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Response to Referee #1 (essd-2020-100) 

We Thank Reviewer for his/her constructive comments. 

Responses to the Specific comments: 

General comments: This study presents high-resolution air quality reanalysis products over China for 2013-

2018. The air quality reanalysis assimilated the country-wide surface observations using the regional EnKF data 

assimilation. The assimilated results were evaluated against the assimilated and independent measurements. The 

topic of this study is very interesting, and the produced data sets can be useful for various applications. The paper 

is generally well written. However, because this is the first paper describing the system and data, more careful 

description of the system and its performance would be useful for readers and future developments.  

Reply: The authors appreciate the reviewer for his/her constructive and up-to-point comments. We have 

carefully considered the comments and revised the manuscript accordingly. Please refer to our responses 

for more details given below. 

 

Comment 1: The representativeness error estimation is not clear. How did you estimate L_repr for each station 

and  𝜀!"# for each species? Urban and rural observations could be (or should be) used in a different way, but this 

is not mentioned. Were any temporal averages applied to the observations? Temporal variability information could 

be used a part of representativeness errors. Further explanation is needed. 

Reply: Thanks for this important suggestion. The representativeness error arises from the different spatial scales 

that the gridded model results and discrete observations represent, which is parameterized by the formula proposed 

by Elbern et al. (2007) in this study: 

𝑟$%&$ = $
∆(

)!"#!
× 𝜖!"#                    (1) 

where 𝑟$%&$  represents the representativeness error, ∆𝑥 represents the model resolution, 𝐿$%&$  represents the 

characteristic representativeness length of the observation site and 𝜀!"#  represents the error characteristic 

parameters for different species.  

We agree with the reviewer that the 𝐿$%&$ should be treated differently for urban and rural sites since the 

urban sites usually have smaller representativeness length than the rural sites due to the larger representativeness 

error. According to Elbern et al. (2007), the representativeness length of urban and rural sites were 2km and 10km. 

Considering that the observation sites from CNEMC were almost city (urban) sites (>90%), the 𝐿$%&$  was 

assigned to be 2km in this study for simplicity. 

For the estimations of 𝜀!"#, previous studies (Chen et al., 2019; Feng et al., 2018; Jiang et al., 2013; Ma et 

al., 2019; Pagowski and Grell, 2012; Peng et al., 2017; Werner et al., 2019) usually assigned the 𝜀!"# empirically 
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to be half of the measurement error following the study by Pagowski et al. (2010). In this study, the 𝜀!"# was 

obtained from Li et al. (2019) who estimated the 𝜀!"# based on a dense observation network in Beijing-Tianjin-

Hebei region. In their study, the representativeness error of each species’ observation was first estimated by the 

spatiotemporal averaged standard deviation of the observed values within a 30km×30km grid: 

𝑟$%&$,+ =
,
-.
∑ ∑ 𝑆/,0,+.

01,
-
/1,                      (2) 

where 𝑟$%&$,+  represents the representativeness errors of the observations for species 𝑖 , 𝑆/,0,+  represents the 

standard deviation of the observed values of species 𝑖 at different sites that are located in a same grid 𝑚 at time 

𝑡, 𝑀 and 𝑇 represents the total number of grid and observation time. After that, the 𝜀+!"# for species 𝑖 were 

estimated by a transformation of Eq. (1): 

𝜀+!"# = 𝑟$%&$,+/$
∆(

)!"#!
                      (3) 

where ∆𝑥  is equal to 30km. Based on the estimated 𝐿$%&$  and the 𝜀+!"#  for different species, the 

representativeness errors are estimated using Eq. (1) by specifying the ∆𝑥 to be 15km. Following the suggestions 

of the reviewer, we have added more explanation to the estimations of representativeness error in the revised 

manuscript (please see lines 223–245 in the revised manuscript). 

 

Comment 2: The assimilated results are compared with the independent observations for PM but with the 

assimilated observations only for other species (they only demonstrate self-consistency. CAMS is not observation). 

This provides limited information on the performance of the developed system. The Chi-square diagnostic can be 

used to see whether the Kalman filtering worked properly. OmF & OmA statistics can also be demonstrated. Given 

limited validation data, more efforts are required to demonstrate the performance. 

Reply: Thanks for this important comment. Following the suggestions of reviewer, we have added the analysis of 

𝜒2 diagnosis and the statistics of observation minus forecast (OmF: 𝒚𝒐 −𝑯(𝒙𝒃)) & observation minus analysis 

(OmA: 𝒚𝒐 −𝑯(𝒙𝒂) in the revised manuscript to demonstrate the performance of our assimilation system (please 

see lines 317–369 in the revised manuscript).  

𝜒2 diagnosis is a robust criterion for validating the estimated background and observation error covariance 

in the data assimilation (e.g., Menard et al., 2000; Miyazaki et al., 2015; Miyazaki et al., 2012), which is estimated 

by comparing the sample covariance of OmF with the sum of estimated background and observation error 

covariance in the observational space (𝐇𝐁𝐇𝐓 + 𝐑): 

𝒀 = ,
√/

>𝐇𝐁𝐇𝐓 + 𝐑?8
$
%(𝒚𝒐 −𝑯𝑿𝒃)                 (4) 

𝜒2 = 𝒀𝑻𝒀                      (5) 

where m is the number of observations. According to the Kalman filtering theory, the mean of 𝜒2 should approach 
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1 if the background and observation error covariances are properly specified, while values greater (lower) than 1 

indicates the underestimation (overestimation) of the observation and/or background error covariance. 

Figure R1 shows the time series of the monthly 𝜒2 values (black lines) for different species as well as the 

number of assimilated observations per month (blue bars). The mean values of 𝜒2 are generally within 50% 

difference from the ideal value of 1 for PM2.5, PM10, NO2 and O3, which suggests that the observation and 

background error covariance are generally well specified in the analysis of these species. Although the 𝜒2 values 

for these species showed pronounced seasonal variations that reflects the different error characteristics in different 

seasons, the 𝜒2 values were roughly stable for PM2.5 and O3 throughout the period, and for NO2 and PM10 after 

2015 when the number of assimilated observations become stable, which generally shows the long-term stability 

of the performance of data assimilation. The 𝜒2 values for SO2 were nevertheless greater than 1 in most cases, 

especially before 2017. This would be more relevant to the underestimations of background error covariance of 

SO2 as we only specified 12% uncertainty in the SO2 emissions. suggesting that the emission uncertainty of SO2 

may be underestimated by Zhang et al. (2009). There were also pronounced annual trends in the 𝜒2 values of SO2, 

which may be attributed to the increases of observation number from 2013 to 2014 and the substantial decreases 

of SO2 observations. Although smaller than the 𝜒2 values of SO2, the values for CO were greater than 1 in most 

cases, suggesting the underestimations of the error covariances. Obvious decreasing trend can also be found in the 

𝜒2 values of CO. The 𝜒2 test results suggest that our data assimilation system has relatively poor performance in 

the analysis of CO and SO2 concentrations than the other four species, which is consistent with the cross-validation 

results which showed smaller 𝑅2 values for the reanalysis data of CO and SO2 concentrations (Sect.4.2.2 in the 

revised manuscript). The annual trend of 𝜒2 values in CO and SO2 also indicates relatively weak stability in the 

performance of data assimilation system on assimilating CO and SO2 observations, which may influence the 

analysis of the annual trends in these two species. Based on these results, we have added discussions on this issue 

in our revised manuscript to inform the potential users of the problems that they should be aware of (please see 

lines 667 – 670 in the revised manuscript). 
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Figure R1: Time series of the monthly mean 𝝌𝟐  values (black lines) and the number of assimilated 

observations per month (blue bars) for (a) PM2.5, (b) PM10, (c) SO2, (d) NO2, (e) CO and (f) O3. 

Spatial distributions of six-year averaged OmF & OmA values for each species in the observation space were 

then analyzed to investigate the structure of forecast bias and to measure the improvement in the reanalysis (Fig. 

R2). The analysis increment, which is estimated from the differences between the analysis and forecast, is also 

plotted to measure the adjustment made in the model space. The OmF values have showed positive model biases 

(i.e., negative OmF) in the PM2.5 and SO2 concentrations in east China, as well as PM10 and O3 concentrations south 

China. The negative model biases (i.e., positive OmF) were mainly found in the PM2.5 concentrations in west China, 

the PM10 concentrations in north China, the O3 concentrations in central-east China, as well as the concentrations 

of CO and NO2 throughout the whole China. 

The OmA values suggest that the data assimilation removes most of the model biases for each species, which 

confirms the good performance of our data assimilation system. According to Fig. R3, the monthly mean OmF 

biases were almost completely removed in each regions of China because of assimilation, with mean OmF biases 

reducing by 32–94% for PM2.5, 33–83% for PM10, 25–96% for SO2, 53–88% for NO2, 88–97% for CO and 54–90% 

for O3 concentrations in different regions of China. The mean OmF RMSE were also reduced substantially by 80–

93% for PM2.5, 80–86% for PM10, 73–96% for SO2, 76–91% for NO2, 88–96% for CO and 76–87% for O3 

concentrations in different regions of China (Fig. R4). In addition, despite the mean OmF bias and OmF RMSE 

exhibit significant annual trend, the OmA bias and OmA RMSE are relatively stable during the assimilation period, 

which generally confirms the long-term stability of our data assimilation system. 

The spatial patterns of analysis increment were in good agreement with those of the OmF values for each 

species, which generally shows negative (positive) increments for PM2.5 concentrations in east (west) China, 

negative (positive) increments for PM10 concentrations in south (north) China, negative increments for SO2 
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throughout the China, positive increments for CO and NO2 concentrations throughout the China, and the positive 

(negative) increments for O3 concentrations in central-east (south) China. These results confirm that the data 

assimilation can effectively propagate the observation information into the model state and reduced the model 

errors. 

 
Figure R2: Spatial distributions of the six-year mean OmF (left panel), OmA (middle panel) and analysis 

increment (right panel) for different species in China. 
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Figure R3: Time series of monthly mean OmF and OmA normalized mean bias in different regions of China 

for different species. 

 

 

Figure R4: Time series of monthly mean OmF and OmA normalized root mean square error in different 

regions of China for different species. 
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Comment 3: Inter-species correlation was totally neglected in background error covariance. This setting is 

extremely conservative and does not fully utilize the advantages of EnKF data assimilation that produces 

comprehensive background error patterns. I’m wondering if the authors have tried to implement inter-species 

correlations. Further discussion is needed (e.g., why it is so conservative, what is the disadvantage of the current 

setting). 

Reply: Thanks for this important comment. We agree with the reviewer that including the correlations between the 

background errors of different chemical species has the capability to improve the assimilation performance as 

shown in Miyazaki et al. (2012). The reason that we neglected the inter-species correlation in the background error 

covariance is that we concentrated on the assimilations of primary air pollutants (except of O3) whose errors are 

more related to the errors in their emissions. Since the emission errors of these species were considered to be 

independent in this study (Sect. 2.2 in the revised manuscript), thus the background errors of these species have 

very weak correlations in most cases as shown in Figs. R5-6. The correlation between background errors of 

different species were generally near zero for most cases. Thus, we neglected these weak correlations to prevent 

the spurious correlation between non or weakly related variables in EnKF. In contrast, there are significant positive 

correlation between the background errors of PM2.5 and PM10 and negative correlation between the background 

errors of NO2 and O3. The high correlation between PM2.5 and PM10 is just because PM2.5 is a part of PM10, and 

there would be redundant information in the observations of PM2.5 and PM10 concentrations, thus we did not include 

the correlation between the PM2.5 and PM10 concentrations in the assimilation. The negative correlation between 

the O3 and NO2 is due to the NOx-OH-O3 chemical reactions in the NOx saturated conditions that increases of NO2 

concentrations would reduce the O3 concentrations due to the enhanced NO titration effect. However, the 

relationship between O3 and NO2 concentrations is actually nonlinear depending on the NOx limited or saturated 

conditions (Sillman, 1999), and previous study by Tang et al. (2016) has shown the limitations of the EnKF under 

strong nonlinear relationships. The cross-variable data assimilations of O3 and NO2 may come up with inefficient 

or even wrong adjustments. Considering the nonlinear relationship between the O3 and NO2 concentrations and 

their unexpected effects on EnKF, we took a conservative way in the assimilations of NO2 and O3 by neglecting 

their error correlations. 

We agree with the reviewer that current setting may be too conservative to fully utilize the advantages of 

EnKF assimilation, however it can avoid possible serious negative influences on the reanalysis data caused by the 

spurious correlations or nonlinear chemical relationships. The different species can also be assimilated in a 

consistent way under current settings. Following the suggestions of reviewer, we have clarified the reasons for 

neglecting the inter-species correlations in the background error covariances in the revised manuscript (please see 

lines 274 – 292 in the revised manuscript). 
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Figure R5: Correlations between species in the background error covariance matrix, estimated from the 

LETKF ensemble averaged from 2013 to 2018. The global mean of the covariance estimated for each station 

is plotted. 
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Figure R6: Correlations between species in the background error covariance matrix, estimated from the 

LETKF ensemble averaged in different seasons from 2013 to 2018. The global mean of the covariance 

estimated for each station is plotted. 

 

Comment 4: Please clarify whether there are any variations in inflation factor and how it was optimized for 

different species. In most regional ensemble data assimilation systems, fixed lateral boundary condition tends to 

limit the effectiveness of data assimilation near their boundaries (and also inside when horizontal advection is 

strong) because of reduced spreads. Did you find any problem with it? 

Reply: Sorry for the confusion. In this study, the inflation factor was calculated based on Kalman filtering theory 

which requires that the ensemble and innovation spreads be of similar magnitude (Evensen, 2003; Wang and Bishop, 

2003): 

〈𝑑𝑑.〉 ≈ HBH; + R                    (6) 

d = 𝑦< −𝐻(𝑥")                     (7) 

In order to balance the ensemble and innovation spreads, a multiplicative inflation factor for 𝐁 can be approximate 

by: 

λ = =𝐑&$/%𝒅@
(
𝐑&$/%𝒅8&

0$!A%B𝐑&$/%𝐇𝐏𝒃=𝐑&$/%𝐇@
(E

                   (8) 

where the trace of the covariance matrix is used to approximate covariance on a globally averaged basis, and 〈∙〉 
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denotes the ensemble average. Using Eq (8), the hourly inflation factor was calculated for each species. In addition, 

the inflation factor was calculated locally in this study. Thus, the inflation factor used in this assimilation is not 

only species specific, but also varies with time and space, which reflects different error characteristics of different 

species in different time and places. Following the suggestion of reviewer, we have clarified this issue in the revised 

manuscript (please see lines 270 – 273 in the revised manuscript). 

We agree with the review that the use of fixed lateral boundary condition would lead to small ensemble spread 

near the boundary. Since we only assimilate the surface observations in China which were not near the boundary 

of the modeling region in most cases (Fig. R7), the effects of fixed boundary condition were small in this study. 

This can be shown in Fig. R8 which shows that the OmA RMSE values at the sites near the boundary of the China 

were approximate to those at inland sites. In addition, the inflation technique was also used to inflate the 

background error covariance, which could reduce the effects of the small ensemble spread on the analysis.  

 

 

Figure R7: Modeling domain of the ensemble simulation overlay the distributions of observation sites from 

CNEMC. Different colours denote the different regions in China, namely North China Plain (NCP), 

Northeast China (NE), Southwest China (SW), Southeast China (SE), Northwest China (NW) and Central. 
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Figure R8: Spatial distributions of OmA RMSE values for (a) PM2.5, (b) PM10, (c) SO2, (d) NO2, (e) CO and 

(f) O3 in China 

 

Comment 5: Using automatic outlier detection method, how much observations were rejected? What was the 

impact in data assimilation? 

Reply: Thanks for this comment. Figure R9 shows the removal ratios of the six pollutants from 2013 to 2018, 

which were less than 1.5% for most air pollutants throughout the assimilation period. The PM10 observations have 

a high removal ratio (9–13%) during 2013–2015 with most of outliers marked by an observed concentration of 

PM2.5 higher than that of PM10 at the same hour and same site (Wu et al., 2018). However, there was a sharp 

decrease in removal ratios of PM10 in 2016 (~1.5%) because of the implementation of a compensation algorithm 

for the loss of semi-volatile materials in the PM10 measurements (Wu et al., 2018). 
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Figure R9: Removal ratio of all observation sites in China from 2013 to 2018 for different species detected 

by the automatic outlier detection method.  

The outlier detection method was essential for the assimilations of surface observations due to the existence 

of outliers in the original observation dataset. The outlier detection method has been applied to detect all four types 

of outliers in the hourly surface observations of air pollutants, which were characterized by temporal and spatial 

inconsistency (ST-outliers), instrument-induced low variances (LV-outliers), periodic calibration exceptions (P-

outliers) and less PM10 than PM2.5 observations (LP-outliers).  

As exemplified by Fig. R10a and Fig. R10b obtained from Wu et al. (2018), the ST-outliers are observations 

that differ greatly from values observed at adjacent time or those in neighboring areas, such as the abnormally low 

values in NO2 observations or the abnormally high values in PM2.5 observations. The LV-outliers are characterized 

by a very low variance in time series compared to neighboring sites (Fig. R10d). In cases when the pump of the 

instruments is stuck, or the filter tape is depleted, the observations even do not change over time (Fig. R10c). The 

P-outliers are mainly induced by the regular calibration process for the instruments, such as O3 observation 

instruments (Fig. R10e), which may interfere with the observations and insert abnormal values into online 

measurement datasets. The LP-outlier involves PM2.5 concentrations being higher than PM10 concentrations 

observed at the same hour and same site which is mainly caused by the loss of semi-volatile components of 

particulate matter in the instruments. 

The different kinds of outliers emphasized that it is necessary to filter out these outliers before the assimilation, 
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otherwise these outliers would introduce serious impacts on the quality of reanalysis data both in temporal and 

spatial consistency, sometimes even lead to wrong assimilation results. For example, as shown in Fig. R11, there 

is a false O3 peak in the original observation data due to the P-outliers occurred at 0400 LST. The quality assurance 

largely reduces this false peak and the observation data after quality assurance show more reasonable diurnal 

variations of O3 concentrations, which has guaranteed the quality of reanalysis data. Thus, the outlier detection 

method used in this study plays an indispensable role in the chemical data assimilations based on surface 

observations. 

 

 
Figure R10: Examples of classified outliers in surface observations of air pollutants. (a, b) Spatiotemporal 

outliers have large differences with neighboring observations in time and space. (c, d) Low variance outliers 

either stay the same or change abnormally slowly in time and differ significantly with observations from 

nearby sites. (e) Periodic outliers appear periodically, usually every 24 h. (f) PM10 < PM2.5 outliers are the 

PM10 observations that are lower than the PM2.5 observations at the same time and site (taken from figure 1 

in Wu et al. (2018)). 
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Figure R11: Six-year averaged diurnal variations of O3 concentrations in Wuhan, China obtained from 

observations before and after quality control, reanalysis data and base simulation. 

The differences in annual concentrations caused by quality control were also shown in Fig. R12 to assess the 

potential impacts of outlier detection on the assimilations. The differences were generally positive for PM2.5, SO2, 

NO2 and CO concentrations, indicating a lower tendency of these species’ concentrations due to the use of outlier 

detection. Negative differences were mainly found in the PM10 concentrations in south China and the O3 

concentrations throughout China. According to estimation, the impacts of outlier detection were generally small in 

most stations. The differences were less than 5 µg/mF (1 µg/mF)	for PM2.5 concentrations over most stations in 

north (south) China and less than 1 µg/mF for the gaseous air pollutants for most stations throughout China. The 

differences were shown to be relative larger for PM10 concentrations over northwest China which can be over 20 

µg/mF in stations around Taklimakan Desert. This would be due to the higher outlier ratios in the observations 

over the remote areas.  

These results suggest that the use of outlier detection is necessary for the assimilations of surface air quality 

observations, which prevents the negative influences of outliers on the reanalysis and improves its temporal and 

spatial consistency. The impacts of outlier detection on the estimated concentrations were also small in most 

stations. Following the suggestion of review, more descriptions about the impacts of outlier detection method on 

the assimilation were added in the revised manuscript (please see lines 195 – 216 in the revised manuscript). 
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Figure R12: Spatial distributions of differences in annual concentrations of six air pollutants in China 

before and after quality control averaged from 2013 to 2018. 

 

Comment 6: Because of the fine-scale variability and large degree of freedoms, the high-region data assimilation 

would require larger ensembles. I’m wondering if 50 members are sufficient. Further discussion is needed to 

demonstrate whether the background error is produced properly to propagate observational information in space. 

Reply: Thanks for this important comment. We agree with the review that high-resolution data assimilation 

requires larger ensembles due to the fine-scale variability and large degree of freedoms. The ensemble size 

determines the accuracy to which the background error covariance is approximated. A large ensemble size is 

essential to capture the proper background error covariance structure, but it is computationally expensive since the 

cost of EnKF linearly increases with the ensemble size while the accuracy of the covariance estimate improves by 

its square root (Constantinescu et al., 2007a; Miyazaki et al., 2012). The appropriate ensemble size depends on the 

specific application and model. The idealized experiments of Constantinescu et al. (2007a) have shown that a 50-

member ensemble has significant improvements against smaller ensembles which is also computationally 

affordable given the computational resources. In a realistic chemical data assimilation application with horizontal 

resolution of ~2.8°, Miyazaki et al. (2012) has shown that the analysis is improved significantly by increasing the 

ensemble size from 16 to 32 and is further somewhat improved by increasing it from 32 to 48. However, the impact 

was much less significant by increasing it from 48 to 64. An ensemble size of 48 was thus recommended. Ensemble 

size of 50 members are also typical in numerical weather prediction which are thought to provide a good balance 

between accuracy and computational efficiency (Constantinescu et al., 2007b). 
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Thus, the ensemble size was chosen to be 50 in this study based on the previous publications (Constantinescu 

et al., 2007a, b; Miyazaki et al., 2012) and our previous high-resolution (~9km) regional assimiation work (Tang 

et al., 2016; Tang et al., 2011; Tang et al., 2013) which showed that a 50-member ensemble keeps good balance 

between computational efficiency and assimilation performance. Several measures were also conducted to deal 

with the large degree of freedoms in our high-resolution assimilation work. First, we assumed that the emission 

errors were spatially correlated when we perturbed the emissions. An isotropic gaussian correlation model with a 

decorrelation length of 150km was used in the error covariance of emissions, which was written as 

𝜌(𝑖, 𝑗) = 𝑒𝑥𝑝 X− ,
2
YG(+,I)

K
Z
2
[                   (9) 

where 𝜌(𝑖, 𝑗) represents the correlation between grid i and j, ℎ(𝑖, 𝑗) represents the distance between these two 

points and 𝑙 represents the decorrelation length. This would reduce the degree of freedoms in the state vector and 

alleviate the impacts of limited ensembles on high-resolution assimilation applications. Secondly, we adopted an 

adapative inflation method to prevent the underestimations of the background error covariance due to the limited 

ensemble sizes. Thirdly, the local analysis scheme has been used in our study to deal with the rank problems and 

supurious correlation caused by the limited ensemble size. This measures enable our applications of the EnKF with 

limited ensemble size on the high-resolution data assimilation at affordable computational cost. As shown in Fig 

R2, the spatial patterns of analysis increment were in good agreement with those of the OmF residuals for each 

species, this suggests that estimated background error covariance can effectively propagate the observation 

information into the model state and reduced the model errors.  

Therefore, given the expensive computational cost in the high-resolution ensemble simulations, the 50-

member ensemble was used in this study as a trade-off between assimilation performance and computational 

efficiency. However, better assimilation performance is expected when a larger ensemble size is used. Following 

the suggestions of review, we added more discussions on the choice of ensemble size in the revised manuscript 

(please see lines 159 – 190 and lines 662 – 667 in the revised manuscript).  
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