the global state. Instead, the ensemble 

perturbations of limited ensemble size only need to represent a low-dimensional error space within the local region, which 

well addresses the rank problem of EnKF resulting from the limited ensemble size. In addition, the long-distance spurious 

correlation can also be supressed by the local implementation. The formulation of LETKF in a local region can be written as  30 

𝒙𝒂HHH = 𝒙𝒃HHH + 𝐗𝐛𝒘L𝒂             (4) 
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𝒘L𝒂 = 𝐏N𝐚O𝐇𝐗𝐛Q𝐓𝐑;𝟏(𝒚𝒐 −𝐇𝒙𝒃HHH)            (5) 

𝐏N𝐚 = 9(>"$%;&)𝐈
&@A

+ O𝐇𝐗𝐛Q𝐓𝐑;𝟏O𝐇𝐗𝐛Q:
;&

          (6) 

𝒙𝒃HHH = &
>"$%

∑ 𝒙𝒊𝒃
>"$%
"B& ; 𝐗𝐢𝐛 =

𝟏
√𝑵;𝟏

O𝒙𝒊𝒃 − 𝒙𝒃HHHQ           (7) 

where 𝒙𝒂HHH represents the analysis state and 𝒙𝒃HHH represents the background state. 𝐗𝐛 represents the background perturbations 

calculated by using the results of ensemble simulation and 𝒘L𝒂  is the analysis in the ensemble space spanned by 𝐗𝐛 . 𝐏N𝐚 5 

represents the analysis error covariance in the ensemble space with a dimension of 𝑁#$% ×𝑁#$%. 𝐲𝐨 denotes the vector of 

observations used in the analysis of this grid and R is the observation error covariance matrix. 𝐇 represents the linear 

observational operator that maps the model space to the observation space. The scalar 𝜆 in Eq. (6) denotes the inflation factor 

for the background covariance matrix which was estimated by an algorithm proposed by Wang and Bishop, 2003:  

𝜆 = G𝐑&'/)𝒅J
*
𝐑&'/)𝒅;0

K/4L#M𝐑&'/)𝐇𝐏𝒃G𝐑&'/)𝐇J
*P

           (8) 10 

𝒅 = 𝒚𝒐 −𝐇𝒙𝒃HHH              (9) 

𝐏𝒃 = 𝐗𝐛O𝐗𝐛Q𝐓              (10) 

where 𝒅 represents the observation-minus-forecast residuals, p represents the number of observations, and 𝐏𝒃 represents the 

ensemble estimated background error covariance matrix. The inflation is necessary for the ensemble-based assimilation 

algorithm since the ensemble estimated background error covariance is very likely to underestimate the true background error 15 

covariance due to the limited ensemble size and the existence of model error (Liang et al., 2012). Without any treatment to 

prevent the underestimation of background error covariance, the model forecast would be overconfident and eventually result 

in filter divergence.   

To prevent the spurious correlation between non or weakly related variables, each air pollutant is assimilated 

independently by only using the observations of this pollutant. Figure 2 illustrates the local scheme we used in the assimilation, 20 

where the plus signs and dots respectively denote the centre of model grids and the location of observation sites. For each 

model grid, only the observation sites located within a (2𝑙 + 1) by (2𝑙 + 1) rectangular area centred at this model grid are 

used in the analysis of this model grid. The cut-off radius 𝑙 was chosen as 12 model grids, approximate to 180 km under the 

15km horizontal resolutions. The use of cut-off radius, however, could lead to discontinuities in the analysis when an 

observation “enters” or “leaves” the local domain as one moves from one model grid to another (Sakov and Bertino, 2011). In 25 

order to increase the smoothness of the analysis state, following Hunt et al., 2007, we artificially reduced the impact of the 

observations close to the boundary of local domain by multiplying the entries in 𝐑;𝟏 by a factor that decays from one to zero 

as the distance of the observation from the central model grid increases. The decay factors used in this study were calculated 

by 

𝜌(𝑖) = 𝑒𝑥𝑝 Y− (("))

'3)
Z            (11) 30 
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where 𝜌(𝑖) denotes the decay factor for the observation 𝑖, ℎ(𝑖) is the distance between the observation 𝑖 and the central model 

grid point, and 𝐿  is the decorrelation length that was chosen as 80 km, smaller than the cut-off radius, to increase the 

smoothness of the analysis state. Typically, only the state of the central model grid needs to be updated and used to construct 

the global analysis field. However, the experiences show that there is still observable discontinuity seen in the analysis over 

some regions. To deal with it, following the method of Ott et al., 2004, we simultaneously updated the state of a small patch 5 

(𝑙 =1) around the central model grid (updated region in Fig. 2) in each local analysis step. The final analysis of one model grid 

is then obtained by a weighted mean of all the values that result from the analysis of the patches containing this model grid. A 

weighted mean is necessary since the analysis of different patches uses different decay factors for the observation error. The 

weight of each analysis value for model grid 𝑖 is calculated by Eq. (9): 

𝑊",+ =
QRS	(;,(.,0)

)

2)
)

∑ QRS	(;,(.,0)
)

2)
)3

04'

            (9) 10 

where ℎ(𝑖, 𝑗) denotes the distance of the model grid 𝑖 from the central model grid of the patch that generated 𝑗th analysis value 

of this grid, 𝑚 represents the number of patch that containing this model grid and 𝐿 is the decorrelation length which was 

chosen as 80km in this study.  

4 Results 

This section presents the fields from the Chinese air quality reanalysis dataset (CAQRA) and compares them with 15 

observations. It aims to provides a brief introduction to the CAQRA and gives a first assessment of the quality of this dataset. 

The cross validation method was used in the assessment of CAQRA, in which a proportion of observation data is withheld 

from the data assimilation and used as a validation dataset. We conducted five cross validation experiments by randomly 

dividing the observation sites from CNEMN into five groups (20% observation sites for each group). In each experiment, the 

analysis was performed with one group’s observation data left out in the assimilation. The analysis results at validation sites, 20 

i.e., the observation sites that are not used in the assimilation, were then collected and used to validate the assimilation. For 

convenience, the analysis results at validation sites from the five cross validation experiments were combined together and 

composed of a validation dataset containing all observations sites (cross validation run). This dataset was then evaluated against 

the observations to assess the qualities of CAQRA. Besides, the independent observations of PM2.5 from the U.S. Department 

of State Air Quality Monitoring Program over China were also used in the assessment of PM2.5 reanalysis field. The qualities 25 

of CAQRA was assessed at different spatial and temporal scales to better understand the qualities of CAQRA. Also shown are 

the validation results of the ensemble mean of the simulations without assimilation (base simulation) to highlight the impacts 

of assimilation. 
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4.1 PM 

4.1.1 Spatial distributions of PM reanalysis over China 

We first present the reanalysis fields of the PM concentrations (PM2.5 and PM10) in China. Figure 3 shows the six-year 

mean (2013–2018) spatial distributions of the PM2.5 concentrations in China from CAQRA, base simulation and observations. 

The CAQRA presents a continuous map of the PM2.5 concentrations in China, and well reproduced the observed magnitude of 5 

PM2.5 concentrations in China. The largest PM2.5 concentrations were located in the NCP region due to the intensive industrial 

activities and the associated high emissions of PM2.5 and its precursors (Qi et al., 2017). Higher PM2.5 concentrations were also 

found in the SE region where the PM2.5 concentrations are both influenced by the local emissions and the long range transport 

of the air pollutants from north China (Lu et al., 2017). In the NW region, besides the hotspots of PM2.5 concentrations in big 

cities, high PM2.5 concentrations were also obvious in the Taklimakan Desert due to the influences of dust emissions. The 10 

observed magnitude and spatial variability of PM10 concentrations were also well represented by the PM10 reanalysis. In general, 

the spatial distributions of PM10 reanalysis were similar to that of the PM2.5 reanalysis except in the Gansu and Ningxia 

provinces where there were high PM10 concentrations but relatively low PM2.5 concentrations. This would be related to the 

large contributions of dust emissions in these areas. The base simulation significantly overestimated the PM2.5 and PM10 

concentrations in China, especially in south China. This would be due to the systematic biases in the emission inventory (Kong 15 

et al., 2019) and also due to that the negative trends of the PM and its precursors’ emissions were not considered in our 

simulation. In addition, the hotspots of PM2.5 concentrations in the NW region and Tibet Plateau also failed to be captured by 

the base simulation possibly due to the absence of the activity data in these remote regions.  

The seasonal maps of PM2.5 and PM10 concentrations are shown in Figs. S1–2 in the Supplement, which shows significant 

seasonal variations. Both the PM2.5 and PM10 concentrations show maximum values in winter in most regions of China due to 20 

the increased anthropogenic emissions related to enhanced power generation, industrial activities and the fossil fuel burnings 

for heating (Li et al., 2017). The unfavourable meteorological conditions with stable boundary condition would also contribute 

to the high PM concentrations in winter. In contrast, due to the lower emission rate and more intense mixing processes, the 

PM concentrations were lowest during summer. The PM concentrations in Taklimakan Desert exhibit a different seasonality 

with PM concentrations highest in spring and lowest in winter. This would be due to that the major sources of PM in 25 

Taklimakan Desert are not anthropogenic emissions but the dust emissions which are usually largest in spring due to the 

frequent strong dust storms.  Figure 4 further shows an example of the hourly results of PM reanalysis, which presents a year-

round time series of site mean hourly PM concentrations over Beijing. It shows that the PM reanalysis well captures the hourly 

evolution of the PM concentrations. Both the heavy haze episodes during wintertime and the strong dust storms during the 

springtime can be well represented in the PM reanalysis.   30 
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4.1.2 Assessment of PM reanalysis over China 

The cross validation (CV) method was used to assess the quality of PM reanalysis in China. Table 2 summarized the site-

based CV results for the reanalysis data from 2013 to 2018 at different temporal scales. It is pertinent to mention here that 

these sites are all validation sites that were not used in the data assimilation. The validation results indicate that by assimilating 

the surface PM concentrations, the reanalysis shows much better performances in reproducing the magnitude and variability 5 

of surface PM concentrations in China. The CV R2 were up to 0.81 and 0.72 for the hourly concentrations of PM2.5 and PM10, 

significantly higher than the values of 0.26 and 0.17 in the base simulation. The biases were reduced substantially in PM2.5 and 

PM10 reanalysis with CV MBE (CV NMB) about -2.6 µg/m! (-4.9%) and -6.8 µg/m! (-8.7%) at the hourly scale, much 

smaller than the large biases in the base simulation. The CV RMSE were only about one half of the RMSE values of the base 

simulation, which were about 17.6 µg/m! and 39.3 µg/m! for the hourly concentrations of PM2.5 and PM10. The reanalysis 10 

shows better performance at the daily, monthly and yearly scale with CV RMSE values ranging from 9.0 to 15.1 µg/m! for 

PM2.5 concentrations and from 19.1 to 28.8 µg/m! for PM10 concentrations.  

The qualities of PM2.5 and PM10 reanalysis data in different regions of China were further summarized in Table S1-2. At 

the hourly scale, there were small negative biases of PM2.5 reanalysis in the NCP (-4.8%), NE (-5.8%), SE (-3.8%) and SW (-

3.4%) regions. The biases were relatively larger in the NW and Central regions, with CV NMB about -7.3% and -8.2%, 15 

respectively. Two reasons might help explain the lager biases in these two regions. Firstly, the observation sites are sparser in 

the NW and Central regions. As a result, the PM2.5 concentrations cannot be well constrained at some sites in cross validation. 

Secondly, the emissions of PM2.5 and its precursors might be too low in these two regions, leading to the underestimations of 

background errors since we only considered the emission uncertainty in the ensemble simulation. Although this problem has 

been alleviated by using the inflation technique that compensates the missing errors, the overconfident model results could 20 

still to some extent degrade the performance of assimilation, making the analysis less influenced by the observations. The 

errors of PM2.5 reanalysis exhibited apparent spatial differences (Table S1). The CV RMSE were smallest in the SE (14.9 

µg/m!) and SW (16.5 µg/m!) regions, and increased to around ~25 µg/m! in the NCP, NE and Central regions. Consistent 

with the bias distributions, the largest CV RMSE value was found in the NW region which could up to 52.1 µg/m!, but is still 

significant smaller than the RMSE value of base simulation (73.0 µg/m!). The errors of PM2.5 reanalysis were smaller at the 25 

daily, monthly and yearly scales, with CV RMSE about 10.6–39.4 µg/m! at the daily scale, 7.4–26.9 µg/m! at the monthly 

scale and 6.1–23.5 µg/m! at the yearly scale. In term of the hourly PM10 reanalysis, the CV results (Table S2) showed that 

there were small negative biases in the NCP, NE, SE and SW regions, ranging from -9.6% of NE to -5.9 of SE. The biases 

were larger over the NW and Central regions with CV NBM increasing to about 18.0% and 14.1% respectively. The errors of 

PM10 reanalysis also exhibited spatial heterogeneity. The CV RMSE was smallest in the SE (26.0 µg/m!) and SW (30.2 30 

µg/m!) regions, and increased to about 39.8 and 43.7 µg/m! in the NE and NCP regions. The largest errors were found in the 

Central and NW regions with CV RMSE about 105.5 and 57.3 µg/m! respectively. The PM10 reanalysis shows smaller error 
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at the daily, monthly and yearly scale, with CV RMSE about 18.6–85.5 µg/m! at the daily scale, 13.7–64.0 µg/m! at the 

monthly scale and 12.3–55.8 µg/m!	at the yearly scale. 

4.1.3 Trend analysis of PM reanalysis over China 

A realistic representation of the observed interannual change is another important aspect of the reanalysis dataset. The 

performance of the reanalysis data in representing the observed interannual change of PM2.5 and PM10 concentrations was thus 5 

evaluated nationwide and over different regions of China. Figure 5–6 display the time series of the monthly mean PM2.5 and 

PM10 concentrations nationwide and in different regions. The observed national PM2.5 concentrations showed a profound 

seasonal circle with the highest concentrations in winter and the smallest in summer. The annual trends of PM2.5 and PM10 

concentrations were also calculated using the Mann-Kendall (M-K) trend test and the Theil-Sen trend estimation method, 

which were summarized in Table 3. There was significant negative trend observed in PM2.5 concentrations nationwide, with 10 

calculated annual trend about -5.8 (p<0.05) µg ∙ m;! ∙ yr;&. The NE and NCP regions exhibited the largest negative trends 

among the six regions, with calculated trend about -7.5 (p<0.05) and -7.0 (p<0.05) µg ∙ m;! ∙ yr;&, respectively. In other 

regions, the negative trends were ranging from -6.3 to -5.2 µg ∙ m;! ∙ yr;&. The base simulation reproduced the observed 

seasonal cycle of PM2.5 concentrations well in all regions. The magnitude of PM2.5 concentrations in year 2013 were also well 

captured in different regions, suggesting that the emission inventories in 2010 were generally reasonable for the simulations 15 

of PM2.5 in 2013. However, starting from the year 2014 the base simulation tended to overestimate the observations in the 

NCP, SE and SW regions, indicating that the emission inventory for 2010 may be too high for the simulations of PM2.5 

concentrations over these regions after 2014. In contrast, the base simulation significantly underestimated the PM2.5 

concentrations in the NW region. The model performance of base simulation was relatively better in the NE and Central regions 

throughout the six years. Although the base simulation captured the negative trends of the observed PM2.5 concentrations in 20 

China and in different regions, the simulated trends were much weaker than these indicated by the observations. Since we used 

the same emission inventory in the simulations of air pollutants in different years, the simulated trends in the base simulation 

were only driven by the variations of meteorology conditions. This suggests that the change of meteorology conditions can 

only explain a small proportion of the negative trends in PM2.5 levels in China, and that the emission reductions would 

contribute more to the decline of PM2.5 concentrations. The cross validation run agrees better with the observations. The 25 

observed trends of PM2.5 concentrations over China and each subregion were all well captured by the reanalysis in the cross 

validation run. Similar results could be obtained for the analysis of the trend of PM10 concentrations, as shown in Fig. 6. The 

observed PM10 concentrations exhibit significant negative trends too, which were well captured by the PM10 reanalysis in cross 

validation run. The base simulation showed better performance in reproducing the PM10 levels in China than the PM2.5 

concentrations, while there were significant underestimations of PM10 concentrations in the NW and Central regions.  The 30 

calculated negative trends of base simulation were still smaller than these given by the observations. This again highlights the 

large contributions of the emission reduction to the improvement of the air quality in China over these years. 
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4.1.4 Independent validations of PM2.5 reanalysis  

Besides the cross validation, the PM2.5 reanalysis was further validated against the independent dataset from the U.S. 

Department of State Air Quality Monitoring Program over China (http://www.stateair.net/, last access: 17 Apr, 2020) , which 

contains hourly PM2.5 concentrations in Beijing, Chengdu, Guangzhou, Shanghai and Shenyang cities. Table 4 presents the 

comparisons of the observed PM2.5 concentrations with these obtained from the CAQRA and base simulation. The results 5 

indicate that the PM2.5 reanalysis agrees better with the observed magnitude and variability of PM2.5 concentrations in all cities. 

Both the MBE and RMSE were greatly reduced in CAQRA, which were only ranging from -7.1 to -0.3 µg ∙ m;! and from 

16.8 to 33.6 µg ∙ m;!, respectively, in these cities. The correlation coefficient was also greatly improved in CAQRA (R2 = 

0.74–0.86) when compared to the base simulation (R2 = 0.09–0.38). These results confirm that the CAQRA has a high quality 

in representing the PM2.5 pollution in China during these years. 10 

4.1.5 Comparisons with the satellite-estimated PM2.5 concentrations  

Previous studies have shown that estimating the ground-based PM2.5 concentrations from satellite-derived AOD is an 

effective way to map the PM2.5 concentrations in a good accuracy. To further illustrate the accuracy of our PM2.5 reanalysis 

data, we also compared the accuracy of our PM2.5 reanalysis data to that of the satellite-estimated PM2.5 concentrations. Table 

5 summarized several representative studies that focus on the estimations of ground-based PM2.5 concentrations in China at 15 

the national level using different kinds of methods. Most of these studies estimated the ground-based PM2.5 concentrations at 

the daily scale since they used the polar-orbiting satellite data (e.g. MODIS) that only provide the daily observations of AOD.  

Estimation conducted by Liu et al., 2019 was an exception that has an hourly resolution since they used the AOD measurement 

from the geostationary satellite (Himawari-8). The horizontal resolutions of these studies were mainly around 10km except 

that of Lin et al., 2018 having the finest horizontal resolution (1km) and that of Zhan et al., 2017 having the coarsest horizontal 20 

resolution (0.5° ). There are few studies provide the long-term PM2.5 data covering the recent years. In comparison, our PM2.5 

reanalysis data can provide the long-term data over China with fine temporal (1h) and high accuracy. A fine temporal resolution 

is important for the epidemiological studies, especially for the assessment of acute health effects of air pollution. Furthermore, 

the accuracy of our reanalysis data (CV R2 = 0.86, CV RMSE = 15.1 µg ∙ m;!) was also higher than most of these satellite 

estimates (CV R2 = 0.56–0.86, CV RMSE = 15.0–20.2 µg ∙ m;!). 25 

4.2 Gases  

4.2.1 Spatial distributions of the reanalysis of gaseous air pollutants over China 

Next, we present the reanalysis fields for the gaseous air pollutants in China, namely SO2, CO, NO2 and O3. Figure 7 

presents the spatial distributions of the six-year averaged SO2 and CO concentrations in China obtained from CAQRA, base 

simulation and observations. The SO2 reanalysis well captured the magnitude and spatial distributions of SO2 concentrations 30 
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in China, while the base simulation significantly overestimated the SO2 concentrations due to the positive biases of SO2 

emissions in the simulation. Consistent with the observations, the SO2 reanalysis exhibited high spatial heterogeneity with 

highest values located in the NCP region, especially in Shandong, Shanxi and Hebei provinces. Several hotspots of SO2 

concentrations were also found in the NE region. SO2 is mainly emitted from the fossil fuel consumption, especially the burning 

of coal (Lu et al., 2010). Shandong, Shanxi, Inner Mongolia and Hebei provinces were the largest four consumers of coal in 5 

China according to the China Energy Statistical Yearbook (NBSC 2017a, b), which well explained the high SO2 concentrations 

in these provinces. We also found observable SO2 concentrations in the Xizang province which were missing in the base 

simulation. The spatial distribution of the CO reanalysis is similar to that of the SO2 and agreed well with the observed spatial 

distributions. In contrast, the base simulation significantly underestimated the CO concentrations, especially in the NCP region. 

In addition, both the observation and reanalysis show hotspots of CO concentrations in the NW region and Xizang provinces, 10 

while these hotspots were largely underestimated or even missing in the base simulation. According to previous studies, such 

underestimation might be related to the underestimated CO emissions in China (Kong et al., 2020; Tang et al., 2013). For NO2 

(Fig. 8), both the reanalysis and base simulation captured the observed magnitude and spatial distributions of NO2 

concentrations in China. The high NO2 concentrations were generally located in the NCP region and the major city clusters in 

China. However, the base simulation generally showed underestimations of NO2 concentrations in China. The spatial 15 

distributions of O3 concentrations (Fig. 8) show smaller spatial heterogeneity compared to the other gases. The O3 reanalysis 

captured the observed magnitude and spatial distributions of O3 concentrations well in China while the base simulation 

generally showed underestimations of O3 concentrations in China. Figure S3–6 further presents the seasonal maps of the 

reanalysis fields of these gases. All gases exhibited a profound seasonal cycle with maximum values seen in the winter and 

lowest values in summer except the O3 which showed an opposite seasonal cycle. The largest values of SO2, CO and NO2 20 

concentrations in winter would be due to the increased anthropogenic emissions and also the more stable atmosphere conditions 

during that time. For O3, the highest value in summer was closely related to the enhanced photochemistry reactions in summer 

associated with higher temperature and stronger solar radiance. 

4.2.2 Assessment of gases’ reanalysis over China 

The evaluation results of these gases’ reanalysis data were shown in Table 2. It indicates that the reanalysis data has an 25 

excellent performance in representing the magnitude and variability of these gaseous air pollutants in China with CV R2 

ranging from 0.51 of SO2 to 0.76 of O3, and the CV MBE (CV NMB) about -2.0 µg ∙ m;! (-8.5%), -2.3 µg ∙ m;! (-6.9%), -

0.06 mg ∙ m;! (-6.1%) and -2.3 µg ∙ m;! (-4.0%) for the hourly SO2, NO2, CO and O3 reanalysis data, respectively. Compared 

to the base simulation, the  errors were reduced by about one half in the reanalysis with CV RMSE about 24.9 µg ∙ m;!, 16.4 

µg ∙ m;!, 0.54 mg ∙ m;! and 21.9 µg ∙ m;! for the hourly SO2, NO2, CO and O3 reanalysis data, respectively. The reanalysis 30 

shows better performance at the daily, monthly and yearly scales. The CV RMSE values of the daily SO2 and NO2 reanalysis 

data were also smaller than the previously datasets of SO2 and NO2 concentrations in China developed by Zhan et al., 2018; 
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and Zhang et al., 2019 based on the random-forest-spatiotemporal-kriging model wherein the RMSE values of daily SO2 and 

NO2 concentrations were estimated to be 19.5 and 13.3 µg ∙ m;!.  

In terms of different regions (Table S3–6), the hourly SO2 reanalysis showed small negative biases (about 2–10%) in all 

regions except in the Central region where the negative biases were relative larger (17.0%). The smallest CV RMSE values of 

SO2 reanalysis were observed in the SE, SW and NW regions (less than 25 µg ∙ m;!) while in other regions the CV RMSE 5 

values were over 30 µg ∙ m;!. The hourly NO2 reanalysis showed small negative biases in all regions, which were relatively 

smaller in the NE, NCP and SE regions (from -5.9 to -3.5%) and become relative larger in the SW, NW and Central regions 

(from -15.1 to -12.9%). The CV RMSE values for hourly NO2 reanalysis were around 15 µg ∙ m;! in all regions except in the 

NW (24.3 µg ∙ m;!) and Central (20.5 µg ∙ m;!) regions. The hourly CO reanalysis exhibited small negative biases in all 

regions. The largest biases were still found in the NW region which were about 15.0%, while in other regions the biases were 10 

ranging from -11.2% to -2.5%. The CV RMSE values for hourly CO reanalysis were smallest in the south China (about 0.39 

and 0.46 mg ∙ m;! in the SE and SW regions) and increased to 0.64 and 0.59  mg ∙ m;! in the NCP and NE regions. The 

largest CV RMSE was found in the NW regions, which were about 1.13 mg ∙ m;!. The biases of hourly O3 reanalysis were 

more uniformly distributed in different regions, with CV NMB ranging from -6.1% to 1.4%. Similarly, the CV RMSE values 

of O3 reanalysis were around 20 µg ∙ m;! in all regions except in the NW region (28.3 µg ∙ m;!).  15 

4.2.3 Trend analysis of gases’ reanalysis over China 

Figure 9 shows the time series of the monthly mean SO2 concentrations in China obtained from cross validation run, base 

simulation and observations. Also shown are the time series of the monthly mean SO2 concentrations in different regions. The 

observed SO2 concentrations show significant negative trends (P<0.05) in China (-6.2 µg ∙ m;! ∙ yr;&, Table 6) and in all 

regions (from -2.3 to -9.5 µg ∙ m;! ∙ yr;&, Table 4) due to the large reductions in SO2 emissions over China. During the 11-20 

13rd Five-Year Plan (FYP) and the Air Pollution Prevention and Control Plan, Chinese government has taken great efforts to 

reduce the SO2 emissions, such as the installations of flue-gas desulfurization (FGD) and selective catalytic reduction system, 

the construction of large units, decommissioning of small units and replacing coal with cleaner energies (Li et al., 2017; Zheng 

et al., 2018b). As a result, the SO2 emissions were substantially decreased in China especially for the industrial and power 

sectors. The base simulation significantly overestimated the SO2 concentrations in all regions especially after year 2013. The 25 

negative trends of SO2 concentrations were also largely underestimated by the base simulation. In contrast, the SO2 reanalysis 

well captured the magnitude and negative trends of the observed SO2 concentrations in China and in all regions. The NO2 

observations showed negative trends in China as well (Fig. 10), however the negative trend was not significant except that in 

the NE region (Table 5). This is consistent with the smaller reductions of NOx emissions (21%) in China due to the smaller 

changes in the emissions from transportation sector which accounts for almost one third of the NOx emissions in China. The 30 

pollution controls on the transportation section were exactly offset by the growing emissions related to the vehicle growth 

(Zheng et al., 2018b). The base simulation generally underestimated the NO2 concentrations during the wintertime, and the 
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observed negative trends of NO2 concentrations were also underestimated in all regions. By assimilating the observed NO2 

concentrations, the reanalysis data agreed better with the observations both for the magnitude and the negative trends. The CO 

observations showed significant negative trends in all regions except in the NW region (Fig. 11) with calculated negative 

trends ranging from -0.18 to -0.06 µg ∙ m;! ∙ yr;&. Such negative trends were also observed by the satellite measurements such 

as the MOPITT observations (Zheng et al., 2018a), which were mainly due to the reduced anthropogenic emissions in China 5 

as suggested by both the bottom-up and top-down methods (Zheng et al., 2019). The base simulation largely underestimated 

the CO concentrations in all regions. In addition, the negative trends of CO concentrations were also largely underestimated 

by the base simulation which highlighted the significant contributions of the emission reduction to the decreased CO 

concentrations in these regions. The CO reanalysis agreed better with the observations and well captured the negative trends 

of CO concentrations in all regions. The O3 concentrations exhibited an opposite trend compared to the other air pollutants 10 

(Fig. 12), which exhibited significant positive trends in all regions, ranging from 2.3 to 5.4 µg ∙ m;! ∙ yr;& and indicating an 

enhanced photochemical pollution in China. This phenomenon has been observed and investigated by Li et al., 2019 who 

suggested that the rapid decreases in PM2.5 concentrations and the resultant slowing down of aerosol sink of hydroperoxyl 

(HO2) radicals was an important factor for the enhanced O3 concentrations in China. The base simulation generally captured 

the magnitude of the O3 concentrations in the SE, SW, NW and Central regions but underestimated the O3 concentrations in 15 

the NCP and NE regions especially during the spring and summer. In addition, the base simulation underestimated the observed 

positive trend of O3 concentrations in all regions, which suggests that the meteorological variability only contributed a small 

portion of the observed O3 trend in China. Again, the O3 reanalysis is substantially improved compared to the base simulation 

and well reproduced the observed trends of O3 concentrations in each region. 

4.2.4 Comparison with the CAMS reanalysis data  20 

In order to further evaluate the accuracy of our reanalysis dataset for the gaseous air pollutants, the CAMS reanalysis 

(CAMSRA) produced by the ECMWF (Inness et al., 2019) are employed as a reference to compare with our reanalysis dataset. 

The CAMSRA is the latest global reanalysis dataset of atmospheric compositions, which assimilates the satellite retrievals of 

O3, CO, NO2 and AOD. Three-hourly reanalysis data of SO2, NO2, CO and O3 concentrations in surface model level from 

2013 to 2018 were used in this study, which were downloaded from https://atmosphere.copernicus.eu/copernicus-releases-25 

new-global-reanalysis-data-set-atmospheric-composition (last access: 17 Apr, 2020) at an 1 degree by 1 degree resolution. 

Here we only focus on the comparisons of gaseous pollutants since the CAMSRA does not provide the PM2.5 and PM10 

concentrations.  

Figure 13 presents the spatial distributions of the six-year averaged concentrations of these gaseous air pollutants in China 

obtained from CAMSRA. Compared with these obtained from CAQRA and observations (Fig. 7–8), the CAMSRA largely 30 

overestimates the surface concentrations of SO2 and O3 in China. In addition, due to the higher spatial resolution (15km) used 

in CAQRA than that used in CAMSRA (about 50km), our products can provide more detailed spatial patterns of the surface 

air pollutants in China, which should be more suitable for the air quality studies in the regional scale. Table 7 quantitatively 
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compares the accuracy of the CAQRA with that of the CAMSRA in estimating the surface concentrations of gaseous air 

pollutants in China. Compared with CAMSRA (R2 = 0.00–0.23), the CAQRA shows much better performance in capturing 

the spatiotemporal variability in the surface concentrations of gaseous air pollutants in China with R2 ranging from 0.53 to 

0.77. The MBE and RMSE values are also smaller in the CAQRA than these in CAMSRA, especially for the SO2 and O3 

concentrations. This could be attributed to the assimilation of surface observations in CAQRA, while CAMSRA only 5 

assimilate the satellite retrievals. These suggest that the CAQRA can provide surface air quality datasets in China with higher 

quality than the CAMSRA, which is especially valuable for future relevant studies with high demands in spatiotemporal 

resolution and accuracy. 

5 Conclusions 

A high-resolution Chinese Air Quality Reanalysis (CAQRA) Dataset has been produced in this study by assimilating the 10 

surface observations of PM2.5, PM10, SO2, NO2, CO and O3 concentrations from CNEMC. It provides the time-consistent 

concentration fields of PM2.5, PM10, SO2, NO2, CO and O3 in China from 2013 to 2018 (will be extended in the future by 

adding 1 year each year) at a high spatial (15km) and temporal (1 hour) resolution. The CAQRA was produced by the 

ChemDAS which used the NAQPMS model as the forecast model, and the LETKF to assimilate the observations in a post 

processing mode. The background error covariance was calculated from the ensemble simulation which considered the 15 

emission uncertainties of major air pollutants. An inflation technique was also used to dynamically inflate the background 

error to prevent the underestimation of true background error covariance.  

A five-fold cross validation method was used to validate the reanalysis dataset and provides us the first indication of the 

quality of CAQRA. The validation results suggest that the CAQRA has excellent performance in representing the 

spatiotemporal variability of surface air pollutants in China with CV R2 ranging from 0.52 of hourly SO2 concentrations to 20 

0.81 of hourly PM2.5 concentrations. The CV MBE of reanalysis data were -2.6 µg ∙ m;!, -6.8 µg ∙ m;!, -2.0 µg ∙ m;!, -2.3 

µg ∙ m;!, -0.06 mg ∙ m;! and -2.3 µg ∙ m;! for the hourly concentrations of PM2.5, PM10, SO2, NO2, CO and O3 respectively. 

The CV RMSE values of the reanalysis data for these air pollutants were estimated to be about 21.3µg ∙ m;!, 39.3µg ∙ m;!, 

24.9µg ∙ m;!, 16.4, µg ∙ m;!, 0.54mg ∙ m;! and 21.9 µg ∙ m;!, respectively. Over the different regions of China, the NW and 

Central regions have relative larger biases and errors which would be mainly due to the relatively sparse observations and also 25 

the underestimations of background errors. The Chinese air quality has changed substantially over the last six years. the 

observations show significant decreasing trends for all air pollutants except the O3 which shows increasing trend over the last 

six years. The reanalysis data shows excellent performance in representing the trends of all air pollutants in China, suggesting 

the suitability of the reanalysis data in the trend analysis of air pollutants in China.  

Besides the cross validation, the PM2.5 reanalysis data has also been evaluated against the independent observations from 30 

the U.S. Department of State Air Quality Monitoring Program over China. The results suggest that the reanalysis can well 

reproduced the magnitude and variability of the observed PM2.5 concentrations in all cities with the MBE and RMSE only 
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ranging from -7.1 to -0.3 µg ∙ m;! and from 16.8 to 33.6 µg ∙ m;!, respectively. The reanalysis of gaseous air pollutants was 

also compared with the latest global reanalysis data CAMSRA from the ECMWF. The CAMSRA is of great values in 

providing the three-dimensional distributions of multiple chemical species in global. As a regional dataset, our products have 

higher spatial resolution than the CAMSRA, which could be more suitable for the air quality studies in the regional scale. 

Although our products only provide the surface concentrations of six conventional air pollutants in China, the accuracy of 5 

CAQRA was estimated to be higher than that of the CMSRA due to the assimilations of surface observations. Thus, our 

products have its own values in the regional air quality studies with high demands in spatiotemporal resolution and accuracy 

We also compared our PM2.5 reanalysis data to the previous satellite estimates of surface PM2.5 concentrations, which shows 

that the PM2.5 reanalysis data is more accurate than most of satellite estimates and has finer temporal resolution.  

As the first version of Chinese air quality reanalysis data, there were still limitations in the CAQRA that the potential 10 

users should be aware of. The current CAQRA only contains the surface concentrations of the air pollutants in China which 

cannot provide the information on the vertical structure of the air pollutants. Besides, the observation sites used in the 

assimilation are mainly urban or suburban sites that cannot provide enough information on the air pollution over the rural areas, 

which may influence the quality of CAQRA over the rural areas. To further improve the accuracy of our air quality reanalysis 

dataset, in future, an online run of EnKF could be conducted to simultaneously correct the emissions and concentrations. More 15 

kinds of observations, such as the observation data of PM2.5 compositions, could also been assimilated to provide the fields of 

PM2.5 composition in China, which would support both the epidemiological studies and climate research. 

Data availability 

The whole CAQRA reanalysis dataset can be freely downloaded at:  https://doi.org/10.11922/sciencedb.00053 (Tang et al., 

2020a), and the teaser product, which contains the monthly and annual mean of the CAQRA, is available at 20 

https://doi.org/10.11922/sciencedb.00092 (Tang et al., 2020b). 
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Tables 

 

Table 1 Uncertainties in the emissions of different species 10 

Species SO2a NOxa COa NMVOCa NH3b PM10a PM2.5a BCa OCa 

Emission 

Uncertainty(%) 
±12 ±31 ±70 ±68 ±53 ±132 ±130 ±208 ±258 

a emission uncertainty obtained from Zhang et al., 2009 
b emission uncertainty obtained from Streets et al., 2003 
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Table 2: Site-based cross validation results for the reanalysis data (outside bracket) and base simulation (in bracket) 

from 2013 to 2018 at different temporal scales. 

 
PM2.5 (µg/m!) PM10 (µg/m!) 

R2 MBE  NMB(%) RMSE R2 MBE NMB (%) RMSE 

Hourly 0.81 (0.26) -2.6 (17.6) -4.9 (34.7) 21.3 (54.1) 0.72 (0.17) -6.8 (-7.6) -7.8 (-8.7) 39.3 (75.7) 

Daily 0.86 (0.32) -2.5 (17.4) -4.9 (34.3) 15.1 (46.4) 0.81 (0.22) -6.7 (-7.0) -7.7 (-8.1) 28.8 (64.1) 

Monthly 0.88 (0.40) -2.5 (17.4) -5.0 (34.1) 10.3 (33.6) 0.83 (0.28) -6.7 (-7.3) -7.7 (-8.4) 21.1 (44.4) 

Yearly 0.86 (0.37) -3.0 (15.2) -5.6 (28.7) 9.0 (28.9) 0.79 (0.27) -7.5 (-10.2) -8.3 (-11.3) 19.1 (38.2) 

 
SO2 (µg/m!) NO2 (µg/m!) 

R2 MBE NMB(%) RMSE R2 MBE NMB (%) RMSE 

Hourly 0.52 (0.03) -2.0 (25.5) -8.5 (106.6) 24.9 (67.2) 0.61 (0.22) -2.3 (-5.0) -6.9(-14.8) 16.4 (24.9) 

Daily 0.67 (0.04) -2.0 (25.6) -8.5 (106.9) 17.5 (59.3) 0.67 (0.27) -2.3 (-5.0) -6.8(-14.8) 12.3 (19.9) 

Monthly 0.74 (0.04) -2.1 (25.4) -8.6 (105.7) 13.2 (52.0) 0.67 (0.34) -2.3 (-5.0) -6.8 (-14.8) 10.0 (15.9) 

Yearly 0.71 (0.04) -2.6 (23.1) -9.9 (87.2) 12.0 (47.5) 0.62 (0.42) -2.5 (-5.9) -7.3 (-17.3) 9.1 (13.6) 

 
CO (mg/m!) O3 (µg/m!) 

R2 MBE NMB(%) RMSE R2 MBE NMB (%) RMSE 

Hourly 0.55 (0.17) -0.06 (-0.47) -6.1 (-44.7) 0.54 (0.87) 0.76 (0.35) -2.3 (-10.5) -4.0 (-17.8) 21.9 (38.3) 

Daily 0.61 (0.20) -0.06 (-0.47) -5.8 (-44.6) 0.44 (0.77) 0.74 (0.25) -2.3 (-10.4) -3.9 (-17.8) 16.6 (31.3) 

Monthly 0.62 (0.21) -0.06 (-0.47) -6.0 (-44.7) 0.36 (0.69) 0.74 (0.28) -2.3 (-10.4) -3.9 (-17.8) 13.1 (25.3) 

Yearly 0.52 (0.09) -0.08 (-0.51) -6.9 (-46.7) 0.37 (0.72) 0.53 (0.03) -2.2 (-9.8) -3.8 (-17.2) 10.4 (21.2) 

 5 
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Table 3: Calculated annual trends of the PM2.5 and PM10 concentrations in China 

 
PM2.5 (µg/m!) PM10 (µg/m!) 

Obs Cross validation Base simulation Obs Cross validation Base simulation 

China -5.8 (-13.4, -3.5)a -5.0 (-12.6, -3.1) -2.0 (-3.6, -0.7) -7.2 (-18.4, -3.2) -6.0 (-17.0, -2.9) -2.5 (-3.6, -0.7) 

NCP -7.0 (-15.7, -5.5) -6.6 (-14.5, -4.8) -3.5 (-4.7, -1.9) -8.3 (-20.4, -5.1) -7.6 (-19.2, -4.4) -4.2 (-4.7, -1.9) 

NE -7.5 (-11.0, -3.9) -6.7 (-10.0, -3.5) -3.2 (-5.8, -1.2) -11.2 (-17.4, -4.7) -10.4 (-16.4, -4.7) -3.7 (-5.8, -1.2) 

SE -5.2 (-11.3, -2.8) -4.9 (-10.6, -2.7) -0.9 (-3.1, 1.3) -6.0 (-14.9, -2.4) -5.8 (-13.2, -1.9) -1.6 (-3.1, 1.3) 

SW -6.3 (-12.8, -2.6) -4.9 (-12.2, -2.4) -1.4 (-7.5, 0.4) -7.9 (-19.9, -2.2) -5.5 (-17.5, -2.1) -1.3 (-7.5, 0.4) 

NW -5.7 (-11.6, 2.1)b -3.3 (-10.7, 1.8) -1.3 (-4.9, 2.9) -0.5 (-14.4, 1.6) -2.2 (-8.5, 3.4) -2.3 (-4.9, 2.9) 

Central -5.8 (-19.8, -0.8) -3.6 (-17.7, 0.2) -0.6 (-5.9, 0.9) -8.9 (-28.5, 0.2) -6.8 (-26.9, 0.5) -2.0 (-5.9, 0.9) 
a the bold font denotes that the calculated trend is significant at the 0.05 significance level and the values in brackets denote 

the 95% confidence interval 5 

 

 

 

 

 10 

Table 4: Independent validation results of the CAQRA (outside bracket) and the base simulation (in bracket) against 

the observation data from the U.S. Department of State Air Quality Monitoring Program over China 

 R2 MBE (µg/m!) NMB(%) RMSE (µg/m!) 

Beijing 0.86 (0.37)a -0.3 (11.4) -0.3 (13.2) 33.6 (75.6) 

Shanghai 0.86 (0.34) 5.5 (39.6) 10.9 (78.3) 17.1 (64.8) 

Chengdu 0.85 (0.19) -7.1 (59.3) -8.9 (74.7) 23.1 (91.5) 

Guangzhou 0.74 (0.09) -3.3 (11.1) -7.5 (25.1) 16.8 (38.8) 

Shenyang 0.85 (0.29) -2.2 (16.8) -3.2 (24.3) 24.8 (59.1) 
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Table 5 Comparisons of the accuracy of our PM2.5 reanalysis data with that of the satellite estimates  

Reference spatial 

resolution 

temporal 

resolution 

temporal 

coverage 

CV-R2 CV-RMSE Method 

(Ma et al., 2016) 0.1° ×0.1° daily 2004–2013  0.79 27.4 LME + GAM 

(Xue et al., 2019) 0.1° ×0.1° daily 2000–2016  0.56 30.2 CTM + HD-

expansion + 

GAM 

(Xue et al., 2017) 0.1° ×0.1° daily 2014 0.72 23.0 CTM + LME + 

Spatiotemporal 

Kriging 

(Chen et al., 2018) 0.1° ×0.1° daily 2005–2016 0.83 18.1 RF 

(Lin et al., 2018) 1km× 1km daily 2001 – 2015 0.78a 19.3a semi-empirical 

(Chen et al., 2019) 3km×3km daily 2014 – 2015 0.86 15.0 XGBoost + 

NELRM 

(Yao et al., 2019) 6km×6km daily 2014 0.60 21.8 TEFR + GWR 

(You et al., 2016) 0.1° ×0.1° daily 2014 0.79 18.6 GWR 

(Zhan et al., 2017) 0.5° ×0.5° daily 2014 0.76 23.0 GW-GBM 

(Li et al., 2017b) 0.1° ×0.1° daily 2015 0.82 16.4 Geoi-DBN 

(Liu et al., 2019) 0.125° ×0.125° hourly  2016 0.86 17.3 RF 

This study 15km× 15km hourly 2013–2018  0.81 21.3 EnKF 

  daily 2013–2018 0.86 15.1 EnKF 
a The accuracy of the PM2.5 estimates by Lin et al., 2018 was assessed at the monthly scale  

LME: Linear Mixed Effect model 5 

GWR: Geographically Weighted Regression model 

GAM: Generalized Additive model 

HD-expansion: High dimensional expansion  

RF: Random Forest 

XGBoost: The Extreme Gradient Boosting 10 

NELRM: Non-linear Exposure-lag-response model 

TEFR: Time Fixed Effects Regression model 

GW-GBM: Geographically-Weighted Gradient Boosting Machine 
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Geoi-DBN: Geographically Deep Belief Network 

 

Table 6: Calculated annual trends of the SO2, NO2, CO and O3 concentrations in China 

 
SO2 (µg/m!) NO2 (µg/m!) 

Obs Cross validation Base simulation Obs Cross validation Base simulation 

China -6.2 (-12.0, -3.9) a -4.9 (-10.3, -3.0) -1.7  (-6.2, -0.8) -2.6 (-5.9, 0.1) -2.1 (-5.9, 0.1) -0.9 (-3.0, -0.3) 

NCP -9.5 (-16.5, -7.2) -8.1 (-14.5, -5.9) -1.7 (-4.1, -1.4) -2.0 (-5.9, 0.0) -2.1 (-5.6, 0.1) -0.6 (-1.6, -0.3) 

NE -6.8 (-14.6, -4.9) -5.9 (-12.1, -4.1) -1.8 (-7.6, -0.6) -3.0 (-4.9, -1.1) -3.3 (-5.4, -1.2) -1.3 (-3.8, -0.3) 

SE -4.4 (-6.7, -2.5) -3.7 (-5.6, -2.0) -1.0 (-2.9, -0.1) -2.4 (-5.3, 0.1) -2.5 (-5.1, 0.1) -1.0 (-1.8, -0.3) 

SW -4.2 (-8.8, -1.9) -2.8 (-7.6, -1.3) -3.4 (-15.6, -1.9) -1.8 (-6.2, 0.3) -1.6 (-6.5, 0.2) -0.7 (-3.9, -0.2) 

NW -2.3 (-11.1, 0.6) -4.2 (-7.7, -1.1) -1.9 (-13.7, 1.0) -3.4 (-8.4, 2.3) -1.7 (-9.5, 1.3) -1.0 (-6.5, 0.3) 

Central -7.9 (-17.5, -3.3) -5.5 (-15.7, -2.3) -0.6 (-10.2, 0.0) -2.0 (-6.6, 1.9) -1.0 (-8.0, 2.2) -0.5 (-3.8, 0.1) 

 
CO (mg/m!) O3 (µg/m!) 

Obs Cross validation Base simulation Obs Cross validation Base simulation 

China 
-0.12  

(-0.17, -0.06) 

-0.12  

(-0.18, -0.07) 

-0.02  

(-0.05 -0.01) 
3.5 (2.1, 5.0) 3.8 (2.1, 5.0) 2.0 (0.1, 5.9) 

NCP 
-0.18  

(-0.25, -0.11) 

-0.17  

(-0.24, -0.11) 

-0.03  

(-0.05, -0.02) 
5.3 (2.5, 8.7) 5.5 (2.4, 8.8) 1.4 (-0.5, 5.0) 

NE 
-0.13  

(-0.21, -0.05) 

-0.13  

(-0.20, -0.06) 

-0.03  

(-0.07, -0.01) 
4.8 (1.5, 10.0) 4.6 (1.4, 9.5) 2.8 (-0.4, 8.0) 

SE 
-0.06  

(-0.09, -0.04) 

-0.06  

(-0.08, -0.04) 

-0.01  

(-0.02, -0.01) 
2.3 (0.3, 3.4) 2.6 (0.8, 3.5) 1.7 (0.3, 3.0) 

SW 
-0.11  

(-0.19, -0.04) 

-0.09  

(-0.21, -0.04) 

-0.02  

(-0.06, -0.01) 
3.2 (1.2, 5.0) 3.5 (1.8, 5.4) 2.7 (-0.9, 7.1) 

NW 
-0.14  

(-0.46, 0.04) 

-0.14  

(-0.30, 0.04) 

-0.03  

(-0.06, 0.00) 
5.4 (1.6, 9.8) 4.0 (1.4, 10.1) 2.6 (-0.2, 8.8) 

Central 
-0.16  

(-0.27, -0.09) 

-0.17  

(-0.25, -0.10) 

-0.01  

(-0.06, 0.00) 
5.3 (2.3, 9.2) 4.5 (1.4, 7.8) 2.2 (-0.3, 7.7) 

a the bold font denotes that the calculated trend is significant at the 0.05 significance level and the values in brackets denote 

the 95% confidence interval 5 
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Table 7: Comparisons of the data accuracy of CAQRA and CAMSRA over China 

 
CAQRA CAMSRA 

SO2  
(µg/m!) 

NO2  
(µg/m!) 

CO 
 (mg/m!) 

O3  
(µg/m!) 

SO2  
(µg/m!) 

NO2  
(µg/m!) 

CO  
(mg/m!) 

O3  
(µg/m!) 

R2 0.53 0.61 0.55 0.77 0.04 0.23 0.13 0.00 

MBE -2.0 -2.3 -0.1 -2.3 19.4 1.7 -0.2 30.6 

NMB (%) -8.5 -6.9 -6.1 -4.0 81.2 5.2 -17.5 52.1 

RMSE 24.8 16.4 0.5 21.9 54.5 27.3 0.9 55.2 
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Figures 

 
Figure 1: Modeling domain of the ensemble simulation overlay the distributions of observation sites from CNEMC. Different 5 
colours denote the different regions in China, namely North China Plain (NCP), Northeast China (NE), Southwest China (SW), 
Southeast China (SE), Northwest China (NW) and Central. 
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Figure 2: Illustrations of the local analysis scheme used in the assimilation. The plus signs and dots respectively denote 
the centre of model grids and the location of observation sites. The larger rectangular region denotes the local region 
and the shaded region denotes the updated region. 

 5 
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Figure 3: Spatial distributions of the (a–c) PM2.5 and (d–f) PM10  concentrations in China from (a, d) CAQRA, (b, e) 

base simulation and (c, f) observations averaged from 2013 to 2018. 
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Figure 4: Time series of site mean hourly (a) PM2.5 and (b) PM10 concentrations in Beijing obtained from observations 

and CAQRA.   
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Figure 5: Time series of monthly mean PM2.5 concentrations in (a) China, (b) NCP, (c) NE, (d) SE, (e) SW, (f) NW and 

(f) Central regions obtained from cross validation run (red line), base simulation (blue line) and observations (black 

dots). 
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Figure 6: Same as Fig. 5 but for PM10 concentrations. 
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Figure 7: Same as Fig. 3 but for SO2 and CO concentrations. 
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Figure 8: Same as Fig. 3 but for NO2 and O3. 
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Figure 9: Same as Fig. 5 but for SO2 concentrations.  
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Figure 10: Same as Fig. 5 but for CO concentrations. 
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Figure 11: Same as Fig. 5 but for NO2 concentrations. 

https://doi.org/10.5194/essd-2020-100

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 2 June 2020
c© Author(s) 2020. CC BY 4.0 License.



36 
 

 
Figure 12: Same as Fig. 5 but for O3 concentrations. 
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Figure 13: Spatial distributions of multi-year averaged concentrations of (a) SO2, (b) NO2, (c) CO and (d) O3 from 2013 

to 2018 obtained from CAMSRA. 
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