
 

1 
 

A dataset of 30-meter annual vegetation phenology indicators (1985-
2015) in urban areas of the conterminous United States 
 

Xuecao Li1, Yuyu Zhou*1, Lin Meng1, Ghassem R. Asrar2, Chaoqun Lu3, Qiusheng Wu4 

1Department of Geological and Atmospheric Sciences, Iowa State University, Ames, IA, 50011, USA 5 
2Joint Global Change Research Institute, Pacific Northwest National Lab, College Park, MD, 20740, USA 
3Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA 
4Department of Geography, Binghamton University, SUNY, Binghamton, NY, 13902, USA 

Correspondence to: Yuyu Zhou (yuyuzhou@iastate.edu) 

Abstract. Fine-resolution satellite observations show great potential for characterizing seasonal and annual dynamics of 10 

vegetation phenology in urban domains, from local to regional and global scales. However, most previous studies were 

conducted using coarse or moderate resolution data, which are inadequate for characterizing the spatiotemporal dynamics of 

vegetation phenology in urban domains. In this study, we produced an annual vegetation phenology dataset in urban 

ecosystems for the conterminous United States (US), using all available Landsat images on the Google Earth Engine (GEE) 

platform. First, we characterized the long-term mean seasonal pattern of phenology indicators of the start of season (SOS) and 15 

the end of season (EOS), using a double logistic model. Then, we identified the annual variability of these two phenology 

indicators by measuring the difference of dates when the vegetation index in a specific year reaches the same magnitude as its 

long-term mean. The derived phenology indicators agree well with in-situ observations from PhenoCam network and Harvard 

Forest. Comparing with results derived from the moderate resolution imaging spectroradiometer (MODIS) data, our Landsat 

derived phenology indicators can provide more spatial details. Also, temporal trends of phenology indicators (e.g., SOS) 20 

derived from Landsat and MODIS are consistent overall, but the Landsat derived results from 1985 have a longer temporal 

span compared to MODIS from 2001. In general, there is a spatially explicit pattern of phenology indicators from the North 

to the South in cities in the conterminous US, with an overall advanced SOS in the past three decades. The derived phenology 
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product in the US urban domains at the national level is of great use for urban ecology studies for its fine spatial resolution (30 

m) and long temporal span (30 years). The data are available at https://doi.org/10.6084/m9.figshare.7685645.v2.  

1 Introduction 

Dynamics of vegetation phenology in urban ecosystems play an important role in influencing human activities such as energy 

use and public health. The change of vegetation greening and dormancy affects various ecological and environmental 5 

processes, such as carbon storage, energy use, water cycle, and climate change (Zhou et al., 2016;Keenan et al., 2014;Peng et 

al., 2013;Tang et al., 2016). These influences are amplified in urban ecosystems due to the notably altered urban environment 

by anthropogenic activities. For example, the urban heat island (UHI) results in an earlier start and a longer duration of the 

growing season than surrounding rural areas (White et al., 2002;Zhang et al., 2004b;Jochner et al., 2011). The change of 

vegetation phenology affects the start and duration of pollen season in urban domains, which has become a major concern by 10 

public health authorities for the potential risks of pollen-induced respiratory allergies (e.g., asthma) (Aas et al., 1997;Anenberg 

et al., 2017;Gong et al., 2012;Li et al., 2019b). Furthermore, the rapid pace of urbanization is expected to continue in the future, 

with more than 66% of the world’s population residing in urban areas by 2050 (United Nations, 2018), which will result in a 

more notable effect of urban environment change. However, our knowledge about the vegetation phenology response to 

urbanization under different development scenarios is still unclear, partly because of the difficulties in observing and mapping 15 

the dynamics of vegetation phenology at fine spatial and temporal resolutions in/around urban areas. Therefore, dynamics of 

vegetation phenology in urban domains is crucial for understanding the response of vegetation phenology to urbanization, and 

this further helps to develop process-based phenology models for prediction under the compound effect of global warming and 

urbanization (Jochner and Menzel, 2015;Jochner et al., 2011;White et al., 2002).   

Medium and coarse resolution satellite observations are inadequate to support vegetation phenology studies in urban domains, 20 

although they have been extensively used for phenology mapping. Relevant studies include using the advanced very high-

resolution radiometer (AVHRR) data (Moody and Johnson, 2001;White et al., 2002;Piao et al., 2006;Cong et al., 2012), and 

the moderate resolution imaging spectroradiometer (MODIS) data (Zhang et al., 2004b;Zhou et al., 2016;Walker et al., 

2012;Walker et al., 2015;Liu et al., 2016). The primary advantage of these datasets is their long-term observations with a fine 
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temporal resolution. However, the relatively coarse (1-8 km) spatial resolution is limited to capture the spatial heterogeneity 

of phenology in urban domains (White et al., 2002;Hogda et al., 2002). In contrast, Landsat observations with a fine spatial 

resolution (30 m) and a long temporal span (since the 1980s) offer the opportunity to overcome this limitation (Zipper et al., 

2016;Li et al., 2017b).  

There are few attempts of mapping vegetation phenology in urban domains using Landsat observations at a large scale due to 5 

complex vegetation compositions in urban ecosystems and the huge dataset required for analysis. Despite the high spatial 

resolution and long-term record of Landsat, the 16-days revisit frequency and the cloud coverage make it difficult to collect 

adequate observations to composite the time series of vegetation indices for investigating vegetation phenology dynamics. 

Therefore, the long-term mean pattern of vegetation phenology using multi-year observations were generally investigated in 

most Landsat-based phenology studies. After that, the annual variability of phenology indicators can be identified through 10 

measuring the difference of dates when the vegetation index in a specific year reaches the same magnitude as its long-term 

mean (Fisher et al., 2006;Melaas et al., 2013). However, currently this approach was mainly used in natural ecosystems (e.g., 

deciduous forest) or at local scales (Fisher et al., 2006;Melaas et al., 2013;Li et al., 2017b), and there lack large-scale 

applications in urban domains. First, vegetation types and compositions in urban ecosystems are more complicated. The 

seasonal pattern of vegetation growth varies among different vegetation types, which requires a more generalized approach to 15 

filter out available Landsat observations for a specific year to measure its gap to the long-term mean (Li et al., 2017b). Second, 

an improved understanding of vegetation phenology in urban areas over different regions require massive Landsat observations 

and super-computational power. More than one thousand Landsat scenes need to process for mapping vegetation phenology 

dynamics in a given city, and this number is huge when expanding the mapping area at the national or global scales.   

The advent of Google Earth Engine (GEE) platform provides the possibility to map vegetation phenology dynamics using the 20 

long-term Landsat data at the regional and global scales. GEE is a start-of-art platform for planetary-scale data analysis, 

mapping, and modelling, owing to free access to numerous global datasets and advanced computational capabilities (Gorelick 

et al., 2017). There are several successful studies built on the GEE platform for mapping long-term dynamics of forest and 

water, using all available Landsat images at the global scale (Hansen et al., 2013;Pekel et al., 2016). It is convenient to 

composite time series data of vegetation index at the pixel level on the GEE, using all clear-sky pixels. Also, the capability of 25 
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cloud-based computation offered by the GEE enables efficient and effective mapping practices at different spatial and temporal 

scales (Xiong et al., 2017).  

To better support vegetation phenology studies in urban domains with more details, for the first time, we mapped annual 

phenology (1985-2015) using long-term Landsat observations at a high spatial resolution in the US and characterized the 

dynamics of urban vegetation phenology. The remainder of this paper describes the study area and data (Section 2), the adopted 5 

method for mapping vegetation phenology indicators (Section 3), the results with discussion (Section 4), and concluding 

remarks (Section 5).  

2 Study area and data 

Our study area includes all cities greater than 500 km2 and their surrounding rural areas in the conterminous US. First, the 

urban extent was derived from nighttime light (NTL) observations (2013) (Zhou et al., 2018;Zhou et al., 2014). Then, a buffer 10 

zone with the same size as the urban area was identified as the surrounding rural area. The near equal size of urban and rural 

areas enables us to explore the response of vegetation phenology to urbanization through characterizing their phenology 

differences (Li et al., 2017a). In total, 148 urban clusters with different sizes were identified for deriving phenology indicators 

and their dynamics (Fig. S1). 

Landsat surface reflectance data is our primary dataset used for vegetation phenology mapping. Images obtained from different 15 

sensors, i.e., Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), and Operational Land Imager (OLI), were 

used to composite the time series of the enhanced vegetation index (EVI) of each pixel (Huete et al., 2002). The surface 

reflectance data have been corrected for the radiometric, topographic, and atmospheric effects (Masek et al., 2006). Clouds 

and shadows were removed before compositing the EVI time series. Thus, all available clear-sky pixels during 1985-2015 

were used in our analysis.  20 

3 Method 

We developed an automatic approach to map urban vegetation phenology indicators using long-term (1985-2015) Landsat 

images on the GEE platform (Fig. 1). First, we composited the EVI time series using all clear-sky observations at the pixel 
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level, ordered by the day of year (DOY). A double logistic model was then applied on the derived EVI time series to obtain 

the long-term mean pattern of phenology indicators (start of season (SOS) and end of season (EOS) in Fig. 1a). Second, we 

derived the annual variability of phenology indicators in urban and surrounding rural areas (Fig. 1b), by measuring the 

difference of dates when the EVI in a specific year reaches the same magnitude as its long-term mean (Li et al., 2017b). Details 

of each step are presented in the following sections.  5 

3.1 Long-term mean phenology indicators 

We composited EVI observations over the years to reflect its seasonal change before the implementation of the double logistic 

model. First, we used all clear-sky observations of EVI and ordered them by their DOYs. This step allows us to retrieve the 

seasonal pattern of vegetation dynamics using multi-year data because the temporal distribution of Landsat data is uneven due 

to the satellite revisit time and sky conditions. Then, we applied a smoothing procedure using a moving average of continuous 10 

observations within 2 days to minimize the impact of abnormal observations. This procedure can keep the raw seasonal pattern 

of EVI (Fig. S2), and further helps to reduce the uncertainty of parameter estimation in the double logistic model.  

We characterized the seasonal change of vegetation growth using a double logistic model. This model has several advantages 

when compared to other approaches such as the splines and harmonic models (Melaas et al., 2016b;Carrão et al., 2010): (1) it 

captures the green-up and senescence phases using different sigmoid functions; and (2) the physical meaning of parameters is 15 

related to the vegetation growth and senescence (Fisher et al., 2006;Li et al., 2017b). The derived EVI time series data were 

fitted using the double logistic model as Eq. 1.  

𝑓ሺ𝑡ሻ ൌ 𝑣ଵ ൅ 𝑣ଶሺ
ଵ

ଵା௘ష೘భሺ೟ష೙భሻ െ
ଵ

ଵା௘ష೘మሺ೟ష೙మሻሻ                                                       (1) 

where 𝑓ሺ𝑡ሻ is the fitted EVI value at the day 𝑡; 𝑣ଵ and 𝑣ଶ are the background and amplitude of EVI over the entire year, 

respectively; and pair-parameters (i.e., 𝑚ଵ & 𝑛ଵ, 𝑚ଶ & 𝑛ଶ) capture the trends of green-up and senescence phases of vegetation 20 

growth, respectively.  

We developed a stepwise statistical approach to estimate the parameters of the double logistic model on the GEE platform for 

large-scale applications because currently the GEE platform does not support for optimization of parameters. Calculation of 

these parameters was presented in the Appendix. In general, the performance of this GEE-based double logistic model is robust 

for different land cover types, and the derived results are close to that from the optimization algorithm (Fig. 2). For example, 25 
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although the magnitude of EVIs is relatively low in urban areas with low vegetation cover, a distinctive seasonal pattern of 

vegetation growth can be captured by the double logistic model. Also, sigmoid curves during green-up and senescence phrases 

are notably different across different vegetation cover types (e.g., forest and cropland). We evaluated the performance of fitted 

double logistic model based on the correlation between the fitted and observed EVI observations to identify pixels with land 

use/cover change during the study period or pixels with weak vegetation signals (e.g., purely built-up area or barren). This 5 

stepwise statistical approach can be implemented at the pixel level on the GEE platform in a parallel manner, which 

significantly improved our mapping efficiency at the large scale.  

We derived phenology indicators of SOS and EOS using the half-maximum criterion (Fisher et al., 2006). Based on this 

criterion, SOS and EOS were defined as dates when the derivative of EVI reaches the maximum during the green-up and 

senescence phases. Although there are other definitions of SOS and EOS such as inflection points (Zhang et al., 2003), the 10 

criterion used in our study is advantageous because: (1) they represent the dates when most leaves are likely to emerge (i.e., 

the steepest points on the symmetric sigmoid curves); and (2) they are temporally more stable and can be applied to plants 

with different canopy structures (Fisher and Mustard, 2007). The growing season length (GSL) was defined as the difference 

between EOS and SOS. 

3.2 Annual variability of phenology indicators 15 

We derived the annual variability of vegetation phenology indicators using the developed generalized Landsat phenology 

(GLP) approach (Li et al., 2017b). Considering the temporally uneven distribution of available Landsat observations over the 

years, the annual variability of phenology indicators was measured as the difference of dates when the EVI in a specific year 

reaches the same magnitude as its long-term mean (Fisher et al., 2006;Melaas et al., 2013). Only EVI observations in the 

rational ranges of DOY and EVI (empty circles in shaded frames) in a given year were used in the GLP approach (Fig. 3). 20 

Observations outside this range (the shaded frames), which are either outliers or beyond the temporal ranges of green-up and 

senescence phases, were not used in calculating the annual variability. In the GLP approach, we also designed a self-adjusting 

strategy to derive the bounds of the shaded frames in the green-up and senescence phases (Fig. 3). For the green-up phase, the 

rational DOY ranges (two points on the long-term mean curve that intersected with the shaded green frame in Fig. 3) were 

defined as the dates when change rates (or derivative) of EVI reach the half-maximum before and after the date of SOS (i.e., 25 
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the date with the maximum change rate). Thus, the corresponding EVI ranges were calculated based on the derived DOY 

ranges and the long-term mean curve. The rational ranges for the senescence phase were determined using the similar approach. 

This approach already showed its applications for different vegetation types (e.g., cropland or forest) with varying seasonal 

patterns of EVI. More details about this approach can be found in Li et al. (2017b).  

4 Results and discussion 5 

4.1 Performance of the GEE-based double logistic model  

The performance of developed GEE-based double logistic model is reasonably well across different latitudes and along the 

urban-rural gradient. Take forest as an example, the seasonal pattern of EVI varies from the South to the North in the US, with 

notably different sigmoid curves for the green-up and senescence phrases (Fig. 4). Our fitting approach can well capture the 

diverse seasonal patterns of EVI for forest across space. Also, the developed approach shows the good capability of fitting 10 

EVI time series along the urban-rural gradient (Fig. 5), where the vegetation composition and the seasonal pattern of EVI are 

more complicated compared to natural ecosystems. For sites in urban center, although their EVIs are low, a distinctive seasonal 

pattern with a good fitting was observed.  

4.2 Comparison with PhenoCam data 

The derived phenology indicators (SOS and EOS) are spatially consistent with in-situ PhenoCam data overall (Fig. 6). 15 

PhenoCam is a regional-scale network of digital cameras that provide high temporal resolution vegetation canopy and 

phenology information (Richardson et al., 2018). The records in PhenoCam are observed green chromatic coordinate (GCC), 

which is used as the indicator of vegetation dynamics. We used all PhenoCam sites in the US and compared the mean SOS 

and EOS with Landsat derived results. The definition of SOS and EOS we used in the PhenoCam data (i.e., the half-maximum 

criterion) is consistent with our result derived from Landsat data. Overall, correlations of the derived SOS and EOS from the 20 

Landsat and PhenoCam are 0.66 and 0.43, respectively. Most indicators are around the 1:1 line, indicating a close 

correspondence of phenology indicators derived from these two independent datasets. For those sites (blue or light blue dots) 

with large differences, the fitting of Landsat EVIs using the double logistic model is relatively worse. These sites are mainly 

distributed in ecosystems dominated by shrubs, evergreen forests, or wetlands (Fig. S3). With correlation coefficients lower 
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than 0.85 (worse fitting) excluded as suggested by Melaas et al. (2016b), the overall agreements between Landsat and 

PhenoCam derived results were notably improved to 0.86 and 0.94, for SOS and EOS, respectively. Discrepancies between 

these two sets of indicators derived from Landsat and PhenoCam are mainly attributed to two factors including: (1) using two 

different vegetation indices (i.e., EVI and GCC) (e.g., relatively weak EVI but strong GCC for sites in arid regions with sparse 

plants); and (2) the effect of field of view for in-situ PhenoCam and space-based Landsat observations (Liu et al., 2017).  5 

The annual variability of phenology indicators (SOS and EOS) derived from Landsat observations also shows a good 

agreement with in-situ PhenoCam results (Fig. 7). We selected 11 deciduous broadleaf forest sites for comparison with 

continuous observations of more than five years (Fig. 7a). Landsat pixels located within 500 m of each PhenoCam station were 

used to ensure adequate samples to reflect the vegetation phenology dynamic at the local scale for this comparison (Melaas et 

al., 2016a). The temporal dynamics of Landsat derived SOS and EOS generally follow the changes captured by PhenoCam 10 

observations (Fig. 7 b-c). A detailed illustration of the Acadia site indicates the SOS derived from the two datasets is notably 

decreasing during period 2006-2010 and their corresponding EOS is increasing after 2011. Although magnitudes of SOS and 

EOS are different over the years, their temporal trends (i.e., decreasing or increasing) are relatively consistent. Overall, the 

annual SOS indicator derived from Landsat shows a better agreement (0.74) with the result obtained from in-situ PhenoCam 

observations (Fig. 7d). The agreement of annual variability of Landsat and PhenoCam EOS is relatively weaker (0.26) (Fig. 15 

7e), which is consistent with previous results reported by Melaas et al. (2016a). The main reason for the weak agreement of 

annual variability of EOS is the difference in greening represented by GCC and EVI. That is, in the green-up phase, both GCC 

and EVI are rapidly increasing. While in the senescence phase, the EVI detected by Landsat slightly decreases, which is notably 

different from the pattern reflected by GCC that rapidly decreases once the leaf color changes.  

4.3 Comparison with Harvard Forest phenology data 20 

Our Landsat derived phenology indicators also show a good agreement with that from the Harvard Forest (HF) over the past 

decades (Fig. 8). The HF data were collected by field observers in spring and fall seasons for more than 25 years (Richardson 

et al., 2006). Our Landsat derived indicators were compared with dates of SOS and EOS recorded in the HF data, in which 

SOS and EOS are defined as the dates when the leaf length reaches 50% of its final size and the leaf color reaches 10% of the 

color change to the greenest, respectively (Melaas et al., 2016a). Three dominant species of red oak (Quercus rubra; QURU), 25 
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red maple (Acer rubrum; ACRU), and yellow birch (Betula alleghaniensis; BEAL) in the HF were included in our analysis. 

Overall, the SOS of the three-dominant species in the HF is similar and shows a good agreement with SOS derived from 

Landsat observations (Fig. 8a). The RMSE between Landsat SOS and the HF data is 3.5 day, and the correlation coefficient is 

0.81 (Fig. 8c), indicating a closer SOS and a relatively consistent temporal pattern. EOS shows a relatively larger gap among 

species (Fig. 8b), i.e., the EOS of red oak is notably later compared to other two species of red maple and yellow birch. The 5 

Landsat derived EOS is within the range of EOS of the three species, and the temporal variability of two data sources are 

similar, although their magnitudes are different. The RMSE between Landsat EOS and the HF data is 3.7 day, and the 

correlation coefficient is 0.51 (Fig. 8d).  

4.4 Comparison with MODIS data 

Phenology indicators (e.g., SOS) derived from Landsat observations provide more spatial details in/around urban areas and 10 

are spatially consistent with those from MODIS (Fig. 9). Taking the Chicago metropolitan area as an example, we compared 

the Landsat derived SOS with that from MODIS in two ways. First, we estimated SOS from the MODIS EVI (16-day) using 

the same approach for Landsat. Second, we retrieved SOS from the widely used MODIS phenology product (MCD12Q2) 

(Zhang et al., 2003). It is worthy to note that the SOS defined in MCD12Q2 is the inflection point of EVI growth during the 

green-up phrase, and this definition is different from our half-maximum criterion (Fisher and Mustard, 2007). Therefore, the 15 

SOS of MCD12Q2 is generally earlier than the other two. Also, there are uncertainties in MCD12Q2 in highly urbanized 

regions, where the SOS is above 180 days (Fig. 9a). Overall, more spatial details of SOS can be revealed in results derived 

from Landsat compared to MODIS (Fig. 9b). In highly urbanized regions, Landsat SOS can also capture the seasonal pattern 

of vegetation growth. Normalized SOSs derived from MODIS and Landsat show a relatively consistent trend along the gradient 

of developed areas (Fig. 9c), although their magnitudes are different (Fig. 9a).  20 

Landsat derived phenology indicator of SOS exhibits a consistent temporal pattern compared to MODIS with a longer temporal 

span (Fig. 10). Although the temporal distribution of Landsat is uneven compared to MODIS, the annual variability of 

phenology indicators can be captured well using the clear EVI observations in a given year relative to the long-term mean 

pattern. For example, there is a notable advancement of SOS in 2012, and all three SOSs captured this variability at the pixel 

and regional levels (Fig. 10a and 10b). The magnitude difference of derived SOS between Landsat and MCD12Q2 is mainly 25 
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due to their definitions, and the difference of SOS between Landsat and MODIS EVI is likely caused by scale effect (e.g., 

mixed pixels).  

4.5 Spatiotemporal patterns of phenology indicators 

Phenology indicators (SOS, EOS, and GSL) in urban domains exhibit a spatially explicit pattern from the North to the South 

in the conterminous US, with an overall advanced SOS in the past three decades (Fig. 11). SOS becomes earlier and EOS 5 

becomes later along the latitudinal gradient, although such spatial difference is more discernible in SOS compared to EOS at 

the national scale. As a result, GSL shows a generally extended trend from the North to the South (Fig. 11a). This spatial 

pattern of phenology indicators (e.g., SOS) is also confirmed at the city level with more details (Fig. 11b). Meanwhile, the 

SOS is advanced in the past three decades, particularly in cities in the northern US (e.g., Boston). Spatiotemporal patterns of 

phenology indicators in the conterminous US reflect the response of vegetation phenology to regional differences of elevation, 10 

temperature, precipitation, vegetation type, as well as the global warming in past decades (Zhang et al., 2004a;Li et al., 2017a).  

5 Data availability 

The derived vegetation phenology data in urban domains are available at https://doi.org/10.6084/m9.figshare.7685645.v2 (Li 

et al., 2019a).  

6 Conclusions 15 

This study generated the first national-scale dynamics of annual vegetation phenology in urban domains (all cities greater than 

500 km2 and their surrounding rural areas) using long-term (1985-2015) Landsat observations on the GEE platform. First, we 

mapped the long-term mean seasonal pattern of vegetation dynamics using a double logistic model. In this step, we proposed 

a stepwise statistical approach to estimate parameters in the double logistic model and implemented it on the GEE platform. 

Next, we identified annual dynamics of phenology indicators (i.e., SOS and EOS) by measuring the difference of dates when 20 

the EVI in a specific year reaches the same magnitude as its long-term mean. Finally, we developed the first high spatial 

resolution (30 m) phenology product in urban areas in the conterminous US, over past three decades (1985-2015).   
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The Landsat based phenology indicators show good agreements with those derived from independent in-situ observations 

(PhenoCam and HF) and another widely used satellite observations from MODIS. Overall, the phenology indicators derived 

from Landsat and PhenoCam are consistent for their long-term mean and annual variability. The comparison with field 

observations collected in the HF suggests the Landsat derived indicators can capture the temporal dynamics of vegetation 

phenology in this forest ecosystem. Besides, the Landsat derived phenology indicators can provide more spatial details 5 

in/around urban areas, compared to the moderate-resolution MODIS results. Also, the temporal trends of phenology indicator 

(e.g., SOS) derived from Landsat and MODIS are consistent overall, and Landsat additionally extends the temporal span than 

MODIS back to the past three decades.  

The Landsat phenology product in urban areas is of great use in urban phenology studies such as phenology response to 

urbanization. There is a spatially explicit pattern of phenology indicators from the North to the South in US cities, with an 10 

overall advanced SOS in the past three decades. With this new phenology dataset (with a long temporal coverage and a high 

spatial resolution), the response of vegetation phenology to urbanization (e.g., UHI) can be further investigated, particularly 

for plants in the urban center or suburban areas with notably altered urban environment by anthropogenic activities, where 

most people reside (Zhang et al., 2004b;Alberti et al., 2017). This dataset, together with ground-based pollen concentration 

data, is also of help in decision making relevant to pollen-induced allergy diseases (Li et al., 2019b).  15 

Appendix 

The double logistic model used in the GLP approach includes two sigmoid curves indicating the green-up and senescence 

phases of vegetation growth (Eq. A1).  

𝑓ሺ𝑡ሻ ൌ 𝑣ଵ ൅ 𝑣ଶሺ
ଵ

ଵା௘ష೘భሺ೟ష೙భሻ െ
ଵ

ଵା௘ష೘మሺ೟ష೙మሻሻ                                                       A1 

where 𝑓ሺ𝑡ሻ is the fitted EVI value at the day 𝑡; 𝑣ଵ and 𝑣ଶ are the background and amplitude of EVI over the entire year, 20 

respectively; the first sigmoid (𝑆𝑖𝑔ଵ : 
ଵ

ଵା௘ష೘భሺ೟ష೙భሻ) with pair-parameters of 𝑚ଵ & 𝑛ଵ captures the green-up phase of vegetation 

growth; and the second sigmoid (𝑆𝑖𝑔ଶ : 
ଵ

ଵା௘ష೘మሺ೟ష೙మሻ) with pair-parameters of 𝑚ଶ  & 𝑛ଶ  captures the senescence phase of 

vegetation growth (Fig. A1). 
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We derived six parameters (i.e., 𝑣ଵ, 𝑣ଶ, 𝑚ଵ, 𝑛ଵ, 𝑚ଶ, and 𝑛ଶ) in the double logistic model using a statistics approach on the 

GEE platform. First, we estimated 𝑣ଵ and 𝑣ଶ based on the smoothed EVI time series, with abnormal observations (or noise) 

excluded. We calculated the quantile levels of 5th and 95th as the minimum 𝑣ଵ and maximum EVI 𝑣௠௔௫ over the entire DOY 

range, to avoid possible biases caused by extreme values. Thus, 𝑣ଶ can be determined as Eq. A2.  

𝑣ଶ ൌ 𝑣௠௔௫ െ 𝑣ଵ                                                                                A2 5 

The first part (𝑆𝑖𝑔ଵ) of the double logistic model in the green-up phase (Eq. A3) can be translated to Eq. A4 by using the 

smoothed EVI time series only during the green-up phase before 𝑑𝑜𝑦௠௔௫ and converted into a logarithmic form as Eq. A5.  

𝑆𝑖𝑔ଵ ൌ
௙ሺ௧ሻି௩భ

௩మ
ൌ

ଵ

ଵା௘ష೘భሺ೟ష೙భሻ                                                                   A3 

௩భା௩మି௙ሺ௧ሻ

௙ሺ௧ሻି௩భ
ൌ 𝑒ି௠భሺ௧ି௡భሻ                                                                     A4 

lnሺ
௩భା௩మି௙ሺ௧ሻ

௙ሺ௧ሻି௩భ
ሻ ൌ െ𝑚ଵሺ𝑡 െ 𝑛ଵሻ                                                                 A5 10 

where the left term in Eq. A5 can be calculated using 𝑣ଵ and 𝑣ଶ, as well as the smoothed EVI time series 𝑓ሺ𝑡ሻ only during the 

green-up phase before 𝑑𝑜𝑦௠௔௫. 𝑚ଵ and 𝑛ଵ can be estimated using the least square regression approach.  

Finally, based on the estimated parameters (i.e., 𝑣ଵ, 𝑣ଶ, 𝑚ଵ and 𝑛ଵ), the second part (𝑆𝑖𝑔ଶ) of the double logistic model in the 

senescence phase can be formulated as Eqs. A6-8, respectively. In a similar manner, the pair-parameters of 𝑚ଶ and 𝑛ଶ can be 

estimated using the least square regression approach, and the smoothed EVI time series during the green-up and senescence 15 

phases together.  

𝑆𝑖𝑔ଶ ൌ
௩భା௩మௌ௜௚భି௙ሺ௧ሻ

௩ଶ
ൌ

ଵ

ଵା௘ష೘మሺ೟ష೙మሻ                           A6 

௩మሺଵିௌ௜௚భሻି௩భା௙ሺ௧ሻ

௩భశ௩మௌ௜௚భି௙ሺ௧ሻ
ൌ 𝑒ି௠మሺ௧ି௡మሻ                                                             A7 

lnሺ
௩మሺଵିௌ௜௚భሻି௩భା௙ሺ௧ሻ

௩భశ௩మௌ௜௚భି௙ሺ௧ሻ
ሻ ൌ  െ𝑚ଶሺ𝑡 െ 𝑛ଶሻ                                                        A8 
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Fig. 1: The proposed framework for deriving long-term (1985-2015) mean vegetation phenology indicators (SOS and EOS) (a) and their 

annual variabilities (b). 

Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2019-9

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Manuscript under review for journal Earth Syst. Sci. Data
Discussion started: 14 February 2019
c© Author(s) 2019. CC BY 4.0 License.



 

17 
 

 

 

Fig. 2: Seasonal patterns of vegetation growth captured by the double logistic model for three distinctly different land cover types. The 

extent of a snapshot is 100m × 100m, and the red dot in the snapshot is the location of the EVI plot. EVI observations were composited 

using all clear-sky pixels during the past three decades (1985-2015). 5 
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Fig. 3: Illustration of the GLP approach for identifying the annual variability of phenology indicators. The solid circles are long-term EVI 

observations and the empty circles are observations at a specific year. The shaded frames colored as green and brown are the rational ranges 

of DOY and EVI to be used during the green-up and senescence phases, respectively.   5 

 

  

Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2019-9

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Manuscript under review for journal Earth Syst. Sci. Data
Discussion started: 14 February 2019
c© Author(s) 2019. CC BY 4.0 License.



 

19 
 

 

 

Fig. 4: Performance of the GEE-based double logistic model from the South to the North in the US using forest as an example. Each snapshot 

indicates a 1km2 square, and the red dot in the middle is the location (30m) of EVI time series fitting.    
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Fig. 5: Performance of the GEE-based double logistic model for sites along an example urban-rural gradient in the Chicago metropolitan 

area. Each snapshot indicates a 1km2 square, and the red dot in the middle is the location (30m) of EVI time series fitting. 
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Fig. 6: Comparison of the period (2001-2015) mean phenology indicators of SOS (a) and EOS (b) derived from Landsat and PhenoCam 

observations. COR: the correlation coefficient between the raw and fitted EVIs using the double logistic model. 
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Fig. 7: Selected PhenoCam sites of deciduous broadleaf forest (a). Annual time series of phenology indicators in the station of Acadia for 

SOS (b) and EOS (c). Comparison of annual variability of SOS (d) and EOS (e) between Landsat and PhenoCam phenology indicators 

across all stations. The annual variability for each site is defined as ሺ𝒙 െ 𝝁ሻ/𝝈, where 𝒙 is the annual value of SOS and EOS, 𝝁 and 𝝈 are 

mean and standard deviation of SOS or EOS over the years.  5 
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Fig. 8: Annual dynamics of SOS (a) and EOS (b) derived from Landsat and Harvard Forest (HF) observations and their scatter plots of SOS 

(c) and EOS (d) over the years.  
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Fig. 9: Spatial patterns of the mean SOS (2001-2014) derived from Landsat, MODIS EVI, and MCD12Q2 and the land cover from the 

national land cover database (NLCD) (2011) in the Chicago metropolitan area (a). Enlarged views (b) at the location of the black square in 

(a). Change of normalized SOS and impervious surface area (ISA) (c) along the white rectangle in (a) (from left to right). Pixels without 5 

good fitting performance (i.e., the correlation coefficient is lower than 0.85) were removed in the derived SOS from Landsat and MODIS 

EVI.  
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Fig. 10: Annual SOS derived from Landsat, MODIS EVI, and MCD12Q2 in the Chicago metropolitan area in representative years (a) and 

the temporal trend at the regional level (b). Solid lines are the mean SOSs at the regional level and shadowed frames indicate the range of 

SOS within the 25th and 75th quantile levels. Pixels without good fitting performance (i.e., the correlation coefficient is lower than 0.85) 

were removed in the derived SOS from Landsat and MODIS EVI.  5 
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Fig. 11: Spatial patterns of the mean (1985-2015) vegetation phenology indicators (SOS, EOS, and GSL) in the US cities (a) and SOS in 

representative cities in the past three decades (b). Each dot in (a) represents the center of the urban cluster, and the spatial extent of selected 

cities in (b) is 25 km × 25 km.  
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Fig. A1: Illustration of the double logistic model and corresponding parameters. 
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