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Abstract. Gas flares are a regionally and globally significant source of atmospheric pollutants. They can be detected by satellite

remote sensing. We calculate the global flared gas volume and black carbon emissions in 2017 by (1) applying a previously

developed hot spot detection and characterisation algorithm to all observations of the Sea and Land Surface Temperature

Radiometer (SLSTR) instrument on-board the Copernicus satellite Sentinel-3A in 2017 and (2) applying newly developed5

filters for identifying gas flares and corrections for calculating flared gas volumes (Billion Cubic Meters, BCM) and black

carbon emission estimates. The filter to discriminate gas flares from other hot spots combines the unique flaring characteristics

in terms of persistence and temperature. The comparison of our results with those of the Visible Infrared Imaging Radiometer

Suite (VIIRS) nightfire data set indicates a good fit between the two methods. The calculation of black carbon emissions

using our gas flaring data set and published emission factors show good agreement with recently published black carbon10

inventories. The data presented here can therefore be used e.g. in atmospheric dispersion simulations. The advantage of using

our algorithm with Sentinel-3A data lies in the previously demonstrated ability to detect and quantify small flares and the

foreseen long term data availability from the Copernicus program. Our data (GFlaringS3, flaring activity and the related black

carbon emissions) are available on the Emissions of atmospheric Compounds and Compilation of Ancillary Data (ECCAD)

web site ( https://eccad3.sedoo.fr/#GFlaringS3, DOI 10.25326/19 (Caseiro and Kaiser, 2019)) for use in, e.g., atmospheric15

composition modelling studies.

1 Introduction

Industrial gas flaring (GF) occurs when flammable gas is disposed of by burning, most commonly done at the tip of a stack.

This can either take place as a measure for pressure relief, or to dispose of unwanted gas. In the upstream oil and gas (UOG)

industry in particular, GF occurs when the associated gas can’t be sold easily and is not used on-site for energy generation.20

Especially in insufficiently developed energy markets companies seem to be spared from enough economic or political

incentives to collect, or convert the gas. (Rahimpour and Jokar, 2012; Emeka Ojijiagwo et al., 2016) Improvements of flare

gas recovery systems has been recommended for more closely monitored facilities (Zolfaghari et al., 2017; Papailias and

Mavroidis, 2018).
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GF negatively impacts the immediate surrounding (Akinola, 2018), for example through noise (Ismail and Umukoro, 2012;

Nwoye et al., 2014), heat stress (Anomohanran, 2012; Julius, 2011) and visual pollution (Anomohanran, 2012; Ajao and

Anurigwo, 2002). GF also impacts the environment on a wider scale through the emission of pollutants and greenhouse gases

like carbon dioxide, carbon monoxide, black carbon, nitrogen oxides, polycyclic aromatic hydrocarbons, volatile organic com-

pounds and acid rain precursors (Obioh et al., 1994; Uzomah and Sangodoyin, 2000; Nwaichi and Uzazobona, 2011; Onu5

et al., 2014; Li et al., 2016).

It has been estimated that between 2003 and 2012 GF produced on average 304 Tg CO2 yearly, representing 0.6 % of the

global anthropogenic emission of CO2 equivalent (Olivier et al., 2014). The recovery of flare gas can play a relevant role in

improving sustainability and meeting emissions targets. (Ahmed Osama Abdulrahman et al., 2015; Gabriele Comodi et al.,

2016) Elvidge et al. (2018) estimated that a suppression of GF could contribute to 2% of the global nationally determined10

contributions (NDC) under the United Nations Framework Convention on Climate Change Paris Agreement. Some countries

could meet or even surpass their NDC (Yemen, Algeria and Iraq), while others could meet between one third to almost all of

their NDC (Gabon, Venezuela, Iran and Sudan).

Of particular importance is also the black carbon (BC) emission emitted by GF. BC is a known carcinogen (Heinrich et al.,

1994) as well as a short-lived climate forcer (IPCC, 2013). BC strongly effects environments such as the Arctic regions through15

lowering the albedo of snow-covered surfaces (Flanner et al., 2007; Stohl et al., 2013; Bond et al., 2013; Huang et al., 2015;

Evangeliou et al., 2018), impacting on the earth’s radiative balance (Doherty et al., 2010; Quinn et al., 2007; Hansen and

Nazarenko, 2004) as well as adding to the Arctic amplification phenomenon (Serreze and Barry, 2011). GF contribution to

the BC global emissions was estimated to amount to 270 and 210 Gg in 2005 and 2010, respectively (Klimont et al., 2017).

Regionally, Stohl et al. (2013) showed that GF contributes to half the near-surface BC concentration in the Arctic.20

GF is considered an important component of atmospheric dispersion simulations (Evangeliou et al., 2018) and climate

modeling (Huang and Fu, 2016) as the impact of GF emissions extends beyond immediate environmental concerns. However,

information on the amount of natural gas being disposed of through stack burning and the accrued emissions are sparse.

Reporting is often not enforced, inconsistent or otherwise not reliable.

Satellite remote sensing has been utilized for regional and global identification and characterization of GF. (Casadio et al.,25

2012b, a; Anejionu et al., 2014; Faruolo et al., 2014; Chowdhury et al., 2014; Anejionu et al., 2015; Faruolo et al., 2018)

The most prominent system is NOAA’s VIIRS (National Ocean and Atmospheric Administration’s Visible Infrared Imaging

Radiometer Suite) Nightfire dataset (see https://ngdc.noaa.gov/eog/viirs/download_viirs_fire.html), developed by Elvidge et al.

(2016) based on previous work (Elvidge et al., 2001, 2007, 2009, 2013) and leading to a globally consistent survey of GF

volumes available extending back to 2012.30

We recently published an adaptation and extension of the VIIRS Nightfire algorithm with which observations of the Sea and

Land Surface Temperature Radiometer instrument (SLSTR) on-board the Sentinel-3 satellites can be analysed, too (Caseiro

et al., 2018). The algorithm detects and quantifies hot sources, including gas flares, using the night-time readings of the short-

wave infrared (SWIR), mid-infrared (MIR) and thermal infrared (TIR) channels. The main advantages of using our hot spot

detection and characterisation algorithm lie in the ability to detect and quantify smaller flares and the foreseen long term data35
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availability from the series of Sentinel-3 satellites in the Copernicus program. Additionally, SLSTR observations (night-time

overpasses at 10:00 PM) complement those of VIIRS (1:30 AM) by filling observation gaps in the time series.

Here, we describe a new dataset of global GF volume (Billion Cubic Meters, BCM) and BC emissions, which we have

derived from all Sentinel-3 SLSTR observations in 2017. Chapter 2 describes newly developed methods for identifying gas

flares among the observed hot sources, correcting for intermittent observations opportunities, and dynamically determining5

appropriate BC emission factors from the observations. The results of applying the hot source detection and characteristion

algorithm plus the newly developed methods to all SLSTR observations of 2017 are presented in Chapter 3. Finally, our

conclusions are summarised in Chapter 4.

2 Methods

2.1 Hot spot detection and characterization10

An overview of the steps involved in the study presented here are outlined in Figure 1.

We base our work on the persistent hot spots detection and characterisation algorithm described in Caseiro et al. (2018) to

process a full year (2017) of Sentinel-3A’s Sea and Land Surface Temperature Radiometer (SLSTR) data. Using radiometrically

calibrated radiance data as input, our algorithm detects hot spots and fits the sum of two Planck curves: one representing the

hot source and the other the cool background. Both curves are fitted to the night-time spectral infrared (short-wave, mid-wave15

and thermal infrared: SWIR, MIR and TIR) observations to characterize temperature and area of the observed gas flares.

Additionally, we calculate the radiative power of the flare using the Stefan-Boltzmann equation.

While in principle the methodology used is based on the Nightfire algorithm developed for Visible Infrared Imaging Ra-

diometer Suite (VIIRS) (Elvidge et al., 2013, 2016), it differs by (1) analysing the radiances of clusters of contiguous hot pixels

instead of treating spatial maxima as individual pixels and (2) using the TIR channels when fitting the sum of the two Planck20

curves. We expect the resulting gas flare representation to be more realistic and accurate for the characterisation of large gas

flare arrays as well as for smaller flares and a more stringent constraining of the background temperature.

We already tested the method using oil and/or gas producing regions within a limited timespan and compared the results

to the VIIRS Nightfire "flares only" product (Caseiro et al., 2018). The results showed a good agreement of our hot source

detection when investigating persistent hot spots with the advantage of the Sentinel-3A’s SLSTR algorithm in detecting and25

quantifying smaller flares, due to the night-time availability of a second SWIR channel. The characterisation (temperature,

area and radiative power) also reached similarity although temperatures were slightly lower, whereas areas and radiative power

were slightly larger in our results.
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Figure 1. Flowchart of the methodology used in the present work. Starting point is the hot spot algorithm detection decribed in Caseiro et al.

(2018) which, after applying a filter on the retrieved temperature (500 K < T < 5000 K), produces a database of hot spots detections. For

each of these hot spot detections, the activity (Billion Cubic Meters, BCM) and Black Carbon (BC) emissions are computed. All hot spot

detections are gridded into a global 0.025◦ × 0.025◦ grid. For each grid cell, the following quantities are computed: the number of detections,

of high-accuracy detections and of days of detecion (see below, Section 2.2.2), temperature, area and radiative power (minimum, average,

maximum and standard deviation), the date of the first and the last detection and the sum of the activity (BCM) and BC emissions. A volcano

filter is applied to the global grid in order to mask out volcanic activity (see Section 2.2.1). The last step is the discrimination of grid cells for

flaring activity (see Section 2.2.2).

4
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2.2 Hot spot classification

2.2.1 Volcano filter

In order to filter out volcanic activity from our dataset, we use the data available from the Global Volcanic Program of the

Smithsonian institution. (Venzke, 2013) The data was filtered for any eruption in 2017 and we computed a mask at the 0.025

degrees resolution. A buffering zone of 0.25◦ was used because the center coordinates specified may not correspond to the5

center of volcanic activity. Many volcanoes do not consist of a single edifice, but a volcanic field with many individual eruptive

fissures through which lava erupts. (Siebert et al., 2010)

2.2.2 Discrimination of gas flares from other industrial hot sources

In order to discriminate gas flares from other night-time hot spots we investigate persistence and retrieval temperature filtering.

We project all the hot spot detections onto a 0.025× 0.025 degrees global grid. This is a spatial resolution which reflects10

the reality on the ground, where several flares, separated by tens to hundreds of meters, may be operated within a single oil

and gas facility, while facilities are tens of kilometers apart. The following quantities are then computed for each grid cell: the

number of hot spot detections (nObs), the number of high-accuracy (Caseiro et al., 2018) hot spot detections (nObsHA), the

minimum, maximum, average and standard deviation of the high-accuracy hot spot retrieved temperature (T ), area (A) and

radiative power (RP ) as well as the earliest and the latest hot spot observation date.15

The temperature filtering we test is based on Elvidge et al. (2016) and on the recent work by Liu et al. (2018), who derived

gas flaring temperatures of 1000 K to 2600 K from the VIIRS Nightfire database, depending on the type of operation (shale

oil or gas, offshore, onshore or refinery). Most of the gas flares display temperatures between 1650 K and 1850 K. However,

temperatures can occasionally be as low as 1300 K. This overlaps with particularly hot detections from the coal chemical

industry and steel plants. Therefore, additional criteria are needed for identifying gas flares in the hot source dataset.20

In order to select the discriminating strategy we test several subsets of the hot spot database. For each subset described in

Table 1, a sample of 100 random onshore grid cells have been tested by examining high-resolution imagery (Google Earth) and

the locations are classified into four categories:

Flare (F ) flaring site with visible flame

Likely (L) industrial or oil extraction site with typical flaring infrastructure but no visible flame25

Unlikely (U ) industrial site without typical flaring infrastructure

No industry (N ) e.g. agricultural or forested area.

The subsets are characterized in terms of user’s accuracy (Equation 1) and commission error (Equation 2).

User′s accuracy =
(
F +

L

2

)
± L

2
(1)
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Table 1. User’s accuracy (UA, %) and commission error (C, %) of the hot spot discrimination strategies considered.

nObs > – 3 4 – – – – –

nObsHA > 2 2 2 5 5 5 7 7

Tmin (K) > 1000 1000 – – – – – –

Tmax (K) > 1400 1400 800 1200 1500 1800 1200 1500

ncells 6733 5872 9469 6817 6232 5485 5527 5129

UA 84±6 86±8 60±10 77±13 85±11 88±10 73±14 87±11

C 7±3 4±2 19±11 6±4 3±1 1±1 8±5 2±1

Commission error =
(
N +

U

2

)
± U

2
(2)

In some industrial areas, facilities that use gas flares may be close to other hot spots, such as iron smelters or steel mills. In

those cases, a commission error occurs when the flare is off and our methodology samples the other hot spot. The omission

error can be divided into two categories: flares that the hot spot detection and characterization algorithm failed to detect and

flares that were detected as hot spots but which the discrimination strategy left out. The former will be the same for any5

discrimination procedure considered.

Detections located in grid cells where the yearly maximum temperature retrieval is above 1500 K and a persistency and

quality criterion (nObsHA > 5) is met are considered as originating from gas flares and called flaring locations hereafter.

This achieves a relatively large number of grid cells with detections, i.e. low omission error, combined with a high user’s

accuracy and a low commission error of 85±11% and 3±1%, respectively. Inserting a limitation on the minimum temperature10

or increasing the maximum temperature or the number of high-accuracy observations would not significantly increase the

user’s accuracy or decrease the commission error, but would reduce the number of grid cells complying to the discrimination

criteria by several hundreds, which we interpret as an increase in the omission error.

2.3 Determination of flared volumes and black carbon emissions

In order to compute the activity and emissions, we estimated the number of days of operations per site by expressing the15

maximum number of observations as a function of latitude (in 10◦ bins, see Figure 2). The function computes the maximum

number of observations (nObsmax) per grid cell for a given latitude which we assume expresses a continuous hot spot (365

days a year). The number of days of operation is then estimated by scaling following Equation 3. By this scaling, we take into

consideration the limitations of gas flaring detection from space (cloud cover and overpass frequency).

nOps = nObs×
365

nObsmax

(3)20
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Figure 2. Maximum number of observations per grid cell as a function of Latitude. The latitude values are binned (10◦). The function

expresses the maximum number of observations nObsmax , which we assume as a continuous operation of the hot source, as a function of

latitude.

7

https://doi.org/10.5194/essd-2019-99

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 25 July 2019
c© Author(s) 2019. CC BY 4.0 License.



For the estimation of the flared volume, we applied the calibration derived by Elvidge et al. (2016) to each single detection

within a flaring location grid cell. The calibration relationship uses a modified formulation of the radiative power to output the

yearly flared volumes (in Billion Cubic Meters, BCM), which is then scaled to a daily activity in m3.

The best activity estimate corresponds to assuming that the flare is active for nOps days:

BCMbest =BCMmin×
nOps

nObs
(4)5

The lower bound BCMmin for the activity estimate assumes that the flare is only active on the nObs days with hot spot

detections. The upper bound for the activity estimate assumes that the flare is constantly active:

BCMmax =BCMmin×
365
nObs

(5)

The emissions of black carbon (BC) from gas flares are estimated using reported emissions factors (EF). Stohl et al. (2013)

used an EF of 1.6 g.m−3, while Schwarz et al. (2015) and Weyant et al. (2016) conducted field experiments in the Bakken10

formation (USA) and derived EFs of 0.57±0.14 g.m−3 and 0.13±0.36 g.m−3 (using the Single Particle Soot Photometer) or

0.28 g.m−3 (using the Particle Soot Absorption Photometer), respectively. However, flared gas has not the same composition

everywhere and Huang and Fu (2016) considered the regional variability of the EF. The authors applied the function which

relates EF to the volumetric gas heating value derived in the laboratory by McEwen and Johnson (2012) to globally compiled

gas composition data. Klimont et al. (2017) considered, for the Greenhouse Gas – Air Pollution Interactions and Synergies15

(GAINS) model, the EF derived by Schwarz et al. (2015) of 0.57 g.m−3 for well-operated flares (i.e. Organisation for Economic

Co-operation and Development (OECD) countries) and a maximum of 1.75 g.m−3 for other countries. In the present work, we

apply the same concept of a varying EF but use the flare temperature as an indication of the combustion completeness, instead

of the country of origin as an indication of the flare operation. Flaring temperatures close to the adiabatic flame temperature for

natural gas (around 2500 K) are associated with more complete combustion and therefore lower BC emissions. On the other20

hand, low flaring temperatures (700 K and below) are associated with higher BC emissions. Between the two extremes, the BC

emission is scaled linearly as a function of the flaring temperature (see Figure 3). To the best of our knowledge, this is the first

time that operating practices are taken into consideration when assigning the EF.

The country-level BCM and BC estimates are computed by summing the individual flares estimates within the borders of

each country and its exclusive economic zone.25

With this methodology we estimate a wide range of possible activity (BCM) and emissions (BC), where our best estimate

falls between the ’flaring only when there is a detection’ (BCMmin andBCmin) and ’always flaring’ (BCMmax andBCmax).

We conservatively assume that this range of possibilities represents 6×σ, and report the uncertainty of the best estimates as

1×σ.

8
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Figure 3. Left: BC emission factor function used in the present study. The emission factor is bounded by the extremes of the range used in the

GAINS model (Klimont et al., 2017) and scaled as a function of the flaring temperature, used as an indication of combustion completeness.

Right: For comparison purposes, the EFs derived by Stohl et al. (2013); Schwarz et al. (2015); Huang and Fu (2016), Weyant et al. (2016)

(using the Single Particle Soot Photometer, SP2, or the Particle Soot Absorption Photometer, AM) and Klimont et al. (2017).
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Figure 4. Location of all the 807327 hot spots (all detections database filtered for spurious signals, see Figure 1), detected in 2017.

3 Results

3.1 Hot spots and flaring sites

All the hot spots detected globally for 2017 using the algorithm as described in Figure 1 are shown in Figure 4. The data is

available online at the ECCAD webpage (Caseiro and Kaiser, 2019). The algorithm detected 807327 hot spots.

Noise, such as detections in the open ocean and the South Atlantic anomaly, is filtered out when considering only the high-5

accuracy hot spots as defined by Caseiro et al. (2018). There are 95906 high-accuracy hot spots in the dataset. These are shown

in Figure 5. Their distribution pattern suggests that they encompass a large range of hot sources, such as wildfires, volcanoes

and industrial sources.

After gridding, filtering out active volcanoes (our methodology, see Section 2.2.1, accounted for 71 volcanic eruptions in

2017) and retaining the grid cells passing the GF criteria (see Section 2.2.2) the number of globally detected flaring sites in10

2017 are 6232, see Figure 6. This is lower than the estimate of 7467 by Elvidge et al. (2016). Although our Sea and Land

Surface Temperature Radiometer (SLSTR)-based methodology is able to detect smaller gas flares due to the availability of

10
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Figure 5. Location of all the 95906 high-accuracy hot spots (gridded hot spots filtered for cloudiness and accuracy of the Planck curve fitting,

see Figure 1), detected in 2017.

the second SWIR channel, the Visible Infrared Imaging Radiometer Suite (VIIRS) Nightfire algorithm is expected to detect a

larger number of hot spots because it considers local maxima, whereas our methodology clusters adjacent hot pixels.

Russia (985) and the United States (917) are the countries with the highest number of flaring locations. The third country is

Iran (441) with less than half of the top two countries. The five countries with more than 300 flaring locations – China (365)

and Algeria (324) in addition to the top 3 – account for about one half of the global flaring locations. The United States is5

the country with the largest difference in the number of flaring locations between 2017 (this work, 917) and 2012 (2399, as

reported by Elvidge et al. (2016)). Besides the aforementioned methodological difference, a switch from well-product testing

to formal operation could be the reason for a lower number of detected flaring sites (Liu et al., 2018). Such a transition from

a higher number of lower intensity flares to a smaller number of higher intensity flares was reported between 2012–2014 and

2015–2016 by Franklin et al. (2019) for the Eagle Ford shale region of South Texas.10

The time series of the cumulative number of the high accuracy observations for the most active flaring location (in Venezuela,

see Section 3.4) is shown in Figure 8. It shows flaring activity throughout the year.
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Figure 6. Location of all the 6232 flaring locations (grid cells with at least 5 high-accuracy hot spots and a maximum retrieved temperature

above 1500 K) detected in 2017.

3.2 Flaring characteristics

Statistics on retrieved temperature and radiative power are reported in Figures 9 to 13.

The average temperature at the flaring locations approximately ranges from 950 K to 2250 K. This is slightly lower than the

range reported by Liu et al. (2018) who used Visible Infrared Imaging Radiometer Suite (VIIRS) Nightfire data, as expected

from our previous study (Caseiro et al., 2018). It confirms the bi-modal distribution with modes around 1750 K and 1200 K5

that is has also been observed by VIIRS.

One of the most active flaring regions of the world is the Persian gulf. Figure 10 shows the average retrieved temperature at

flaring locations in that region, while the time series of the retrieved flaring temperatures is shown in Figure 11. The time series

of the retrieved temperature for the most active flaring location (in Venezuela, see below, section 3.4) is shown in Figure 12.

The average radiative power at flaring locations range from a few tenths of MW up to approximately 1 GW (Figure 13),10

spanning the 5 orders of magnitude reported by Elvidge et al. (2016).

12
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Figure 7. Flaring locations by country, top 20.

3.3 Comparison with VIIRS Nightfire

We compare our results to the data set from the Visible Infrared Imaging Radiometer Suite (VIIRS) Nightfire 2017 results

made available by the National Geophysical Data Center of the National Oceanic and Atmospheric Administration of the

United States at https://www.ngdc.noaa.gov/eog/viirs/download_viirs_fire.html. Figure 15 shows all Nightfire detections in

2017 (green), projected onto the same 0.25◦ × 0.25◦ global grid as for our results (see above, sections 2.2.2 and 3.1).5

In order to segregate the flaring signal from other hot spots, we adapt the thresholds we used for hte Sea and Land Surface

Temperature Radiometer (SLSTR). The persistency threshold was adjusted from 5 (for a 1400 km swath for SLSTR) to 11

detections a year within a grid cell (for a 3040 km swath for VIIRS). The lowest yearly maximum temperature retrieved within

a grid cell was maintained at 1500 K. Grid cells which comply to these criteria are shown in Figure 15 (red). These adapted

13
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Figure 8. Cumulative number of high accuracy observations at the most active flaring location (52 high accuracy detections over 47 days at

the grid cell centered at 63.6875◦W, 9.6375◦N).
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Figure 9. Distribution of the average retrieved hot spot temperature (K) for the flaring locations.

thresholds filter out a very large number of hot spots and produce a global VIIRS Nightfire flaring map similar to that obtained

by our methodology based on SLSTR observations (see Figure 6). Despite this global agreement, some significant regional

differences are visible: the Western U.S. and Canada, the Amazonian forest, Australia, Eastern and Western China. Liu et al.

(2018) referred to this last region as "undetected oil/gas heat source" in Elvidge et al. (2016). The number of detected VIIRS

Nightfire flaring locations (18855) is about three times that returned by our methodology (6232). Such a behaviour is expected5

because the Nightfire algorithm considers pixels which are local maxima and our methodology aggregates contiguous hot

pixels within a same cluster. These clusters may be very large and contain more than one local maximum.

The distribution of the retrieved average flaring temperatures at each site is very similar, as shown in Figure 16.

3.4 Flared volumes

The activity for all the individual flaring locations is shown in Figure 17. The distribution is very close to that reported by10

Elvidge et al. (2016), with the exception of the very few extremes in the range 0.8–1.1. The most active flare burned 0.623

BCM throughout 2017 and is located south of Punta de Mata in Venezuela. This is also where Elvidge et al. (2016) found the

15
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Figure 10. Average flaring temperature (K) at flaring locations in the region of the Persian gulf (1184 flaring locations in the region,

aggregated from 41600 high-accuracy detections over 348 days).
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Figure 11. Time series of the daily average retrieved flaring temperatures (K, the bounds represent 1 standard deviation) in the region of the

Persian gulf (41600 high accuracy detections over 348 days at 1184 flaring locations) shown in Figure 10.
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Figure 12. Time series of the retrieved temperatures (with bounds) at the most active flaring location (52 high accuracy detections over 47

days at the grid cell centered at 63.6875◦W, 9.6375◦N in Venezuela).
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Figure 13. Distribution of the average radiative power (MW) for the 6232 global flaring locations.

most active flare for 2012, though more active (1.13 BCM). The total activity of the region is shown in Figure 18, and the

cumulative activity throughout the year in Figure 19.

Our best estimate for the global flared volume for 2017 is 129±64 BCM. This is slightly lower than the 143±13.6 BCM

reported by Elvidge et al. (2016) for 2012. The lower and upper bounds of the range of possibilities for the estimate are 35.0

BCM (there is flaring only when there is a detection) and 419.1 BCM (flaring is always on), respectively.5

Approximately half of the global flared volume originates from 4 countries only: Iraq (19.0 BCM), Iran (18.4 BCM), Russia

(18.1 BCM) and Algeria (10.5 BCM).
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Figure 14. Time series of the total radiative power (MW) in the oil producing region of Venezuela (2391 high accuracy observations at 112

flaring locations over 200 days), where the most active flare is located (see below, section 3.4).
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Figure 15. VIIRS Nightfire locations (all locations, green, and flaring locations, red) for 2017. The flaring locations were derived by adapting

our SLSTR flaring location thresholds to the VIIRS sensor characteristics: at least 11 detections within the grid cell and at least 1600K as the

maximum temperature detected within the grid cell.

3.5 BC emissions

The black carbon (BC) emissions for all the individual flaring locations are shown in Figure 21. The most active flare emitted

0.35 Gg BC in 2017 (south of Punta de Mata). The cumulative BC emissions throughout the year for the whole Persian gulf

region is shown in Figure 22.

Our best estimate for the global BC emissions from gas flaring is 73.4±36.7 Gg. As for the flared volume, 4 countries5

account for more than half of that value: Iraq (10.8 Gg), Iran (10.5 Gg), Russia (10.3 Gg) and Algeria (6.0 Gg). This value is

about one third of the estimate from the Greenhouse Gas – Air Pollution Interactions and Synergies (GAINS) model (ECLIPSE

V5a global emission fields) (Klimont et al., 2017): 270 and 210 Gg in 2005 and 2010, respectively. Such a decrease between

2010 and 2017 may be unlikely, given that the production within the upstram oil and gas (UOG) industry did not decrease in

such a significant way. Rather than a decrease in the activity, or a shift in the emission factors (EF), the discrepancy might be10

due to how the EF is determined (see section 2.3). Assigning the EF at the operational level, for each detection, seems to us
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Figure 16. Comparison of the average retrieved temperature at the flaring locations for VIIRS Nightfire (locations shown in Figure 15 in red)

and for SLSTR (locations shown in Figure 6 in blue). Relative frequency is used to ensure comparability independently of the total number

of observations (6232 flaring locations for SLSTR, 18855 flaring locations for VIIRS Nightfire).
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Figure 17. Flaring activity (best estimate, BCM per year) for each individual flaring location (6232 in total).

more realistic than assigning it at the country level. Our global estimate is also larger than the global extrapolation made from

a flaring emission study in the Bakken field by Weyant et al. (2016): 20±6 Gg. We believe that our dynamic assignment of

the EF, based on the single temperature retrieval, should be closer to reality than globally extrapolating the EF measured at a

single field. Huang and Fu (2016) used the VIIRS Nightfire dataset for the flaring activity and emission factors derived from

the flared gas chemical composition to compute the BC emissions. Their estimate range from approximately 140 and 200 Gg5

per year between 1994 and 2012. VIIRS Nightfire was also the basis for the determination of atmospheric emissions from gas

flaring by Doumbia et al. (2019) for the African continent. The authors computed a BC emission in 2005 between 6.2 and

141.2 Gg. For the same continent, our results yield 16.1 Gg.
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Figure 18. Total flaring activity (best estimate, BCM per year) for each individual flaring location in the oil producing region of Venezuela

(112 flaring locations in the region, aggregated from 2391 high accuracy detections over 200 days), where the most active flare is located.

4 Conclusions

In this work we apply a previously described hot spot detection and characterisation procedure (Caseiro et al., 2018) to the

2017 observations of Sentinel-3A’s Sea and Land Surface Temperature Radiometer (SLSTR) instrument. We present a new

gas flaring discrimination procedure, based on two characteristics of gas flares: persistence and temperature. This allow us to

refine the characterisation procedure in order to separate gas flares from other sources of heat emissions. Validation through5

referencing with high-resolution images yields a detection accuracy of 85±11%, with a commission error of 3±1%.

Our methodology detects 6232 flaring sites worldwide in 2017. Over half of those are located in five countries only: Russia,

the United States, Iran, China and Algeria.

Additionally to the detection we present a way to assess the volume of flared gas. This is based on the observed relationship

between the flared volume and observed flare radiative energy. The resulting estimate of flared volume allows us to estimate10

activity from which we can infer emission estimates.

In order to compute the best estimate of activity at the detected flaring sites, we apply a scaling factor, differentiated by

latitude, to account for observation gaps (cloud cover and overpass frequency). The upper bound is computed as if the flare

would constantly burn for the whole year. The lower bound is computed as if the flare would burn on days with hot spot
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Figure 19. Cumulative total observed flaring activity (BCMmin) in the oil and gas producing region of Venezuela (112 flaring locations in

the region, aggregated from 2391 high accuracy detections over 200 days), where the most active flare is located.
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Figure 20. Flaring activity (best estimate, BCM per year) by country, top 20.

detections only. Our analysis yields a result of 129±64 billion cubic metres (BCM) of gas flared in 2017 (best estimate). Only

four countries are responsible for half of the global gas flaring activity: Iraq, Iran, Russia and Algeria. The most active flaring

location is located in Venezuela and burned 0.623 BCM in 2017.

We further quantify the black carbon (BC) emissions due to gas flaring. We assume that temperature is an indication of the

completeness of combustion and use the flame temperature as derived by the hot spot detection and characterisation procedure5

to determine the emission factor for each single detection, bounded by the range of previously published emission factors. We

assume that a temperature close to the adiabatic flame temperature corresponds to the lower bound of the emission factor range

considered, while the lowest temperature corresponds to the upper bound. The minimum, maximum and best estimates for the

BC emissions are computed in the same way as the flared volume. Our resulting best estimate for the emission of BC to the
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Figure 21. Flaring BC emissions (best estimate, Gg per year) for each individual flaring location (6232 in total).

atmosphere by gas flaring in 2017 is 73.4 Gg. With Iraq, Iran, Russia and Algeria being responsible for roughly one half of

those emissions. The most active flaring location, which is also the one with the highest emissions, is estimated to have yearly

emission of 0.35 Gg of BC in 2017.

The flaring activity and the related black carbon emissions product are available with 0.025◦× 0.025◦ resolution on the

Emissions of atmospheric Compounds and Compilation of Ancillary Data (ECCAD) web site (https://eccad3.sedoo.fr) for use5

in, e.g., atmospheric composition modelling studies.
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Figure 22. Cumulative total observed BC emissions (BCmin, g) in the oil and gas producing region of the Persian gulf, as shown in Figure 10

(1184 flaring locations in the region, aggregated from 41600 high accuracy detections over 348 days).
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Figure 23. Flaring BC emissions (best estimate, Gg per year) by country, top 20.

5 Data availability

The dataset produced by the described methodology and analysed in this paper is available at https://eccad3.sedoo.fr/#GFlaringS3

with the DOI 10.25326/19 (Caseiro and Kaiser, 2019).
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