
1 
 

Response to Referee #1 (essd-2020-100) 

We Thank Reviewer for his/her constructive comments. 

Responses to the Specific comments: 

General comments: This study presents high-resolution air quality reanalysis products over China for 2013-

2018. The air quality reanalysis assimilated the country-wide surface observations using the regional EnKF data 

assimilation. The assimilated results were evaluated against the assimilated and independent measurements. The 

topic of this study is very interesting, and the produced data sets can be useful for various applications. The paper 

is generally well written. However, because this is the first paper describing the system and data, more careful 

description of the system and its performance would be useful for readers and future developments.  

Reply: The authors appreciate the reviewer for his/her constructive and up-to-point comments. We have 

carefully considered the comments and revised the manuscript accordingly. Please refer to our responses 

for more details given below. 
 

Comment 1: The representativeness error estimation is not clear. How did you estimate L_repr for each station 

and  𝜀!"# for each species? Urban and rural observations could be (or should be) used in a different way, but this 

is not mentioned. Were any temporal averages applied to the observations? Temporal variability information could 

be used a part of representativeness errors. Further explanation is needed. 

Reply: Thanks for this important suggestion. The representativeness error arises from the different spatial scales 

that the gridded model results and discrete observations represent, which is parameterized by the formula proposed 

by Elbern et al. (2007) in this study: 

𝑟$%&$ = $
∆(

)!"#!
× 𝜖!"#                     (1) 

where 𝑟$%&$  represents the representativeness error, ∆𝑥  represents the model resolution, 𝐿$%&$  represents the 

characteristic representativeness length of the observation site and 𝜀!"#  represents the error characteristic 

parameters for different species.  

We agree with the reviewer that the 𝐿$%&$ should be treated differently for urban and rural sites since the urban 

sites usually have smaller representativeness length than the rural sites due to the larger representativeness error. 

According to Elbern et al. (2007), the representativeness length of urban and rural sites were 2km and 10km. 

Considering that the observation sites from CNEMC were almost city (urban) sites (>90%), the 𝐿$%&$ was assigned 
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to be 2km in this study for simplicity.  

For the estimations of 𝜀!"#, previous studies (Chen et al., 2019; Feng et al., 2018; Jiang et al., 2013; Ma et al., 

2019; Pagowski and Grell, 2012; Peng et al., 2017; Werner et al., 2019) usually assigned the 𝜀!"# empirically to 

be half of the measurement error following the study by Pagowski et al. (2010). In this study, the 𝜀!"# was obtained 

from Li et al. (2019) who estimated the 𝜀!"# based on a dense observation network in Beijing-Tianjin-Hebei region. 

In their study, the representativeness error of each species’ observation was first estimated by the spatiotemporal 

averaged standard deviation of the observed values within a 30km×30km grid: 

𝑟$%&$,+ =
,
-.
∑ ∑ 𝑆/,0,+.

01,
-
/1,                       (2) 

where 𝑟$%&$,+ represents the representativeness errors of the observations for species 𝑖, 𝑆/,0,+ represents the standard 

deviation of the observed values of species 𝑖 at different sites that are located in a same grid 𝑚 at time 𝑡, 𝑀 and 𝑇 

represents the total number of grid and observation time. After that, the 𝜀+!"# for species 𝑖 were estimated by a 

transformation of Eq. (1): 

𝜀+!"# = 𝑟$%&$,+/$
∆(

)!"#!
                       (3) 

where ∆𝑥 is equal to 30km. Based on the estimated 𝐿$%&$ and the 𝜀+!"# for different species, the representativeness 

errors are estimated using Eq. (1) by specifying the ∆𝑥 to be 15km. Following the suggestions of the reviewer, we 

have added more explanation to the estimations of representativeness error in the revised manuscript (please see 

lines 223–245 in the revised manuscript). 

Changes in the manuscript: lines 223–245 

 

Comment 2: The assimilated results are compared with the independent observations for PM but with the 

assimilated observations only for other species (they only demonstrate self-consistency. CAMS is not observation). 

This provides limited information on the performance of the developed system. The Chi-square diagnostic can be 

used to see whether the Kalman filtering worked properly. OmF & OmA statistics can also be demonstrated. Given 

limited validation data, more efforts are required to demonstrate the performance. 

Reply: Thanks for this important comment. Following the suggestions of reviewer, we have added the analysis of 

𝜒2 diagnosis and the statistics of observation minus forecast (OmF: 𝒚𝒐 −𝑯(𝒙𝒃)) & observation minus analysis 

(OmA: 𝒚𝒐 −𝑯(𝒙𝒂) in the revised manuscript to demonstrate the performance of our assimilation system (please 

see lines 317–369 in the revised manuscript).  

𝜒2 diagnosis is a robust criterion for validating the estimated background and observation error covariance in 
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the data assimilation (e.g., Menard et al., 2000; Miyazaki et al., 2015; Miyazaki et al., 2012), which is estimated 

by comparing the sample covariance of OmF with the sum of estimated background and observation error 

covariance in the observational space (𝐇𝐁𝐇𝐓 + 𝐑): 

𝒀 = ,
√/

>𝐇𝐁𝐇𝐓 + 𝐑?8
$
%(𝒚𝒐 −𝑯𝑿𝒃)                 (4) 

𝜒2 = 𝒀𝑻𝒀                       (5) 

where m is the number of observations. According to the Kalman filtering theory, the mean of 𝜒2 should approach 

1 if the background and observation error covariances are properly specified, while values greater (lower) than 1 

indicates the underestimation (overestimation) of the observation and/or background error covariance. 

Figure R1 shows the time series of the monthly 𝜒2 values (black lines) for different species as well as the 

number of assimilated observations per month (blue bars). The mean values of 𝜒2  are generally within 50% 

difference from the ideal value of 1 for PM2.5, PM10, NO2 and O3, which suggests that the observation and 

background error covariance are generally well specified in the analysis of these species. Although the 𝜒2 values 

for these species showed pronounced seasonal variations that reflects the different error characteristics in different 

seasons, the 𝜒2 values were roughly stable for PM2.5 and O3 throughout the period, and for NO2 and PM10 after 

2015 when the number of assimilated observations become stable, which generally shows the long-term stability 

of the performance of data assimilation. The 𝜒2 values for SO2 were nevertheless greater than 1 in most cases, 

especially before 2017. This would be more relevant to the underestimations of background error covariance of 

SO2 as we only specified 12% uncertainty in the SO2 emissions. suggesting that the emission uncertainty of SO2 

may be underestimated by Zhang et al. (2009). There were also pronounced annual trends in the 𝜒2 values of SO2, 

which may be attributed to the increases of observation number from 2013 to 2014 and the substantial decreases of 

SO2 observations. Although smaller than the 𝜒2 values of SO2, the values for CO were greater than 1 in most cases, 

suggesting the underestimations of the error covariances. Obvious decreasing trend can also be found in the 𝜒2 

values of CO. The 𝜒2 test results suggest that our data assimilation system has relatively poor performance in the 

analysis of CO and SO2 concentrations than the other four species, which is consistent with the cross-validation 

results which showed smaller 𝑅2 values for the reanalysis data of CO and SO2 concentrations (Sect.4.2.2 in the 

revised manuscript). The annual trend of 𝜒2 values in CO and SO2 also indicates relatively weak stability in the 

performance of data assimilation system on assimilating CO and SO2 observations, which may influence the 

analysis of the annual trends in these two species. Based on these results, we have added discussions on this issue 

in our revised manuscript to inform the potential users of the problems that they should be aware of (please see 

lines 667 – 670 in the revised manuscript). 
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Figure R1: Time series of the monthly mean 𝝌𝟐  values (black lines) and the number of assimilated 

observations per month (blue bars) for (a) PM2.5, (b) PM10, (c) SO2, (d) NO2, (e) CO and (f) O3. 

Spatial distributions of six-year averaged OmF & OmA values for each species in the observation space were 

then analyzed to investigate the structure of forecast bias and to measure the improvement in the reanalysis (Fig. 

R2). The analysis increment, which is estimated from the differences between the analysis and forecast, is also 

plotted to measure the adjustment made in the model space. The OmF values have showed positive model biases 

(i.e., negative OmF) in the PM2.5 and SO2 concentrations in east China, as well as PM10 and O3 concentrations south 

China. The negative model biases (i.e., positive OmF) were mainly found in the PM2.5 concentrations in west China, 

the PM10 concentrations in north China, the O3 concentrations in central-east China, as well as the concentrations 

of CO and NO2 throughout the whole China. 

The OmA values suggest that the data assimilation removes most of the model biases for each species, which 

confirms the good performance of our data assimilation system. According to Fig. R3, the monthly mean OmF 

biases were almost completely removed in each regions of China because of assimilation, with mean OmF biases 

reducing by 32–94% for PM2.5, 33–83% for PM10, 25–96% for SO2, 53–88% for NO2, 88–97% for CO and 54–90% 

for O3 concentrations in different regions of China. The mean OmF RMSE were also reduced substantially by 80–

93% for PM2.5, 80–86% for PM10, 73–96% for SO2, 76–91% for NO2, 88–96% for CO and 76–87% for O3 

concentrations in different regions of China (Fig. R4). In addition, despite the mean OmF bias and OmF RMSE 

exhibit significant annual trend, the OmA bias and OmA RMSE are relatively stable during the assimilation period, 
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which generally confirms the long-term stability of our data assimilation system. 

The spatial patterns of analysis increment were in good agreement with those of the OmF values for each 

species, which generally shows negative (positive) increments for PM2.5 concentrations in east (west) China, 

negative (positive) increments for PM10 concentrations in south (north) China, negative increments for SO2 

throughout the China, positive increments for CO and NO2 concentrations throughout the China, and the positive 

(negative) increments for O3 concentrations in central-east (south) China. These results confirm that the data 

assimilation can effectively propagate the observation information into the model state and reduced the model 

errors. 

Changes in the manuscript: lines 317–319, lines 667–670, Figure 3 and Figure 4. 

Changes in the supplementary: Figure S5 and Figure S6.  
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Figure R2: Spatial distributions of the six-year mean OmF (left panel), OmA (middle panel) and analysis 

increment (right panel) for different species in China. 
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Figure R3: Time series of monthly mean OmF and OmA normalized mean bias in different regions of China 

for different species. 
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Figure R4: Time series of monthly mean OmF and OmA normalized root mean square error in different 

regions of China for different species. 

 

Comment 3: Inter-species correlation was totally neglected in background error covariance. This setting is 

extremely conservative and does not fully utilize the advantages of EnKF data assimilation that produces 

comprehensive background error patterns. I’m wondering if the authors have tried to implement inter-species 

correlations. Further discussion is needed (e.g., why it is so conservative, what is the disadvantage of the current 

setting). 

Reply: Thanks for this important comment. We agree with the reviewer that including the correlations between the 

background errors of different chemical species has the capability to improve the assimilation performance as 

shown in Miyazaki et al. (2012). The reason that we neglected the inter-species correlation in the background error 

covariance is that we concentrated on the assimilations of primary air pollutants (except of O3) whose errors are 

more related to the errors in their emissions. Since the emission errors of these species were considered to be 

independent in this study (Sect. 2.2 in the revised manuscript), thus the background errors of these species have 
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very weak correlations in most cases as shown in Figs. R5-6. The correlation between background errors of 

different species were generally near zero for most cases. Thus, we neglected these weak correlations to prevent 

the spurious correlation between non or weakly related variables in EnKF. In contrast, there are significant positive 

correlation between the background errors of PM2.5 and PM10 and negative correlation between the background 

errors of NO2 and O3. The high correlation between PM2.5 and PM10 is just because PM2.5 is a part of PM10, and 

there would be redundant information in the observations of PM2.5 and PM10 concentrations, thus we did not include 

the correlation between the PM2.5 and PM10 concentrations in the assimilation. The negative correlation between 

the O3 and NO2 is due to the NOx-OH-O3 chemical reactions in the NOx saturated conditions that increases of NO2 

concentrations would reduce the O3 concentrations due to the enhanced NO titration effect. However, the 

relationship between O3 and NO2 concentrations is actually nonlinear depending on the NOx limited or saturated 

conditions (Sillman, 1999), and previous study by Tang et al. (2016) has shown the limitations of the EnKF under 

strong nonlinear relationships. The cross-variable data assimilations of O3 and NO2 may come up with inefficient 

or even wrong adjustments. Considering the nonlinear relationship between the O3 and NO2 concentrations and 

their unexpected effects on EnKF, we took a conservative way in the assimilations of NO2 and O3 by neglecting 

their error correlations. 

We agree with the reviewer that current setting may be too conservative to fully utilize the advantages of 

EnKF assimilation, however it can avoid possible serious negative influences on the reanalysis data caused by the 

spurious correlations or nonlinear chemical relationships. The different species can also be assimilated in a 

consistent way under current settings. Following the suggestions of reviewer, we have clarified the reasons for 

neglecting the inter-species correlations in the background error covariances in the revised manuscript (please see 

lines 274 – 292 in the revised manuscript). 

Changes in the manuscript: lines 274–292. 

Changes in the supplementary: Figure S3 and Figure S4. 
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Figure R5: Correlations between species in the background error covariance matrix, estimated from the 

LETKF ensemble averaged from 2013 to 2018. The global mean of the covariance estimated for each station 

is plotted. 
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Figure R6: Correlations between species in the background error covariance matrix, estimated from the 

LETKF ensemble averaged in different seasons from 2013 to 2018. The global mean of the covariance 

estimated for each station is plotted. 

 

Comment 4: Please clarify whether there are any variations in inflation factor and how it was optimized for 

different species. In most regional ensemble data assimilation systems, fixed lateral boundary condition tends to 

limit the effectiveness of data assimilation near their boundaries (and also inside when horizontal advection is 

strong) because of reduced spreads. Did you find any problem with it? 

Reply: Sorry for the confusion. In this study, the inflation factor was calculated based on Kalman filtering theory 

which requires that the ensemble and innovation spreads be of similar magnitude (Evensen, 2003; Wang and Bishop, 

2003): 

〈𝑑𝑑.〉 ≈ HBH; + R                     (6) 
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d = 𝑦< −𝐻(𝑥")                      (7) 

In order to balance the ensemble and innovation spreads, a multiplicative inflation factor for 𝐁 can be approximate 

by: 

λ = =𝐑&$/%𝒅@
(
𝐑&$/%𝒅8&

0$!A%B𝐑&$/%𝐇𝐏𝒃=𝐑&$/%𝐇@
(E

                   (8) 

where the trace of the covariance matrix is used to approximate covariance on a globally averaged basis, and 〈∙〉 

denotes the ensemble average. Using Eq (8), the hourly inflation factor was calculated for each species. In addition, 

the inflation factor was calculated locally in this study. Thus, the inflation factor used in this assimilation is not 

only species specific, but also varies with time and space, which reflects different error characteristics of different 

species in different time and places. Following the suggestion of reviewer, we have clarified this issue in the revised 

manuscript (please see lines 270 – 273 in the revised manuscript). 

We agree with the review that the use of fixed lateral boundary condition would lead to small ensemble spread near 

the boundary. Since we only assimilate the surface observations in China which were not near the boundary of the 

modeling region in most cases (Fig. R7), the effects of fixed boundary condition were small in this study. This can 

be shown in Fig. R8 which shows that the OmA RMSE values at the sites near the boundary of the China were 

approximate to those at inland sites. In addition, the inflation technique was also used to inflate the background 

error covariance, which could reduce the effects of the small ensemble spread on the analysis.  

Changes in the manuscript: lines 270–273. 
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Figure R7: Modeling domain of the ensemble simulation overlay the distributions of observation sites from 

CNEMC. Different colours denote the different regions in China, namely North China Plain (NCP), 

Northeast China (NE), Southwest China (SW), Southeast China (SE), Northwest China (NW) and Central. 
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Figure R8: Spatial distributions of OmA RMSE values for (a) PM2.5, (b) PM10, (c) SO2, (d) NO2, (e) CO and 

(f) O3 in China 

 

Comment 5: Using automatic outlier detection method, how much observations were rejected? What was the 

impact in data assimilation? 

Reply: Thanks for this comment. Figure R9 shows the removal ratios of the six pollutants from 2013 to 2018, 

which were less than 1.5% for most air pollutants throughout the assimilation period. The PM10 observations have 

a high removal ratio (9–13%) during 2013–2015 with most of outliers marked by an observed concentration of 

PM2.5 higher than that of PM10 at the same hour and same site (Wu et al., 2018). However, there was a sharp 

decrease in removal ratios of PM10 in 2016 (~1.5%) because of the implementation of a compensation algorithm 

for the loss of semi-volatile materials in the PM10 measurements (Wu et al., 2018). 
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Figure R9: Removal ratio of all observation sites in China from 2013 to 2018 for different species detected 

by the automatic outlier detection method.  

The outlier detection method was essential for the assimilations of surface observations due to the existence 

of outliers in the original observation dataset. The outlier detection method has been applied to detect all four types 

of outliers in the hourly surface observations of air pollutants, which were characterized by temporal and spatial 

inconsistency (ST-outliers), instrument-induced low variances (LV-outliers), periodic calibration exceptions (P-

outliers) and less PM10 than PM2.5 observations (LP-outliers).  

As exemplified by Fig. R10a and Fig. R10b obtained from Wu et al. (2018), the ST-outliers are observations 

that differ greatly from values observed at adjacent time or those in neighboring areas, such as the abnormally low 

values in NO2 observations or the abnormally high values in PM2.5 observations. The LV-outliers are characterized 

by a very low variance in time series compared to neighboring sites (Fig. R10d). In cases when the pump of the 

instruments is stuck, or the filter tape is depleted, the observations even do not change over time (Fig. R10c). The 

P-outliers are mainly induced by the regular calibration process for the instruments, such as O3 observation 

instruments (Fig. R10e), which may interfere with the observations and insert abnormal values into online 

measurement datasets. The LP-outlier involves PM2.5 concentrations being higher than PM10 concentrations 
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observed at the same hour and same site which is mainly caused by the loss of semi-volatile components of 

particulate matter in the instruments. 

The different kinds of outliers emphasized that it is necessary to filter out these outliers before the assimilation, 

otherwise these outliers would introduce serious impacts on the quality of reanalysis data both in temporal and 

spatial consistency, sometimes even lead to wrong assimilation results. For example, as shown in Fig. R11, there 

is a false O3 peak in the original observation data due to the P-outliers occurred at 0400 LST. The quality assurance 

largely reduces this false peak and the observation data after quality assurance show more reasonable diurnal 

variations of O3 concentrations, which has guaranteed the quality of reanalysis data. Thus, the outlier detection 

method used in this study plays an indispensable role in the chemical data assimilations based on surface 

observations. 

 
Figure R10: Examples of classified outliers in surface observations of air pollutants. (a, b) Spatiotemporal 

outliers have large differences with neighboring observations in time and space. (c, d) Low variance outliers 

either stay the same or change abnormally slowly in time and differ significantly with observations from 
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nearby sites. (e) Periodic outliers appear periodically, usually every 24 h. (f) PM10 < PM2.5 outliers are the 

PM10 observations that are lower than the PM2.5 observations at the same time and site (taken from figure 1 

in (Wu et al. (2018)). 

 
Figure R11: Six-year averaged diurnal variations of O3 concentrations in Wuhan, China obtained from 

observations before and after quality control, reanalysis data and base simulation. 

The differences in annual concentrations caused by quality control were also shown in Fig. R12 to assess the 

potential impacts of outlier detection on the assimilations. The differences were generally positive for PM2.5, SO2, 

NO2 and CO concentrations, indicating a lower tendency of these species’ concentrations due to the use of outlier 

detection. Negative differences were mainly found in the PM10 concentrations in south China and the O3 

concentrations throughout China. According to estimation, the impacts of outlier detection were generally small in 

most stations. The differences were less than 5 µg/mF (1 µg/mF)	for PM2.5 concentrations over most stations in 

north (south) China and less than 1 µg/mF for the gaseous air pollutants for most stations throughout China. The 

differences were shown to be relative larger for PM10 concentrations over northwest China which can be over 20 

µg/mF in stations around Taklimakan Desert. This would be due to the higher outlier ratios in the observations 

over the remote areas.  
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These results suggest that the use of outlier detection is necessary for the assimilations of surface air quality 

observations, which prevents the negative influences of outliers on the reanalysis and improves its temporal and 

spatial consistency. The impacts of outlier detection on the estimated concentrations were also small in most 

stations. Following the suggestion of review, more descriptions about the impacts of outlier detection method on 

the assimilation were added in the revised manuscript (please see lines 195 – 216 in the revised manuscript). 

Changes in the manuscript: lines 195–216. 

Changes in the supplementary: Figure S1 and Figure S2. 

 

 
Figure R12: Spatial distributions of differences in annual concentrations of six air pollutants in China 

before and after quality control averaged from 2013 to 2018. 

 

Comment 6: Because of the fine-scale variability and large degree of freedoms, the high-region data assimilation 

would require larger ensembles. I’m wondering if 50 members are sufficient. Further discussion is needed to 

demonstrate whether the background error is produced properly to propagate observational information in space. 

Reply: Thanks for this important comment. We agree with the review that high-resolution data assimilation 

requires larger ensembles due to the fine-scale variability and large degree of freedoms. The ensemble size 



19 
 

determines the accuracy to which the background error covariance is approximated. A large ensemble size is 

essential to capture the proper background error covariance structure, but it is computationally expensive since the 

cost of EnKF linearly increases with the ensemble size while the accuracy of the covariance estimate improves by 

its square root (Constantinescu et al., 2007a; Miyazaki et al., 2012). The appropriate ensemble size depends on the 

specific application and model. The idealized experiments of Constantinescu et al. (2007a) have shown that a 50-

member ensemble has significant improvements against smaller ensembles which is also computationally 

affordable given the computational resources. In a realistic chemical data assimilation application with horizontal 

resolution of ~2.8°, Miyazaki et al. (2012) has shown that the analysis is improved significantly by increasing the 

ensemble size from 16 to 32 and is further somewhat improved by increasing it from 32 to 48. However, the impact 

was much less significant by increasing it from 48 to 64. An ensemble size of 48 was thus recommended. Ensemble 

size of 50 members are also typical in numerical weather prediction which are thought to provide a good balance 

between accuracy and computational efficiency (Constantinescu et al., 2007b). 

Thus, the ensemble size was chosen to be 50 in this study based on the previous publications (Constantinescu 

et al., 2007a, b; Miyazaki et al., 2012) and our previous high-resolution (~9km) regional assimiation work (Tang 

et al., 2016; Tang et al., 2011; Tang et al., 2013) which showed that a 50-member ensemble keeps good balance 

between computational efficiency and assimilation performance. Several measures were also conducted to deal 

with the large degree of freedoms in our high-resolution assimilation work. First, we assumed that the emission 

errors were spatially correlated when we perturbed the emissions. An isotropic gaussian correlation model with a 

decorrelation length of 150km was used in the error covariance of emissions, which was written as 

𝜌(𝑖, 𝑗) = 𝑒𝑥𝑝 X− ,
2
YG(+,I)

K
Z
2
[                    (9) 

where 𝜌(𝑖, 𝑗) represents the correlation between grid i and j, ℎ(𝑖, 𝑗) represents the distance between these two points 

and 𝑙 represents the decorrelation length. This would reduce the degree of freedoms in the state vector and alleviate 

the impacts of limited ensembles on high-resolution assimilation applications. Secondly, we adopted an adapative 

inflation method to prevent the underestimations of the background error covariance due to the limited ensemble 

sizes. Thirdly, the local analysis scheme has been used in our study to deal with the rank problems and supurious 

correlation caused by the limited ensemble size. This measures enable our applications of the EnKF with limited 

ensemble size on the high-resolution data assimilation at affordable computational cost. As shown in Fig R2, the 

spatial patterns of analysis increment were in good agreement with those of the OmF residuals for each species, 

this suggests that estimated background error covariance can effectively propagate the observation information into 

the model state and reduced the model errors.  
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Therefore, given the expensive computational cost in the high-resolution ensemble simulations, the 50-

member ensemble was used in this study as a trade-off between assimilation performance and computational 

efficiency. However, better assimilation performance is expected when a larger ensemble size is used. Following 

the suggestions of review, we added more discussions on the choice of ensemble size in the revised manuscript 

(please see lines 159 – 190 and lines 662 – 667 in the revised manuscript).  

Changes in the manuscript: lines 158–189 and lines 661–666. 
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the paper. The main problem I have with the paper is that the writing is atrocious. The title is 
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Abstract 24 

A six-year-long high-resolution Chinese air quality reanalysis (CAQRA) dataset is presented in this study obtained from the  25 

assimilation of surface observations from China National Environmental Monitoring Centre (CNEMC) using the ensemble 26 

Kalman filter (EnKF) and Nested Air Quality Prediction Modeling System (NAQPMS).This dataset contains surface fields 27 

of six conventional air pollutants in China (i.e., PM2.5, PM10, SO2, NO2, CO and O3) for period 2013–2018 at high spatial (15 28 

km×15 km) and temporal (1 hour) resolutions. This paper aims to document this dataset by providing detailed descriptions of 29 

the assimilation system and the first validation results for the above reanalysis dataset. The fivefold cross-validation (CV) 30 

method is adopted to demonstrate the quality of the reanalysis. The CV results show that the CAQRA yields an excellent 31 

performance in reproducing the magnitude and variability of surface air pollutants in China from 2013 to 2018 (CV R2 = 0.52–32 

0.81, CV root mean square error (RMSE) = 0.54 mg/m! for CO and CV RMSE = 16.4–39.3 µg/m! for the other pollutants 33 

at the hourly scale). Through comparison to the Copernicus Atmosphere Monitoring Service reanalysis (CAMSRA) dataset 34 

produced by the European Centre for Medium-Range Weather Forecasts (ECWMF), we show that CAQRA attains a high 35 
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accuracy in representing surface gaseous air pollutants in China due to the assimilation of surface observations. The fine 36 

horizontal resolution of CAQRA also makes it more suitable for air quality studies at the regional scale. The PM2.5 reanalysis 37 

dataset is further validated against the independent datasets from the U.S. Department State Air Quality Monitoring Program 38 

over China, which exhibits a good agreement with the independent observations (R2 = 0.74–0.86 and RMSE =16.8–33.6 39 

µg/m! in different cities). Besides, through the comparison to satellite estimated PM2.5 concentrations, we show that the 40 

accuracy of the PM2.5 reanalysis is higher than that of most satellite estimates. The CAQRA is the first high-resolution air 41 

quality reanalysis dataset in China that simultaneously provides the surface concentrations of six conventional air pollutants, 42 

which is of great value for many studies, such as health impact assessment of air pollution, investigation of air quality changes 43 

in China, model evaluation and satellite calibration, optimization of monitoring sites and provision of training data for 44 

statistical or artificial intelligence (AI)-based forecasting. All datasets are freely available at 45 

https://doi.org/10.11922/sciencedb.00053 (Tang et al., 2020a), and a prototype product containing the monthly and annual 46 

means of the CAQRA dataset has also been released at https://doi.org/10.11922/sciencedb.00092 (Tang et al., 2020b) to 47 

facilitate the potential evaluation of the CAQRA dataset by users. 48 

1 Introduction 49 

Air pollution is a critical environmental issue that adversely affects human health and is closely connected to climate 50 

change (von Schneidemesser et al., 2015). Exposure to ambient air pollution has been confirmed by many epidemiological 51 

studies to be a leading contributor to the global disease burden, which increases both morbidity and mortality (Cohen et al., 52 

2017). China, as the largest developing country, has achieved great economic development since the 1980s. This large-scale 53 

economic expansion, however, is accompanied by a dramatic increase in air pollutant emissions, leading to severe air pollution 54 

in China (Kan et al., 2012). Since 2012, the Chinese government has established a nationwide ground-based air quality 55 

monitoring network (Fig. 1) to monitor the surface concentrations of six conventional air pollutants in China, i.e., particles 56 

with an aerodynamic diameter of 2.5 μm or smaller (PM2.5), particles with an aerodynamic diameter of 10 μm or smaller (PM10), 57 

sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO) and Ozone (O3), which plays an irreplaceable role in 58 

understanding the air pollution in China. In addition, since the implementation of Action Plan for the Prevention and Control 59 

of Air Pollution in 2013, a series of aggressive control measures has been applied in China to reduce the emissions of air 60 

pollutants. According to the estimates of Zheng et al. (2018b), the Chinese anthropogenic emissions has decreased by 59% for 61 

SO2, 21% for NOx, 23% for CO, 36% for PM10 and 35% for PM2.5 from 2013 to 2017. Concurrently, the air quality in China 62 

has changed dramatically over the past six years (Silver et al., 2018; Zheng et al., 2017). Such large changes in the Chinese air 63 

quality and their effects on human health and the environment have become an increasingly hot topic in many scientific fields 64 

(e.g., Xue et al., 2019; Zheng et al., 2017) which requires a long-term air quality dataset in China with high accuracy and 65 

spatiotemporal resolutions.  66 
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Ground-based observations can provide accurate information on the spatial and temporal distributions of air pollutants in 67 

China, but they are sparsely and unevenly distributed in space. Satellite observations exhibit the advantages of a high spatial 68 

coverage and have widely been applied in air pollution monitoring over large domains. A series of satellite retrievals related 69 

to air quality has been developed over the past two decades, such as the observations of NO2, SO2 and O3 columns from the 70 

Ozone Monitoring Instrument (OMI; Levelt et al., 2006), CO column observations from the Measurement of Pollution in the 71 

Troposphere (MOPITT; Deeter et al., 2003) and aerosol optical depth (AOD) observations from the Moderate Resolution 72 

Imaging Spectroradiometer (MODIS; Barnes et al., 1998). The satellite column measurements have also been used to estimate 73 

surface concentrations using different methods, such as chemical transport models (CTMs) (e.g., van Donkelaar et al., 2016; 74 

van Donkelaar et al., 2010), advanced statistical methods (e.g., Ma et al., 2014; Ma et al., 2016; Xue et al., 2019; Zou et al., 75 

2017) and semi-empirical models (e.g., Lin et al., 2015; Lin et al., 2018), which have been proven to be an effective way to 76 

acquire wide-coverage distributions of surface air pollutant with a good accuracy (Chu et al., 2016; Shin et al., 2019). However, 77 

challenges remain in satellite-based concentration estimates due to missing values related to cloud contamination, uncertainties 78 

in satellite measurements, and difficulties in modelling the complex relationship between surface concentrations and column 79 

measurements (Shin et al., 2019; van Donkelaar et al., 2016; Xue et al., 2019). In addition, most satellite-based estimates of 80 

surface concentrations exhibit low temporal resolutions (daily or even longer), which limits their application in fine-scale 81 

studies, such as the assessment of the acute health effects of the air quality. To our knowledge, a nationwide long-term estimate 82 

of the surface concentrations of all conventional air pollutants in China at the hourly scale have not yet been reported in 83 

previous satellite estimates. 84 

A long-term air quality reanalysis dataset of critical air pollutants can provide constrained estimates of their concentrations 85 

at all locations and times, which optimally combines the accuracy of observations and the physical information and spatial 86 

continuity of CTMs through advanced data assimilation techniques. Reanalysis datasets are uniform, continuous and state-of-87 

science best-estimate data products that have been adopted by a vast number of research communities. For example, several 88 

long-term meteorological reanalysis datasets have been developed by various weather centres in different regions/countries, 89 

such as the ERA-Interim reanalysis developed by the European Centre for Medium-Range Weather Forecasts (ECMWF; Dee 90 

et al., 2011), the National Center for Atmospheric Research (NCAR)/National Centers for Environmental Protection (NCEP) 91 

reanalysis developed by the NCEP (Saha et al., 2010), the Modern-Era Retrospective Analysis for Research and Applications 92 

(MERRA) developed by the NASA Global Modeling and Assimilation Office (NASA-GMAO; Rienecker et al., 2011), the 93 

Japanese 55-year Reanalysis (JRA-55) developed by the Japan Meteorological Agency (Kobayashi et al., 2015) and the China 94 

Meteorological Administration’s global atmospheric Reanalysis (CRA-40) developed by the China Meteorological 95 

Administration (CMA). The use of data assimilation in atmospheric chemistry reanalysis is more recent, and certain reanalysis 96 

datasets for the atmospheric composition have been produced over the past decades, for example the Monitoring Atmospheric 97 

Composition and Climate (MACC), Copernicus Atmosphere Monitoring Service (CAMS) interim reanalysis (CIRA), and 98 

CAMS reanalysis (CAMSRA) produced by the ECWMF (Flemming et al., 2017; Inness et al., 2019; Inness et al., 2013), the 99 

MERRA-2 aerosol reanalysis produced by the NASA-GMAO (Randles et al., 2017), the tropospheric chemistry reanalysis 100 
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(TCR) from 2005–2012 produced by Miyazaki et al. (2015) and its latest version TCR-2 (Miyazaki et al., 2020), the global 101 

reanalysis of carbon monoxide produced by Gaubert et al. (2016), the multi-sensor total ozone reanalysis from 1970–2012 102 

produced by van der A et al. (2015) and the Japanese Reanalysis for Aerosols (JRAero) from 2011–2015 produced by 103 

Yumimoto et al. (2017). These reanalysis datasets promote our understanding of the atmospheric composition and also 104 

facilitate the air quality research. However, these datasets are all global datasets with coarse horizonal resolutions (> 50 km), 105 

which may be insufficient to capture the high spatial variability of air pollutants at the regional scale. In addition, some of 106 

these reanalysis datasets only provide air quality data prior to 2012 and only focus on specific species. There is still no high-107 

resolution air quality reanalysis dataset in China capturing its dramatic air quality change during recent years. 108 

In view of these discrepancies, in this study, we develop a high-resolution regional air quality reanalysis dataset in China 109 

from 2013 to 2018 (which will be extended in the future on a yearly basis) by assimilating surface observations from China 110 

National Environmental Monitoring Centre (CNEMC). The developed reanalysis dataset may help mitigate the lack of high-111 

resolution air quality datasets in China by providing surface concentration fields of all six conventional air pollutants in China 112 

at high spatial (15 km×15 km) and temporal (hourly) resolutions, which is of great value to (1) retrospective air quality analysis 113 

in China, (2) health and environmental impact assessment of air pollution at fine scales, (3) model evaluation and satellite 114 

calibration, (4) optimization of monitoring sites and (5) provision of basic training datasets for statistical or artificial 115 

intelligence (AI)-based forecasting. 116 

2 Description of the chemical data assimilation system 117 

The Chinese air quality reanalysis (CAQRA) dataset was produced with the chemical data assimilation system 118 

(ChemDAS) developed by the Institute of Atmospheric Physics, Chinese Academy of Sciences (IAP, CAS) (Tang et al., 2011). 119 

This system consists of (i) a three-dimensional CTM called the Nested Air Quality Prediction Modeling System (NAQPMS) 120 

developed by Wang et al. (2000), (ii) an ensemble Kalman filter (EnKF) assimilation algorithm, and (iii) surface observations 121 

from CNEMC with the automatic outlier detection method. We adopted an offline analysis scheme in this study since there 122 

are no previous experiences with online chemical data assimilation at such a high horizontal resolution. The lessons learned 123 

from this offline analysis application could also facilitate future implementation of online analysis. In the offline analysis 124 

scheme, a free ensemble simulation was first conducted, and the observations were then assimilated using the EnKF. A similar 125 

offline analysis scheme has also been applied in previous reanalysis studies, such as Candiani et al. (2013) and Kumar et al. 126 

(2012). Detailed descriptions of the ensemble simulation, observations and data assimilation algorithm used in this study are 127 

presented below. 128 

2.1 Air pollution prediction model 129 

The NAQPMS model was used as the forecast model to represent the atmospheric chemistry, which has been applied in 130 

previous assimilation studies (Tang et al., 2011; Tang et al., 2013). The model is driven by the hourly meteorological fields 131 
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produced by the Weather Research and Forecasting (WRF) model (Skamarock, 2008). Gas phase chemistry is simulated with 132 

the carbon bond mechanism Z (CBM-Z) developed by Zaveri and Peters (1999). Aqueous-phase chemistry and wet deposition 133 

are simulated based on the Regional Acid Deposition Model (RADM) mechanism in the Community Multi-scale Air Quality 134 

(CMAQ) model version 4.6. In regard to aerosol processes, the thermodynamic model ISORROPIA 1.7 (Nenes et al., 1998) 135 

is applied for the simulations of inorganic atmospheric aerosols. Six secondary organic aerosols (SOAs) are explicitly treated 136 

in the NAQPMS model based on Li et al. (2011). To simulate the interactions between particles and gases, 28 heterogeneous 137 

reactions involving sulfate, soot, dust and sea salt particles are included based on previous studies (Li et al., 2015; Li et al., 138 

2012). Size-resolved mineral dust emissions are calculated online as a function of the relative humidity, frictional velocity, 139 

mineral particle size distribution and surface roughness (Li et al., 2012). Sea salt emissions are calculated with the scheme of 140 

Athanasopoulou et al. (2008). The dry deposition of gases and aerosols is modelled based on the scheme of Wesely (1989), 141 

and advection is simulated with the accurate mass conservation algorithm of Walcek and Aleksic (1998). 142 

Figure 1 shows the modelling domain of this study, which covers most parts of East Asia with a fine horizontal resolution 143 

of 15 km. The vertical coordinate system consists of 20 terrain-following levels with the model top reaching up to 20000 m 144 

and the first layer at approximately 50 m. Nine vertical layers are set within 2 km of the surface to better characterize the 145 

vertical mixing process within the boundary layers. The emissions of air pollutants considered in this study include the monthly 146 

anthropogenic emissions retrieved from the Hemispheric Transport of Air Pollution (HTAP) v2.2 emission inventory with a 147 

base year of 2010 (Janssens-Maenhout et al., 2015), biomass burning emissions retrieved from the Global Fire Emissions 148 

Database (GFED) version 4 (Randerson et al., 2017; van der Werf et al., 2010), biogenic volatile organic compound (BVOC) 149 

emissions retrieved from the Model of Emissions of Gases and Aerosols from Nature (MEGAN)-MACC (Sindelarova et al., 150 

2014), marine VOC emissions retrieved from the POET database (Granier et al., 2005), soil NOx emissions retrieved from the 151 

Regional Emission Inventory in Asia (Yan et al., 2003) and lightning NOx emissions retrieved from Price et al., 1997. Clean 152 

initial conditions are used in the air quality simulations with a two-week free run of the NAQPMS model as the spin-up time. 153 

The top and boundary conditions are provided by the Model for Ozone and Related Chemical Tracers (MOZART; Brasseur et 154 

al., 1998; Hauglustaine et al., 1998) model, and the meteorological fields are provided by the WRF model. In each daily 155 

meteorology simulation, a 36-h free run of the WRF model is conducted with the first 12-h simulation period as the spin-up 156 

run and the remaining 24-h period providing the meteorologic inputs for the NAQPMS model. The initial and boundary 157 

conditions for the meteorology simulations are provided by the NCAR/NCEP 1° × 1° reanalysis data. 158 

2.2 Generation of ensemble simulation 159 

The EnKF uses an ensemble of model simulation to represent the forecast uncertainty which should include the most 160 

model uncertain aspects. Considering that the emissions are a major source of uncertainty in air quality prediction (Carmichael 161 

et al., 2008; Hanna et al., 1998; Li et al., 2017), in this study the ensemble were generated by perturbing the emissions based 162 

on their error probability distribution functions (PDFs) which were assumed to be Gaussian distributions. Table 1 lists the 163 

perturbed species considered in this study as well as their corresponding emission uncertainties obtained from previous studies. 164 



29 
 

The perturbed emissions were parameterized by multiplying the base emissions with a perturbation factor 𝜷, as expressed in 165 

Eq. (1): 166 

𝑬𝒊 = 𝑬 ∘ 𝜷𝒊, 𝑖 = 1, 2,⋯ ,𝑁                    (1) 167 

where 𝑬 denotes the vector of base emissions, ∘ denotes the Schur product and 𝑁 denotes the ensemble size. The performance 168 

of the EnKF is strongly related to the ensemble size which determines the accuracy to which the background error covariance 169 

is approximated (Constantinescu et al., 2007; Miyazaki et al., 2012). A large ensemble size is important in capturing the proper 170 

background error covariance structure, especially in high-resolution data assimilation application due to the fine-scale 171 

variability and large degree of freedoms. However, a large ensemble is computationally expensive as the cost of EnKF linearly 172 

increases with ensemble size while the accuracy of covariance estimate improves by its square root (Constantinescu et al., 173 

2007). Thus, an appropriate ensemble should keep a good balance between accuracy and computational cost. Constantinescu 174 

et al. (2007) in their ideal experiments showed that a 50-member ensemble has significant improvement against smaller 175 

ensembles, and Miyazaki et al. (2012) in their real chemical assimilation experiments showed that the improvement was much 176 

less significantly by further increasing the ensemble size from 48 to 64. Thus, the ensemble size was chosen as 50 in this study 177 

by referencing pervious publications and also our previous high-resolution regional assimilation work (Tang et al., 2011; Tang 178 

et al., 2013; Tang et al., 2016) which showed that a 50-member ensemble keeps good balance between assimilation 179 

performance and computational efficiency. However, it should be noted that our application has higher horizontal resolution 180 

than that of Constantinescu et al. (2007) and Miyazaki et al. (2012), which may require larger ensemble size due to the larger 181 

degree of freedoms in our application. Thus, to reduce the degree of freedoms in our high-resolution data assimilation work, 182 

we assumed that the emission errors were spatially correlated, and an isotropic correlation model was assumed in the 183 

covariance of the emission errors, which is written as: 184 

𝜌(𝑖, 𝑗) = 𝑒𝑥𝑝 8− #
$
:%(',))

+
;
$
<                    (2) 185 

where 𝜌(𝑖, 𝑗) represents the correlation between grids i and j, ℎ(𝑖, 𝑗) is the distance between these two points and 𝑙 is the 186 

decorrelation length, which was specified as 150 km in this study. According to the PDF of the emission errors, 𝜷 follows the 187 

same Gaussian distribution as that of the emission errors except that its mean equals 1. Using the method of Evensen (1994), 188 

fifty smooth pseudorandom perturbation fields of 𝛃 were generated for each perturbed species. In addition, the emission 189 

perturbations were kept independent from each other to prevent pseudo-correlation among the different species. 190 

2.3 Observations 191 

Surface observations of the hourly ambient PM2.5, PM10, SO2, NO2, CO and O3 concentrations retrieved from the CNEMC 192 

were used in this study. The number of observation sites was approximately 510 in 2013 and increased to 1436 in 2015. Real-193 

time observations of these six air pollutants at each monitoring site are routinely gathered by the CNEMC and released to the 194 

public (available at http://www.cnemc.cn/; last accessed: 17 April 2020) at hourly intervals. A challenge that should be 195 
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overcome in the assimilations of surface observation is that there are occasional outliers occurring in these observations due 196 

to the instrument malfunctions, influences of harsh environments and limitation of measurement method. Filtering out these 197 

outliers is necessary before the assimilation, otherwise these outliers may cause unrealistic spatial and temporal variations in 198 

the reanalysis. To address this issue, a fully automatic outlier detection method was developed by Wu et al. (2018) to filter out 199 

the observation outliers. An automatic outlier detection method is very important in chemical data assimilation since there is 200 

a large amount of observation data on multiple species. Four types of outliers characterized by temporal and spatial 201 

inconsistencies, instrument-induced low variances, periodic calibration exceptions and lower PM10 concentrations than those 202 

of PM2.5 were detected and removed before the assimilation. Figure S1 shows the removal ratios of the six air pollutants from 203 

2013 to 2018, which are generally around 1.5% for most air pollutants throughout the assimilation period. The PM10 204 

observations have a high removal ratio (9–13%) during 2013–2015 with most of these outliers marked by lower PM10 205 

concentrations than those of PM2.5. However, there was a sharp decrease in removal ratios of PM10 in 2016 (~1.5%) because 206 

of the implementation of a compensation algorithm for the loss of semi-volatile materials in the PM10 measurements (Wu et 207 

al., 2018). To assess the potential impacts of outlier detection on the assimilations, the differences in annual concentrations 208 

caused by quality control are shown in Fig. S2. The differences were generally positive for PM2.5, SO2, NO2 and CO 209 

concentrations, indicating a lower tendency of these species’ concentrations due to the use of outlier detection. Negative 210 

differences were mainly found in the PM10 concentrations in south China and the O3 concentrations throughout China. 211 

According to estimation, the impacts of outlier detection were generally small in most stations. The differences were less than 212 

5 µg/m! (1 µg/m!)	for PM2.5 concentrations over most stations in north (south) China and less than 1 µg/m! for the gaseous 213 

air pollutants for most stations throughout China. The differences were shown to be relative larger for PM10 concentrations 214 

over northwest China which can be over 20 µg/m! in stations around Taklimakan Desert. This would be due to the higher 215 

outlier ratios in the observations over the remote areas. More details on the outlier detection method were available in Wu et 216 

al. (2018). 217 

A proper estimate of the observation error is important in regard to the filter performance since the observation and 218 

background errors determine the relative weights of the observation and background values in the analysis. The observation 219 

error includes measurement and representativeness errors. For each species, the measurement error was given by their 220 

respective instruments, namely, 5% for PM2.5 and PM10, 2% for SO2, NO2 and CO, and 4% for O3 according to officially 221 

released documents of the Chinese Ministry of Ecology and Environmental Protection (HJ 193–2013 and HJ 654–2013, 222 

available at http://www.cnemc.cn/jcgf/dqhj/; last accessed: 17 April 2020). The representativeness error arises from the 223 

different spatial scales that the gridded model results and discrete observations represent, which is parameterized by the 224 

formula proposed by Elbern et al., (2007) in this study: 225 

𝑟,-., = B
∆0

1!"#!
× 𝜖234                      (3) 226 

where 𝑟,-.,  represents the representativeness error, ∆𝑥 represents the model resolution, 𝐿,-.,  represents the characteristic 227 

representativeness length of the observation site and 𝜀234 represents the error characteristic parameters for different species. 228 
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The estimation of 𝐿,-., is dependent on the types of observation sites with urban sites usually having smaller representative 229 

length than the rural sites have due to the larger representativeness errors. Considering that the observation sites from CNEMC 230 

were almost city (urban) sites (>90%), the 𝐿,-., was assigned to be 2km in this study according to Elbern et al., 2007.  231 

For the estimations of 𝜀234, previous studies (Chen et al., 2019; Feng et al., 2018; Jiang et al., 2013; Ma et al., 2019; 232 

Pagowski and Grell, 2012; Peng et al., 2017; Werner et al., 2019) usually assigned the 𝜀234 empirically to be half of the 233 

measurement error following the study by Pagowski et al. (2010). In this study, the 𝜀234 was obtained from Li et al. (2019) 234 

who estimated the 𝜀234  based on a dense observation network in Beijing-Tianjin-Hebei region. In their study, the 235 

representativeness error of each species’ observation was first estimated by the spatiotemporal averaged standard deviation of 236 

the observed values within a 30km×30km grid: 237 

𝑟,-.,,' =
#
56
∑ ∑ 𝑆7,8,'6

89#
5
79#                      (4) 238 

where 𝑟,-.,,' represents the representativeness errors of the observations for species 𝑖, 𝑆7,8,' represents the standard deviation 239 

of the observed values of species 𝑖 at different sites that are located in a same grid 𝑚 at time 𝑡, 𝑀 and 𝑇 represents the total 240 

number of grid and observation time. After the estimations of 𝑟,-.,,', the 𝜀'234 for species 𝑖 were estimated by a transformation 241 

of Eq. (3): 242 

𝜀'234 = 𝑟,-.,,'/B
∆:

1!"#!
                     (5) 243 

where ∆x is equal to 30km. Based on the estimated 𝐿,-., and the 𝜀'234 for different species, the representativeness errors are 244 

estimated using Eq. (3) by specifying the ∆𝑥 to be 15km. 245 

2.4 Data assimilation algorithm 246 

We used a variant of the EnKF approach, i.e., the local ensemble transform Kalman filter (LETKF; Hunt et al., 2007), to 247 

assimilate the observations into the model state. The LETKF has several advantageous over the original EnKF (e.g., Miyazaki 248 

et al., 2012). As a kind of deterministic filter, it does not need to perturb the observations, which avoids introducing additional 249 

sampling errors. In addition, the LETKF performs the analysis locally in space and time, which not only alleviate the rank 250 

problem of the EnKF method but also suppress the long-distance spurious correlation caused by the limited ensemble size. 251 

The formulation of the LETKF can be written as: 252 

𝒙𝒂OOO = 𝒙𝒃OOO + 𝐗𝐛𝒘S𝒂                      (6) 253 

𝒘S𝒂 = 𝐏U𝐚V𝐇𝐗𝐛X𝐓𝐑@𝟏(𝒚𝒐 −𝐇𝒙𝒃OOO)                    (7) 254 

𝐏U𝐚 = :(C"$%@#)𝐈
#EF

+ V𝐇𝐗𝐛X𝐓𝐑@𝟏V𝐇𝐗𝐛X;
@#

                 (8) 255 

𝒙𝒃OOO = #
C"$%

∑ 𝒙𝒊𝒃
C"$%
'9# ; 𝐗𝐢𝐛 =

𝟏
√𝑵@𝟏

V𝒙𝒊𝒃 − 𝒙𝒃OOOX                  (9) 256 



32 
 

where 𝒙𝒂OOO is the analysis state, 𝒙𝒃OOO is the background state, 𝐗𝐛 represents the background perturbations, 𝒘S𝒂 is the analysis in 257 

the ensemble space spanned by 𝐗𝐛, 𝐏U𝐚 is the analysis error covariance in the ensemble space with dimensions of 𝑁-J4 ×𝑁-J4, 258 

𝐲𝐨 is the vector of observations used in the analysis of this grid, R is the observation error covariance matrix, and 𝐇 is the 259 

linear observational operator that maps the model space to the observation space. The scalar 𝜆 in Eq. (8) denotes the inflation 260 

factor for the background covariance matrix, which was estimated with the algorithm proposed by Wang and Bishop (2003): 261 

𝜆 = L𝐑&'/)𝒅O
*
𝐑&'/)𝒅@.

8,2P-Q𝐑&'/)𝐇𝐏𝒃L𝐑&'/)𝐇O
*T

                    (10) 262 

𝒅 = 𝒚𝒐 −𝐇𝒙𝒃OOO                       (11) 263 

𝐏𝒃 = 𝐗𝐛V𝐗𝐛X𝐓                       (12) 264 

where 𝒅 represents the residuals, 𝑝 is the number of observations, 𝐏𝒃 is the ensemble-estimated background error covariance 265 

matrix, and the trace of the covariance matrix is used to approximate covariance on a globally averaged basis. The inflation is 266 

necessary for the ensemble-based assimilation algorithm since the ensemble-estimated background error covariance is very 267 

likely to underestimate the true background error covariance due to the limited ensemble size and occurrence of the model 268 

error (Liang et al., 2012). Without any treatment to prevent background error covariance underestimation, the model forecast 269 

would be overconfident and eventually result in filter divergence. Using Eq. (10), the hourly inflation factor was calculated 270 

for each species. In addition, the inflation factor was calculated locally in this study. Thus, the inflation factor used in this 271 

assimilation is not only species specific, but also varies with time and space, which reflects different error characteristics of 272 

the different species in different time and places. 273 

Besides, the inter-species correlation was neglected in the background error covariance similar to previous chemical data 274 

assimilation studies (e.g., Inness et al., 2015; Inness et al., 2019; Ma et al., 2019) although Miyazaki et al, (2012) has shown 275 

the benefits of including correlations between the background errors of different chemical species. This is, on the one hand, to 276 

avoid the effects of the spurious correlation between non or weakly related variables. On the other hand, different from 277 

Miyazaki et al., 2012, this study concentrated on the assimilations of primary air pollutants (except of O3) whose errors are 278 

more related to the errors in their emissions. Since the emission errors of these species were considered to be independent in 279 

this study (Sect. 2.2), thus the correlation between background errors of different species were generally near zero for most 280 

cases as shown in Figs. S3-4. The high correlations only occur in background errors of PM2.5 and PM10 as well as the NO2 and 281 

O3. The high positive correlation between PM2.5 and PM10 is just because PM2.5 is a part of PM10, and there would be redundant 282 

information in the observations of PM2.5 and PM10 concentrations, thus we did not include the correlation between the PM2.5 283 

and PM10 concentrations in the assimilation. The negative correlation between the O3 and NO2 is due to the NOx-OH-O3 284 

chemical reactions in the NOx saturated conditions that the increases of NO2 concentrations would reduce the O3 concentrations 285 

due to the enhanced NO titration effect. However, the relationship between O3 and NO2 concentrations is actually nonlinear 286 

depending on the NOx limited or saturated conditions (Sillman, 1999), and previous study by Tang et al. 2016 has shown the 287 

limitations of the EnKF under strong nonlinear relationships. The cross-variable data assimilations of O3 and NO2 may come 288 



33 
 

up with inefficient or even wrong adjustments. Considering the nonlinear relationship between the O3 and NO2 concentrations 289 

and their unexpected effects on EnKF, we took a conservative way in the assimilations of NO2 and O3 by neglecting their error 290 

correlations. This would also make different species be assimilated in a consistent way. Therefore, in this study each air 291 

pollutant is assimilated independently by only using the observations of this pollutant. 292 

Figure 2 shows the local scheme we used in the assimilation, where the plus and dot symbols indicate the centres of the 293 

model grids and locations of the observation sites, respectively. In each model grid, only the observation sites located within 294 

a (2𝑙 + 1) by (2𝑙 + 1) rectangular area centred at this model grid were considered in the calculations of its analysis. The cut-295 

off radius 𝑙 was chosen as 12 model grids, approximately 180 km at the 15-km horizontal resolution. The use of a cut-off 296 

radius, however, could cause analysis discontinuities when an observation enters or leaves the local domain when moving 297 

from one model grid to another (Sakov and Bertino, 2011). To increase the smoothness of the analysis state, following Hunt 298 

et al. (2007), we artificially reduced the impact of the observations close to the boundary of the local domain by multiplying 299 

the entries in 𝐑@𝟏 by a factor decaying from one to zero with increasing distance of the observation from the central model 300 

grid. The decay factors used in this study are calculated by: 301 

𝜌(𝑖) = 𝑒𝑥𝑝 _− %('))

$1)
`                     (13) 302 

where 𝜌(𝑖) is the decay factor for observation 𝑖, ℎ(𝑖) is the distance between observation 𝑖 and the central model grid point, 303 

and 𝐿 is the decorrelation length chosen as 80 km, smaller than the cut-off radius, to increase the smoothness of the analysis 304 

state. Typically, only the state of the central model grid is updated and used to construct the global analysis field. However, 305 

experience has shown that an observable discontinuity remains in the analysis over certain regions. To address this issue, 306 

following the method of Ott et al. (2004), we simultaneously updated the state of a small patch (𝑙 =1) around the central model 307 

grid (the updated region in Fig. 2) at each local analysis step. The final analysis of a given model grid was then obtained as the 308 

weighted mean of all the analysis values of this model grid. A weighted mean was necessary since the analysis of the different 309 

patches adopted different decay factors for the observation error. The weight of each analysis value in model grid 𝑖 is calculated 310 

by Eq. (14): 311 

𝑊',) =
U:V	(@,(.,0)

)

2)
)

∑ U:V	(@,(.,0)
)

2)
)3

04'

                     (14) 312 

where ℎ(𝑖, 𝑗) is the distance of model grid 𝑖 to the central model grid of the patch generating the 𝑗th analysis value of this grid, 313 

𝑚 is the number of patches containing this model grid and 𝐿 is the decorrelation length, which was chosen as 80 km in this 314 

study. 315 

 316 
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3 Data assimilation statistics 317 

3.1 𝝌𝟐 diagnosis  318 

We first applied the 𝝌𝟐  test to demonstrate the performance of our data assimilation system, which is important in 319 

evaluating the reanalysis (Miyazaki et al., 2015). The 𝜒$ diagnosis is a robust criterion for validating the estimated background 320 

and observation error covariance in the data assimilation (e.g. Menard et al., 2000; Miyazaki et al., 2015; Miyazaki et al., 321 

2012), which is estimated by comparing the sample covariance of observation minus forecast (OmF) with the sum of estimated 322 

background and observation error covariance in the observational space (𝐇𝐁𝐇𝐓 + 𝐑): 323 

𝒀 = #
√7
(𝐇𝐁𝐇𝐓 + 𝐑)@

'
)(𝒚𝒐 −𝑯𝑿𝒃)                  (15) 324 

𝜒$ = 𝒀𝑻𝒀                       (16) 325 

where m is the number of observations. According to the Kalman filtering theory, the mean of 𝜒$ should approach 1 if the 326 

background and observation error covariances are properly specified, while values greater (lower) than 1 indicates the 327 

underestimation (overestimation) of the observation and/or background error covariance. 328 

Figure 3 shows the time series of the monthly 𝜒$ values (black lines) for different species as well as the number of 329 

assimilated observations per month (blue bars). The mean values of 𝜒$ are generally within 50% difference from the ideal 330 

value of 1 for PM2.5, PM10, NO2 and O3, which suggests that the observation and background error covariance are generally 331 

well specified in the analysis of these species. Although the 𝜒$ values for these species showed pronounced seasonal variations 332 

that reflect the different error characteristics in different seasons, the 𝜒$ values were roughly stable for PM2.5 and O3 throughout 333 

the assimilation periods, and for NO2 and PM10 after 2015 when the number of assimilated observations become stable, which 334 

generally shows the long-term stability of the performance of data assimilation. The 𝜒$ values for SO2 were nevertheless 335 

greater than 1 in most cases, especially before 2017. This would be more relevant to the underestimations of background error 336 

covariance of SO2 as we only specified 12% uncertainty in the SO2 emissions, suggesting that the emission uncertainty of SO2 337 

may be underestimated by Zhang et al. (2009). There were also pronounced annual trends in the 𝜒$ values of SO2, which may 338 

be attributed to the increases of observation number from 2013 to 2014 and the substantial decreases of SO2 observations from 339 

2013 to 2018. Although smaller than the 𝜒$ values of SO2, the values for CO were greater than 1 in most cases, suggesting the 340 

underestimations of the error covariances. Similar to the 𝜒$ values of SO2, obvious decreasing trend can also be found in the 341 

𝜒$ values of CO. These results suggest that our data assimilation system has relatively poor performance in the analysis of CO 342 

and SO2 concentrations than the other four species, which is consistent with the cross-validation results (Sect. 4.2.2) that 343 

showed smaller 𝑅$ values for the reanalysis data of CO and SO2 concentrations. The annual trend of 𝜒$ values in CO and SO2 344 

also indicates relatively weak stability in the performance of data assimilation system on assimilating CO and SO2 observations, 345 

which may influence the analysis of the annual trends in these two species.  346 
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3.2 OmF & OmA analysis 347 

Spatial distributions of six-year averaged OmF and observation minus analysis (OmA) for each species in the observation 348 

space were then analysed to investigate the structure of forecast bias and to measure the improvement in the reanalysis (Fig. 349 

4). The analysis increment, which is estimated from the differences between the analysis and forecast, is also plotted to measure 350 

the adjustments made in the model space. The OmF values have showed persistent positive model biases (i.e., negative OmF) 351 

in the PM2.5 and SO2 concentrations in east China, as well as PM10 and O3 concentrations in south China. The negative model 352 

biases (i.e., positive OmF) were mainly found in the PM2.5 concentrations in west China, the PM10 concentrations in north 353 

China, the O3 concentrations in central-east China, as well as the concentrations of CO and NO2 throughout the whole China. 354 

The OmA values suggest that the data assimilation removes most of the model biases for each species, which confirms 355 

the good performance of our data assimilation system. According to Fig. S5, the monthly mean OmF biases were almost 356 

completely removed in each regions of China because of the assimilation, with mean OmF biases reducing by 32–94% for 357 

PM2.5, 33–83% for PM10, 25–96% for SO2, 53–88% for NO2, 88–97% for CO and 54–90% for O3 concentrations in different 358 

regions of China. The mean OmF root mean square error (RMSE) were also reduced substantially by 80–93% for PM2.5, 80–359 

86% for PM10, 73–96% for SO2, 76–91% for NO2, 88–96% for CO and 76–87% for O3 concentrations in different regions of 360 

China (Fig. S6). In addition, despite the mean OmF bias and OmF RMSE exhibit significant annual trend, the OmA bias and 361 

OmA RMSE are relatively stable during the assimilation period, which generally confirms the long-term stability of our data 362 

assimilation system.  363 

The spatial patterns of analysis increment were in good agreement with those of the OmF values for each species, which 364 

generally shows negative (positive) increments for PM2.5 concentrations in east (west) China, negative (positive) increments 365 

for PM10 concentrations in south (north) China, negative increments for SO2 throughout the China, positive increments for CO 366 

and NO2 concentrations throughout the China, and the positive (negative) increments for O3 concentrations in central-east 367 

(south) China. These results confirm that the data assimilation can effectively propagate the observation information into the 368 

model state and reduce the model errors. 369 

4 Evaluation Results 370 

In this section, we present the fields of the CAQRA dataset and compare them to the observations. It aims to provide a 371 

brief introduction to the CAQRA dataset and gives a first assessment of the quality of this dataset. The cross-validation (CV) 372 

method was applied in the assessment of the CAQRA dataset, in which a proportion of the observation data was withheld from 373 

the data assimilation process and adopted as a validation dataset. We conducted five CV experiments by randomly dividing 374 

the observation sites of the CNEMC into five groups (with 20% of the observation sites in each group). In each experiment, 375 

the analysis was performed with one group of the observation data omitted in the assimilation process. Analysis results at the 376 

validation sites, i.e., the observation sites not used in the assimilation process, were then collected and used to validate the 377 

assimilation results. For convenience, the analysis results at the validation sites of the five CV experiments were combined 378 
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and comprised a validation dataset containing all observation sites (the CV run). This dataset was then evaluated against the 379 

observations to assess the quality of the CAQRA dataset. In addition, independent PM2.5 observations retrieved from the U.S. 380 

Department State Air Quality Monitoring Program over China were also employed in the assessment of the PM2.5 reanalysis 381 

field. The quality of the CAQRA dataset was assessed at different spatial and temporal scales to better understand the CAQRA 382 

dataset. Additionally, the validation results of the ensemble mean of the simulations without assimilation (the base simulation) 383 

are provided to highlight the impacts of assimilation. 384 

4.1 Particulate matter (PM) 385 

4.1.1 Spatial distribution of the PM reanalysis data over China 386 

We first present the reanalysis fields of the PM concentrations (PM2.5 and PM10) in China. Figure 5 shows the six-year 387 

mean (2013–2018) spatial distribution of the PM2.5 concentration in China obtained from the CAQRA dataset, base simulation 388 

and observations. The CAQRA dataset provides a continuous map of the PM2.5 concentration in China and suitably reproduces 389 

the observed magnitude of the PM2.5 concentration in China. The highest PM2.5 concentrations were observed in the NCP 390 

region due to its intensive industrial activities and the associated high emissions of PM2.5 and its precursors (Qi et al., 2017). 391 

High PM2.5 concentrations were also found in the SE region, where the PM2.5 concentration is influenced by both local 392 

emissions and the long-range transport of air pollutants from northern China (Lu et al., 2017). In the NW region, in addition 393 

to hotspots exhibiting high PM2.5 concentrations in large cities, high PM2.5 concentrations were also observed in the Taklimakan 394 

Desert due to the influences of dust emissions. The observed magnitude and spatial variability of the PM10 concentration were 395 

also represented well by the PM10 reanalysis field. In general, the spatial distributions of the PM10 reanalysis were similar to 396 

those of the PM2.5 reanalysis except in Gansu and Ningxia provinces, where high PM10 concentrations and relatively low PM2.5 397 

concentrations occurred. This may be related to the large contributions of dust emissions in these areas. The base simulation 398 

notably overestimated the PM2.5 and PM10 concentrations in China. This may occur due to the systematic biases in the emission 399 

inventory (Kong et al., 2019) and because negative trends of PM and its precursor emissions were not considered in our 400 

simulations. In addition, the PM2.5 concentration hotspots in the NW region and Tibetan Plateau were not captured in the base 401 

simulation, possibly due to the absence of emissions in these remote regions. 402 

Seasonal maps of the PM2.5 and PM10 concentrations are shown in Figs. S7–8 in the Supplement, which reveal profound 403 

seasonal variations. Both the PM2.5 and PM10 concentrations exhibit maximum values in winter in most regions of China due 404 

to the increased anthropogenic emissions related to enhanced power generation, industrial activities and fossil fuel burning for 405 

heating purposes (Li et al., 2017). Unfavourable meteorological conditions with stable boundary conditions also contribute to 406 

the high PM concentrations in winter. In contrast, due to the low emission rate and intense mixing processes, the PM 407 

concentrations are the lowest in summer. The PM concentrations in the Taklimakan Desert exhibit a different seasonality, with 408 

the highest PM concentrations occurring in spring and the lowest levels occurring in winter. This occurs because the major 409 

PM sources in the Taklimakan Desert are not anthropogenic emissions but dust emissions, which are usually the highest in 410 
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spring due to the frequent strong dust storms. Figure 6 further shows an example of the hourly PM reanalysis results, including 411 

a year-round time series of the site mean hourly PM concentrations in Beijing. This figure shows that PM reanalysis suitably 412 

captures the hourly evolution of the PM concentrations. Both the heavy haze episodes during the wintertime and the strong 413 

dust storms during the springtime are represented well in PM reanalysis. 414 

4.1.2 Assessment of the PM reanalysis data over China 415 

The CV method was used to assess the quality of the PM reanalysis data over China. Table 2 summarizes the site-based 416 

CV results for the reanalysis data from 2013 to 2018 at the different temporal scales. It should be mentioned that these sites 417 

are all validation sites not used in the data assimilation process. The validation results indicated that by assimilating the surface 418 

PM concentrations, the reanalysis data exhibit a relatively high performance in reproducing the magnitude and variability of 419 

the surface PM concentrations in China. The CV R2 values were up to 0.81 and 0.72 in regard to the hourly PM2.5 and PM10 420 

concentrations, respectively, which were much higher than the values of 0.26 and 0.17, respectively, in the base simulation. 421 

The bias was substantially reduced in the PM2.5 and PM10 reanalysis data with CV mean bias (MBE) values of approximately 422 

-2.6 µg/m! (-4.9%) and -6.8 µg/m! (-8.7%), respectively, at the hourly scale, much smaller than the large bias in the base 423 

simulation. The CV RMSE values were only approximately half of the base simulation RMSE values, which were 424 

approximately 17.6 and 39.3 µg/m! for the hourly PM2.5 and PM10 concentrations, respectively. The reanalysis data showed 425 

a good performance at the daily, monthly and yearly scales, with CV RMSE values ranging from 9.0 to 15.1 µg/m! for the 426 

PM2.5 concentration and from 19.1 to 28.8 µg/m! for the PM10 concentration. 427 

The quality of the PM2.5 and PM10 reanalysis data in the different regions of China is further summarized in Table S1-2. 428 

At the hourly scale, small negative biases of the PM2.5 reanalysis data were found in the NCP (-4.8%), NE (-5.8%), SE (-3.8%) 429 

and SW (-3.4%) regions. The biases in the NW and central regions were relatively large, with CV normalized mean bias (CV 430 

NMB) values of approximately -7.3% and -8.2%, respectively. Two reasons might explain the large biases in these two regions. 431 

First, the observation sites are sparse in the NW and central regions. As a result, the PM2.5 concentration is not suitably 432 

constrained at certain sites in the CV method. Second, the emissions of PM2.5 and its precursors might be very low in these 433 

two regions, leading to underestimation of the background errors since we only considered the emission uncertainty in the 434 

ensemble simulations. Although this problem was alleviated by using the inflation technique to compensate for the missing 435 

errors, the overconfident model results still degraded the assimilation performance to a certain extent, making the analysis less 436 

influenced by the observations. The errors of the PM2.5 reanalysis data exhibited apparent spatial differences (Table S1). The 437 

CV RMSE values were the smallest in the SE (14.9 µg/m!) and SW (16.5 µg/m!) regions and increased to ~25 µg/m! in the 438 

NCP, NE and central regions. Consistent with the bias distributions, the largest CV RMSE value was found in the NW region, 439 

which reached 52.1 µg/m! but was still much smaller than the RMSE value of the base simulation (73.0 µg/m!). The errors 440 

of the PM2.5 reanalysis data were small at the daily, monthly and yearly scales, with CV RMSE values of approximately 10.6–441 

39.4 µg/m! at the daily scale, 7.4–26.9 µg/m! at the monthly scale and 6.1–23.5 µg/m! at the yearly scale. In terms of the 442 

hourly PM10 reanalysis data, the CV results (Table S2) indicated that small negative biases occurred in the NCP, NE, SE and 443 
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SW regions, ranging from -9.6% (NE region) to -5.9% (SE region). The biases were larger in the NW and central regions, with 444 

the CV NBM values increasing to approximately 18.0% and 14.1%, respectively. The errors of the PM10 reanalysis data also 445 

exhibited a spatial heterogeneity. The CV RMSE value was the smallest in the SE (26.0 µg/m!) and SW (30.2 µg/m!) regions 446 

and increased to approximately 39.8 and 43.7 µg/m! in the NE and NCP regions, respectively. The largest errors were found 447 

in the central and NW regions, with CV RMSE values of approximately 105.5 and 57.3 µg/m! , respectively. The PM10 448 

reanalysis data revealed small errors at the daily, monthly and yearly scales, with CV RMSE values of approximately 18.6–449 

85.5 µg/m! at the daily scale, 13.7–64.0 µg/m! at the monthly scale and 12.3–55.8 µg/m!	at the yearly scale. 450 

4.1.3 Trend study of the PM reanalysis data over China 451 

A realistic representation of the observed interannual change is another important aspect of the reanalysis dataset. The 452 

performance of the reanalysis data in representing the observed interannual changes in the PM2.5 and PM10 concentrations was 453 

thus evaluated nationwide and in the different regions of China. Figures 7–8 show time series of the monthly mean PM2.5 and 454 

PM10 concentrations nationwide and in the different regions. The observed national PM2.5 concentration revealed a profound 455 

seasonal cycle with the highest concentration in winter and the lowest level in summer. The annual trends of the PM2.5 and 456 

PM10 concentrations were also calculated using the Mann-Kendall (M-K) trend test and the Theil-Sen trend estimation method, 457 

which are summarized in Table 3. A significant negative trend was observed in the PM2.5 concentration nationwide, with a 458 

calculated annual trend of approximately -5.8 (p<0.05) µg ∙ m@! ∙ yr@# . The NE and NCP regions exhibited the highest 459 

negative trends among the six regions, with calculated trends of approximately -7.5 (p<0.05) and -7.0 (p<0.05) µg ∙ m@! ∙ yr@#, 460 

respectively. In the other regions, the negative trends ranged from -6.3 to -5.2 µg ∙ m@! ∙ yr@#. The base simulation suitably 461 

reproduced the observed seasonal cycle of the PM2.5 concentration in all regions. The magnitude of the PM2.5 concentration in 462 

2013 was also captured well in the different regions, suggesting that the emission inventories of 2010 were generally reasonable 463 

for the simulation of the PM2.5 concentration in 2013. However, starting from 2014, the base simulation tended to overestimate 464 

the observations in the NCP, SE and SW regions, indicating that the emission inventory of 2010 may be too high for the 465 

simulation of the PM2.5 concentration in these regions after 2014. In contrast, the base simulation significantly underestimated 466 

the PM2.5 concentration in the NW region. The model performance of the base simulation was relatively good in the NE and 467 

central regions throughout the six years. Although the base simulation captured the negative trends of the observed PM2.5 468 

concentration in China and the different regions, the simulated trends were much lower than those indicated by the observations. 469 

Since we adopted the same emission inventory in the simulations of the air pollutants in the different years, the simulated 470 

trends in the base simulation were only driven by the variations in meteorological conditions. This suggests that the change in 471 

meteorological conditions only explained a small proportion of the negative trends in the PM2.5 concentration in China and 472 

that emission reductions contributed more to the decline in the PM2.5 concentration. The CV run agreed better with the 473 

observations. The observed trends of the PM2.5 concentration in China and each subregion were all suitably captured by the 474 

reanalysis in the CV run. Similar results were obtained for the analysis of the trend of the PM10 concentration, as shown in Fig. 475 

8. The observed PM10 concentration also exhibited significant negative trends, which were captured well by the PM10 reanalysis 476 
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in the CV run. The base simulation attained a better performance in reproducing the PM10 concentration in China than in 477 

reproducing the PM2.5 concentration, while significant underestimations of the PM10 concentration occurred in the NW and 478 

central regions. The calculated negative trends of the base simulation were still lower than those indicated by the observations. 479 

This again highlights the large contributions of emission reduction to the improvement of the air quality in China in these years. 480 

4.1.4 Independent validation of the PM2.5 reanalysis data 481 

In addition to the CV method, the PM2.5 reanalysis data were further validated against an independent dataset acquired 482 

from the U.S. Department State Air Quality Monitoring Program over China (http://www.stateair.net/; last accessed: 17 April 483 

2020), which contains the hourly PM2.5 concentration in Beijing, Chengdu, Guangzhou, Shanghai and Shenyang cities. Table 484 

4 presents a comparison of the observed PM2.5 concentrations to those obtained from the CAQRA dataset and base simulation. 485 

The results indicated that the magnitude and variability of the PM2.5 reanalysis data agreed better with those of the observed 486 

PM2.5 concentrations in all cities. Both the MBE and RMSE values were greatly reduced in the CAQRA dataset, which only 487 

ranged from -7.1 to -0.3 µg ∙ m@! and from 16.8 to 33.6 µg ∙ m@!, respectively, in these cities. The correlation coefficient was 488 

also greatly improved in CAQRA (R2 = 0.74–0.86) over the base simulation (R2 = 0.09–0.38). These results confirm that the 489 

CAQRA dataset attains a high quality performance in representing the PM2.5 pollution in China in these years. 490 

4.1.5 Comparison to the satellite-estimated PM2.5 concentration 491 

Previous studies have shown that estimating the ground-based PM2.5 concentration from the satellite-derived AOD is an 492 

effective way to map the PM2.5 concentration with a good accuracy. To further demonstrate the accuracy of our PM2.5 reanalysis 493 

data, we also compared the accuracy to that of satellite-estimated PM2.5 concentrations. Table 5 summarizes several 494 

representative studies focusing on the estimation of the ground-based PM2.5 concentration in China at the national level using 495 

different kinds of methods. Most of these studies estimated the ground-based PM2.5 concentration at the daily scale since they 496 

employed polar-orbiting satellite data (e.g., MODIS) that only provide daily AOD observations. The estimation conducted by 497 

Liu et al. (2019) was an exception which exhibited an hourly resolution due to the use of AOD measurements from a 498 

geostationary satellite (Himawari-8). The horizontal resolution in these studies was mainly approximately 10 km except that 499 

of Lin et al. (2018), which revealed the finest horizontal resolution (1 km), and that of Zhan et al., 2017, which revealed the 500 

coarsest horizontal resolution (0.5°). Few studies have provided long-term PM2.5 data covering recent years. In comparison, 501 

our PM2.5 reanalysis data provide long-term data in China at a fine temporal resolution (1 h) and a high accuracy. A fine 502 

temporal resolution is important for epidemiological studies, especially for the assessment of the acute health effects of air 503 

pollution. Furthermore, the accuracy of our reanalysis data (CV R2 = 0.86 and CV RMSE = 15.1 µg ∙ m@!) was also higher 504 

than that of most of these satellite estimates (CV R2 = 0.56–0.86 and CV RMSE = 15.0–20.2 µg ∙ m@!). 505 
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4.2 Gases 506 

4.2.1 Spatial distribution of the reanalysis data of gaseous air pollutants over China 507 

Next, we present the reanalysis fields for gaseous air pollutants in China, namely, SO2, CO, NO2 and O3. Figure 9 shows 508 

the spatial distribution of the six-year average SO2 and CO concentrations in China obtained from the CAQRA dataset, base 509 

simulation and observations. The SO2 reanalysis data captured the magnitude and spatial distribution of the SO2 concentration 510 

in China well, while the base simulation greatly overestimated the SO2 concentration due to the positive biases of the SO2 511 

emissions in the simulations. Consistent with the observations, the SO2 reanalysis data exhibited high spatial heterogeneity, 512 

with the highest values located in the NCP region, especially in Shandong, Shanxi and Hebei provinces. Several SO2 513 

concentration hotspots were also found in the NE region. SO2 is mainly emitted from fossil fuel consumption, especially coal 514 

burning (Lu et al., 2010). Shandong, Shanxi, Inner Mongolia and Hebei provinces are the four largest consumers of coal in 515 

China according to the China Energy Statistical Yearbook (NBSC 2017a, b), which explains the high SO2 concentrations in 516 

these provinces. The spatial distribution of the CO reanalysis data was similar to that of the SO2 reanalysis data and agreed 517 

well with the observed spatial distribution. In contrast, the base simulation highly underestimated the CO concentration, 518 

especially in the NCP region. In addition, both the observations and reanalysis data showed CO concentration hotspots in the 519 

NW region and Xizang Province, while these hotspots were largely underestimated or even missing in the base simulation. 520 

According to previous studies, such underestimation might be related to underestimated CO emissions in China (Kong et al., 521 

2020; Tang et al., 2013). In regard to NO2 (Fig. 10), both the reanalysis data and base simulation captured the observed 522 

magnitude and spatial distribution of the NO2 concentration in China. High NO2 concentrations generally occurred in the NCP 523 

region and the major city clusters in China. However, the base simulation generally revealed an underestimated NO2 524 

concentration in China. The spatial distribution of the O3 concentration (Fig. 10) demonstrated a lower spatial heterogeneity 525 

than that of the other gases. The O3 reanalysis data suitably captured the observed magnitude and spatial distribution of the O3 526 

concentration in China, while the base simulation generally underestimated the O3 concentration in China. Figures S9–12 527 

further show seasonal maps of the reanalysis fields of these gases. All gases exhibited a profound seasonal cycle, with 528 

maximum values observed in winter and the lowest values in summer except O3, which demonstrated the opposite seasonal 529 

cycle. The highest SO2, CO and NO2 concentrations in winter could occur due to the increased anthropogenic emissions and 530 

the more stable atmospheric conditions during this season. Regarding O3, the highest value in summer was closely related to 531 

the enhanced photochemical reactions in summer associated with the high temperature and solar radiance. 532 

4.2.2 Assessment of the gas reanalysis data over China 533 

Evaluation results of the above gas reanalysis data are provided in Table 2. The table indicates that the reanalysis data 534 

attain an excellent performance in representing the magnitude and variability of these gaseous air pollutants in China, with CV 535 

R2 values ranging from 0.51 for SO2 to 0.76 for O3 and CV MBE (CV NMB) values of approximately -2.0 µg ∙ m@! (-8.5%), 536 

-2.3 µg ∙ m@! (-6.9%), -0.06 mg ∙ m@! (-6.1%) and -2.3 µg ∙ m@! (-4.0%) for the hourly SO2, NO2, CO and O3 reanalysis data, 537 
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respectively. Compared to the base simulation, the errors were reduced by approximately half in the reanalysis data with CV 538 

RMSE values of approximately 24.9 µg ∙ m@!, 16.4 µg ∙ m@!, 0.54 mg ∙ m@! and 21.9 µg ∙ m@! for the hourly SO2, NO2, CO 539 

and O3 reanalysis data, respectively. The reanalysis data achieved a good performance at the daily, monthly and yearly scales. 540 

The CV RMSE values of the daily SO2 and NO2 reanalysis data were also smaller than those of the SO2 and NO2 concentration 541 

datasets in China previously developed by Zhan et al. (2018) and Zhang et al. (2019), respectively, based on the random-forest-542 

spatiotemporal-kriging model wherein the RMSE values of the daily SO2 and NO2 concentrations were estimated to be 19.5 543 

and 13.3 µg ∙ m@!, respectively. 544 

In terms of the different regions (Tables S3–6), the hourly SO2 reanalysis data indicated small negative biases 545 

(approximately 2–10%) in all regions except in the central region, where the negative bias was relatively large (17.0%). The 546 

smallest CV RMSE values of the SO2 reanalysis data were observed in the SE, SW and NW regions (smaller than 25 µg ∙ m@!), 547 

while in the other regions, the CV RMSE values exceeded 30 µg ∙ m@!. The hourly NO2 reanalysis data showed small negative 548 

biases in all regions, which were relatively small in the NE, NCP and SE regions (ranging from -5.9 to -3.5%) and were 549 

relatively large in the SW, NW and central regions (ranging from -15.1 to -12.9%). The CV RMSE for the hourly NO2 550 

reanalysis data was approximately 15 µg ∙ m@! in all regions except in the NW (24.3 µg ∙ m@!) and central (20.5 µg ∙ m@!) 551 

regions. The hourly CO reanalysis data exhibited small negative biases in all regions. The largest biases were still found in the 552 

NW region, which reached approximately 15.0%, while in the other regions, the biases ranged from -11.2% to -2.5%. The CV 553 

RMSE values for the hourly CO reanalysis data were the smallest in South China (approximately 0.39 and 0.46 mg ∙ m@! in 554 

the SE and SW regions, respectively) and increased to 0.64 and 0.59 mg ∙ m@! in the NCP and NE regions, respectively. The 555 

largest CV RMSE was observed in the NW region, which amounted to approximately 1.13 mg ∙ m@!. The biases of the hourly 556 

O3 reanalysis data were uniformly distributed in the different regions, with the CV NMB value ranging from -6.1% to 1.4%. 557 

Similarly, the CV RMSE value of the O3 reanalysis data was approximately 20 µg ∙ m@! in all regions except in the NW region 558 

(28.3 µg ∙ m@!). 559 

4.2.3 Trend study of the gas reanalysis data over China 560 

Figure 11 shows time series of the monthly mean SO2 concentration in China obtained from the CV run, base simulation 561 

and observations. Additionally, time series of the monthly mean SO2 concentration in the different regions are shown. The 562 

observed SO2 concentrations showed significant negative trends (P<0.05) in China (-6.2 µg ∙ m@! ∙ yr@#, Table 6) and in all 563 

regions (ranging from -2.3 to -9.5 µg ∙ m@! ∙ yr@#, Table 6) due to the large reductions in SO2 emissions across China. During 564 

the 11th-13rd Five-Year Plans (FYPs) and the Air Pollution Prevention and Control Plan, the Chinese government invested 565 

great efforts to reduce SO2 emissions, such as the installation of flue-gas desulfurization (FGD) and selective catalytic 566 

reduction systems, construction of large units, decommissioning of small units and replacement of coal with cleaner energies 567 

(Li et al., 2017; Zheng et al., 2018b). As a result, the SO2 emissions substantially decreased in China, especially in the industrial 568 

and power sectors. The base simulation significantly overestimated the SO2 concentration in all regions, especially after 2013. 569 



42 
 

The negative trends of the SO2 concentration were also largely underestimated in the base simulation. In contrast, the SO2 570 

reanalysis data captured the magnitude and negative trends of the observed SO2 concentrations in China and in all regions well. 571 

The NO2 observations showed negative trends in China as well (Fig. 12). However, the negative trend was not significant 572 

except in the NE region (Table 6). This is consistent with the small reductions in NOx emissions (21%) in China due to the 573 

small changes in the emissions originating from the transportation sector, accounting for almost one-third of the NOx emissions 574 

in China. The pollution controls applied in the transportation section were exactly offset by the growing emissions related to 575 

vehicle growth (Zheng et al., 2018b). The base simulation generally underestimated the NO2 concentration during the 576 

wintertime, and the observed negative trends of the NO2 concentration were also underestimated in all regions. By assimilating 577 

the observed NO2 concentrations, the reanalysis data agreed better with the observations both in regard to the magnitude and 578 

negative trends. The CO observations exhibited significant negative trends in all regions except in the NW region (Fig. 13), 579 

with calculated negative trends ranging from -0.18 to -0.06 µg ∙ m@! ∙ yr@#. Such negative trends have also been observed in 580 

satellite measurements, such as MOPITT observations (Zheng et al., 2018a), which are mainly attributed to the reduced 581 

anthropogenic emissions in China, as suggested by both bottom-up and top-down methods (Zheng et al., 2019). The base 582 

simulation largely underestimated the CO concentration in all regions. In addition, the negative trends of the CO concentration 583 

were also notably underestimated in the base simulation, which highlights the major contribution of emission reduction to the 584 

decreased CO concentration in these regions. The CO reanalysis data agreed well with the observations and captured the 585 

negative trends of the CO concentration in all regions. The O3 concentration exhibited the opposite trend to that exhibited by 586 

the other air pollutants (Fig. 14), which revealed significant positive trends in all regions, ranging from 2.3 to 5.4 µg ∙ m@! ∙587 

yr@# and indicating enhanced photochemical pollution in China. This phenomenon has been observed and investigated by Li 588 

et al. (2019), who suggested that the rapid decrease in the PM2.5 concentration and the resultant reduction in the aerosol sink 589 

of hydroperoxyl (HO2) radicals were important factors contributing to the enhanced O3 concentration in China. The base 590 

simulation generally captured the magnitude of the O3 concentration in the SE, SW, NW and central regions but underestimated 591 

the O3 concentration in the NCP and NE regions, especially in spring and summer. In addition, the base simulation 592 

underestimated the observed positive trends of the O3 concentration in all regions, which suggests that meteorological 593 

variability only contributed a small proportion of the observed O3 trend in China. Again, the O3 reanalysis data are substantially 594 

better than the base simulation and suitably reproduce the observed trends of the O3 concentration in all regions. 595 

4.2.4 Comparison to the CAMS reanalysis data 596 

To further evaluate the accuracy of our reanalysis dataset for gaseous air pollutants, the CAMSRA dataset produced by 597 

the ECMWF (Inness et al., 2019) was employed as a reference in a comparison to our reanalysis dataset. The CAMSRA dataset 598 

is the latest global reanalysis dataset of the atmospheric composition, which assimilates satellite retrievals of O3, CO, NO2 and 599 

AOD. Three-hour reanalysis data of the SO2, NO2, CO and O3 concentrations at the surface model level from 2013 to 2018 600 

were adopted in this study, which were downloaded from https://atmosphere.copernicus.eu/copernicus-releases-new-global-601 

reanalysis-data-set-atmospheric-composition (last accessed: 17 April 2020) at a resolution of 1 degree by 1 degree. Here, we 602 
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only focus on a comparison of the gaseous pollutants since the CAMSRA dataset does not provide PM2.5 and PM10 603 

concentrations. 604 

Figure 15 shows the spatial distribution of the six-year average concentration of these gaseous air pollutants in China 605 

obtained from the CAMSRA dataset. Compared to the spatial distributions determined with the CAQRA dataset and 606 

observations (Figs. 9–10), the CAMSRA dataset greatly overestimates the surface SO2 and O3 concentrations in China. In 607 

addition, due to the higher spatial resolution (15 km) of the CAQRA dataset than that of the CAMSRA dataset (approximately 608 

50 km), our products provide more detailed spatial patterns of the surface air pollutants in China, which are better suited for 609 

air quality studies at the regional scale. Table 7 quantitatively compares the accuracy of the CAQRA dataset to that of the 610 

CAMSRA dataset in the estimation of the surface concentrations of gaseous air pollutants in China. Compared to CAMSRA 611 

(R2 = 0.00–0.23), CAQRA attains a much better performance in capturing the spatiotemporal variability in the surface 612 

concentrations of gaseous air pollutants in China, with R2 values ranging from 0.53 to 0.77. The MBE and RMSE values are 613 

also smaller in the CAQRA dataset than those in the CAMSRA dataset, especially for the SO2 and O3 concentrations. This is 614 

attributed to the assimilation of surface observations in CAQRA, while CAMSRA only assimilates satellite retrievals. These 615 

results suggest that the CAQRA dataset provides surface air quality datasets in China of a higher quality than the air quality 616 

datasets provided by the CAMSRA dataset, which is especially valuable for future relevant studies with high demands in 617 

spatiotemporal resolution and accuracy. 618 

5 Conclusions 619 

A high-resolution CAQRA dataset was produced in this study by assimilating surface observations of the PM2.5, PM10, 620 

SO2, NO2, CO and O3 concentrations retrieved from the CNEMC. This dataset provides time-consistent concentration fields 621 

of PM2.5, PM10, SO2, NO2, CO and O3 in China from 2013 to 2018 (will be extended in the future on a yearly basis) at high 622 

spatial (15 km) and temporal (1 hour) resolutions. The CAQRA dataset was produced with the ChemDAS, which applied the 623 

NAQPMS model as the forecast model, and the LETKF to assimilate the observations in the postprocessing mode. The 624 

background error covariance was calculated from ensemble simulations, which considered the emission uncertainties of the 625 

major air pollutants. An inflation technique was also applied to dynamically inflate the background error to prevent 626 

underestimation of the true background error covariance. 627 

The fivefold CV method was employed to validate the reanalysis dataset, which provided us with the first indication of 628 

the quality of the CAQRA dataset. The validation results suggested that the CAQRA dataset attains an excellent performance 629 

in representing the spatiotemporal variability of surface air pollutants in China, with CV R2 values ranging from 0.52 for the 630 

hourly SO2 concentration to 0.81 for the hourly PM2.5 concentration. The CV MBE values of the reanalysis data were -2.6 µg ∙631 

m@!, -6.8 µg ∙ m@!, -2.0 µg ∙ m@!, -2.3 µg ∙ m@!, -0.06 mg ∙ m@! and -2.3 µg ∙ m@! for the hourly concentrations of PM2.5, 632 

PM10, SO2, NO2, CO and O3, respectively. The CV RMSE values of the reanalysis data for these air pollutants were estimated 633 

to be approximately 21.3 µg ∙ m@! , 39.3 µg ∙ m@! , 24.9 	µg ∙ m@! , 16.4 µg ∙ m@! , 0.54 	mg ∙ m@!  and 21.9 µg ∙ m@! , 634 
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respectively. In the different regions of China, the NW and central regions exhibited relatively large biases and errors, which 635 

mainly occurred due to the relatively sparse observations and underestimated background errors. The Chinese air quality has 636 

substantially changed over the last six years. The observations indicate significant decreasing trends for all air pollutants except 637 

O3, which shows an increasing trend over the last six years. The reanalysis data reveal an excellent performance in representing 638 

the trends of all air pollutants in China, suggesting the suitability of the reanalysis data for air pollutant trend analysis in China. 639 

In addition to the CV method, the PM2.5 reanalysis data were also evaluated against independent observations retrieved 640 

from the U.S. Department State Air Quality Monitoring Program over China. The results suggested that the reanalysis data 641 

suitably reproduce the magnitude and variability of the observed PM2.5 concentration in all cities, with the MBE and RMSE 642 

values only ranging from -7.1 to -0.3 µg ∙ m@! and from 16.8 to 33.6 µg ∙ m@!, respectively. The reanalysis data of the gaseous 643 

air pollutants were also compared to the latest global reanalysis data contained in the CAMSRA dataset produced by the 644 

ECMWF. The CAMSRA dataset is of great value in providing three-dimensional distributions of multiple chemical species 645 

globally. As a regional dataset, our products attain a higher spatial resolution than does the CAMSRA dataset, which could 646 

better suit air quality studies at the regional scale. Although our products only provide the surface concentrations of six 647 

conventional air pollutants in China, the accuracy of the CAQRA dataset was estimated to be higher than that of the CAMSRA 648 

dataset due to the assimilation of surface observations. Hence, our products exhibit their own value in regional air quality 649 

studies with high demands in spatiotemporal resolution and accuracy. We also compared our PM2.5 reanalysis data to previous 650 

satellite estimates of the surface PM2.5 concentration, which revealed that the PM2.5 reanalysis data are more accurate than 651 

most satellite estimates and exhibit a relatively fine temporal resolution. 652 

As the first version of the CAQRA dataset, certain limitations remain that potential users should be aware of. First, the 653 

discontinuities in the availability and coverage of assimilated observations will affect the reanalysis quality and the estimated 654 

interannual trends. As shown in Sect.3.1, there has been a consistent increase in the number of assimilated observations from 655 

2013 to 2015 due to the increases of observation sites. The smaller number of assimilated observations in 2013 and 2014 would 656 

provide less constrains on the background state and thus degrade the reanalysis in these two years. This may cause spurious 657 

interannual changes and trends from 2013 to 2018. Thus, cautions are needed when using the reanalysis for long-term air 658 

quality change from 2013 to 2018. However, this problem would be not serious after 2015 when the number of assimilated 659 

observations become stable. In addition, the observation sites used in the assimilation are mainly urban or suburban sites that 660 

do not provide enough information on the air pollution in rural areas, which may influence the quality of CAQRA in rural 661 

areas. Secondly, we only perturbed the emissions to represent the forecast uncertainty in this study, which may underestimate 662 

the forecast uncertainty due to the omitting of other error sources, such as the uncertainty in poorly parameterized physical or 663 

chemical processes, and the uncertainty in meteorological simulation. The limited ensemble size would also lead to 664 

underestimation of the forecast error especially in the high-resolution assimilation applications. Although the inflation method 665 

is used to compensate for the missing errors, the underestimated forecast uncertainty would still degrad the assimilation 666 

performance to a certain extent as exemplified by the larger biases in the reanalysis over NW and Central regions. Thirdly, we 667 

did not consider the annual trend of emissions in the ensemble simulation. This would lead to temporal changes in the statistics 668 
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of innovation due to the substantial changes of observations, which would influence the long stability of the data assimilation 669 

as suggested by the 𝜒$ test although the OmA statistics generally confirms a passable stability in our assimilation system. Last 670 

but not least, the current CAQRA only contains the surface concentrations of the air pollutants in China which cannot provide 671 

the information on the vertical structure of the air pollutants. to further improve the accuracy of our air quality reanalysis 672 

dataset, in the future, an online EnKF run could be conducted to simultaneously correct the emissions and concentrations. 673 

More observation types, such as observation data of the PM2.5 composition, could also be assimilated to provide PM2.5 674 

composition fields in China, which could support both epidemiological studies and climate research. 675 
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Tables 696 

 697 

Table 1: Uncertainties in the emissions of the different species 698 

Species SO2a NOxa COa 

Non-

methane 

volatile 

organic 

compounds 

(NMVOCs)a 

NH3b PM10a PM2.5a 

Black 

carbon 

(BC)a 

Organic 

carbon 

(OC)a 

Emission 

Uncertainty 
12% 31% 70% 68% 53% 132% 130% 208% 258% 

a Emission uncertainty obtained from Zhang et al. (2009) 699 
b Emission uncertainty obtained from Streets et al. (2003) 700 

 701 
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Table 2: Site-based cross-validation results for the reanalysis data (outside brackets) and base simulation (inside 720 

brackets) from 2013 to 2018 at the different temporal scales 721 

 
PM2.5 (µg/m*) PM10 (µg/m*) 

R2 MBE  NMB (%) RMSE R2 MBE NMB (%) RMSE 

Hourly 0.81 (0.26) -2.6 (17.6) -4.9 (34.7) 21.3 (54.1) 0.72 (0.17) -6.8 (-7.6) -7.8 (-8.7) 39.3 (75.7) 

Daily 0.86 (0.32) -2.5 (17.4) -4.9 (34.3) 15.1 (46.4) 0.81 (0.22) -6.7 (-7.0) -7.7 (-8.1) 28.8 (64.1) 

Monthly 0.88 (0.40) -2.5 (17.4) -5.0 (34.1) 10.3 (33.6) 0.83 (0.28) -6.7 (-7.3) -7.7 (-8.4) 21.1 (44.4) 

Yearly 0.86 (0.37) -3.0 (15.2) -5.6 (28.7) 9.0 (28.9) 0.79 (0.27) -7.5 (-10.2) -8.3 (-11.3) 19.1 (38.2) 

 
SO2 (µg/m*) NO2 (µg/m*) 

R2 MBE NMB (%) RMSE R2 MBE NMB (%) RMSE 

Hourly 0.52 (0.03) -2.0 (25.5) -8.5 (106.6) 24.9 (67.2) 0.61 (0.22) -2.3 (-5.0) -6.9 (-14.8) 16.4 (24.9) 

Daily 0.67 (0.04) -2.0 (25.6) -8.5 (106.9) 17.5 (59.3) 0.67 (0.27) -2.3 (-5.0) -6.8 (-14.8) 12.3 (19.9) 

Monthly 0.74 (0.04) -2.1 (25.4) -8.6 (105.7) 13.2 (52.0) 0.67 (0.34) -2.3 (-5.0) -6.8 (-14.8) 10.0 (15.9) 

Yearly 0.71 (0.04) -2.6 (23.1) -9.9 (87.2) 12.0 (47.5) 0.62 (0.42) -2.5 (-5.9) -7.3 (-17.3) 9.1 (13.6) 

 
CO (mg/m*) O3 (µg/m*) 

R2 MBE NMB (%) RMSE R2 MBE NMB (%) RMSE 

Hourly 0.55 (0.17) -0.06 (-0.47) -6.1 (-44.7) 0.54 (0.87) 0.76 (0.35) -2.3 (-10.5) -4.0 (-17.8) 21.9 (38.3) 

Daily 0.61 (0.20) -0.06 (-0.47) -5.8 (-44.6) 0.44 (0.77) 0.74 (0.25) -2.3 (-10.4) -3.9 (-17.8) 16.6 (31.3) 

Monthly 0.62 (0.21) -0.06 (-0.47) -6.0 (-44.7) 0.36 (0.69) 0.74 (0.28) -2.3 (-10.4) -3.9 (-17.8) 13.1 (25.3) 

Yearly 0.52 (0.09) -0.08 (-0.51) -6.9 (-46.7) 0.37 (0.72) 0.53 (0.03) -2.2 (-9.8) -3.8 (-17.2) 10.4 (21.2) 

 722 

 723 

 724 

 725 

 726 

 727 

 728 
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Table 3: Calculated annual trends of the PM2.5 and PM10 concentrations in China 729 

 
PM2.5 (µg/m*) PM10 (µg/m*) 

Observation Cross-validation Base simulation Observation Cross-validation Base simulation 

China -5.8 (-13.4, -3.5)a -5.0 (-12.6, -3.1) -2.0 (-3.6, -0.7) -7.2 (-18.4, -3.2) -6.0 (-17.0, -2.9) -2.5 (-3.6, -0.7) 

NCP -7.0 (-15.7, -5.5) -6.6 (-14.5, -4.8) -3.5 (-4.7, -1.9) -8.3 (-20.4, -5.1) -7.6 (-19.2, -4.4) -4.2 (-4.7, -1.9) 

NE -7.5 (-11.0, -3.9) -6.7 (-10.0, -3.5) -3.2 (-5.8, -1.2) -11.2 (-17.4, -4.7) -10.4 (-16.4, -4.7) -3.7 (-5.8, -1.2) 

SE -5.2 (-11.3, -2.8) -4.9 (-10.6, -2.7) -0.9 (-3.1, 1.3) -6.0 (-14.9, -2.4) -5.8 (-13.2, -1.9) -1.6 (-3.1, 1.3) 

SW -6.3 (-12.8, -2.6) -4.9 (-12.2, -2.4) -1.4 (-7.5, 0.4) -7.9 (-19.9, -2.2) -5.5 (-17.5, -2.1) -1.3 (-7.5, 0.4) 

NW -5.7 (-11.6, 2.1)b -3.3 (-10.7, 1.8) -1.3 (-4.9, 2.9) -0.5 (-14.4, 1.6) -2.2 (-8.5, 3.4) -2.3 (-4.9, 2.9) 

Central -5.8 (-19.8, -0.8) -3.6 (-17.7, 0.2) -0.6 (-5.9, 0.9) -8.9 (-28.5, 0.2) -6.8 (-26.9, 0.5) -2.0 (-5.9, 0.9) 
a The bold font denotes that the calculated trend is significant at the 0.05 significance level, and the values in brackets denote 730 

the 95% confidence interval. 731 

 732 

 733 

 734 

 735 

 736 

Table 4: Independent validation results of the CAQRA dataset (outside brackets) and base simulation (inside brackets) 737 

against the observation data retrieved from the U.S. Department State Air Quality Monitoring Program over China 738 

 R2 MBE (µg/m*) NMB (%) RMSE (µg/m*) 

Beijing 0.86 (0.37) -0.3 (11.4) -0.3 (13.2) 33.6 (75.6) 

Shanghai 0.86 (0.34) 5.5 (39.6) 10.9 (78.3) 17.1 (64.8) 

Chengdu 0.85 (0.19) -7.1 (59.3) -8.9 (74.7) 23.1 (91.5) 

Guangzhou 0.74 (0.09) -3.3 (11.1) -7.5 (25.1) 16.8 (38.8) 

Shenyang 0.85 (0.29) -2.2 (16.8) -3.2 (24.3) 24.8 (59.1) 

 739 

 740 

 741 
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Table 5 Comparison of the accuracy of our PM2.5 reanalysis data to that of satellite estimates 742 

Reference Spatial 

resolution 

Temporal 

resolution 

Temporal 

coverage 

CV R2 CV RMSE Method 

Ma et al. (2016) 0.1° ×0.1° daily 2004–2013 0.79 27.4 LME + GAM 

Xue et al. (2019) 0.1° ×0.1° daily 2000–2016 0.56 30.2 CTM + HD-

expansion + 

GAM 

Xue et al. (2017) 0.1° ×0.1° daily 2014 0.72 23.0 CTM + LME + 

spatiotemporal 

kriging 

Chen et al. (2018) 0.1° ×0.1° daily 2005–2016 0.83 18.1 RF 

Lin et al. (2018) 1 km× 1km daily 2001 – 2015 0.78a 19.3a Semi-empirical 

Chen et al. (2019) 3 km×3 km daily 2014 – 2015 0.86 15.0 XGBoost + 

NELRM 

Yao et al. (2019) 6 km×6 km daily 2014 0.60 21.8 TEFR + GWR 

You et al. (2016) 0.1° ×0.1° daily 2014 0.79 18.6 GWR 

Zhan et al. (2017) 0.5° ×0.5° daily 2014 0.76 23.0 GW-GBM 

Li et al. (2017b) 0.1° ×0.1° daily 2015 0.82 16.4 Geoi-DBN 

Liu et al. (2019) 0.125° ×0.125° hourly 2016 0.86 17.3 RF 

This study 15 km× 15km hourly 2013–2018 0.81 21.3 EnKF 

  daily 2013–2018 0.86 15.1 EnKF 
a The accuracy of the PM2.5 estimates of Lin et al. (2018) was assessed at the monthly scale. 743 

LME: Linear mixed-effect model 744 

GWR: Geographically weighted regression model 745 

GAM: Generalized additive model 746 

HD-expansion: High-dimensional expansion 747 

RF: Random forest 748 

XGBoost: Extreme gradient boosting 749 

NELRM: Non-linear exposure-lag-response model 750 

TEFR: Time fixed-effects regression model 751 

GW-GBM: Geographically weighted gradient boosting machine 752 

Geoi-DBN: Geographical deep belief network 753 

 754 
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Table 6: Calculated annual trends of the SO2, NO2, CO and O3 concentrations in China 755 

 
SO2 (µg/m*) NO2 (µg/m*) 

Observation Cross-validation Base simulation Observation Cross-validation Base simulation 

China -6.2 (-12.0, -3.9) a -4.9 (-10.3, -3.0) -1.7 (-6.2, -0.8) -2.6 (-5.9, 0.1) -2.1 (-5.9, 0.1) -0.9 (-3.0, -0.3) 

NCP -9.5 (-16.5, -7.2) -8.1 (-14.5, -5.9) -1.7 (-4.1, -1.4) -2.0 (-5.9, 0.0) -2.1 (-5.6, 0.1) -0.6 (-1.6, -0.3) 

NE -6.8 (-14.6, -4.9) -5.9 (-12.1, -4.1) -1.8 (-7.6, -0.6) -3.0 (-4.9, -1.1) -3.3 (-5.4, -1.2) -1.3 (-3.8, -0.3) 

SE -4.4 (-6.7, -2.5) -3.7 (-5.6, -2.0) -1.0 (-2.9, -0.1) -2.4 (-5.3, 0.1) -2.5 (-5.1, 0.1) -1.0 (-1.8, -0.3) 

SW -4.2 (-8.8, -1.9) -2.8 (-7.6, -1.3) -3.4 (-15.6, -1.9) -1.8 (-6.2, 0.3) -1.6 (-6.5, 0.2) -0.7 (-3.9, -0.2) 

NW -2.3 (-11.1, 0.6) -4.2 (-7.7, -1.1) -1.9 (-13.7, 1.0) -3.4 (-8.4, 2.3) -1.7 (-9.5, 1.3) -1.0 (-6.5, 0.3) 

Central -7.9 (-17.5, -3.3) -5.5 (-15.7, -2.3) -0.6 (-10.2, 0.0) -2.0 (-6.6, 1.9) -1.0 (-8.0, 2.2) -0.5 (-3.8, 0.1) 

 
CO (mg/m*) O3 (µg/m*) 

Observation Cross-validation Base simulation Observation Cross-validation Base simulation 

China 
-0.12  

(-0.17, -0.06) 

-0.12  

(-0.18, -0.07) 

-0.02 

(-0.05 -0.01) 
3.5 (2.1, 5.0) 3.8 (2.1, 5.0) 2.0 (0.1, 5.9) 

NCP 
-0.18  

(-0.25, -0.11) 

-0.17 

(-0.24, -0.11) 

-0.03 

(-0.05, -0.02) 
5.3 (2.5, 8.7) 5.5 (2.4, 8.8) 1.4 (-0.5, 5.0) 

NE 
-0.13 

(-0.21, -0.05) 

-0.13 

(-0.20, -0.06) 

-0.03 

(-0.07, -0.01) 
4.8 (1.5, 10.0) 4.6 (1.4, 9.5) 2.8 (-0.4, 8.0) 

SE 
-0.06 

(-0.09, -0.04) 

-0.06 

(-0.08, -0.04) 

-0.01 

(-0.02, -0.01) 
2.3 (0.3, 3.4) 2.6 (0.8, 3.5) 1.7 (0.3, 3.0) 

SW 
-0.11 

(-0.19, -0.04) 

-0.09 

(-0.21, -0.04) 

-0.02 

(-0.06, -0.01) 
3.2 (1.2, 5.0) 3.5 (1.8, 5.4) 2.7 (-0.9, 7.1) 

NW 
-0.14 

(-0.46, 0.04) 

-0.14 

(-0.30, 0.04) 

-0.03 

(-0.06, 0.00) 
5.4 (1.6, 9.8) 4.0 (1.4, 10.1) 2.6 (-0.2, 8.8) 

Central 
-0.16 

(-0.27, -0.09) 

-0.17 

(-0.25, -0.10) 

-0.01 

(-0.06, 0.00) 
5.3 (2.3, 9.2) 4.5 (1.4, 7.8) 2.2 (-0.3, 7.7) 

a The bold font denotes that the calculated trend is significant at the 0.05 significance level, and the values in brackets denote 756 

the 95% confidence interval. 757 

 758 

 759 

 760 



51 
 

Table 7: Comparison of the data accuracy of CAQRA and CAMSRA in China 761 

 
CAQRA CAMSRA 

SO2  
(µg/m*) 

NO2  
(µg/m*) 

CO 
 (mg/m*) 

O3  
(µg/m*) 

SO2  
(µg/m*) 

NO2  
(µg/m*) 

CO  
(mg/m*) 

O3  
(µg/m*) 

R2 0.53 0.61 0.55 0.77 0.04 0.23 0.13 0.00 

MBE -2.0 -2.3 -0.1 -2.3 19.4 1.7 -0.2 30.6 

NMB (%) -8.5 -6.9 -6.1 -4.0 81.2 5.2 -17.5 52.1 

RMSE 24.8 16.4 0.5 21.9 54.5 27.3 0.9 55.2 

 762 

 763 

 764 

 765 

 766 

 767 

 768 

 769 

 770 

 771 

 772 

 773 

 774 

 775 

 776 

 777 

 778 

 779 

 780 

 781 

 782 

 783 

 784 

 785 



52 
 

Figures 786 

 787 
Figure 1: Modelling domain of the ensemble simulation overlain on the distribution of the observation sites of the CNEMC. The 788 

different colours denote the different regions in China, namely, the North China Plain (NCP), Northeast China (NE), Southwest 789 
China (SW), Southeast China (SE), Northwest China (NW) and Central China. 790 
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 791 
Figure 2: Illustration of the local analysis scheme used in the assimilation. The plus and dot symbols denote the centres 792 

of the model grids and the location of the observation sites, respectively. The large rectangular region denotes the local 793 

region, and the shaded region denotes the updated region. 794 

 795 

 796 

 797 
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 798 

 799 
Figure 3: Time series of the monthly mean 𝝌𝟐 values (black line) and the number of assimilated observations per month 800 

(blue bars) for (a) PM2.5, (b) PM10, (c) SO2, (d) NO2, (e) CO and (f) O3. 801 

 802 
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 803 
Figure 4: Spatial distributions of the six-year mean OmF (left panel), OmA (middle panel) and analysis increment 804 

(right panel) for different species in China. 805 
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 806 
Figure 5: Spatial distributions of the (a–c) PM2.5 and (d–f) PM10 concentrations in China from (a, d) CAQRA, (b, e) 807 

base simulation and (c, f) observations averaged from 2013 to 2018. 808 

 809 
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 810 
Figure 6: Time series of the site mean hourly (a) PM2.5 and (b) PM10 concentrations in Beijing obtained from the 811 

observations and CAQRA. 812 
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 813 
Figure 7: Time series of the monthly mean PM2.5 concentrations in (a) China, (b) NCP, (c) NE, (d) SE, (e) SW, (f) NW 814 

and (f) central regions obtained from the cross-validation run (red line), base simulation (blue line) and observations 815 

(black dots). 816 
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 817 
Figure 8: Same as Fig. 7 but for the PM10 concentration. 818 
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 819 
Figure 9: Same as Fig. 5 but for the SO2 and CO concentrations. 820 
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 821 
Figure 10: Same as Fig. 5 but for NO2 and O3. 822 
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 823 
Figure 11: Same as Fig. 7 but for the SO2 concentration. 824 
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 825 
Figure 12: Same as Fig. 7 but for the NO2 concentration. 826 
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 827 
Figure 13: Same as Fig. 7 but for the CO concentration. 828 
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 829 
Figure 14: Same as Fig. 7 but for the O3 concentration. 830 
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 831 
Figure 15: Spatial distributions of the multiyear average concentrations of (a) SO2, (b) NO2, (c) CO and (d) O3 from 832 

2013 to 2018 obtained from CAMSRA. 833 
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Supplementary 1142 

Tables 1143 

Table S1: CV results of the reanalysis (outside bracket) and base simulation (in bracket) for PM2.5 concentrations in 1144 

different regions of China at different temporal scales 1145 

PM2.5  

(µg/m*) 

NCP NE 

R2 MBE NMB(%) RMSE R2 MBE NMB (%) RMSE 

Hourly 0.85 (0.33) -3.3 (22.4) -4.8 (32.8) 25.1 (62.6) 0.77 (0.25) -2.6 (2.8) -5.8 (6.5) 22.6 (44.5) 

Daily 0.90 (0.44) -3.4 (22.3) -4.9 (32.4) 17.5 (51.2) 0.86 (0.32) -2.6 (2.6) -5.9 (6.0) 14.7 (35.1) 

Monthly 0.92 (0.56) -3.4 (22.2) -4.9 (32.4) 11.4 (34.1) 0.86 (0.38) -2.6 (2.7) -5.9 (6.0)  9.7 (21.4) 

Yearly 0.92 (0.56) -3.6 (20.8) -5.0 (29.2)  8.7 (27.3) 0.79 (0.35) -3.1 (0.4) -6.6 (0.8)  8.8 (16.7) 

 
SE SW 

R2 MBE NMB(%) RMSE R2 MBE NMB (%) RMSE 

Hourly 0.85 (0.25) -1.8 (22.2) -3.8 (47.6) 14.9 (51.5) 0.79 (0.22) -1.4 (30.3) -3.4 (74.7) 16.5 (57.4) 

Daily 0.90 (0.31) -1.8 (22.2) -3.8 (47.4) 10.6 (45.4) 0.86 (0.29) -1.4 (30.0) -3.4 (74.2) 12.1 (51.6) 

Monthly 0.92 (0.45) -1.8 (22.1) -3.8 (47.2)  7.4 (33.7) 0.86 (0.49) -1.5 (29.8) -3.7 (73.3)  9.7 (42.8) 

Yearly 0.90 (0.37) -2.0 (20.5) -4.0 (42.0)  6.1 (29.3) 0.79 (0.47) -2.2 (27.2) -5.0 (63.2)  9.5 (38.8) 

 
NW Central 

R2 MBE NMB(%) RMSE R2 MBE NMB (%) RMSE 

Hourly 0.52 (0.11) -7.3 (-28.7) -13.1 (-51.1) 52.1 (73.0) 0.72 (0.23) -4.1 (0.8)  -8.2 (1.6) 26.6 (47.5) 

Daily 0.66 (0.15) -7.5 (-29.0) -13.2 (-51.3) 39.4 (66.0) 0.83 (0.30) -4.2 (0.7)  -8.3 (1.4) 19.1 (39.9) 

Monthly 0.72 (0.28) -7.4 (-28.9) -13.1 (-51.3) 26.9 (50.3) 0.85 (0.42) -4.2 (0.7)  -8.2 (1.4) 13.1 (26.1) 

Yearly 0.64 (0.40) -9.8 (-33.5) -16.1 (-54.9) 23.5 (43.1) 0.77 (0.31) -5.4 (-3.6) -10.1 (-6.7) 12.5 (24.3) 

 1146 
 1147 

 1148 
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 1149 

Table S2: CV results of the reanalysis (outside bracket) and base simulation (in bracket) for PM10 concentrations in 1150 

different regions of China at different temporal scales 1151 

PM10 

 (µg/m*) 

NCP NE 

R2 MBE NMB(%) RMSE R2 MBE NMB (%) RMSE 

Hourly 0.79 (0.23) -7.7 (-14.6) -6.4 (-12.1) 43.7 (88.3) 0.71 (0.18) -7.6 (-23.6)  -9.6 (-29.8) 39.8 (70.8) 

Daily 0.86 (0.31) -7.6 (-14.2) -6.3 (-11.7) 30.9 (71.8) 0.79 (0.25) -7.6 (-23.6)  -9.7 (-30.0) 27.1 (56.8) 

Monthly 0.86 (0.38) -7.6 (-14.2) -6.3 (-11.8) 21.4 (44.9) 0.76 (0.29) -7.7 (-23.6)  -9.8 (-30.0) 19.4 (39.6) 

Yearly 0.85 (0.46) -7.6 (-15.8) -6.2 (-12.8) 17.6 (33.0) 0.67 (0.31) -8.3 (-26.5) -10.3 (-32.6) 18.4 (36.2) 

 
SE SW 

R2 MBE NMB(%) RMSE R2 MBE NMB (%) RMSE 

Hourly 0.77 (0.18) -4.4 (6.9) -5.9 (9.4) 26.0 (61.2) 0.69 (0.15) -5.1 (13.0) -7.5 (19.1) 30.2 (66.2) 

Daily 0.85 (0.23) -4.1 (8.1) -5.6 (11.1) 18.6 (52.0) 0.77 (0.21) -5.0 (13.1) -7.4 (19.6) 22.4 (56.5) 

Monthly 0.85 (0.38) -4.2 (7.5) -5.7 (10.2) 13.7 (33.3) 0.76 (0.38) -5.2 (12.5) -7.8 (18.5) 18.7 (41.4) 

Yearly 0.81 (0.36) -4.7 (4.9) -6.1 (6.5) 12.3 (26.3) 0.62 (0.38) -6.8 (8.7) -9.6 (12.2) 19.3 (35.7) 

 
NW Central 

R2 MBE NMB(%) RMSE R2 MBE NMB (%) RMSE 

Hourly 0.46 (0.08) -21.5 (-88.5) -18.0 (-74.1) 
105.5 

(150.2) 
0.61 (0.11) -14.6 (-45.6) -14.1 (-43.9) 57.3 (96.4) 

Daily 0.56 (0.11) -21.5 (-89.3) -17.9 (-74.1) 
 85.5 

(141.6) 
0.72 (0.14) -14.6 (-45.5) -14.1 (-43.8) 42.1 (84.6) 

Monthly 0.59 (0.17) -20.8 (-89.5) -17.2 (-74.0) 
 64.0 

(118.9) 
0.74 (0.28) -14.6 (-45.3) -14.1 (-43.8) 30.2 (62.5) 

Yearly 0.58 (0.23) -23.8 (-92.3) -19.3 (-74.7) 
 55.8 

(110.2) 
0.67 (0.25) -16.4 (-50.1) -15.4 (-46.8) 28.0 (60.4) 

 1152 

 1153 

 1154 
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Table S3: CV results of the reanalysis (outside bracket) and base simulation (in bracket) for SO2 concentrations in 1156 

different regions of China at different temporal scales 1157 

SO2  

(µg/m*) 

NCP NE 

R2 MBE NMB(%) RMSE R2 MBE NMB (%) RMSE 

Hourly 0.62 (0.10) -3.6 (26.4)  -9.4 (69.4) 31.5 (63.1) 0.46 (0.08) -2.0 (5.1) -6.9 (17.5) 34.8 (53.2) 

Daily 0.74 (0.16) -3.6 (26.4)  -9.4 (69.6) 22.8 (52.7) 0.62 (0.13) -2.0 (5.1) -7.0 (17.6) 23.8 (42.2) 

Monthly 0.79 (0.19) -3.7 (26.2)  -9.6 (68.4) 17.1 (43.6) 0.71 (0.14) -2.0 (5.0) -6.9 (17.3) 17.9 (34.9) 

Yearly 0.81 (0.18) -4.2 (23.7) -10.2 (56.9) 13.3 (36.1) 0.56 (0.14) -2.4 (2.7) -7.6 (8.7) 15.9 (27.7) 

 
SE SW 

R2 MBE NMB(%) RMSE R2 MBE NMB (%) RMSE 

Hourly 0.42 (0.01) -1.0 (29.8) -5.7 (169.6) 14.6 (69.3) 0.27 (0.01) -1.9 (44.2) 
-12.1 

(277.2) 
16.7 (88.1) 

Daily 0.55 (0.01) -1.0 (29.9) -5.7 (170.2) 10.5 (63.3) 0.38 (0.01) -1.9 (44.1) 
-12.2 

(276.5) 
11.8 (80.3) 

Monthly 0.61 (0.01) -1.0 (29.7) -5.7 (168.6)  7.8 (55.8) 0.46 (0.02) -2.0 (43.9) 
-12.4 

(273.7) 
 9.1 (73.7) 

Yearly 0.66 (0.01) -1.4 (28.0) -7.1 (144.5)  7.9 (52.7) 0.53 (0.01) -2.7 (41.2) 
-15.2 

(231.3) 
 9.5 (68.3) 

 
NW Central 

R2 MBE NMB(%) RMSE R2 MBE NMB (%) RMSE 

Hourly 0.31 (0.01) -0.3 (9.4)  -2.3 (61.6) 22.7 (40.4) 0.30 (0.02) -4.4 (13.2) -17.0 (51.3) 36.0 (58.9) 

Daily 0.42 (0.01) -0.3 (9.4)  -1.8 (62.2) 17.8 (36.2) 0.49 (0.03) -4.4 (13.2) -17.0 (51.5) 23.6 (49.1) 

Monthly 0.48 (0.03) -0.3 (9.3)  -2.2 (61.1) 13.4 (30.3) 0.59 (0.03) -4.4 (13.1) -17.0 (51.0) 18.2 (43.2) 

Yearly 0.29 (0.00) -1.9 (6.6) -10.5 (35.9) 15.8 (28.0) 0.50 (0.00) -5.6 (8.6) -19.0 (29.3) 18.6 (40.2) 
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Table S4: CV results of the reanalysis (outside bracket) and base simulation (in bracket) for NO2 concentrations in 1163 

different regions of China at different temporal scales 1164 

NO2  

(µg/m*) 

NCP NE 

R2 MBE NMB(%) RMSE R2 MBE NMB (%) RMSE 

Hourly 0.67 (0.20) -1.4 (-3.0) -3.5 (-7.1) 16.8 (26.5) 0.61 (0.27) -1.6 (-5.9) -5.0 (-19.1) 15.8 (22.4) 

Daily 0.72 (0.22) -1.4 (-2.9) -3.3 (-7.1) 12.4 (20.8) 0.66 (0.34) -1.5 (-5.9) -4.9 (-19.0) 11.7 (17.2) 

Monthly 0.72 (0.24) -1.4 (-2.9) -3.3 (-7.1)  9.3 (15.5) 0.64 (0.37) -1.5 (-5.9) -5.0 (-19.1)  9.3 (13.7) 

Yearly 0.67 (0.36) -1.4 (-3.8) -3.3 (-9.0)  7.5 (11.0) 0.64 (0.45) -1.5 (-6.4) -4.8 (-20.3)  7.8 (11.7) 

 
SE SW 

R2 MBE NMB(%) RMSE R2 MBE NMB (%) RMSE 

Hourly 0.64 (0.23) -1.9 (-1.3) -5.9 (-4.0) 14.9 (24.1) 0.49 (0.19) -3.9 ( -9.9) -14.0 (-35.7) 16.4 (23.2) 

Daily 0.71 (0.28) -1.8 (-1.3) -5.8 (-4.0) 11.2 (19.2) 0.55 (0.28) -3.9 ( -9.9) -14.0 (-35.7) 12.8 (18.7) 

Monthly 0.72 (0.36) -1.8 (-1.2) -5.8 (-3.9)  8.8 (14.7) 0.48 (0.32) -4.0 (-10.0) -14.4 (-36.0) 12.6 (17.2) 

Yearly 0.66 (0.49) -1.9 (-2.2) -6.0 (-6.6)  7.8 (11.7) 0.46 (0.37) -4.6 (-11.0) -16.1 (-38.7) 11.8 (16.4) 

 
NW Central 

R2 MBE NMB(%) RMSE R2 MBE NMB (%) RMSE 

Hourly 0.46 (0.20) -4.3 (-18.0) -12.9 (-54.4) 24.3 (31.5) 0.50 (0.20) -5.2 (-16.7) -15.1 (-48.3) 20.5 (29.2) 

Daily 0.55 (0.27) -4.1 (-18.0) -12.5 (-54.4) 18.3 (27.0) 0.58 (0.28) -5.2 (-16.7) -15.0 (-48.3) 15.4 (24.7) 

Monthly 0.59 (0.40) -4.2 (-18.0) -12.7 (-54.3) 15.3 (23.8) 0.61 (0.40) -5.2 (-16.6) -15.1 (-48.3) 12.8 (21.6) 

Yearly 0.40 (0.36) -6.0 (-19.7) -17.3 (-56.3) 16.5 (23.8) 0.55 (0.36) -5.6 (-17.6) -16.0 (-50.1) 12.2 (21.4) 

 1165 

 1166 

 1167 

 1168 
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Table S5: CV results of the reanalysis (outside bracket) and base simulation (in bracket) for CO concentrations in 1172 

different regions of China at different temporal scales 1173 

CO 

(mg/m*) 

NCP NE 

R2 MBE NMB(%) RMSE R2 MBE NMB (%) RMSE 

Hourly 0.67 (0.25) -0.03 (-0.59) -2.49 (-43.4) 0.64 (1.13) 0.50 (0.20) -0.05 (-0.51) -5.3 (-51.9) 0.59 (0.88) 

Daily 0.72 (0.31) -0.03 (-0.59) -2.15 (-43.3) 0.50 (0.99) 0.56 (0.25) -0.05 (-0.51) -4.9 (-51.7) 0.46 (0.78) 

Monthly 0.74 (0.34) -0.03 (-0.59) -2.24 (-43.5) 0.38 (0.85) 0.59 (0.25) -0.05 (-0.51) -5.2 (-52.0) 0.37 (0.70) 

Yearly 0.71 (0.14) -0.04 (-0.64) -2.75 (-45.1) 0.32 (0.85) 0.55 (0.14) -0.06 (-0.56) -5.9 (-54.0) 0.35 (0.74) 

 
SE SW 

R2 MBE NMB(%) RMSE R2 MBE NMB (%) RMSE 

Hourly 0.42 (0.13) -0.06 (-0.36) -6.4 (-38.2) 0.39 (0.62) 0.36 (0.07) -0.08 (-0.32) -9.4 (-36.4) 0.46 (0.65) 

Daily 0.45 (0.15) -0.06 (-0.36) -6.1 (-38.0) 0.34 (0.57) 0.40 (0.08) -0.08 (-0.31) -9.1 (-36.3) 0.39 (0.59) 

Monthly 0.44 (0.14) -0.06 (-0.36) -6.2 (-38.1) 0.28 (0.51) 0.40 (0.08) -0.08 (-0.32) -9.4 (-36.7) 0.34 (0.54) 

Yearly 0.38 (0.05) -0.06 (-0.38) -6.5 (-39.3) 0.25 (0.50) 0.36 (0.01) -0.09 (-0.36) -10.1 (-39.1) 0.36 (0.57) 

 
NW Central 

R2 MBE NMB(%) RMSE R2 MBE NMB (%) RMSE 

Hourly 0.38 (0.12) -0.19 (-1.02) -15.0 (-79.3) 1.13 (1.55) 0.44 (0.22) -0.13 (-0.76) -11.2 (-65.2) 0.73 (1.11) 

Daily 0.45 (0.18) -0.19 (-1.01) -14.6 (-79.2) 0.92 (1.43) 0.49 (0.27) -0.13 (-0.76) -10.8 (-65.1) 0.62 (1.04) 

Monthly 0.50 (0.29) -0.19 (-1.02) -15.1 (-79.3) 0.75 (1.32) 0.53 (0.32) -0.13 (-0.76) -11.1 (-65.2) 0.52 (0.97) 

Yearly 0.13 (0.12) -0.31 (-1.18) -21.1 (-80.8) 0.85 (1.35) 0.19 (0.08) -0.17 (-0.84) -13.3 (-67.3) 0.69 (1.08) 

 1174 

 1175 

 1176 
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 1178 
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Table S6: CV results of the reanalysis (outside bracket) and base simulation (in bracket) for O3 concentrations in 1181 

different regions of China at different temporal scales 1182 

O3 

(µg/m*) 

NCP NE 

R2 MBE NMB(%) RMSE R2 MBE NMB (%) RMSE 

Hourly 0.83 (0.50) -3.9 (-24.5) -6.1 (-39.1) 22.1 (44.3) 0.76 (0.38) -3.6 (-15.4) -6.0 (-25.6) 21.0 (36.7) 

Daily 0.83 (0.48) -3.8 (-24.5) -6.0 (-39.1) 16.3 (37.0) 0.76 (0.34) -3.6 (-15.3) -5.9 (-25.5) 16.4 (30.8) 

Monthly 0.85 (0.62) -3.8 (-24.4) -6.1 (-39.1) 12.6 (31.6) 0.76 (0.42) -3.6 (-15.2) -5.9 (-25.4) 13.1 (25.2) 

Yearly 0.72 (0.29) -3.7 (-23.1) -6.2 (-38.6) 9.2 (26.8) 0.62 (0.18) -3.5 (-14.4) -6.1 (-25.0) 10.0 (20.4) 

 
SE SW 

R2 MBE NMB(%) RMSE R2 MBE NMB (%) RMSE 

Hourly 0.77 (0.57) -2.3 (-10.0) -3.9 (-17.4) 21.1 (38.2) 0.69 (0.40) 0.8 (9.6) 1.4 (18.0) 22.2 (33.6) 

Daily 0.69 (0.44) -2.2 (-10.0) -3.8 (-17.3) 15.8 (31.0) 0.64 (0.34) 0.8 (9.7) 1.5 (18.1) 17.4 (26.7) 

Monthly 0.69 (0.43) -2.2 (-10.0) -3.9 (-17.3) 12.4 (24.2) 0.64 (0.44) 0.8 (9.7) 1.6 (18.1) 14.4 (21.1) 

Yearly 0.45 (0.07) -2.4 (-10.1) -4.2 (-17.7) 10.0 (20.7) 0.42 (0.28) 1.3 (10.0) 2.6 (19.4) 12.0 (17.7) 

 
NW Central 

R2 MBE NMB(%) RMSE R2 MBE NMB (%) RMSE 

Hourly 0.52 (0.31) -2.7 (-2.2) -4.6 (-3.8) 28.3 (33.2) 0.71 (0.45) -1.5 (-0.8) -2.5 (-1.3) 23.9 (32.5) 

Daily 0.50 (0.31) -2.6 (-2.1) -4.5 (-3.6) 22.9 (26.6) 0.67 (0.42) -1.4 (-0.7) -2.4 (-1.1) 17.8 (23.9) 

Monthly 0.58 (0.42) -2.6 (-2.1) -4.5 (-3.6) 19.1 (22.1) 0.72 (0.56) -1.4 (-0.7) -2.4 (-1.2) 13.9 (17.6) 

Yearly 0.37 (0.24) -1.6 (-0.6) -2.9 (-1.1) 15.7 (17.1) 0.53 (0.30) -0.8 (0.2) -1.4 (0.4) 11.6 (14.1) 

 1183 

 1184 

 1185 

 1186 

 1187 
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 1190 

Figures 1191 

 1192 
Figure S1: Removal ratio of all observation sites in China from 2013 to 2018 for different species detected by the 1193 

automatic outlier detection method. 1194 

 1195 
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 1196 
Figure S2: Spatial distributions of differences in annual concentrations of six air pollutants in China before and after 1197 

quality control averaged from 2013 to 2018. 1198 

 1199 
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 1200 
Figure S3: Correlations between species in the background error covariance matrix, estimated from the LETKF 1201 

ensemble averaged from 2013 to 2018. The global mean of the covariance estimated for each station is plotted. 1202 

 1203 
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 1204 
Figure S4: Correlations between species in the background error covariance matrix, estimated from the LETKF 1205 

ensemble averaged in different seasons from 2013 to 2018. The global mean of the covariance estimated for each station 1206 

is plotted. 1207 
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 1208 
Figure S5: Time series of monthly mean OmF and OmA normalized mean bias in different regions of China for 1209 

different species. 1210 

 1211 
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  1212 
Figure S6: Time series of monthly mean OmF and OmA normalized root mean square error in different regions of 1213 

China for different species. 1214 
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 1215 
Figure S7: Spatial distributions of the PM2.5 concentrations in China during (a) spring, (b) summer, (c) autumn and (d) 1216 

winter averaged from 2013 to 2018. 1217 
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 1218 
Figure S8: Same as Fig. S7 but for PM10 concentrations. 1219 

 1220 
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 1221 
Figure S9: Same as Fig. S7 but for SO2 concentrations. 1222 
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 1223 
Figure S10: Same as Fig. S7 but for CO concentrations. 1224 
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 1225 
Figure S11: Same as Fig. S7 but for NO2 concentrations. 1226 
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 1227 
Figure S12: Same as Fig. S7 but for O3 concentrations. 1228 


